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A lf-contained treatment of the linearization procedure for constrained Hamiltonian
systen s first presented in a general setting. The procedure is then applied to general
relativ . using triads and self-dual connections as the basic canonical variables. These
result: ..ave paved way to the quantization of weak gravitational waves in the connection
and lc 11, representations and to a study of the relation between these quanta and non-
pertur utive canonical gravity. In the classical theory, they suggest a new approach to the

treatn. .t of gravitational perturbations and may be useful also to the theory underlying
weak ¢ ravity waves.

1. Introduction

Ir. the mid-eighties, a new Hamiltonian framework for general relativity was intro-
duced | 1] which shifts emphasis from geometrodynamics to connection dynamics. The
configuration variable of the theory is, in effect, a complex-valued SO(3) connection, A:,
on a spatial 3-slice & which can be interpreted as the pull-back to & of the self-dual part
of the Lorentz spin connection on space-time. The conjugate momentum E} is a vector
density of weight 1 on X, which represents a “density weighted triad” on ¥. The resulting
Hamiltonian framework has two key advantages over the well-known geometrodynamical
framework (see, e.g., [2]). The first is that all field equations simplify considerably, being
polynomial of low orders in the new canonical variables. Furthermore, dynamics of the the-
ory has a natural geometrical interpretation: time evolution in space-time now corresponds
to motion along a null geodesic in the space of connections. Such technical simplications
have led to a number of results in classical relativity and differential geometry of self-dual
metrics. (See, e.g., [3,4].) The second advantage is that, regarded as a theory of con-
nectlons, general relativity is remarkably similar to Yang-Mills theory. Indeed, the phase
spaces of the two theories are the same and the constraint surface of general relativity is
naturally embedded in the constraint surface of Yang-Mills theory. This enables one to
borrow into general relativity techniques from gauge theories [1,5]. The two features to-
gether have suggested a new approach to the construction of a non-perturbative quantum
theory of gravity. (For recent reviews see [6].)

This paper has a dual purpose. First, we wish to present a systematic analysis of
the weak field limit of this Hamiltonian description. Second, we will discuss in detail a
general framework for linearizing constrained Hamiltonian systems. While this discussion
is, in a sense, only a prelude to the linearization of general relativity, the results presented
in this part are quite general and therefore of considerable interest in their own right.
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In particular, they are applicable also to the investigations of cosmological perturbations,
higher derivative theories of gravity, gauge theories, string theory, etc.

Linearization of the new Hamiltonian formulation of general relativity is motivated
by three considerations. The first is conceptual. In Yang-Mills theory, quantization of the
connection gives rise to a multiplet of massless spin-one particles. On the other hand, one
expects the weak-field quanta of the gravitational field to be the states of a single massless
spin two particle. The question therefore arises: How does the multiplet of spin-one quanta
contained in the connection A’ reduce to a single spin-two quantum? The natural arena
for analysing this issue is the weak field limit. One expects to resolve this issue essentially
by counting of the number of true degrees of freedom and examining the form of the fields
representing them, without having to actually quantize the system. We shall see that
this expectation is correct. The second motivation comes from quantum gravity proper.
In text-book treatments, graviton wavefunctions arise as positive frequency fields and
multi-graviton wavefunctions are represented as holomorphic functionals of these positive
frequency fields. In full quantum gravity, positive frequency fields are not available and
the new Hamiltonian framework suggests that we use self-dual fields instead. Thus, the
strategy envisaged is that quantum states be represented by (generalized) holomorphic
functionals of self-dual connections A% [1]. An important check on the viability of this
idea 1s whether it can be applied successfully in the weak field limit, where the quantum
theory is well understood. The first step in carrying out this program is the construction
of the weak-field limit of the Hamiltonian framework based on self-dual connections. We
carry out this step here. A subsequent paper will show that the quantization based on
this framework does indeed lead to the familiar Fock space of gravitons even though an
explicit decomposition into positive and negative frequency parts is not carried out. The
last motivation comes from classical general relativity. Since the equations of the full
theory simplify considerably in terms of the new canonical variables, one might expect the
perturbation analysis to simplify in an analogous fashion. This may be the case especially
when the backgrounds involved are conformally flat —as in FRW cosmologies— or have
Weyl curvature of an especially simple form —as in the black hole spacetimes— since the
connection A? is a potential for the self-dual part of the Weyl tensor. An analysis of the
simplest of these cases —perturbations off Minkowski space—- is again the obvious first step.

In section 2, we present the general framework for linearizing a constrained Hamil-
tonian framework, emphasizing the subtle points such as linearization stability in the
spatially compact context and linearization off time dependent backgrounds that one en-
counters in the cosmological contexts. Section 3 is devoted to the linearization of the new
Hamiltonian framework for vacuum general relativity. In particular, we will see how the
six “spin-1 modes” in the connection A% reduce to the two “spin-2 modes” of the gravita-
tional field in general relativity, discuss the dynamics of these true-degrees of freedom and
analyse the linearization instability problems in the spatially compact cases.

Several of the results reported here were obtained a number of years ago and most of
the material of section 3.2 has appeared in a monograph [7]. However, the results contained
in sections 2.2, 2.3 and 3.3 are new and the older material is included both for completeness
and because it is not easily accessible.



2. Linearization of constrained Hamiltonian systems

In this section, we will consider general Hamiltonian systems with first class con-
straints, where the constraints may or may not be related to the Hamiltonian. The notation
will be as follows: The phase space will be denoted by T, the symplectic structure by {244,

the constraint submanifold by T, and the pull-back of the symplectic structure to ' by Qqg.
On T, the inverse of the symplectic structure Q°? is defined via: Q*#Q4., = 65. Given any

function f, the Hamiltonian vectorfield X ? it defines on I' will be defined as X ¢ = Q*BVsf.

