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Weak-force detection with superposed coherent states
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We investigate the utility of nonclassical states of simple harmonic oscillators, particularly a superposition of
coherent states, for sensitive force detection. We find that like squeezed states, a superposition of coherent
states allows displacement measurements at the Heisenberg limit. Entangling many superpositions of coherent
states offers a significant advantage over a single-mode superposition state with the same mean photon number.
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[. INTRODUCTION state|ag), (aq is rea) the displacemenb(ie) causes the
coherent state to evolve ®“0|ay+i€). The signal is then
l\!onc_lassica] states of light have received _considerable aineasured to bé;:(?ou&:ge, while the variance in the
tention in the field qf quantum and atom optics. Many non- ignal is given byV=<\?§m>—<?out>2=1- The signal-to-
classical states of light have been experimentally produce oise ratio is hence
and characterized. These states include photon number
states, squeezed states, and certain entangled states. There
are a number of suggested, and actual, applications of these R= — =2¢, 2
states in quantum-information processing including: quan- W
tum cryptographyf1,2], quantum teleportatiof3—8], dense
coding [9], and quantum communicatidqi0-12 to name Which must be greater than unity to be resolvéte mea-
but a few. They have also been proposed for high-precisiogured signal must be greater than the uncertainty of this
measurements such as improving the sensitivity of Ramseguadrature in a coherent stat&hus, we find a standard
fringe interferometry[13] and the detection of weak tidal quantum limit for the weak force detection as
forces due to gravitational radiation. In this paper, we con-
sider how nonclassical states of simple harmonic oscillators o= 1 3)
may be used to improve the detection sensitivity of weak L= 2-
classical forces.

When a classical forc&(t) acts for a fixed time on a
simple harmonic oscillator, with resonance frequeacgnd
massm, it displaces the complex amplitude of the oscillator
in phase space with the amplitude and phase of the displace- It is well known [15] that this limit may be overcome if
ment determined by the time dependence of the fiitdg In  the oscillator is first prepared in a squeezed stateniquely
an interaction picture rotating at the oscillator frequency, theguantum-mechanical statéor which the uncertainty in the
action of the force is simply represented by the unitary dissmomentum quadrature is reduced below the coherent-state

Il. WEAK FORCE DETECTION WITH SQUEEZED
STATES

placement operator level. For the case of an appropriately squeezed vacuum state
D(a)=expaa’—a*a), (1) SN
[=VI=IPE = 2n), @

wherea,a' are the annihilation and creation operators for the
single mode of the electromagnetic field satisfyjrga']
=1, and«a is a complex amplitude which determines the
average field amplitudéa)=«. For simplicity, we will as-
sume that the force displaces the oscillator in a phase-space

direction that is orthogonal to the coherent amplitude of the d x=tanh ith r being th . teA
initial state, which we take to be real with no loss of gener—an =tanhr (with r being the squeezing parame

ality. The displacement is thus in the momentum quadraturt—:y,"eak force causes a d|spla(_:emél(u €/2) on the squeezed
~ . T vacuum. In this case, the signal and variance for the mea-
Y=—i(a—a'). To detect the force, we would need to mea

. : S “sured momentum quadrature is given
sure this quadrature. If the oscillator begins in a coherent g g (ag]

where the mean photon number is given by

n=\2/(1-\2?) (5)

S=(You) =2, (6)
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and hence a signal-to-noise ratioR& 2ee’. The minimum  form U=exd —im(ala,+a;a)/4], which does not change
detectable force is given HyL6] the total energy. We will refer to this unitary transformation
as the beam splitter transformation, as in the case that the
two oscillator modes correspond to optical field modes, this
transformation describes the scattering matrix of an optical
beam splitter. The resulting state become&ligentangled
product state of two single-mode squeezed stssn Eq.
é{l)]. The weak force now acts to displace each of the single-
mode squeezed states, each of which may be used to achieve
scales as Wn. , the squeezed state limit for displacement detection. As there
Following early work by Bollingeret al. [17], Huelga  4re two realizations of the measurement scheme, there will
et al. [13.] have shown tha.‘t. quantum entangled_stat_es can b@e an additional 4/2 improvement in sensitivity simply
used to improve the sensitivity of frequency estimation USINGrom classical statistics. It is thus inaccurate to attribute the
Ramsey fringe interferometry. Can entanglement be used tl?nproved force sensitivity of a two-mode squeezed state to

