
PHYSICAL REVIEW A, 66, 023819 ~2002!
Weak-force detection with superposed coherent states
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We investigate the utility of nonclassical states of simple harmonic oscillators, particularly a superposition of
coherent states, for sensitive force detection. We find that like squeezed states, a superposition of coherent
states allows displacement measurements at the Heisenberg limit. Entangling many superpositions of coherent
states offers a significant advantage over a single-mode superposition state with the same mean photon number.
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I. INTRODUCTION

Nonclassical states of light have received considerable
tention in the field of quantum and atom optics. Many no
classical states of light have been experimentally produ
and characterized. These states include photon num
states, squeezed states, and certain entangled states.
are a number of suggested, and actual, applications of t
states in quantum-information processing including: qu
tum cryptography@1,2#, quantum teleportation@3–8#, dense
coding @9#, and quantum communication@10–12# to name
but a few. They have also been proposed for high-precis
measurements such as improving the sensitivity of Ram
fringe interferometry@13# and the detection of weak tida
forces due to gravitational radiation. In this paper, we c
sider how nonclassical states of simple harmonic oscilla
may be used to improve the detection sensitivity of we
classical forces.

When a classical forceF(t) acts for a fixed time on a
simple harmonic oscillator, with resonance frequencyv and
massm, it displaces the complex amplitude of the oscillat
in phase space with the amplitude and phase of the displ
ment determined by the time dependence of the force@14#. In
an interaction picture rotating at the oscillator frequency,
action of the force is simply represented by the unitary d
placement operator

D~a!5exp~aa†2a* a!, ~1!

wherea,a† are the annihilation and creation operators for
single mode of the electromagnetic field satisfying@a,a†#
51, and a is a complex amplitude which determines t
average field amplitude,^a&5a. For simplicity, we will as-
sume that the force displaces the oscillator in a phase-s
direction that is orthogonal to the coherent amplitude of
initial state, which we take to be real with no loss of gen
ality. The displacement is thus in the momentum quadrat
Ŷ52 i (a2a†). To detect the force, we would need to me
sure this quadrature. If the oscillator begins in a coher
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state ua0&, (a0 is real! the displacementD( i e) causes the
coherent state to evolve toei ea0ua01 i e&. The signal is then
measured to beS5^Ŷout&52e, while the variance in the
signal is given byV5^Ŷout

2 &2^Ŷout&
251. The signal-to-

noise ratio is hence

R5
S

AV
52e, ~2!

which must be greater than unity to be resolved~the mea-
sured signal must be greater than the uncertainty of
quadrature in a coherent state!. Thus, we find a standard
quantum limit for the weak force detection as

eL>
1

2
. ~3!

II. WEAK FORCE DETECTION WITH SQUEEZED
STATES

It is well known @15# that this limit may be overcome i
the oscillator is first prepared in a squeezed state~a uniquely
quantum-mechanical state! for which the uncertainty in the
momentum quadrature is reduced below the coherent-s
level. For the case of an appropriately squeezed vacuum

uc&5A12ulu2(
n50

`
lnA~2n!!

n!
u2n&, ~4!

where the mean photon number is given by

n̄5l2/~12l2! ~5!

and l5tanhr ~with r being the squeezing parameter!. A
weak force causes a displacementD( i e/2) on the squeezed
vacuum. In this case, the signal and variance for the m
sured momentum quadrature is given by@16#

S5^Ŷout&52e, ~6!