Finally, the convention for the Posson brackets will be: {f,g} = QY fV g = —Lx,qg.

We will often work with constraint functions C;; that is,the constraint sub-manifold
T will be taken to be the one defined by the equations C; = 0. Except in the second
subsection, we will assume that C; are “good coordinates”, i.e., that their gradients V,C;
do not vanish enywhere on T. To clarify the structures involved, we will sometimes regard
I as a 2n-dimensional manifold and T’ as a 2n-m-dimensional submanifold thereof; there
will be m first class constraints and n-m true (configuration) degrees of freedom. However,
our main discussion is not tied, in an essential way, to systems with only a finite number
of degrees of freedom. To discuss field theories in detail, one has of course to specify the
precise function spaces involved and handle the resulting analysis carefully. However, the
basic results presented in this section are applicable to such systems as well.

Since the constraint sub-manifold I is of first class, by definition, it has the property
that 2*#ng is tangential to T for every covariant normal ng to T (for details, see. e.g., [8]).
In terms of the constraint functions C;, a complete set of linearly independent normals is

given by ng) = VoC;. Using the fact that T is a first-class constraint submanifold, it is easy

to show that the constraint functions C; on I’ satisfy {C;,C;} = fiijk for some functions

z-’} on I'. This last equation is in fact a necessary and sufficient condition that I is of first

class. The Hamiltonian vector fields X; = Q°fV 3C generated by the constraint functions
represent infinitesimal gauge motions. Physical observables —such as the Hamiltonian— are
to be invaraint under these motions. It therefore follows, in particular, that the Poisson
brackets between the Hamiltonian H and the constraint functions C; are of the form:
{H,C;} = ¢!C;. This condition in turn implies that the constraints are preserved by
dynamical evolution.

This section is divided into three parts. In section 2.1, we discuss the issue of lin-
earization about a time-independent background -i.e., a point in the phase space at which
the Hamiltonian vector field vanishes— assuming that none of the gradients, V,Cj, vanish
there. The next two sub-sections extend the results of 2.1 in two different directions. In
section 2.2, we allow for the possibility that some of the constraint functions may have a
vanishing gradient at the background point. At generic points of T, of course, V,C; will
not vanish since I" is defined by the coordinate condition C; = 0 . However, sometimes the
background point has special symmetries which can force the gradients to vanish there.
When this happens, the system has “linearization instabilities.” In section 2.3, we consider
linearization about a time dependent background. Thus, now, the Hamiltonian vector field
is not assumed to have zeros and linearization is carried out along a non-trivial integral
curve. This discussion may be of interest, e.g., to the study of cosmological perturbations.



2.1 Linearization about a time-independent background

On the phase space, a time-independent solution is represented by a point, say p, on
the constraint surface I' at which the Hamiltonian vector field X& = Q*#V3H vanishes.
Since Q°? is non-degenerate, it follows that the gradient VoH of the Hamiltonian must
also vanish at p. As explained above, in this section we assume that none of the gradients
V.C; of constraint functions C; vanish at p. An illustrative application would be to the
problem of linearization of Einstein’s equations (possibly coupled to, say, the Yang-Mills-
Higgs system) in the asymptotically flat context.

To obtain the Hamiltonian framework for the linearized theory, we begin by consid-
ering, within our phase space, infinitesimal deviations from p. These are represented by
tangent vectors to ' at p. Thus, the linearized phase space I', is precisely the tangent
space T,I" to E. The symplectic tensor on T', is just the restriction of Qup to p. We will
denote it by 2,5 and its inverse by Q%8; thus Q;"ﬂQ"M = 62. As expected, the linearized
phase space, (I'5,25,4), is a symplectic vector space. We will denote by 0 the derivative
operator on I', which is compatible with its vector space structure.

The constraints of the full theory lead to linearized constraints on I',. Consider a
curve in the constraint surface I' passing through p. The tangent vector to this curve at
p represents an infinitesimal deviation from p satisfying constraints to first order. Hence,
the constraint subspace T', of the linearized phase space is the subspace of T', which is
tangential to the full constraint surface [. Since the elements of I' represent physically
allowable states of the system, elements of I', represent physically allowable pertubations.
We can characterize these in terms of the constraint functions C; as follows: Elements of
', are those tangent vectors v at p which satisfy

CE) = v*(V.Ci)|, =0, (2.1)

for all i = 1,2, ...,m. The functions C¥(v) on T', are thus the linearized constraints. Eval-
uating their Poisson brackets on I',, one obtains:

{CE.clYo = Q2%(8.CH)(5CT)
= Q% (VaCi)lp(VaCi)lp (2:2)
={Ci,Cj}p=0.

Thus, not only are the linearized constraints of first class but their Poisson brackets are
always strongly zero.

Let us next consider linearized gauge transformations. These are generated by the
linearized constraints. Since CZ(v) are all linear in their arguments, the Hamiltonian
vector fields they generate are constant on the vector space I';: °X* = Q28 95C;. They are
naturally identified with the restriction to p of the constraint vector fields X* := QeBvCl
of the full theory. Consequently, we have the following geometrical picture: (To,Q04) 1s
a 2n-dimensional symplectic vector space; T, is a 2n-m-dimensional subspace of I', and
the linearized gauge directions span a m-dimensional subspace § L of I',. The true degrees
of freedom of the linearized theory are represented by vectors in the 2(n-m)-dimensional
vector space, ', :=T,/G"L. Since the linearized constaints are also of first class, the pull-
back Q2 g to T, of the symplectic structure §27 5 projects down unambiguously to I', and

provides a natural symplectic structure Q‘; 5 thereon.
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Let us now consider linearized dynamics. Recall first that the dynamics of the full
theory is generated by the Hamiltonian vector field X&. Since X§; vanishes at p, the
1-parameter family of diffeomorphisms it generates leaves p fixed and naturally induces
the following linear transformation on the tanget space at T,I": v® — T v” where T%5 =
(VsX$)|p. This provides us the linearized dynamics:

0% = TP = —0PVX§|, , (2.3)

where, as before, v® is a generic element of the linearized phase space I',. (Note that T
is independent of the choice of the torsion-free derivative operator used in its definition
because X g vanishes at p.) The right hand side of (2.3) defines the infinitesimal linearized
dynamics. The first question is whether this evolution preserves the linearized symplectic
structure €27 5. Now, on any linear phase space, (T, Q‘;ﬂ), the motion v® — T v” is an
infinitesimal canonical transformation if and only if T%(4 22, , = 0. For the T3 now under
consideration, we have: T%3Q2, = —(V,VgH)|,. Hence the motion (2.3) does represent
an infinitesimal canonical transformation. We can therefore ask for its generting function,
i.e., for the Hamiltonian H%(v) of the linearized theory. Since the transformation under
consideration is linear, the task of computing the Hamiltonian is straightforward. We have:

H(v) = 2o (Vo VH), (2.4)

Thus, the first derivative of the full Hamiltonian vanishes at p and its second derivative
determines the Hamiltonian of the linearized theory.
We can now ask if the linearized Hamiltonian is guage invariant. A calculation anal-
ogous to (2.2) yields
{HL’ CiL}O = 0 ’

whence the linearized Hamiltonian is indeed invariant under the linearized gauge transfor-
mations. Hence, it can be unambiguously projected down to the reduced phase space .
Recall finally that there is freedom to add a multiple, say hiC;, of the constraints to the full
Hamiltonian H since this addition does not affect dynamics of the true degrees of freedom
of the full theory. However, under this addition, the Hamiltonian vector field X§ of the
full theory does change; on the constraint surface I',, we have: X§ — X7 + QXPRV 4C;.
Therefore, unless the extra term, Q¥Ph*VC;, vanishes at p, our assumption that the
point p is left invariant by the full dynamical flow will not be satisfied. If the extra term
does vanish, the framework will be applicable, although the linearized Hamiltonian flow
will now acquire an additional term in the direction of gauge transformations and the lin-
earized Hamiltonian will change correspondingly. On the physical phase space I', on the
other hand, the Hamiltonian will remain unaffected.

2.2 Linearization stability

We will now relax the assumption that none of the gradients V,C; of the constraint
functions C; vanish at p. This situation often arises when the background point has a
gauge symmetry. Consider, as an illustration, SU(n) Yang-Mills theory in a spatially
compact context, say on T2 x R. In this case, the phase space I' is spanned by pairs

S



(A%, E$), where a is the tangent space index and i refers to the Lie algebra of SU(n). The
constraint surface I' is now specified by the Gauss law:

C.(AE) ::/ d*c w; D,E* =0 (2.5a)
T3
for all Lie-algebra-valued functions w!(z) on T%. The gradient of C,, on I is given by:

6C,, ati 6C.,
GAL = —[w,E?", and 5Es

= —D,w' . (2.5b)

At a generic point on the phase space, the right sides of these two equations are non-zero
for any given w® and one therefore generally defines T' by (2.5a). However, at a point
(Ai, E?) which is invariant under gauge transformations generated by some w?, the right
hand sides vanish for C,,. If we happen to linearize about such a point, therefore, one
of the key assumptions of section 2.1 is violated. (In particular, if we linearize about the
“obvious” background (4! = 0,E? = 0), the gradients of C,, vanish for all generators
w* of global SU(n) transformations.) As is well-known, this is the origin of the conical
singularities in the configuration space of true degrees of freedom of the full Yang-Mills
theory. In the context of the linearized theory, on the other hand, this “pathology” is
responsible for linearization instabilities. We will return to this issue at the end of this
subsection!.

Let us return to the general context. As before, let there be m first class constraints
C; = 0 but let us suppose that the gradient of one of them, say C7, vanishes at the
background point p we have chosen. Then, C{ vanishes identically and does not give rise
to a linearized constraint. Thus, it appears at first that T', is 2n-m+1-dimensional; i.e.
that the linearized theory has an additional degree of freedom relative to the full theory.
However, as we will see, this conclusion is incorrect: C; does make its presence felt through
a quadratic condition.

To see this, let us look at the situation from a geometric viewpoint. Consider a smooth
parametrized curve v(s) passing through p and lying entirely in the constraint sub-manifold
[. Clearly, all the derivatives of constraints vanish along v(s). For constraints C;, with
: = 2,3,...m, the condition that their first derivative vanishes along <(s) constrains the
permissible tangent vectors, forcing them to lie in a 2n-m+1-dimensional subspace of T',.
The condition that their second derivatives vanish along ~(s) does not further restrict
the tangent vectors; it is a constraint on the rate of change of the tangent vectors, or,
on second-order variations. The situation is different for the constraint C because its
gradient vanishes at p. Now, the second derivative, Y2V o(¥?VC1)|, along the curve v(s)
can be defined without the knowledge of the rate of change of the tangent vector:

[1°Va(3 VOl = 124 VaVsCilly -

! In the asymptotically flat context, to construct the phase space framework, one must
specify appropriate boundary conditions. The constraint surface T can be defined by the
equations: C,, = 0 for all Lie-algebra valued functions w* of compact support. Since none of
the global gauge transformations are of compact support, in that case the gradients of C\,
do not vanish anywhere on T and the considerations of this sub-section are unnecessary.
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Hence, the vanishing of the second derivative along v(s) does restrict the tangent vec-
tors. Thus, in all, we do have all m constraints on I',. However, one of them, Ci(w) =
%v"vﬂ[vaVﬂClﬂp, is quadratic in v. Thus, the linearized constraint surface I', is 2n-m-
dimensional as in the full theory. However, unlike in section 2.1, it is no longer a linear
subspace of I',. What would happen if we simply ignore the quadratic constraint CE, and
consider the resulting 2n — m + 1-dimensional linear space ', as the constraint surface of
the linearized theory? As in section 2.1, these constraints strongly commute and we would
obtain a first class system. Furthermore, the Hamiltonian would also strongly commute
with these constraints. One would thus obtain a consistent Hamiltonian system which,
however, would have one extra degree of freedom relative to the exact theory. Conse-
quently, the tight relation between the linearized and the exact Hamiltonian descriptions
of section 2.1 would be lost. More precisely, there will be solutions of this linearized sys-
tem which would fail to give rise to a 1-parameter family of exact solutions. Thus, not all
elements of the reduced phase space f‘i, would represent allowable physical perturbations.
This is the problem of linearized instability.

To investigate the structure of the correct linearized theory, let us now suppose that
the gradients of ¢ of the constraint functions, say Ci,...,Cy, of the full theory vanish at
p. Then, T, inherits ¢ quadratic constraints, C{¥, ..., C'qL and [ = m — ¢ linear constraints
CqL+1,...,C,I;l. As before, the [ linear constraints strongly commute with one another.
Furthermore, they strongly commute with the ¢ quadratic constraints. For example, we
have:

{C1LvaL+1}o = Qg’ﬁaaCILaﬂCqLH
= [(Qaﬂ ”‘va(vacl)(vﬂcq-%—l)np (2'6)
= [v”V.,{Cl,C,H_l}Hp =0.

Finally, the ¢ quadratic constraints are closed under the linearized Poisson bracket. For
example, we have:

{CL,CrYo = Q5P0,CL05CY
= 0% 07 o [(V,VaC)lyV(VaCa)ll (27)
= p7p? (V,Vs{C1,C2})lp -

The closure now follows from the fact that, since the gradients of C; and C3 vanish at p,
so does the gradient of the Poisson bracket {Cy,C2}. A similar argument shows that the
Poisson bracket between any quadratic constraint and the Hamiltonian is again a quadratic
constraint.

To summarize, if there are m first class constraints such that the gradients of g of them
happen to vanish at the background point p, the linearized theory acquires ¢ quadratic
constraints and | = m — ¢ linear constraints. The linear constraints strongly commute with
all constraints as well as the Hamiltonian. The quadratic constraints are closed under the
Poisson bracket. The linearized Hamiltonian commutes weakly with the quadratic con-
straints. Thus, on the constraint surface I',, the linearized Hamiltonian is gauge invariant.
In a typical field theory context, there are only a finite number of quadratic constraints.
These arise when the background point p has certain “global” gauge symmetries and they
give rise to linearized instability.
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2.3 Time dependent backgrounds

Let us now consider linearization around a time dependent background solution. The
overall set-up is as in section 2.1. However, the background is now represented by a non-
trivial integral curve, ¥(t), of X§ lying on the constraint submanifold T of the exact theory.
For simplicity, we assume that none of the constraint functions C; have vanishing gradients
at any point along v(¢). Furthermore, since this material is not needed in the next section
—it is being presented only for completeness— the discussion will not be as detailed as in
the last two sub-sections.

At each point of y(t) we have the tangent space T,)I', representing the possible
infinitesimal deformations at that moment. We want to analyse the time evolution of -
these deformations in an appropriate Hamiltonian framework. We could choose any one
point p along 7(t) and take, as before, (I'; = T,T',Q%5 = Qagplp) to be our phase space.
However, to speak of evolution within T',, we need an additional structure: a fiducial,
kinematical isomorphism, say I(t), from T. T to TpT for all t. The dynamical flow of the
full theory is given by the integral curves of the Hamiltonian vector field X§ and, under
the evolution by an amount 7, this maps the tangent vectors at ¥(¢) to those at (¢t + 7).
Therefore, if we have a fiducial isomorphism I(t), we would then obtain a dynamical flow
in the fixed phase space, ', = T,,[', and study its properties. (Note that we can not use for
our fiducial isomorphisms the ones provided by the Hamiltonian flow of the exact theory
since this would lead us to trivial linearized dynamics; all perturbations would be trivially
time independent.)

To obtain the required family of isomorphisms, let us fix, once and for all, a deriva-
tive operator V on I' which is compatible with the symplectic structure 2, i.e., satisfies
Vaflgy = 0. We can now obtain the required isomorphisms I(t) by parallel transport-
ing tangent vectors from any point v(t) of the background solution to the fixed point
p using this V. Since Vo83, = 0, the isomorphisms preserve the symplectic structure:
Qag|7(,)v1°‘vg = Qaglp (I(t)v1)* (I(t)v2)?. In practice, the phase space T' is often a sym-
plectic vector space and one then chooses for V the derivative operator which is compatible
with its linear structure.

At each point v(¢) of the background trajectory, the linearized constraint functions
are defined, as in section 2.1, by

CF () 1= v (VaCi)lyey - (2.8)

The physical perturbations v € T, yI' satisfy C’iL”(t)(v) = 0; they are tangential to the
constraint sub-manifold ' at the point (¢). Using the reasoning of section 2.1, it is
straightforward to check that the Poisson bracket between these functions, computed using
the symplectic tensor Qqgl(1), vanishes strongly. Now, through our isomorphisms I (),
we can map these functions on T.(; to functions on the fixed linearized phase space
T',. The result is a 1-parameter family of constraint functions C'iL’1£ on I'y: C'l-L’t(v) =

CiL’V(t)(I_l(t) -v) for all v € T,. The dependence on the parameter ¢ merely reflects
the fact that, for each t, linearization has been carried out at a different point, ¥(t), of

. Since I(t) preserve the symplectic structure, the Poisson brackets between C lL * also
vanish strongly.