improve the sensitivity for force detection? To begin, let us ~ s
consider an entangled state of two harmonic oscillators, thgntang[ement Wh9M1+Y2 measurements are performed. In
two-mode squeezed state, assessing thg I|m|t§ to force detection using enta_nglec_i states
of N harmonic oscillators we thus need to consider if any
o apparent improvement could have been achieved simply by
| )= ‘/1—)\22 A"n,n), (9) using N copies of an appropriate nonclassical state of a
n=0 single-harmonic oscillator.
Of course it may not always be so obvious to transform an

where|n,n)=|n),@|n),. The entanglement in this state can gnangled state to a product of nonclassical states. Consider
be seen in a variety of ways. Most obviously, it is an eigen-, entangled state of the form

state of the number difference operaaéal— agaz, between

the two modes, and in the limit of large squeezing; 1, a o

near eigenstate of phase s{ih8]. Alternatively we can con- | W)= 2 cq[n,n). (12)

sider the correlations between quadrature phase operators. In n=0

the limit of large squeezing\(— 1), the state approaches a

simultaneous eigenstate of both— X, and ¥+ ¥, which This state is correlated in number, but unlike the two-mode

is the kind of state considered by Einstein, Podolsky, anddueezed state, |_t is not necessarily a near eigenstate qf phase
Rosen[19]. This kind of correlation has been exploited by SUM- If we consider a measurement Yof+Y, as we did
Furasawzet al.[20] to realize an experimental teleportation previously, the signal and variance after the displacement are

protocol. With two oscillators, we need to specify how the

- (8
€= — ]
2¢e'

which for large squeezing correspond&pqnzll(m/ﬁ). We
see that squeezing provides an increased sensitivity th

weak force acts. We will specify that the force acts indepen- S=4e, (13
dently on each oscillator. To detect the force, consider a mea-
surement of the joint physical quantity described by the op- V=2(1+(a'a+b'b)—(a'b’+ab)), (14)

erator Y,+Y,. It is then straightforward to show that the
signal and variance of the measured result, after the displac&hich gives an improvement in the signal-to-noise ratio

ment, are given by when (a'a+b'b)<(a'b'+ab). A state like this, with a
correlated photon number, is the pair-coher@nt“circle” )
S=(Y1+Y,)=4e, (10)  state given by21,22
Y VR YANAY J \2_na—2r 27 .
V=((Y1+Y2))— (Y1t Y =2e"7, (1) |cirCIe>m=J\/'f0 |ae'l),|ae™'9),dL, (15
which gives a signal-to-noise ratio Bf=2/2ee". The mini-
mum detectable force is thes>1/(22€") which is a2 where|...), and|...), represent coherent states in the

improvement over the single-mode squeezed state. For largg,qes3 andp. A is a normalization coefficient and the
squeezing, the minimum detectable force can be expressed i, jitde of the coherent state. This state can be written in
terms of the total mean photon number for both modes. IRhe form (12) with

this limit, e,,~1/(4\Vnyy). This is the same scaling as we

found for a single-mode squeezed state. The apparent im- 1 "
provement due to entanglement is simply a reflection of the = (16)
fact that we have a two-mode resource with double the mean VIo(2a) N

photon number.

For the two-mode squeezed state with the measuremehtere, |, is a zeroth-order modified Bessel function. This
scheme chosen, there is a simple way to understand this retate cannot be separated into product states via beam splitter
sult. The entangled two-mode squeezed stljeis easily transformations. It is easily shown that the minimum detect-
disentangled by the application of a unitary operator of theable force occurs when
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1 1 - 1 : * : *
=z g e @D |Ba (e P at e "k )
with the mean photon number being given lﬁ 1 ., i o
=al,(2a)/14(2a). A small improvement is seen for afl, ~ E(e' |@)+e | —a))=cosd|+)+ising| ),
with the minimum occurring atvr=0.85 (¢,,;,=0.221108).
As a—>, we havee,;,;—0.25. In this optimal region the (22

mean photon number is small. The measurement,of Y,

is not optimal however because it is not a near eigenstate.where 6= —2Im(aB*) and we have defined the even-
It is likely that one can achieve a significantly better sen-(|+)) and odd-parity (—)) eigenstates

sitivity if one changes the measurement quantity frfm

+Y, to a quantity that is a near eigenstate of EtR). For 1

these correlated photon number systems, this could require a |£)=—=(a)*|—a)). (23

measurement of the photon number difference of @§) V2

which with current technology is quite unpractical.
gyis 4 P Our problem is thus reduced to finding the optimal readout

for the rotation parametet for a two-dimensional submani-

fold of parity eigenstates. The rotation is described by the
Let us now turn our attention to a less straightforwardunitary transformation

example. In the previous example, two entangled harmonic

modes, the two-mode squeezed state, gave an improvement U(6)=exp(iba,), (24)

