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ABSTRACT

Flexion is the significant third-order weak gravitational lensing effect responsible for the
weakly skewed and arc-like appearance of lensed galaxies. Here we demonstrate how flexion
measurements can be used to measure galaxy halo density profiles and large-scale structure
on non-linear scales, via galaxy—galaxy lensing, dark matter mapping and cosmic flexion
correlation functions. We describe the origin of gravitational flexion, and discuss its four
components, two of which are first described here. We also introduce an efficient complex
formalism for all orders of lensing distortion. We proceed to examine the flexion predictions
for galaxy—galaxy lensing, examining isothermal sphere and Navarro—Frenk—White (NFW)
profiles and both circularly symmetric and elliptical cases. We show that in combination with
shear we can precisely measure galaxy masses and NFW halo concentrations. We also show
how flexion measurements can be used to reconstruct mass maps in two-dimensional projection
on the sky, and in three dimensions in combination with redshift data. Finally, we examine the
predictions for cosmic flexion, including convergence—flexion cross-correlations, and we find
that the signal is an effective probe of structure on non-linear scales.

Key words: gravitational lensing — galaxies: haloes — dark matter — large-scale structure of

Universe.

1 INTRODUCTION

Weak gravitational lensing is arapidly developing subject, with great
progress being made in many related observational areas. The mass
and density profiles of galaxies have been carefully explored using
galaxy—galaxy shear studies (e.g. Hoekstra, Yee & Gladders 2004,
hereafter HYGO04), while large-scale structure can be traced using
cosmic shear (see, for example, Van Waerbeke & Mellier 2003 and
Refregier 2003a for reviews). This has led to significant constraints
on cosmological parameters, such as the fluctuation of the matter
distribution, the density of matter, and the growth rate of matter
fluctuations in the Universe.

Gravitational lensing has received so much interest partially be-
cause it allows us to measure the mass of structures with very few
physical assumptions. The distortion of background galaxies de-
pends only on the geometry of the lens system, the mass, and the
use of the weak-field limit of general relativity. As such, lensing
presents us with a method for measuring mass which is free of
dynamical uncertainties associated with questions as to whether the
system is relaxed. It is a direct measure of the mass present, whether
in visible or dark form.

Weak gravitational lensing is typically studied by examining the
ellipticities of source galaxies, seeking a coherent alignment of these
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ellipticities (or other combinations of weighted second-order mo-
ments of galaxy light) induced by mass along the line of sight
(e.g. Kaiser, Squires & Broadhurst 1995; Kaiser 2000; Bernstein
& Jarvis 2002; Refregier & Bacon 2003; Hirata & Seljak 2003).
However, Goldberg & Natarajan (2002) have shown that valuable
further information is available from the skewedness and arciness
of the light distribution for source galaxies; we have further devel-
oped this approach in Goldberg & Bacon (2005) where we have
labelled this third-order effect as the ‘flexion’ of these images. A re-
lated approach using ‘sextupole lensing’ has recently been explored
by Irwin & Shmakova (2005).

In our previous paper (Goldberg & Bacon 2005), we described the
theory of flexion, and demonstrated how this effect can be measured
using the Shapelet formalism (Bernstein & Jarvis 2002; Refregier
2003b; Refregier & Bacon 2003). We also demonstrated that the
flexion signal is present in Deep Lens Survey data (Wittman et al.
2002).

In this paper, we explore and describe what flexion is able to
teach us in the context of several cosmological applications: how
flexion can contribute to our understanding of galaxy halo mass and
density profiles; its usefulness in creating maps of the dark matter
distribution; and its value for measuring large-scale structure in the
non-linear regime.

In Section 2, we give a brief introduction to the flexion formal-
ism. We introduce two forms of flexion, one of which was not dis-
cussed in our previous work; we find that both forms of flexion are a
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high-pass filter for projected density fluctuations, with one form of
flexion measuring local information about density, and the other
measuring non-local information. We also revise the process by
which flexion is measured using shapelets.

In Section 3 we examine flexion predictions for galaxy—galaxy
lensing, concentrating on averaged circular profiles; we discuss
how flexion can be used to provide more information about galaxy
profiles, and how combination of the flexion with shear improves
constraints on mass and concentration of galaxy dark matter pro-
files. In Section 4 we extend this analysis to elliptical density
profiles.

In Section 5 we show how flexion can be used for mass reconstruc-
tion, and we note the utility of flexion for measuring substructure
in clusters. In Section 6 we discuss the use of flexion for measure-
ments of large-scale structure; we find that the cosmic flexion signal
is measurable exclusively on non-linear scales, which are neverthe-
less of great interest. We conclude in Section 7.

2 FLEXION FORMALISM

We begin by briefly reviewing the third-order lensing formalism
developed by Goldberg & Bacon (2005); we place this in the context
of a convenient complex notation for the four components of flexion,
and show how these can be measured using shapelets.

2.1 Third-order lensing

It is useful to begin by noting that the relationship in gravitational
lensing between unlensed coordinates and lensed, observed coordi-
nates is given by

/

00:
Aij(e) = 6_9[ =
J

Az(l—K—Vl - )

e I—k+n
where d; = 0/06; and @' are the unlensed coordinates; the origins
of the measured, lensed coordinates and the unlensed source coordi-
nates are taken to be the centres of light for the lensed and unlensed
images, respectively. Here ¥ is the lensing potential (i.e. a projected
gravitational potential along the line of sight), « is the convergence
and y is the shear of a galaxy.