Let us next consider dynamics. Using the arguments of section 2.1, it again follows
that, on T, I', the infinitesimal time-evolution corresponds to the transformation:

'I:)al,\/(t) = T"g(t)vﬂ = U'@(VﬁX}(’_’I)I‘Y(t)

which is generated by:
HEYW(v) = 1vvf[V oV H]| ) - (2.9)

We can push these functions to the fixed phase space I', via our isomorphisms I(t). The
result is a Hamiltonian HL'*(v) with ezplicit time dependence. Finally, because of the
explicit time-dependence, the Poisson brackets between the Hamiltonian and the constaints
do not vanish. Rather, we have:

{HE, CPYo = 1) - (H2O,007 )

5 5 (2.10)

= I(t) . [UQVQ(XHVQC,') - XHVﬂ v"VaC,']lv(t) .
When v® satisfies the linearized constraint, the first term in the last step vanishes and the
second can be interpreted as arising due to the explicit time dependence of the linearized
constraints. Hence, on Iy, (2.10) can be rewritten as:

cht = %Cf“ +{H",CM) = 0. (211)

d
dt

Thus, the Poisson bracket between the constraints and the Hamiltonian is non-zero but
just compensates for the explicit time-dependence of the constraints.

3. Linearization of general relativity using triads and connections.

This section is divided into three parts. In the first, we briefly recall the Hamiltonian
formulation of vacuum general relativity in terms of connections and triads. Using the
framework of section 2.1, in the second subsection we carry out linearization of this Hamil-
tonian framework around Minkowskian initial data. In the last part, we use the results of
section 2.2 to discuss the modifications required in the spatially compact context.

3.1 Hamiltonian general relativity

Fix a 3-manifold £ which is to represent a Cauchy surface in the space-time picture.
In section 3.2, we will focus on linearization off Minkowski space-time and ¥ will then
be assumed to be topologically R®. In section 3.3, on the other hand, we will consider
linearization off a flat space-time with spatial topology of a 3-torus, T3. In this section,
therefore, we will not commit ourselves to a specific topology.

For simplicity, in the discussion of the classical phase space structure, it will be con-
venient to first consider complex general relativity —i.e., complex 4-metrics g,p satisfying
vacuum Einstein’s equations on a real 4-manifold ¥ x R— and then, at the end, restrict
to the “real section” of the resulting phase space by imposing suitable reality conditions
on the canonical variables. The phase space T' of the complex theory can be taken to be
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the space of pairs (E?, A%), where E? is a complex vector density of weight one, taking
values in the Lie algebra of SO(3) and A! is a complex 1-form, also taking values in the
Lie-algebra of SO(3). Here, indices a,b,c... refer to the tangent space of £ while 7, j, k...
refer to the Lie algebra of SO(3). As the notation suggests, E? serves as a (complex) triad
while A% serves as a connection. In terms of A%, therefore, we can define a covariant deriva-
tive operator D which acts on SO(3) “internal vectors” A via: DAt = G\ + €75 A, Mk
where the SO(3) indices are raised and lowered by the Killing-Cartan metric on the Lie
algebra. (For simplicity, we have set Newton’s constant G ~which plays the same role here
as Yang-Mills coupling constant— to one).

The variables (E¢, A}) are canonically conjugate: the basic (non-vanishing) Poisson
brackets of the full, non-linear theory are

{EX (@), A1)} = 6616 (z,) (3.1)
In terms of these variables, the constraints of general relativity can be written as:
D Ef =0, E}F;;=0, and €¢/*E!E!F,;;=0, (3.2)

where F,;! is the curvature of the connection Afl, defined by Fy' := 26[(“42] + ek A Ak
Note that the left hand side of the first constraint is well defined eventhough we have not
introduced any derivative operator on spatial indices because E® is a vector density of
weight one. Thus, all equations are well-defined in terms of just the canonical variables
without any background connections, derivative operators or metrics.

The relation of these phase space variables to those of “geometrodynamics” (see, e.g.,
[2]) is as follows. Taking E¢ as orthonormal triads (of density weight one), we can define
a 3-metric gqp via:

g ¢"* =§YEIE],

where ¢ := det gq5, and ¢® is the inverse metric. One can easily check that this relation
does determine gqp uniquely. Set ef = Ef/,/q; these serve as orthonormal triads (without
any density weight) for the metric gq45. They determine the Ricci rotation coefficients
wi = wkerV via Dyeb = waijeg where D, is the unique torsion free derivative operator
compatible with g,;. Using these, we can now define the extrinsic curvature I, which
essentially serves as the momentum canonically conjugate to the 3-metric gqp. Set
K!:=4(AL —w!) and Kgp:= Klep; .

In terms of (E®, K'}), the three constraint equations (3.2) can be interpreted as follows.
The first equation —the Gauss constraint— implies that K, is symmetric, whence one can
interpret it as extrinsic curvature on ¥ in the 4-dimensional space-time. With this interpre-
tation, the remaining two constraints of (3.2) can be shown [1] to be the well-known vector
and scalar constraints of geometrodynamics [2]. Thus, the two formulations are equivalent.
However, the formulation in terms of connections and triads has the advantage that all
equations of the theory —the constraints, the Hamiltonians and the evolution equations-
become simple, low order polynomials in terms of the canonical variables (E¢, A%). (In
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addition, this description casts general relativity in the language of guage theories, thereby
opening new avenues for quantum gravity. While this is the more important of the two
advantages from a general, conceptual standpoint, it will not play a significant role in this
paper.)