in \t/rle signal-to-noise ratiecompared to a single mogef

1/y2. With an entangled state comprised of more modes, a A al— i i i

even better improvement may be achievable. However, ther{gh-?-;(eeggbjgéée |i: |no>v$/+t<|) I?ir?ldlz)a{:lrgJ “orgt?rtr?axl. measurement

is no simple way to generalize the two-mode squeezed stalgneme to estimate the rotation parameteand thus the
to give an entangled state of many modes. We now considgpyce parametee. The maximum sensitivity will occur when
another class of nonclassical states, based on a coherent gji= _ Im(a8*) is maximized for a given displacement. Hav-
perposition of coherent statésat stateg which can be en- ing chosena real, 8 is maximized by choosingd purely

tangled oveN modes. , , imaginary. This corresponds to a displaceni2(g) entirely
ConsiderN harmonic oscillators prepared in the cat statej, the momentum quadrature. Settifg=ie, we have 6

Ill. WEAK FORCE DETECTION WITH CAT STATES

- Dt lma—a - = ea. The theory of optimal parameter estimati@4] indi-
[n=Nellea, . apt]=a—a, ... ma)), (19 cates that the limit on the precision with which the rotation
where parameter can be determined is
la,a, ... a)=TIZN|a), (19 1
‘ (66)2= ———, (25
is the tensor product of coherent states Ahis the normal- Var(oy)in

ization constant given by N
where Varg,)i, is the variance in the generator of the rota-

1 tion in the input state+), which is simply unity. Thus, we
N= — (200 find that uncertainty on the force parameter is bounded be-
V2+2e~2Nldl low by de=1/(2a). It thus follows that the minimum de-

tectable force iseqi,=1/(2«), which may be written in

We takea to be real for convenience. Far>1, this nor-  terms of the total mean excitation number of the input state
malization constant approaches,/2/ and we henceforward as
make this assumption. Parkins and Larsaf2d] recently
suggested how this highly entangled state might be formed in 1
the context of cavity QED and quantized motion of a trapped e=——,
atom or ion. 2\/ﬁ

To begin our consideration of these states, let us consider
the case of a single oscillatoNE 1)

(26)

where the mean photon numbes|«|?. This measurement
1 is at the Heisenberg limit. Comparison with the result for the
)= —=(la)+|—a)), (21)  single-mode squeezed state shows a similar dependence on
V2 the mean excitation number, however, the squeezed state
sensitivity is better by a factor 1/2.

where the mean photon number is givenrby|«|2. When a We can now consider a two-mode entangled cat state.
weak classical force acts on the state in E2), it is dis-
placed by ) 1=M|a,a)+|—a,—a)). (27)
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However, this state is easily disentangled with the unitarywhere 6=ea. The theory of optimal parameter estimation

transformation indicates that the limit on the precision with which the rota-
- tion parameter is given by Eq(25 but where oy
U(wl2)=exr{ —i E(aJ{aﬁ a;aj) (28 =2iN=1zrxi. The uncertainty in this force parameter is hence
bounded by
(for a quantum optical realization, this is a 50:50 beam split-
ter) to produce the separable state 1 1
€= —= (34)
[ 1= NN (@) i+ —a))@(|a)+[—a)y). (29 2Na JaNn,

As in the case for squeezed states, we only need consider thad is at the Heisenberg limit. We observe a critically impor-
force detection sensitivity for the state of a single oscillatortant extray/N improvement due to the entangled state and

The minimum detectable force is given by collective measurement(projective measurements onto
1 |a,a, ... ,a)—|—a,—a, ...,—a)) which can be seen

= _ (300  overNindividual copies of the stater) +|— ), or a single-

2\/2_F mode statd Ny +|— V. For a large and finita, it

seems optimal that one should create a highly entangled cat

Here, we see the2 improvement from classical averaging. state with as many modes as possible while maintaiaing
For theN-mode state given by E@18), a linear transforma- >1.

tion also exists to transform tHé¢-mode entangled state to a  In our consideration so far we have not considered the
product state of single-mode cat states. In this case, the mingffects of loss or decoherence on these highly nonclassical

mum detectable force using modes, each prepared in cat states. Whether we are considering highly entangled cat
state with amplitudey, is states or large-amplitude single-mode cat states these are all

extremely sensitive to small amounts of loss and decoher-
. = 1 31) ence. Error correction and avoidance techniques can be em-
min = ployed to reduce these effects but are beyond the scope of
2VNn this paper.