If convergence and shear are effectively constant within a source
galaxy image, the galaxy’s transformation can simply be described
as

[8ij — 9;0; ()], )]

Third-order lensing arises from the fact that the shear and conver-
gence are actually not constant within the image, and so we have to
expand to higher order:

, 1
91- >~ AUQJ + EDijkejeka (3)
with
Dijk == akAij. (4)

Using results from Kaiser (1995), we find that
=211 — Y22 —Vai
D,‘j] = ( )
—V21 —V2.2

y y (5)
—r2,1 —r22
Dij2 = < > .
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By expanding the surface brightness as a Taylor series and using the
relations above, we find that we can approximate the lensed surface
brightness of a galaxy in the weak lensing regime as

1
£(0) ~ {1 + |:(A = D)0 + EDijkejek:| 3:} 7). (0)

This shows that we can describe the third-order lensing effects in
terms of derivatives of the shear field.

2.2 Complex representation

We now develop a compact and straightforward complex formalism
for flexion, which is of much wider applicability to all weak gravita-
tional lensing. In addition, we show that weakly lensed arcs can be
uniquely decomposed into the spin-1 first flexion, and a new compo-
nent which has not previously been considered, the second flexion
which we show has spin-3 properties. Schramm & Kayser (1995)
suggested an alternative complex representation for lensing; we in-
troduce a complex gradient operator which simplifies the analysis
considerably.
We define the complex gradient operator

0 =0, +1i0,, @)

which we can think of as a derivative with an amplitude and a
direction down the slope of a surface at any point. It transforms under
rotations as a vector, ' = de'?, where ¢ is the angle of rotation. This
operator can be compared with the covariant derivative formalism of
Castro, Heavens & Kitching (2005) for weak lensing on the curved
sky. Applying the operator to the lensing scalar potential, ¥, we can
generate the spin-1 (i.e. vector) lensing displacement field:

o = o + i, = 0. 8)

This correspondence allows us to interpret the complex gradient, 9,
as a spin-raising operator, raising the function it acts on by one spin
value. Similarly the spin of a quantity can be lowered by applying
the complex conjugate gradient, 9*. Applying one after the other
yields the spin-zero two-dimensional (2D) Laplacian,

99" = 3%9, 9

where we have noted that d and 0* commute. Applying the complex
conjugate derivative to the displacement field, we find that the spin
is lowered to the spin-0 convergence field

1 1
= 0%a = -0"0Yy. 10
(=507 =070y (10)

Applying the spin-raising operation to the displacement field raises
us to a spin-2 field, the complex shear:

. 1
Y=y +in= 533‘/f- 1n

From these expressions it is easy to recover the general, complex
Kaiser & Squires (1993) relation between the shear and convergence
fields

Kk +iB = 9729%9%y, (12)

where 372 is the 2D inverse Laplacian, and the non-lensing,
curl/odd-parity B-field is automatically included as the complex
part of the recovered field. We can also see from this relation that a
B-field can be generated from a convergence field by a 7t/4 rotation
of the shear field, equivalent to multiplying the complex shear by i.
In equation (12) we have omitted an arbitrary constant, due to the
sheet-mass degeneracy.
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The complex formalism provides a neat way to generalize the
analysis of distortions to higher orders. Taking the third derivative
of the lensing potential, we have the unique combinations

o
F = |Fle® = J00°0y = ok = 3°y,

G = |Gle¥ = %aaaw =dy, (13)

where the first flexion, F, is a spin-1 field and the new second
flexion, G, is seen to be a spin-3 field. Here ¢ represents the position
angle determining the direction of the vector or spin-3 component.
Expanding the flexions in terms of the gradients of the shear field,
we find

F = (01y1 + 02y2) +1(01y2 — d21)
G = (diy1 — day2) +i(01y2 + 0201). (14

These two independent fields specify the weak ‘arciness’ of the
lensed image.

The complex representation allows us to find a consistency rela-
tion between the two flexion fields

970G = 90F, (15)

which can be used as a check on measurements of F and G.

We are also able to obtain a direct description of the third-order
lensing tensor Dy. Defining F = F; +iF, and G = G, +iG, we
can then re-express Dy as the sum of two terms D;jx = Fij + Gijk,
where the first (spin-1) term is

1 [/3F T
Fijp=—5 ( ) (16)
2\ A Fi

o 1(-7‘_2 Jfl>
2T\ A 37,

and the second (spin-3) term is

G __1 (gl G ) a7
T 2\e -G

1 G -G
Gijp=—5 :
272 <—g. —gz)

In order to obtain a visual understanding of the flexion quantities,
we have used these forms for the Dy matrix in terms of F and G
in order to calculate how a Gaussian image is transformed by the
various operations of weak lensing, according to equation (6). The
results are shown in Fig. 1, which displays the lensing operations
in order of their spin properties. The Gaussian galaxy is given a
radius (standard deviation) of 1 arcsec; while the convergence and
shear imposed on the galaxy are realistic (10 per cent in each case),
the flexion is deliberately chosen to be extraordinarily large for
visualization purposes (0.28 arcsec™!, cf. 0.04 arcsec™! intrinsic
rms flexion on galaxies). We immediately see the shapes induced
by flexion: the first flexion leads to a (vectorial, spin-1) skewness,
while the second flexion leads to a threefold (spin-3) shape.