We can now summarize the situation with respect to dynamics. In this framework,
the lapse field N turns out to be a scalar density of weight one while the shift field N¢
1s, as in geometrodynamics, a vector field on £. Given a pair, (N, N%), the corresponding
Hamiltonian is given by:

Hy g(E,A) =~ 3 s dz (NE?E;)Fabkfijk + 2iN2E?F,*) + surface terms

) | 3.3
- / &z Do(NELEN) Apre?* + 2D, (N ED) AL (3:3)
=

As expected, the volume terms in the first step are just linear combinations of constraints.
The surface terms involve integrals over the boundary —if any— of ¥ and, in the asymp-
totically flat context where the only boundary is at infinity, yield the ADM 4-momentum.
The resulting evolution equations are:

E? = —iD,(NEE))e* + 2D, (N ED) 3.4
AZ = iNE;Fabkeijk —{-NaFabi '

So far, we have considered complex general relativity. This formulation is especially
well-suited for discussing self-dual solutions of Einstein’s equations which can be obtained
simply by setting A’ = 0 in the constraint and the evolution equations. However, our
interest in this paper lies in real general relativity. To recover this theory, one must restrict
oneself to the appropriate “real section” of the complex phase space considered above. This
can be done most easily by recalling that in the geometrodynamical formulation of real
general relativity, the metrics and the extrinsic curvatures are both real. Thus, we are led
to define the real section of the phase space as the subspace consisting of pairs (E?, A)

for which
Gab = Gabs and Kz, = Kop (3.5)

If these conditions are imposed initially, they are preserved by the time evolution (3.4). As
stated, the conditions are not polynomial in our basic canonical variables (E¢, A% ). There
is an alternate, polynomial formulation of these conditions (see [7], chapter 8). However,
for the purpose of linearization, that formulation is less transparent and has no technical

advantage over (3.5).

3.2 Linearization off Minkowski space-time

We will now apply the methods of section 2.1 to carry out a linearization of the above
Hamiltonian formulation of general relativity off Minkowski space-time. Thus, in this
section, the 3-manifold ¥ will be assumed to be topologically R® and the phase-space T
will consist of asymptotically flat [1] triads and connections. (We will not need the details
of these boundary conditions here.)
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Recall from section 2.1 that, to carry out linearization, we need to fix a background
point p on the constraint surface I'. We will choose the obvious point that corresponds to
Minkowski space-time: p = (E® = °E¢, A = 0), where °E? is a flat triad on . In the
terminology of geometrodynamics, this corresponds to choosing the initial data consisting
of a flat metric ¢°, and vanishing extrinsic curvature K,;. From the evolution equations
(3.4) it is clear that this point is left invariant by the dynamical evolution corresponding
to space-time translations which correspond to the following choices of lapse and shift:
N = ,/g° and N* = N¢, a translational Killing field of ¢2,. That is, the Hamiltonian vector
fields generated by Hy g(E,A) with N = v/q° and N® = N2 vanish at this background
point p.

The tangent vectors v at p correspond to pairs of fields: p = ((6E)?, (64)) satisfying
appropriate boundary conditions. It is convenient to use the background (unweighted)
triad e¢ := °E%/+/q° (and its inverse €’) to convert all internal indices to spatial ones and
deal exclusively with (complex) tensor fields. Let us therefore set:

het = (§E)? ¥, and Cap = (64). e (3.6)

and allow ourselves to lower and raise tensor indices with ¢2, and its inverse. The asymp-
totic conditions on the elements of the phase space ' of the full theory [1] induce the
following boundary conditions on linearized fields:

h* — Lhett = O(1/r%), h=0(1/r)

Cap — 3Ceqp = o(1/r*), C=0(1/r).
Thus, the linearized phase space T, is spanned by pairs (h®®,C,) of tensor fields on &,
subject to the fall-off (3.7) at spatial infinity. The restriction of the symplectic structure

Q on T to this point p provides the symplectic structure £, on I',. The induced Poisson
bracket relations are:

(3.7)

{r%(z), Cea(y)}o = —i6:648%(z,y). (38)
Having constructed the linearized phase space (T',,{,), our next task is to introduce
linearlized constraint functionals. From (3.2) it follows that these are given by:

O, h"? — nampcam =0, 0.C— 8bC'ub =0, and a[acbc] =0, (39)

where n®®¢ is the Levi-Civita density on . A straightforward calculation shows that, in
accordance with the general result of section 2.1, the Poisson bracket between these lin-
earized constraints vanishes strongly, i.e. everywhere on I',. In particular, the constraints
are of first class. Our next task is to analyse the canonical transformations they generate
and construct the reduced phase space T,.

For this, let us smear the constraint by suitable test fields and obtain (complex-valued)
functions on I',. Set:

CcLn,c) ::i/ Pz wa(Bph*® — ™ Chm) ,

C&(h, C) ::i/ &z V(8,C — 8C.*) (3.10)
=

Ck(h,C) :zi/ dz A nabc aChqps
=
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where the test fields w,, V* and A vanish at infinity sufficiently rapidly. Then, the linearized
constraint surface I', can be specified by the equations:

CL(h,C)=0, CL(h,C)=0, and CL(h,C)=0, (3.11)

for all test fields w,, V* and A. The infinitesimal canonical transformations generated by
these constraints are given by:

Ahab ___,’7abcwC + 6bva _ (acvc)q(ozb _ nabcacA 319
AC . =0,wp. (3.12)

The right hand sides of (3.12) provide us with the linearized gauge directions. They
span a subspace of I, which we will denote, as before, by GX. The physical —or the
reduced- phase space I, is obtained by taking the quotient of I', by GX. Alternatively, we
can use a guage fixing procedure and select from each gauge orbit one and only one point,
representing the true degrees of freedom in that gauge equivalence class. The physical phase
space would then be displayed as a (gauge fixed) subspace of T',. This is the procedure we
will now use.