As each mode has a mean photon number givemayyz,

the total mean photon number used in the entire experiment V. GENERALIZED CAT STATES

is Ny=Na?, the minimum detectable force can be written as |y the example just discussed, maximum sensitivity re-
emin=>1/\n. We see from here that there is no real advan-quired the classical force to displace the cat states in a direc-
tage in using entangled states with the measurement protoctibn orthogonal to the phase of the superposed coherent am-

outlined, as the improvement is only the standard statisticgplitudes. In general, there is no way to arrange this
improvement that one gets from multiple copies of a single-beforehand, as the phase of the displacement depends on an

mode cat state produced by disentangling the state. unknown time dependence of the classical force. However, a
simple generalization of the previous cat states can be used
IV. ENTANGLED CAT STATES to relax this constraint. Note that the cat states are parity

eigenstates and are thus the conditional states resulting from

A question that should be asked is whether both entangleé measurement of the number operator modulong

ment and collective measurements allow one to increase the ;1,0 2, on an input stater) with « real. We are thus

sensitivity of this displacement measurement past the ”mit?ed to consider the conditional states for measurements of

shown above? To address this question, let us consider again dK. Such h iouslv b id
the N-mode entangled cat state ng=a'a modK. Such states have previously been consid-

ered by Schneideet al. [25]. Given a resulv=0,1, ... K

1 —1 for such a measurement, the conditioqainormalized
lp=—=(a,a ....0)+|—a,—a,...,—@)), (32 states are
V2
K-1 .
where the total photon number of the entire statenjg _ 2mipy 2 WK
=Nea?. The weak force acts simultaneously on all modes of |K'V>_;0 ex K | e, (35

this N-party entangled cat state. It causes a displacement

D(i€e) on each mode in Eq32) resulting in the state :
(i) 432 g which are eigenstates ofe27'#/K with eigenvalues
NG e*lZﬂTV/K.
|4(0))=—|a+ie,a+ie, ... atie) The case oK =4 has recently been considered by Zurek
\/5 [26] in the context of decoherence and quantum chaos. As-

_iNg sume that the oscillator is initially prepared in the state

+ |-a+ie,—a+tie, ..., —atie), (33

V2 [hin=14.0=|a)+|ia) +|~ia)+|-a)  (36)
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with « real. Under the action of a weak force characterizedBriefly, let us instead consideN/2 maximally entangled
by a complex amplitude displacemeg} the output state is pairs. In this case, we can combine E40) at N=2 with the
, ) ) , square-root statistical benefit dff2 repetitions. This yields
[P ou=€’la)y+elliay+e | —ia)+e "’ a), 56=1%\2/N=1//2N indicating that pairwise entanglement
(37) yields only a margined benefit compared to fiNHwise en-

_ _ tanglement for the phase estimation.
".Vhefe 0= 2a.Im(B) and ¢=2a Re(g). .The state now car- We will now show that the entangled state in E8p) is in
ries information on both the real and imaginary components

. _ ct a cat state for a collective operator algebra. The Hilbert
of the displacement due to the force which may be extractega b g

by measuring the projection operator onto the initial state Irhpace OMN two-level systems is the tensor product space of
S N . > UHimension 2. The entangled state in E¢9) however re-
the limit thatk>|a|?>1, the initial conditional state is sim- g ®9)

sides in a lower-dimensional subspace of permutation sym-
ply the vacuum state and we recover the usual standard auafkotric  states [27]. These states constitute an
tum limit for force detection by number measuremgx]. N+ 1-dimensional irreducible representation of (8Uwith

infinitesimal generators defined by
VI. DISCUSSION AND CONCLUSION

We now compare our results to the study of Ramsey -
fringe interferometry introduced by Bollinget al.[17] and J.=
discussed by Huelgat al. [13]. In Ramsey fringe interfer-
ometry, the objective is to detect the relative phase difference R R R
between two superposed stafe®),|1)} that form a basis for where Z;=]1){(1]—]0){(0[,X;=|1)i(0] +|0)i(1],Y;
a two-dimensional Hilbert space. These states could be thej|1);(0|—i|0);(1]. The Casimir invariant i§]2:j§+j§
ground and excited states of an electronic dipole transition+jz with eigenvalueN/2 (N/2+1). The operator, has
The problem reduces to a quantum parameter estimatiog 2 ' ‘

. ) L . Qigenvaluesnz —N/2,—N/2+1, ... N/2, which is one half
problem. The unitary transformation which induces a relatlve[he difference between the number of zeros and ones in an

phase in the specified basis &(6)=exdifZ] where Z  ejgenstate. It is more convenient to use the eigensateg,
=|1)(1|—[0)(0|. We are free to choose the input sti9;  of these commuting operators as basis states in the permuta-

and the measurement we make on the output state, which {&n symmetric subspace. In this notation, the entangled state
described by an appropriate positive operator valued measugRfined in Eq(39) may be written

(POVM).