While the first flexion probes the local density via the gradi-
ent of the shear field, the spin-3 second flexion probes the non-
local part of the gradient of the shear field. For example, consider
a Schwarzschild lens: the first flexion is by definition zero every-
where except at the origin, as the gradient of the convergence is
zero everywhere except at the origin. However, there is certainly
‘arciness’ generated by such a lens; this is described by the sec-
ond flexion. We provide explicit expressions for the first and second
flexion generated by simple mass distributions in Sections 3 and 4.

ense ) Y1 G
K ]'-3 7’2 'L-:g

Figure 1. Weak lensing distortions with increasing spin values. Here an
unlensed Gaussian galaxy with radius 1 arcsec has been distorted with
10 per cent convergence/shear, and 0.28 arcsec™! flexion. Convergence is a
spin-0 quantity, first flexion is spin-1, shear is spin-2 and second flexion is
spin-3.

The series of lensing distortions can clearly be continued to
arbitrary order by taking permutations of additional spin-raising
and lowering derivatives. For instance, the next order of distor-
tion can be decomposed into three fields; a spin-4 field, 0009,
a spin-2 field, 0*009, and a spin-0 field, 0*0*ddvy. The nth or-
der term can be decomposed into Int(1 + n/2) independent spin
fields with spins s =n,n —2,n —4,...,0ifnisevenor... 1
if odd. Consistency relations similar to those for F and G can be
found for all the higher spin fields, which can also be used to es-
timate the convergence field via Kaiser—Squires-like relations (see
Section 5).

However, in this paper we restrict ourselves to exploring the pos-
sibilities given by the first and second flexion. We now proceed to
consider how to measure flexion.

2.3 Shapelet measurement

Since the flexion is in terms of derivatives of the shear field, we
therefore require a means of measuring these derivatives, y; ;.

We have found (Goldberg & Bacon 2005) that we can measure the
shear derivatives using the shapelet formalism of Refregier (2003b)
and Bernstein & Jarvis (2002), as applied to lensing by Refregier &
Bacon (2003).

We decompose galaxy images into shapelet coefficients, corre-
sponding to pre-factors for reduced Hermite polynomials:

FO)=>" funBun(6) (18)
where
Bun(6:8) = B¢ (B7'01) b (B7'62). (19)

Here B is a scalefactor chosen for the galaxy, and ¢, are reduced
Hermite polynomials.

Since these functions are eigenfunctions for the quantum har-
monic oscillator, we can define ladder operators as in quantum
mechanics

&1 |¢n m) = \/ﬁl(ﬁn—l m)
al um) = N+ 1 lust m) (20)
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and describe lensing distortions in terms of these operators. Explic-
itly, we find that the lensed image intensity is given by

fO =~ [1+xK +y5" +y,57] £0) @21)

where each lensing operator, including the Sj; third-order lensing
effect, is given in terms of @ and at. The explicit forms are somewhat
complex, and are given in full in Goldberg & Bacon (2005). We
also show in that paper that the third-order lensing induces a shift
in the centroid of an object, and we give explicit forms for this
shift.

We measure y; ; by x fitting to a version of equation (21), sim-
plified by the lack of cross-talk between odd and even shapelet co-
efficients (see Goldberg & Bacon 2005 for details). Then, from the
estimated shear derivatives, we can calculate the flexion according
to equation (14).

In addition, Goldberg & Bacon (2005) have measured the shapelet
coefficients and derived flexion and shear for 4833 pairs of galax-
ies in the Deep Lens Survey. We find that using flexion alone, the
averaged lens galaxy may be fit by an isothermal sphere with a char-
acteristic velocity width of 220 km s~!. Having established in that
paper that the flexion signal is indeed measurable, we devote this
work to developing new flexion analysis techniques. We now pro-
ceed to calculate analytical expressions for the flexion for simple
lens models.

3 GALAXY HALOES: CIRCULAR PROFILES

In this section we present flexion predictions for galaxy—galaxy
lensing under the assumption of a circularly symmetric lens. This
is valid for a galaxy—galaxy lensing approach where we do not
reorient lens galaxies, resulting in a circularly averaged mean lens;
in the following section we consider the impact of having elliptical
lenses. We consider a variety of different lens models, and show
how flexion can be used to constrain them.

3.1 Flexion for the singular isothermal sphere

The approximately flat rotation curves observed in galaxies can be
most simply reproduced by a model density profile which scales as
p o¢ 2. Such a profile can be obtained by assuming a constant
velocity dispersion for the dark matter throughout the halo, and so
is known as the singular isothermal sphere (SIS; see, for example,
Binney & Tremaine 1987). The projected surface mass density of
the SIS is

2
[

2GE’
where £ is the distance from the centre of the lens in the projected
lens plane and o , is the one-dimensional velocity dispersion of ‘par-
ticles’ within the gravitational potential of the mass distribution,
such as stars. The dimensionless surface mass density or conver-
gence is defined as k = X /X, where X (or the critical density) is
defined as
¢ D,

" 4nG DDy’
where D and D) are the angular diameter distance to the source and
lens, respectively, and D is the angular diameter distance between
lens and source. Thus, for the case of the simple isothermal sphere
we have

X)) =

(22)

(23)

C

6
K(6) = i, (24)
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where 0 = £/D, is the angular distance from the lens centre in the
sky plane and 6 is the Einstein deflection angle, defined as

05 = arc[ 2 "Dy 25)
BT c ) D¢

The shear caused by the SIS at an angular separation 6 from the lens
centre on the sky plane is thus

— O 2ip
y(0) =75, (26)

(see Bartelmann & Schneider 2001); here ¢ is the position angle
around the lens. The flexion, F, is then simply
O
F=—2p¢ ¢, 27
The first flexion for this profile is therefore circularly symmetric and
(expressed as a vector) directed radially inwards towards the lens
centre, as would be expected.
Similarly, using equation (26) the second flexion is

36k 3
G= e, (28)

This has a larger maximum amplitude than the first flexion for this
lens profile, fades off with the same power-law index away from the
lens, and oscillates around the lens as a spin-3 quantity rather than
a spin-1 quantity.