Thus, the idea now is to simultaneously solve the linearized constraints (3.9) and
eliminate the gauge freedom of (3.12). Since ¥ is topologically R3, the general solution to
the last of constraint equations (3.9) is simply Cop = 8o C4) for some covector Cy on L.
We can now use the gauge freedom contained in the second of equations (3.12) to make
C, vanish. The restricted gauge freedom is of the form w, = 8,w and can be exhausted
by making Cyp trace-free. Thus, we have used the gauge freedom in the parameter w,(z)
and the scalar constraint equation to make C,; symmetric and trace-free. Next, consider
the gauge freedom provided by the parameters A(z) and V?(z). This freedom can be
exhausted by making h®® symmetric and traceless. There only remains the task of solving
the two constraints; the first two of equations (3.9). They now imply that both h%® and
Cap must be transverse (i.e., divergence-free). Thus, we can solve all the constraints and
exhaust the gauge freedom by restricting ourselves to the subspace I', consisting of pairs
(h% S, C of symmetric, transverse, traceless fields on . These fields capture the two
true degrees of freedom of the gravitational field per space point. They are related to the
linearized geometrodynamical variables via:

hoy T = 5/4a(60)3y
STT __ 0 aminp : ~\TT (313)
C = _nbmnqapa hTT — 2(6.[\ ab -

We can now discuss linearized dynamics. For simplicity, let us consider a “pure time
translation” and set the shift N to zero (and lapse N to +/¢°). The linearized evolution
equations can then be read-off from (3.4):

. ° ab
hSTT = i€’ "0 Omhsrr —1v/q° Cspr

CSTT —iEbmnamCSTT (314)
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where €45 is the 3-form on ¥ compatible with ¢2,. As expected, the linearized Hamilto-
nian, generating this evolution, can be obtained by taking the second variation of the full
Hamiltonian (3.3). We have:

HL(h,C)Z _/;d3l_ (\/_[oqac o bdcsTT STT]+2CSTT mb a hSTT . (315)

So far, we have considered complez linearized fields. To recover the real theory, we
have to impose the linearized analog of the reality conditions (3.5). From (3.13), it follows
that these are given by:

CSTT + T]bmnqapathTT —(CSTT + nbanZpa hSTT

(3.16)
Using these conditions, we can simplify the form of the linearized Hamiltonian. On the real
section of the linearized, reduced phase space, it has a particularly simple and convenient
form:

(hSTT = (h STT) and  (

HE(h,C) = /E Bz /q° Cop(z)(C**(2))*, (3.17)

which resmbles the Hamiltonian of an harmonic oscillator, H = ZZ*, expressed in terms of
Bargmann (i.e. creation-annihilation type) variables. Thus, (3.17) exhibits the dynamics
of linearized gravity in terms of that of an assembly of harmonic oscillators. Not only does
this form bring out the fact that the Hamiltonian is positive definite, but it also facilitates
the transition to quantum theory.

3.3 Linearization off flat T® x R

In this section, we will summarize the modifications in the linearization procedure
needed for the case when the underlying spatial topology is compact. Since we are lin-
earizing off flat space, the simplest such topology is that of a 3-torus, T?. In terms of
geometrodynamical variables, the corresponding problem of linearization was discussed in
detail in [9]. While our procedure is technically different, our final conclusions are the
equivalent to those of that reference.

Since the spatial manifold ¥ is compact, in the full theory, there are no boundary
conditions to impose and surface terms are absent. The constraints and the evolution
equations are the same as in section 3.1. We can choose the same background point p
on T and construct the linearized phase space exactly as in section 3.2 (except that we
do not have to worry about the boundary conditions (3.7)). We again have the basic
Poisson brackets (3.8) and linearized constraints (3.9)—(3.11). Thus, the extraction of the
constraint surface I', is unaffected. What changes is the next step: isolation of the true
degrees of freedom.

Let us discuss this point in some detail.

Again, the last of the constraint equations (3.9) implies that Cj,s) is closed. However,
since the 3-torus is topologically non-trivial, we can not conclude that Ci,y is exact.
Rather, now we have to use the Hodge theorem which ensures that every closed form can
be decomposed into an exact form and an harmonic form and set Cqp) = 9[Cy) + C[ab]

As before, using the gauge freedom provided by we(z), we can eliminate the exact part
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9. Cy) and this makes Cj,y harmonic. This partially fixes the gauge freedom in we().
The remaining gauge freedom lies in choosing a w,(z) which is closed. Using the Hodge
decomposition, let us set w, = Ow + wi““. As before, we can use the freeom in the
scalar w(z) to restrict the trace C' of Cyp. From (3.12), it follows that, under the gauge
transformation parametrized by w, C transforms as C' — C + 8%, = C + 8°0,w, (where
the harmonic part does not contribute since it is divergence-free.) Using this freedom, we
can eliminate the part of C(z) which is orthogonal (in the L?-inner product) to the kernel
of the Laplacian 0°9,. That is, we can exhaust the freedom in w(z) by making C(z) a
constant, C,. Thus, we have solved the scalar constraint and used most of the freedom in
we(z) to make Cqp = C[l:l"‘;)ﬁ The remaning gauge freedom is that in letting w,(z) itself be
harmonic.