V5^Ŷout
2 &2^Ŷout&

25e22r , ~7!
©2002 The American Physical Society19-1
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and hence a signal-to-noise ratio ofR52eer . The minimum
detectable force is given by@16#

e>
1

2er
, ~8!

which for large squeezing corresponds toemin>1/(4An̄). We
see that squeezing provides an increased sensitivity

scales as 1/An̄.
Following early work by Bollingeret al. @17#, Huelga

et al. @13# have shown that quantum entangled states can
used to improve the sensitivity of frequency estimation us
Ramsey fringe interferometry. Can entanglement be use
improve the sensitivity for force detection? To begin, let
consider an entangled state of two harmonic oscillators,
two-mode squeezed state,

uc&5A12l2(
n50

`

lnun,n&, ~9!

whereun,n&5un&1^ un&2. The entanglement in this state ca
be seen in a variety of ways. Most obviously, it is an eige
state of the number difference operatora1

†a12a2
†a2, between

the two modes, and in the limit of large squeezing,l→1, a
near eigenstate of phase sum@18#. Alternatively we can con-
sider the correlations between quadrature phase operato
the limit of large squeezing (l→1), the state approaches
simultaneous eigenstate of bothX̂12X̂2 and Ŷ11Ŷ2, which
is the kind of state considered by Einstein, Podolsky, a
Rosen@19#. This kind of correlation has been exploited b
Furasawaet al. @20# to realize an experimental teleportatio
protocol. With two oscillators, we need to specify how t
weak force acts. We will specify that the force acts indep
dently on each oscillator. To detect the force, consider a m
surement of the joint physical quantity described by the
erator Ŷ11Ŷ2. It is then straightforward to show that th
signal and variance of the measured result, after the displ
ment, are given by

S5^Ŷ11Ŷ2&54e, ~10!

V5^~Ŷ11Ŷ2!2&2^Ŷ11Ŷ2&
252e22r , ~11!

which gives a signal-to-noise ratio ofR52A2eer . The mini-
mum detectable force is thene>1/(2A2er) which is aA2
improvement over the single-mode squeezed state. For l
squeezing, the minimum detectable force can be express
terms of the total mean photon number for both modes

this limit, emin'1/(4An̄tot). This is the same scaling as w
found for a single-mode squeezed state. The apparent
provement due to entanglement is simply a reflection of
fact that we have a two-mode resource with double the m
photon number.

For the two-mode squeezed state with the measurem
scheme chosen, there is a simple way to understand thi
sult. The entangled two-mode squeezed state~9! is easily
disentangled by the application of a unitary operator of
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form U5exp@2ip(a1
†a21a1a2

†)/4#, which does not change
the total energy. We will refer to this unitary transformatio
as the beam splitter transformation, as in the case that
two oscillator modes correspond to optical field modes, t
transformation describes the scattering matrix of an opt
beam splitter. The resulting state becomes a~disentangled!
product state of two single-mode squeezed states@as in Eq.
~4!#. The weak force now acts to displace each of the sing
mode squeezed states, each of which may be used to ac
the squeezed state limit for displacement detection. As th
are two realizations of the measurement scheme, there
be an additional 1/A2 improvement in sensitivity simply
from classical statistics. It is thus inaccurate to attribute
improved force sensitivity of a two-mode squeezed state
entanglement whenŶ11Ŷ2 measurements are performed.
assessing the limits to force detection using entangled st
of N harmonic oscillators we thus need to consider if a
apparent improvement could have been achieved simply
using N copies of an appropriate nonclassical state o
single-harmonic oscillator.

Of course it may not always be so obvious to transform
entangled state to a product of nonclassical states. Cons
an entangled state of the form

uC&5 (
n50

`

cnun,n&. ~12!

This state is correlated in number, but unlike the two-mo
squeezed state, it is not necessarily a near eigenstate of p
sum. If we consider a measurement ofY11Y2 as we did
previously, the signal and variance after the displacement

S54e, ~13!

V52~11^a†a1b†b&2^a†b†1ab&!, ~14!

which gives an improvement in the signal-to-noise ra
when ^a†a1b†b&,^a†b†1ab&. A state like this, with a
correlated photon number, is the pair-coherent~or ‘‘circle’’ !
state given by@21,22#

ucircle&m5NE
0

2p

uaei z&auae2 i z&bdz, ~15!

where u . . . &a and u . . . &b represent coherent states in th
modesâ and b̂. N is a normalization coefficient anda the
amplitude of the coherent state. This state can be writte
the form ~12! with

cn5
1

AI 0~2a!

an

n!
. ~16!