3.2 Flexion and shear derivatives

Having considered the specific case of an isothermal sphere, we
can continue more generally with power-law representations of the
shear around a lens

y = —A07", (29)

where A is a constant, n = 1 corresponds to an isothermal sphere,
n = 2 corresponds to a point mass, and so on. In particular, one can
ask whether one can better describe the arced nature of lensed objects
by the flexion we have defined, or the shear derivatives themselves.

In order to answer this question, for simplicity we rotate the sys-
tem such that the source lies along the +x-axis from the lens. We
then consider what the third-order lensing amplitudes would be in a
‘derivative-space’, composed of the two non-zero shear derivatives:

_ (i) _ [ naeT
Vo= <m) - <—2Ae‘"> ' G0

In ‘flexion-space’ where the components are the first and second
flexions, the third-order lensing amplitudes are

_(F (n—2)A9~ 1" 3
w‘(c)‘ [(n+2)A91"]’ GD
We wish to find out which is the most compact basis space. For any
given distribution, this will be the one for which only one eigenstate
is non-zero.

Fig. 2 shows the amplitudes in each of these two spaces as
a function of the shear power-law index. We see that, for point
sources, flexion space is the most compact approach; the signal is
a pure second flexion state. For a galaxy profile with n ~ 1, both
spaces are almost equally efficient in describing the third-order lens-
ing. Additionally, both the flexion and derivative notations can be
shown to produce four statistically independent terms, which, taken
over an ensemble of images will all have mean zero. Moreover,

within a representation, the standard deviations of the two terms
due to both intrinsic variation and photon noise will be identical.
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Figure 2. Third-order lensing amplitudes as a function of shear power-law
index. The solid line shows the amplitude of the flexion coefficients, and the
dashed line shows the amplitude of the derivative coefficients.

We conclude that flexion is an efficient means of describing third-
order lensing. For point masses it is optimal; for SIS galaxies it is as
good as considering shear derivatives; and, in addition, the division
between local and non-local components which it exclusively af-
fords is very valuable. It also describes correctly the spin properties
of the lensing.

3.3 Flexion for the softened isothermal sphere

The SIS mass distribution can be modified so as to remove one
feature which may not be a good physical description of dark matter
haloes, the divergence of ¥ for & — 0. One simple modification is
to cut off the distribution at small distances as follows

Ok
2,/62 + 62

where 6. is a core radius within which the surface mass density
flattens off to a value ko = 0/26.; it can be seen that the projected
mass distribution behaves like the SIS for 6 > 6 .. The flexion due
to this distribution is

Ok 6
20 4@”] o >

k(@) = (32)

F=-0

For 6 > 6. the flexion is approximately equal to that of the SIS.
However, at small separations the flexion goes to zero, as should be
expected as the convergence is tending to a maximum.

The second flexion is more complicated

e (34)

0 36* + 1260%62 + 862
g E [_8c + o+ 36,

= ﬁ (92 +9(:2)3/2

but may readily be fit to observed data, and can again be seen to
reduce to the SIS second flexion when 6 >> 6. and goes to zero at
the centre of the lens.

3.4 Flexion for the Navarro-Frenk—White density profile

Using N-body simulations, Navarro, Frenk & White (1995, 1996,
1997) have shown that the equilibrium density profiles of cold dark
matter (CDM) haloes can be well fitted over two orders of magnitude
in radius by the formula

p(x) A
Perit(@)  x(1+x)?
where the radial coordinate x is the radius in units of a scaling radius
rs such that x = r/rg, pui(z) is the critical density for closure at
the epoch of the halo, and A, is a dimensionless scaling density.
This profile describes the simulation haloes accurately over a broad
mass range 3 x 10" < Mp0/M@ < 3 x 10, M5y being the
total mass of the halo contained within the sphere encompassing
a mean overdensity of 200 times the critical density p¢;(z). The
radius of this sphere, designated by ryy, is used to define a sec-
ond dimensionless scaling parameter for the Navarro-Frenk—White
(NFW) profile, namely the concentration ¢ = r,q0/rs. However, the
details of the NFW definitions have been implemented in several
ways in the literature; in Appendix A we present further discussion
of the various definitions.

A procedure for finding values of A. and ¢ which agree with
the numerical simulations is detailed by Navarro et al. (1997,
Appendix): the parameters are somewhat complicated functions of
the halo redshift, M,y and the background cosmology. A routine
(CHARDEN.F) which carries out these calculations and outputs val-
ues for these scaling parameters has been made available by Julio
Navarro at http://pinot.phys.uvic.ca/~jfn/charden.

The NFW density profile implies the following form for the di-
mensionless surface mass density (Bartelmann 1996)

f»

y =1

(35)

Kk (y) = 2k (36)

where we define ks = p i (2) Acrs/ Loy and y =& /1, with € defined
as for equation (22). The function f(y) is given by

1—
arctanh =7 y<l1

2
/1—y? I+y
f» = (37
-1
arctan yY— o y > 1.