We now turn to h*®. We can use the restricted gauge freedom in we(z) and the gauge

freedom available through parameters V*(z) and A(z) to restrict the form of h%®. From
(3.12), we have:

Ah[ab] — 7Iabcwimr + a[bVa] _ 77abcaCA ]

Therefore, using the Hodge decomposition of Al*%] we can make k(%% vanish. This exhausts
the freedom available in w?*'(z) and A(z) but leaves the freedom of choosing a closed 2
Vé(z). Let us again use the Hodge decomposition of V%, As with C(z) above, one can
eliminate the freedom of using an exact V* by making the trace of h%® a constant multiple of
V/q% h(z) = ho\/q°(z). Finally, we use the first two of the constraint equations (3.9). The
second equation tells us that Cgp is divergence-free. As for the first, it is straightforward

to check that, with h%® = A(®®) of constant trace and Clap) = C[l:l‘ﬁ, the solutions to it

are necessarily of the form Cl,;; = 0 and 8. h*®* = 0. To summarize, we have solved the
linearized constraints (3.9) and eliminated the gauge freedom to conclude that A% and C,,
are symmetric, transverse and of constant trace. (The freedom in choosing V* harmonic
leaves these fields unchanged and is therefore spurious.)

This may seems surprising at first because, in addition to the two (configuration)
degrees of freedom per space point contained in the transverse, traceless parts of Cy3, we
have an additional, global degree of fredom contained in the trace of C,. Recall, however,
from section 2.2 that, due to the potential linearization instability problems, there may be
additional constraints. This is indeed the case.

First, since we are in the spatially compact context, we can let the smearing field
A in (3.10) to be a constant, A,. For this choice, Cf (h,C) vanishes identically on the
entire linearized phase space T',, whence the gradient of the constraint C_ vanishes at p.
Therefore, as discussed in section 2.2, we must consider a second order variation of the
scalar constraint (3.2) (smeared with A,) to recover all the constraints in the linearized
theory. This is easy to do. The result is the following quadratic constraint on the linearized

fields:

CE (h,C)=2C2V, — [y &z (\/q° q2¢qtCSTTCETT — 2CSTT b 9yhipr) =0, (3.18)

2 For simplicity of notation, we will not distinguish between forms and vector densities
here; the background metric g2, enables one to set isomorphisms between the two spaces.)
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where V, is the volume of the 3-torus with respect to the background metric ¢2,. Thus, C,
is not free but is determined by the symmetric, transverse, traceless degrees of freedom.

Inded, the situation is just the opposite of what one might have initially expected: in
the case of the 3-torus, there are in fact less degrees of freedom than in the Minkowskian
case of section 3.2! This comes about because there are three additional quadratic con-
straints. To see this, consider the second linearized constraint functional C{ of (3.10). If
Ve = /g°V2, where V2 is a constant vector field on (T°,¢°,), CL(h,C) vanishes on the
entire linearized phase space I'y. Thus, there are three additional quadratic constraints.
(V@ are global Killing fields on the background space (T?,q2,); as expected, we are en-
countering the linearized instability problem.) It is easy to work these out from the vector
constraint of the full theory. We have:

C&o(h,C)zL *z (R*"Ly Cap) = 0. (3.19)

Thus, not all (h%%7, C5IT) can serve as true degrees of freedom of the linearized theory.
To do so, they must satisfy (3.19). Only then can one be sure that the pair (h%mp, CaSbTT

represents a tangent vector to a curve in the constraint surface I' of the full theory and thus
represents a genuine physical perturbation. Note, however, that these are just three global

constriaints, whence the “total number of degrees of freedom” is essentially unaffected.

4. Discussion

In this paper, we first developed a general framework for linearizing Hamiltonian sys-
tems with first class constraints and then applied it to general relativity, using connections
and triads as the basic canonical variables. In particular, to illustrate the problems associ-
ated with linearization instability, we considered both the spatially open and the spatially
compact cases. We will now conclude with a few remarks.

1. The discussion of section 2.2 can be used to see how the single spin-2 mode of the
gravitational field arises in the connection framework. If we take only the Gauss constraint
into account and ignore, for the moment, the vector and the scalar constraints of general
relativity, the situation is exactly as in the Yang-Mills theory. Then, the connections Al
would describe three spin-1 particles, each having two helicity states. It is the vector and
the scalar constraints that together remove four of these six degrees of freedom, distilling
the two degrees corresponding to a single spin-2 quantum.

2. In section 3.3, we saw that the fact that the background metric ¢, has three
“translational” Killing vectors has an important consequence: contrary to one’s first ex-
pectation, not all symmetric, transverse, traceless fields (h%rp, C be TY represent physical
perturbations of the gravitational field. To qualify as physical modes, they must satisfy
three (global) constraints, (3.19). Thus, there is a key difference between considering grav-
itational radiation in Minkowski space and that in a box, with periodic identification. This
is quite striking since we are, in particular, used to approximating electromagnetic ratiation
in Minkowski space by “putting the system in a box.” Indeed, this is the strategy often
adopted in the textbook treatments of quantization of the Maxwell field and in the rigorous
treatments that aim at avoiding infra-red problems. The presence of the constraints (3.19)
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shows that considerable care is needed in using a similar strategy in the gravitational case.
This result is in complete agreement with the main results of [9, 10] which were obtained
in the geometrodynamical framework. However, the contrast between the Maxwell theory
and linearized gravity is perhaps more striking in the connection dynamics framework.

3. It is also striking that while the scalar and the vector constraints lead to quadratic
constraints (3.18) and (3.19) on linearized fields, the Gauss constraint does not. In partic-
ular, it is clear from (3.10) that the linearized Gauss constraint CL(k,C) continues to be
non-trivial even if the smearing field w, is assumed to be constant on T*. This might seem
surprising at first since we noted in the beginning of section 2.2 that the Yang-Mills theory
also faces the problem of linearization instability off trivial initial data: (4% = 0, E? = 0).
Note however, that in the case of linearized gravity, we are effectively linearizing about
the point (AL = 0, E? = \/g°6%) of the Yang-Mills phase space and this point is not left
invariant by any infinitesimal gauge transformation w*. Finally, one might wonder why it
is that only the translations —and not the rotations— that lead to quadratic constraints.
The answer is simply that rotations fail to be globally defined on T° and can not therefore
be used as smearing fields V%(z) in (3.10).
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