Here, I 0 is a zeroth-order modified Bessel function. Th
state cannot be separated into product states via beam sp
transformations. It is easily shown that the minimum dete
able force occurs when
9-2
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emin5
1

2
A1

2
1n̄2a, ~17!

with the mean photon number being given byn̄
5aI 1(2a)/I 0(2a). A small improvement is seen for alla,
with the minimum occurring ata50.85 (emin50.221 108).
As a→`, we haveemin→0.25. In this optimal region the
mean photon number is small. The measurement ofY11Y2
is not optimal however because it is not a near eigensta

It is likely that one can achieve a significantly better se
sitivity if one changes the measurement quantity fromY1
1Y2 to a quantity that is a near eigenstate of Eq.~12!. For
these correlated photon number systems, this could requ
measurement of the photon number difference of Eq.~12!
which with current technology is quite unpractical.

III. WEAK FORCE DETECTION WITH CAT STATES

Let us now turn our attention to a less straightforwa
example. In the previous example, two entangled harmo
modes, the two-mode squeezed state, gave an improve
in the signal-to-noise ratio~compared to a single mode! of
1/A2. With an entangled state comprised of more modes
even better improvement may be achievable. However, th
is no simple way to generalize the two-mode squeezed s
to give an entangled state of many modes. We now cons
another class of nonclassical states, based on a coheren
perposition of coherent states~cat states!, which can be en-
tangled overN modes.

ConsiderN harmonic oscillators prepared in the cat sta

uc&N5N1~ ua,a, . . . ,a&1u2a,2a, . . . ,2a&), ~18!

where

ua,a, . . . ,a&5Pk
^ Nua&k ~19!

is the tensor product of coherent states andN is the normal-
ization constant given by

N5
1

A212e22Nuau2
. ~20!

We takea to be real for convenience. Fora@1, this nor-
malization constant approaches 1/A2, and we henceforward
make this assumption. Parkins and Larsabal@23# recently
suggested how this highly entangled state might be forme
the context of cavity QED and quantized motion of a trapp
atom or ion.

To begin our consideration of these states, let us cons
the case of a single oscillator (N51)

uf&5
1

A2
~ ua&1u2a&), ~21!

where the mean photon number is given byn̄5uau2. When a
weak classical force acts on the state in Eq.~21!, it is dis-
placed by
02381
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uf&out5
1

A2
~e2 i Im(ab* )ua1b&1ei Im(ab* )u2a1b&)

'
1

A2
~eiuua&1e2 iuu2a&)5cosuu1&1 isinuu2&,

~22!

where u522Im(ab* ) and we have defined the even
(u1&) and odd-parity (u2&) eigenstates

u6&5
1

A2
~ ua&6u2a&). ~23!

Our problem is thus reduced to finding the optimal read
for the rotation parameteru for a two-dimensional submani
fold of parity eigenstates. The rotation is described by
unitary transformation

U~u!5exp~ iuŝx!, ~24!

whereŝx5u1&^2u1u2&^1u is a Pauli matrix.
The objective is now to find an optimal measureme

scheme to estimate the rotation parameteru and thus the
force parametere. The maximum sensitivity will occur when
u52Im(ab* ) is maximized for a given displacement. Ha
ing chosena real, u is maximized by choosingb purely
imaginary. This corresponds to a displacementD(b) entirely
in the momentum quadrature. Settingb5 i e, we haveu
5ea. The theory of optimal parameter estimation@24# indi-
cates that the limit on the precision with which the rotati
parameter can be determined is

~du!2>
1

Var~ ŝx! in

, ~25!

where Var(ŝx) in is the variance in the generator of the rot
tion in the input stateu1&, which is simply unity. Thus, we
find that uncertainty on the force parameter is bounded
low by de>1/(2a). It thus follows that the minimum de
tectable force isemin>1/(2a), which may be written in
terms of the total mean excitation number of the input st
as

e>
1

2An̄
, ~26!

where the mean photon numbern̄5uau2. This measuremen
is at the Heisenberg limit. Comparison with the result for t
single-mode squeezed state shows a similar dependenc
the mean excitation number, however, the squeezed s
sensitivity is better by a factor 1/2.