2
l— —2
Vyr—1 y+1

The flexion for the NFW density profile is then given by

1

0
F=Vok = a—ZVyK. (38)
Defining F; = «,Dy/rs we then have
2F .
——— 2 —h 10 39
OI— 17 2yf () —h(y)]e (39)
withy =60D,/r, = 6/6, and where, from equation (37),
2 1-— 1
7yarctanh _—r y<l1
V1—y? I+y
h(y) = (40)

2y y—1 1
————arctan4 /| —— — — y > 1.
V=1 Vy+1

The analytical form of the second flexion can also be found, using the
fact that for axially symmetric projected mass profiles the magnitude
of the shear can be calculated from |y ()| = k(#) — «(6), where
ic(0) is the mean surface mass density within a circle of radius 6 from
the lens centre (see, for example, Bartelmann & Schneider 2001).
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Wright & Brainerd (2000) used this method to find an expression
for the magnitude of shear due to an NFW halo, and their result can
be used to find the derivatives of shear y 1, ¥, etc. Combining
these derivatives as directed by equation (14) we see that the second
flexion takes the form

[B/y)(1 = 2y%) + g(v)]

8 y 3
=2Fq—=Inz ¢ 41
M B I (R ¢ @b
where
(8 20+15> 2 anhy /-
— - — y | ——=4arctanh | ——
¥ V1—y? 1+y
y <1
sy = (42)
(8 20—|—15> arctan y- 1
3 Vyr—1 Vy+1
y > 1.

It is reassuring that after some degree of manipulation, due to the
slightly complicated form of the results, the spin-1 and spin-3 sym-
metries of the first and second flexion are recovered in full; it will
also be seen that the second flexion is larger in amplitude than the
first flexion, as was the case for the SIS results. We now compare in
more detail the NFW flexion profiles with those resulting from the
SIS density profile, and we discuss the measurability of this signal
with realistic survey models.

3.5 Comparison of the NFW and SIS flexion results

To illustrate these results, we calculate the first and second flex-
ion signals we might expect to measure for a typical galaxy-sized
halo with either an SIS or NFW profile. We choose a lens redshift
z1 = 0.35 and the halo Moo = 1 x 102 ™! M, this lens redshift
being the median of the lens galaxy sample used by HYGO04, and the
mass having been found to be roughly typical for galaxy haloes in
weak lensing analyses by Brainerd, Blandford & Smail (1996) and
HYGO04. We also choose D;/D = 0.5 (corresponding to a source
redshift of z, & 0.8) and model the lensing within a standard, flat
ACDM cosmology, setting the present-day matter density param-
eter Qo = 0.3, Q4 = 0.7, the Hubble parameter 2 = 0.72 and
og = 0.8.

Using these values and Julio Navarro’s program CHARDEN.F we
find a concentration of ¢ = 7.20 and a corresponding dimensionless
characteristic density A, = 20267 for the NFW scaling parame-
ters. These values are again in good agreement with those found by
HYGO04 who measured A, = 2.4"¢ ¢ x 10* as the best fit to their
sample of ~10° lenses.

The SIS scaling is straightforward in comparison; the Einstein
radius for the SIS lens is given in terms of M 5y and the halo redshift
Zpas

1/3
27tG Dy | 8007t0c1(21) 2/3
O = 2 D. [# My . 43)

Using the same values for M 5, z; and the cosmological parameters
as were used for the NFW halo above, this gives an Einstein radius
for the SIS halo of 6 = 0.215 arcsec.

The predicted magnitudes of Fyrw, Onrw, Fsis and Ggis, as a
function of angular separation from the lensing halo on the sky, are
shown in Fig. 3. As could be expected, the profiles show a good deal
of similarity, but it is apparent that both the first and second flexions
due to the SIS profile are stronger than those due to the NFW at
very small separations. Since one of the important features of the
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Figure 3. Top: comparison of the magnitude of first flexion due to an NFW
and an SIS halo of M09 = 1 x 10" h~! My at redshift z; = 0.35. Mid-
dle: a similar F comparison but this time the SIS halo has My = 1.8 x
1012 p~! Mg . Bottom: the magnitude of G for an NFW and an SIS halo
of Mago = 1 x 10'2 2~ M, where the doubling in scale of the angu-
lar separation axis highlights the larger range and amplitude of the second
flexion.

NFW profile is that the density in the extreme interior of the halo
varies as o7 ~! compared to the steeper o< ~2 for the SIS, this is not
a surprising result.

It can be seen by comparing the lower plot of Fig. 3, for which
the 6 axis is doubled in scale, with the upper plot, that Gygw is both
stronger and longer range than Fygw. Interestingly, we also note that
the angular separation at which the SIS halo flexion exceeds that for
the NFW halo is larger by about 5 arcsec for the second flexion in
relation to the first flexion. These two effects are a consequence of
the non-locality of G as a lensing measurement when compared to
the directly local Vk measurement given by F; for the NFW profile,
G tends to be less steep than F at small 6 and to die away less rapidly
at larger separations.
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The middle plot of Fig. 3 shows another feature of the comparison
between the two profiles: an SIS halo of My = 1.8 x 10> A~ M
is practically indistinguishable from an NFW halo with M,y =
1 x 10" h~! My for first flexion measurements over galaxy—galaxy
separations greater than about 5 arcsec. This is a very similar prop-
erty to that found by Wright & Brainerd (2000) in a comparison
of the shear profiles of SIS and NFW haloes. They found that the
assumption of an SIS halo profile produced systematic overestima-
tions (by factors of up to 1.5) of the mass of NFW haloes. Further
work will be required to determine the dependence of this effect
upon concentration for flexion measurements as Wright & Brainerd
usefully did for the case of shear.