The theory of quantum parameter estimati@d4] indi-
cates in this case that we should choose the input state as )= i(|_
|4);=(]0)+|1))/y2 and the optimal measurement is a pro- N7
jective measurement in the basis)=|0)=+|1). The prob-
ability to obtain the result- is P(+|6)=co 6. In N rep-
etitions of the measurement the uncertainty in the inferre
parameter is

N 1 N
PR R 4
i=1 2|:1

N| =

N
E Zil ij
i=1

N| =

N/2)nj2t+ [NI2) ). (42)

4n this form, we can regard the state as an&Ucat state”
or N two-level atoms. Hence, it is straightforward to see that
a single 2'-level atom can achieve the same frequency sen-
sitivity. Their equivalence can be also be understood by not-
S50= i (39) ing that the sensitivity of such frequency measurements is
\/ﬁ proportional to the energy difference of the states involved.
What entanglement allows is for one to create an effective
which achieves the lower bound for quantum phase paranstate without the need of resorting to create a superposition
eter estimation. Repeating the measuremBntimes is  between a certain ground state and a highly excited one.
equivalent to a single-product POVM on the initial product A closer atomic analogy to a single-mode cat state would
statelT™.,® (]0); +|1);)/\2. However, it was first noted by be a cat state for a singli-level electronic system. For
Bollinger et al. [17] that a more effective way to use the  example, we could consider the unnormalized state defined
level systems is to first prepare them in the maximally enon a hyperfine manifold with quantum number )¢

tangled state +|—=F)g. Such states have been considered in Rz8]. A
similar state could also be generated for the large magnetic
1 molecular systems considered in R¢&9—31]. The key is in

)= \/—(|0>1|0>2 o ONF[D)4l1)2 - [1)n) (B9 how the resources can be distributed and what types of mea-
2 surements one is trying to achieve. If the single molecule can

._only be prepared with a certaM, then an advantage can be

N © 7 o Ia]ained for frequency measurements by entangling the state

U(0) =11;=, exp(~ifZ), the uncertainty in the parameter es- of many single molecule systeni81,32. However, if we

timation then achieves the Heisenberg lower bound of restrict the tota' System to having a f|XM and we have
enough control so as to be able to prepare the system either

(40) as a single large S@) molecular state or many entangled

60= o2
smaller molecular states, then the same sensitivity is

1
N.
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achieved for the high-precision frequency measurertteig ~ tween the various modgsEntanglement is the critical re-
was not the case for weak force measurements source to achieve the best sensitivity for a fixgg. On the

To conclude, we have in this paper shown how superpoether hand, we have shown for frequeney phasg¢ mea-
sitions of coherent states can be used to achieve extremefyirements that the sensitivity previously offered by entan-
sensitive force detection. For a single-mode sta§  gling N two-level atoms can be achieved with a single
+|—a) we have found that the minimum detectable dis-2N_jevel atom. The key is that the sensitivity for the fre-
placement for weak force measurements scales inverseqlz‘uency measurement is proportional to the energy difference
proportional to the square root of the mean photon number oj¢ the states involved and both the entangled resource and
the superposition of coherent states. This is the same scalifge superposition resource have the same energy difference.
obtained by a single-mode squeezed state and achieves tR@tanglement allows one to create an effective state without
Heisenberg limit for single-mode displacement measuréthe need of resorting to create a superposition between the

ments. _ _ o _ certain ground state and a highly excited one.
What is potentially more interesting is that if we take a

number of individual copies of a single-mode cat state then
we still achieve the inverse square-root scaling with total
mean photon numbethence, effectively allow one to in-
crease the mean number of partigld$ one starts with an G.J.M. acknowledges the support of the Institute for
N-mode entangled cat state, then simple linear transformaQuantum Information, California Institute of Technology
tion can be used to turn this state iMfocopies of a single- where this work was initiated. W.J.M., K.N. and S.L.B. ac-
mode cat state and hence achieve etlcm~1/\/fot sensitiv-  knowledge funding in part by the European projects
ity. This however is not optimal as it does not achieve theEQUIR(IST-1999-11058 QUICOV, and QUIPROCONE
Heisenberg limit for multiple modes. To achieve this limit (IST-1999-29064 The Australian Research Council Special
for weak force detection, one must use both an entangleResearch Center for Quantum Computer Technology also
N-mode cat state and a joint collective measurenm{bet  supported this work.
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