We can now consider a two-mode entangled cat state

uc&15N~ ua,a&1u2a,2a&). ~27!
9-3
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However, this state is easily disentangled with the unit
transformation

U~p/2!5expF2 i
p

2
~a1

†a21a1a2
†!G ~28!

~for a quantum optical realization, this is a 50:50 beam sp
ter! to produce the separable state

uc̃&15N1N2~ ua&11u2a&1) ^ ~ ua&21u2a&2). ~29!

As in the case for squeezed states, we only need conside
force detection sensitivity for the state of a single oscillat
The minimum detectable force is given by

e>
1

2A2n̄
. ~30!

Here, we see theA2 improvement from classical averagin
For theN-mode state given by Eq.~18!, a linear transforma-
tion also exists to transform theN-mode entangled state to
product state of single-mode cat states. In this case, the m
mum detectable force usingN modes, each prepared in c
state with amplitudea, is

emin.
1

2ANn̄
. ~31!

As each mode has a mean photon number given byn̄5a2,
the total mean photon number used in the entire experim
is n̄tot5Na2, the minimum detectable force can be written

emin.1/An̄tot. We see from here that there is no real adva
tage in using entangled states with the measurement pro
outlined, as the improvement is only the standard statist
improvement that one gets from multiple copies of a sing
mode cat state produced by disentangling the state.

IV. ENTANGLED CAT STATES

A question that should be asked is whether both entan
ment and collective measurements allow one to increase
sensitivity of this displacement measurement past the lim
shown above? To address this question, let us consider a
the N-mode entangled cat state

uc&5
1

A2
~ ua,a, . . . ,a&1u2a,2a, . . . ,2a&), ~32!

where the total photon number of the entire state isntot
5Na2. The weak force acts simultaneously on all modes
this N-party entangled cat state. It causes a displacem
D( i e) on each mode in Eq.~32! resulting in the state

uc~u!&5
eiNu

A2
ua1 i e,a1 i e, . . . ,a1 i e&

1
e2 iNu

A2
u2a1 i e,2a1 i e, . . . ,2a1 i e&, ~33!
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where u5ea. The theory of optimal parameter estimatio
indicates that the limit on the precision with which the rot
tion parameter is given by Eq.~25! but where sx

5( i 51
N sxi

. The uncertainty in this force parameter is hen
bounded by

e5
1

2Na
5

1

A4Nntot

~34!

and is at the Heisenberg limit. We observe a critically imp
tant extraAN improvement due to the entangled state a
collective measurement~projective measurements ont
ua,a, . . . ,a&2u2a,2a, . . . ,2a&) which can be seen
overN individual copies of the stateua&1u2a&, or a single-
mode stateuAntot&1u2Antot&. For a large and finitentot it
seems optimal that one should create a highly entangled
state with as many modes as possible while maintaininga
@1.

In our consideration so far we have not considered
effects of loss or decoherence on these highly nonclass
states. Whether we are considering highly entangled
states or large-amplitude single-mode cat states these a
extremely sensitive to small amounts of loss and decoh
ence. Error correction and avoidance techniques can be
ployed to reduce these effects but are beyond the scop
this paper.

V. GENERALIZED CAT STATES

In the example just discussed, maximum sensitivity
quired the classical force to displace the cat states in a di
tion orthogonal to the phase of the superposed coherent
plitudes. In general, there is no way to arrange t
beforehand, as the phase of the displacement depends o
unknown time dependence of the classical force. Howeve
simple generalization of the previous cat states can be u
to relax this constraint. Note that the cat states are pa
eigenstates and are thus the conditional states resulting
a measurement of the number operator modulo 2,n̂2
5a†a mod 2, on an input stateua& with a real. We are thus
led to consider the conditional states for measurement
n̂K5a†a mod K. Such states have previously been cons
ered by Schneideret al. @25#. Given a resultn50,1, . . . ,K
21 for such a measurement, the conditional~unnormalized!
states are

uK,n&5 (
m50

K21

expF2p imn

K G uae2p im/K&, ~35!

which are eigenstates ofei2pa†a/K with eigenvalues
e2 i2pn/K.