3.6 Combined shear and flexion-improving NFW
halo parameter constraints

Previous studies of galaxy—galaxy lensing which have aimed to
constrain values of halo parameters such as My or ¢ for the
NFW profile (see, for example, Brainerd et al. 1996; HYGO04;
Kleinheinrich et al. 2005b) have used measurements of shear ex-
clusively. Recently, Goldberg & Bacon (2005) have shown that in
many lensing scenarios the signal-to-noise ratio will be larger for
the flexion than for the shear at small (but still easily measurable)
angular separations between the source and the lens. It is therefore
worthwhile considering whether combining measurements of shear
and flexion might improve constraints for the halo parameters such
as ¢ or M, derived from measurements of shear alone.

In order to do this we construct a simplified but illustrative model.
We can generate mock data for a sample of lens and source galaxies
such as might be available using current or forthcoming galaxy
imaging surveys. We model lens haloes as NFW profiles, and (as in
HYGO04) we assume we can scale each lensing measurement in the
sample to a fiducial mass My or corresponding rest-frame B-band
luminosity Lz using an observationally motivated scaling relation
between the two, such as that proposed by Guzil & Seljak (2002).

In order to estimate the confidence limits we might reasonably
expect from weak lensing measurements, we must consider the ef-
fect of intrinsic ellipticity and flexion of unlensed galaxies. We use
values of y;, = 0.2 and F;y = 0.04 for the intrinsic shear and
both flexions in this model (cf. the intrinsic flexion measured by
Goldberg & Bacon 2005). Redshift errors must also be considered;
we assume for this simulation that we have access to photomet-
ric redshifts for each galaxy, with an uncertainty of Az on each
individual redshift measurement (with values assigned below for
broad-band and medium-band photometric redshift surveys).

We note (e.g. Wright & Brainerd 2000) that the strength of the
shear signal due to an NFW halo varies as ynpw & DD/ Dy,
whereas we found in Section 3.4 that the strength of the flexion
varies as Fnpw X DlleS / Ds. We thus model the error on measure-
ments of the shear and both flexions due to redshift uncertainties
by calculating errors on D,D\/D and DIZDIS/DS by numerical
integration of terms such as

2 %) 0
DlDls / ’ ’ ’ Dlz’Dlz”
SN o | 4Pz [ A PE) S (44
<< D, > > /0 o (Zsm/o af@l) D? @9

where P(zj|z1) and P(z;|z,) are the probability of measuring a red-
shift z{ or z; for a lens or source galaxy, respectively, given that its
true redshift is z; or z;. We model these probability distributions
as Gaussians with standard deviation Az, and assume a standard
ACDM cosmology (as in Section 3.5). We therefore estimate the
fractional error in a single measurement of shear and flexions due to

redshift uncertainties, given an underlying ‘correct’ z; and z;. While
the size of these fractional errors is a varying function of the specific
underlying lens and source redshift, for the purpose of this example
we set z; and z, always equal to the median lens and source redshift,
respectively, for each mock sample we consider. Note that while, if
we had no redshift information, there would be a larger scatter in
the signal caused by not knowing the geometry of the lensing, this
is drastically reduced with accurate photometric redshifts (even if
only available for the lens galaxies, see Kleinheinrich et al. 2005a)
and is assumed to be subdominant here.

For the fiducial virial halo mass we choose M,y = 1 X
10" h~'M(y (corresponding to a rest-frame B-band luminosity of
Ly ~ 1.2 x 10'"°h™?L g according to the results of HYG04).
We choose to model confidence limits for two ground-based sur-
veys, one similar in size to that used by HYG04 and one covering
a substantially larger area of 1700 deg?. We also consider a deeper
space-based imaging survey with far smaller area of 0.5 deg?.

The sample of galaxies used by HYGO04 was taken from R, band
imaging of the the Red-Sequence Cluster Survey (Yee & Gladders
2002) and contained N ~ 1.2 x 10° lens galaxies and N ~ 1.5 x
10° source galaxies over a sky area of 42 deg?. This corresponds
to sky number densities of n; &~ 0.8 arcmin~? for the lenses and
ng ~ 10 arcmin~2 for the source galaxies. For the larger ground-
based survey we assume the same depth, but increase the survey
area to 1700 deg?. We assume a redshift uncertainty of Az = 0.1 for
each galaxy in either sample, and use the median lens and source
redshifts found by HYG04 of z; = 0.35 and z; = 0.53 for both
ground-based mock data sets. We set the underlying NFW lens halo
concentration to ¢ = 7.20 as in Section 3.5.

For the mock space-based data set we set the survey area to
0.5 deg?, with number densities of n; = 10 arcmin~? and n, =
30 arcmin~ due to the increased depth and quality of imaging ex-
pected for space-based results. For the redshift uncertainties we use
a value of Az = 0.05 (cf. Bacon et al. 2005, for the COMBO-17
photometric redshift survey in relation to weak lensing; Wolf,
Meisenheimer & Roeser 2001), and set z; = 0.5 and z, = 1.0.
Following the predictions of Navarro et al. (1997) we model each
lens halo as having a slightly smaller concentration of ¢ = 7.02 at
this deeper redshift.

We then generate a set of mock results for the tangential
shear and radial first and second flexions, averaged over annuli
around the lensing galaxies (at increasing angular separations be-
tween the lens and source) for the whole ensemble of galax-
ies in any given survey. These mock results are made by taking
the theoretical (NFW) prediction for the average shear or flex-
ion over each annulus of angular separation and offsetting it by a
Gaussian random deviate scaled to the estimated overall error for
that bin.