The case ofK54 has recently been considered by Zur
@26# in the context of decoherence and quantum chaos.
sume that the oscillator is initially prepared in the state

uc& in5u4,0&5ua&1u ia&1u2 ia&1u2a& ~36!
9-4



e

n
te
. I
-
ua

e

nc

t
io
ti
iv

h
su

e
o

re

am

c

en

tio
s-

t

ert
of

ym-
n

an

uta-
tate

at
en-
ot-

s is
ed.
tive
ition
.
uld
r
ned

etic

ea-
can
e
tate

ither
d
is

WEAK-FORCE DETECTION WITH SUPERPOSED . . . PHYSICAL REVIEW A66, 023819 ~2002!
with a real. Under the action of a weak force characteriz
by a complex amplitude displacementb, the output state is

uc&out5eiuua&1eifu ia&1e2 ifu2 ia&1e2 iuu2a&,
~37!

whereu52a Im(b) andf52a Re(b). The state now car-
ries information on both the real and imaginary compone
of the displacement due to the force which may be extrac
by measuring the projection operator onto the initial state
the limit thatK@uau2@1, the initial conditional state is sim
ply the vacuum state and we recover the usual standard q
tum limit for force detection by number measurement@15#.

VI. DISCUSSION AND CONCLUSION

We now compare our results to the study of Rams
fringe interferometry introduced by Bollingeret al. @17# and
discussed by Huelgaet al. @13#. In Ramsey fringe interfer-
ometry, the objective is to detect the relative phase differe
between two superposed states$u0&,u1&% that form a basis for
a two-dimensional Hilbert space. These states could be
ground and excited states of an electronic dipole transit
The problem reduces to a quantum parameter estima
problem. The unitary transformation which induces a relat
phase in the specified basis isU(u)5exp@iuẐ# where Ẑ
5u1&^1u2u0&^0u. We are free to choose the input stateuc& i
and the measurement we make on the output state, whic
described by an appropriate positive operator valued mea
~POVM!.

The theory of quantum parameter estimation@24# indi-
cates in this case that we should choose the input stat
uc& i5(u0&1u1&)/A2 and the optimal measurement is a pr
jective measurement in the basisu6&5u0&6u1&. The prob-
ability to obtain the result1 is P(1uu)5cos2 u. In N rep-
etitions of the measurement the uncertainty in the infer
parameter is

du5
1

AN
, ~38!

which achieves the lower bound for quantum phase par
eter estimation. Repeating the measurementN times is
equivalent to a single-product POVM on the initial produ
state) i 51

N
^ (u0& i1u1& i)/A2. However, it was first noted by

Bollinger et al. @17# that a more effective way to use theN
level systems is to first prepare them in the maximally
tangled state

uc&5
1

A2
~ u0&1u0&2 . . . u0&N1u1&1u1&2 . . . u1&N) ~39!

and subjecting the entire state to the unitary transforma
U(u)5) i 51

N exp(2iuẐi), the uncertainty in the parameter e
timation then achieves the Heisenberg lower bound of

du5
1

N
. ~40!
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Briefly, let us instead considerN/2 maximally entangled
pairs. In this case, we can combine Eq.~40! at N52 with the
square-root statistical benefit ofN/2 repetitions. This yields
du5 1

2 A2/N51/A2N indicating that pairwise entanglemen
yields only a margined benefit compared to fullN-wise en-
tanglement for the phase estimation.