‘We combine the error due to redshift errors and the intrinsic signal
for a single measurement, multiplied by a factor of 1//Ny;, where
Nyin is the number of lens—source pairs within the annulus over
which we are averaging our lensing measurements.

All that remains is to choose at what angular separations to im-
pose the divides between annuli for averaging shear and flexion
measurements. Since flexion is at its most useful on small scales,
while shear signals remain strong at scales large enough for the flex-
ion to become noise-dominated, we divide up the angular scales for
measurement according to a geometric binning scheme. We choose
10 annuli such that the centre of the ith annulus lies at an angular
radius

ri=af'" (45)
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where a = 2 arcsec and the geometric factor f = 1.5. In this way we
describe annuli which usefully cover both small (down to 2 arcsec)
and larger (up to 77 arcsec) scales of angular separation.

We make one final assumption: that measurements of shear, first
flexion and second flexion are mutually statistically independent.
The resulting 68, 90 and 95 per cent, two-parameter confidence
intervals for NFW parameters from a maximum likelihood analy-
sis of the three mock data sets generated using this simple model
can be seen in Fig. 4; it is immediately apparent that measure-
ments of flexion may have much to offer galaxy—galaxy lensing
studies.
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Figure 4. Estimated confidence limits on NFW halo parameters available
using measurements of (dotted) shear alone, (dashed) first flexion alone,
(dot-dashed) second flexion alone and (solid line) combined measurements
of shear and both flexions. Top: for a 42-deg? ground-based survey such as
that used by HYGO04. Middle: for a 1700-deg? ground-based survey. Bottom:
for a 0.5-deg? space-based survey.
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The independence of y, F and G will need to be checked em-
pirically to confirm these results. However, given this reasonable
assumption it is interesting to note that the confidence contours
derived from measurements of shear and the two flexion fields are
oriented at different angles in the plane, allowing the three measur-
ables to usefully complement one another. We also note that when
we are able to probe the small angular separations (2-5 arcsec)
between source and lens, the second flexion offers better con-
straints than the first flexion due to its larger amplitude and range,
and appears to give results with comparable errors to those with
shear.

This should perhaps not come as a surprise; the signal-to-noise of
flexion is often greater than that of shear close to the lensing mass
on the sky plane (see Goldberg & Bacon 2005). Moreover, shear
is a measure related to the projected mass density k whereas the
first and second flexions probe the local gradient of k, which in the
case of galaxy—galaxy lensing is determined by the slope of the halo
profile. We should expect therefore that flexion has the potential to
significantly improve existing constraints on the concentrations of
galaxy-sized dark matter haloes, which are themselves related to the
slope of the halo profile.

It is reassuring to note from Fig. 4 that the size of the 68 per cent
confidence interval we derive on the fiducial M, for the HY G0O4-
like survey is in good agreement with the mass constraints found
by those authors for galaxies scaled to a (slightly smaller) fidu-
cial Ly = 10042 L o, namely My = (8.4 & 0.7 £ 0.4) x
10" 2~! M. The second error estimate in this value corresponds
to a systematic uncertainty due to the fact that HYGO04 had no ac-
tual measured redshift information from the Red-Sequence Cluster
Survey (see HYGO4 for details), but assigned distances using the
magnitude of objects. We note that even despite this fact, their errors
due to intrinsic galaxy ellipticity dominate over redshift uncertain-
ties in their investigation of galaxy—galaxy shear. In studies with
photometric redshifts, this source of uncertainty becomes even less
significant.

Flexion would therefore seem to offer a valuable new way of
improving constraints on halo profiles in galaxy—galaxy lensing
studies, either with or without measured redshifts.

4 GALAXY HALOES: ELLIPTICAL PROFILES

We now discuss the more general prospect of using flexion to mea-
sure the ellipticity of lenses. When describing elliptically flattened
halo mass distributions, it is often simplest to work with ellip-
tical lens potentials, ¥ (6). Unfortunately these descriptions have
some severe limitations, most notably that they produce dumbbell-
shaped isodensity contours for large ellipticities and can even
produce negative surface-mass densities (see Kassiola & Kovner
1993).

It is thus best to consider models where the isodensity contours
of the mass distribution are elliptical, despite the increased com-
plexity of the lens potential. The simplest generalization of the
softened isothermal sphere to an elliptical density profile can be
written

(61, 6) = 2 . e

262 + [67 /1 + 7] + [83/1 - 7]

where the major axis of the elliptical isodensity contours lie along
the 6, axis in the sky plane, and the ellipticity € is defined by the
ratio of minor-to-major axes (b and a respectively):

b_l—e

a 1+e€

“47)
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Figure 5. Flexion vector field for an elliptical isothermal density distribu-
tion with minor-to-major axial ratio of 0.67. Points in the extreme interior of
the diagram have been omitted for clarity and the elliptical contours follow
the logarithm of | F]|.

The flexion vector at (6, 6,) in the sky plane is then
O
- 3/2
2{62 + [62/(1 + 2] + [62 /(1 — 7]}
0, 0,
“|Treor Ta—er

(48)

We note that, interestingly, F is no longer directed towards the centre
of the lens for all (64, 6,); it will in fact be centrally directed only
when either 0, or 6, are equal to zero.