We will now show that the entangled state in Eq.~39! is in
fact a cat state for a collective operator algebra. The Hilb
space ofN two-level systems is the tensor product space
dimension 2N. The entangled state in Eq.~39! however re-
sides in a lower-dimensional subspace of permutation s
metric states @27#. These states constitute a
N11-dimensional irreducible representation of SU~2! with
infinitesimal generators defined by

Ĵz5
1

2 (
i 51

N

Ẑi , Ĵy5
1

2 (
i 51

N

Ŷi , Ĵx5
1

2 (
i 51

N

X̂i , ~41!

where Ẑi5u1& i^1u2u0& i^0u,X̂i5u1& i^0u1u0& i^1u,Ŷi

5 i u1& i^0u2 i u0& i^1u. The Casimir invariant isĴ25 Ĵx
21 Ĵy

2

1 Ĵz
2 with eigenvalueN/2 (N/211). The operatorĴz has

eigenvaluesm52N/2,2N/211, . . . ,N/2, which is one half
the difference between the number of zeros and ones in
eigenstate. It is more convenient to use the eigenstatesum&N/2
of these commuting operators as basis states in the perm
tion symmetric subspace. In this notation, the entangled s
defined in Eq.~39! may be written

uc&5
1

A2
~ u2N/2&N/21uN/2&N/2). ~42!

In this form, we can regard the state as an SU~2! ‘‘cat state’’
for N two-level atoms. Hence, it is straightforward to see th
a single 2N-level atom can achieve the same frequency s
sitivity. Their equivalence can be also be understood by n
ing that the sensitivity of such frequency measurement
proportional to the energy difference of the states involv
What entanglement allows is for one to create an effec
state without the need of resorting to create a superpos
between a certain ground state and a highly excited one

A closer atomic analogy to a single-mode cat state wo
be a cat state for a singleN-level electronic system. Fo
example, we could consider the unnormalized state defi
on a hyperfine manifold with quantum number F,uF&F
1u2F&F . Such states have been considered in Ref.@28#. A
similar state could also be generated for the large magn
molecular systems considered in Refs.@29–31#. The key is in
how the resources can be distributed and what types of m
surements one is trying to achieve. If the single molecule
only be prepared with a certainN, then an advantage can b
gained for frequency measurements by entangling the s
of many single molecule systems@31,32#. However, if we
restrict the total system to having a fixedN and we have
enough control so as to be able to prepare the system e
as a single large SU~2! molecular state or many entangle
smaller molecular states, then the same sensitivity
9-5
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MUNRO, NEMOTO, MILBURN, AND BRAUNSTEIN PHYSICAL REVIEW A66, 023819 ~2002!
achieved for the high-precision frequency measurement~this
was not the case for weak force measurements!.

To conclude, we have in this paper shown how super
sitions of coherent states can be used to achieve extre
sensitive force detection. For a single-mode stateua&
1u2a& we have found that the minimum detectable d
placement for weak force measurements scales inver
proportional to the square root of the mean photon numbe
the superposition of coherent states. This is the same sc
obtained by a single-mode squeezed state and achieve
Heisenberg limit for single-mode displacement measu
ments.

What is potentially more interesting is that if we take
number of individual copies of a single-mode cat state th
we still achieve the inverse square-root scaling with to
mean photon number~hence, effectively allow one to in
crease the mean number of particles!. If one starts with an
N-mode entangled cat state, then simple linear transfor
tion can be used to turn this state intoN copies of a single-
mode cat state and hence achieve theemin;1/Antot sensitiv-
ity. This however is not optimal as it does not achieve
Heisenberg limit for multiple modes. To achieve this lim
for weak force detection, one must use both an entang
N-mode cat state and a joint collective measurement~be-
et
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tween the various modes!. Entanglement is the critical re
source to achieve the best sensitivity for a fixedntot . On the
other hand, we have shown for frequency~or phase! mea-
surements that the sensitivity previously offered by ent
gling N two-level atoms can be achieved with a sing
2N-level atom. The key is that the sensitivity for the fr
quency measurement is proportional to the energy differe
of the states involved and both the entangled resource
the superposition resource have the same energy differe
Entanglement allows one to create an effective state with
the need of resorting to create a superposition between
certain ground state and a highly excited one.
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