It is simple to show that the flexion vector at a point (64, 6,) will
be directed towards a point on the major axis of the ellipse with
coordinates (a;,;, 0) where

i = [1—(1;)2] 6, = ll—(gﬂ . (49)

Due to the (b/a)? term, even relatively modest ellipticities in the
density distribution cause a;, to represent a considerable fraction
of 6. This tendency for the flexion vector to be aimed at a point
significantly off lens-centre can also be seen in Fig. 5, drawn for
an axial ratio of 0.67 which may be typical of galaxy haloes (see,
for example, HYGO04, and also Mandelbaum et al. 2005, who find
a lower value). This implies that measurements of the direction of
flexion in galaxy—galaxy lensing may be able to give good further
constraints on the ellipticity of dark matter haloes.

In order to find the second flexion, we can rewrite this ellipti-
cal isothermal profile (without softening) as follows. We begin by
defining a radial term

p =07+ 1263, (50)
where
= (a/by, (51)

with a the semimajor axis and b the semiminor axis. The density
profile can then be defined as

K= —. (52)
0

For this distribution, the shear can be shown to have a very simple
form:

cos(2¢) A¢912 — 02

= —A — s
Vi P) PYE
in(2 26,06
R 2L (53)
o o

‘We may compute the derivatives of these terms in a straightforward
way, and hence find the corresponding complex first and second
flexions

2
F= (—%) +i (—%) (54)

and

305 — 6,67 — 60302 — 8 £26,67
g =4 p394

(55)

Lid (80;‘92 + 607 f205 + f20} — 3 f29;) .
P304

The analysis becomes simpler if we only examine the angle-
averaged radial terms:

A
F = (—exp(=ip)F) = =
p0
3A
Oy = (—exp(=3i$)G) = — . (56)
PO

A means of measuring the ellipticity of the lens is to follow
Bartelmann & Schneider (2001) and measure the quadrupole mo-
ment of the flexion field over some aperture, i.e.

27
Q7.6 =/ dg{F, G} exp(2i¢). (57)
0

Despite the other advantages in simplicity of our mass model, the
evaluation of the the quadrupole moment here involves an elliptic
integral. However, for relatively small ellipticities, we can expand
this out as a series

0= Aewe
T Rer T 87N
3Ae e
QQ—W—ggN, (58)

where e is the lens ellipticity. Thus, the lens ellipticity measure-
ment from flexion incurs an ¢/8 ‘penalty’ compared to the simple
measurement of the flexion itself. Taking a typical ellipticity of
0.2, the quadrupole estimate is 0.025 times the signal-to-noise of
the flexion, and thus we need approximately 1600 times as many
pairs in order to measure the lens ellipticity effectively than to mea-
sure the convergence field. Nevertheless, flexion can clearly con-
tribute to the question of the shape of dark matter haloes around
galaxies.

This concludes our examination of galaxy—galaxy flexion
prospects. We now turn to another area in which flexion can con-
tribute to studies of the dark matter distribution: that of mapping the
dark matter density.

5 MASS RECONSTRUCTION
AND SUBSTRUCTURE

In this section, we discuss how flexion can be used to reconstruct
the density field of matter in order to obtain a spatial map of the
matter distribution. This is clearly a valuable aspect of lensing, and
is already routinely achieved using weak shear. In addition, we can
obtain matter maps from flexion, which as we will see can sig-
nificantly improve the signal-to-noise of the density map. We first
examine how to use flexion to obtain 2D surface density maps of
matter; we then examine how flexion can also be used for three-
dimensional (3D) mapping of density.
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5.1 Two-dimensional mapping

For 2D mapping, we are able to generate maps of the projected
matter density (i.e. the convergence) from both F and G, following
the ideology of Kaiser & Squires (1993). Starting with F, we take
the Fourier transform of the relation F; = 9« to obtain

Fi = —ikiik (k)
Fr = —ikoic (k). (59)

We can invert both of these terms to obtain an estimate for . We
add these two estimates in an optimal fashion, parametrized by the
variable a:
aF; il —a)F
- - =
ki ks
In order to optimize the estimate, we take the mean square of this
equation, which in the absence of a lensing signal will have a value
determined by constant noise from intrinsic flexion. We then mini-
mize with respect to a, in order to find a measurement of the « field
with minimal noise. As a result we find the following inversion:
ik ik,

R= Fi+
k? + k3 K2+ k3

K =

(60)

5. (61)

This gives us a prescription for finding the surface density of matter:
we measure the flexion field, take the Fourier transform, calculate &
according to this equation, and then take the inverse Fourier trans-
form to find «.

We can perform the same calculation for the inversion from G to
k. We note that the components of G can be written in terms of the
lensing potential, ¢ (cf. equation 14) as

G = (8} —30,03) v

Gy = (3070, — 83) v (62)
Hence the Fourier transform

G =i(kj = 3kik3) ¥

G = i(3ktka — I3) V. (63)

Again, we add these estimates of ¥ in some optimal fashion
parametrized by a:

- iag~1

. i1 — )0

K —3kik? 3Kk, — k3

(64)

Calculating the mean square of this field and minimizing with re-
spect to a, we find that the optimal estimate of « is given by
o ikf —3kik3 5 _Hkg —3k%ky 5
T2 4 12)2 2 12)?
(ki +K3) (ki +43)

This provides us with the mass-mapping equations we have been
seeking. We can now obtain mass maps with independent noise for
y, F and G, and combine these with minimum variance weighting
(with respect to noise) in order to obtain a best mass map.

These mapping relations can be efficiently expressed and trivially
derived in the complex notation of Section 2 using equation (2)

(k +iB)r = 8720* F,
(k +iB)g = 87*8*9*9*G (66)

(65)

where the complex part is again seen to give us the B-field compo-
nent, which can be used as a test of systematics. Comparing these
two derivations of the mapping equations, we see that equation (66)
gives the solution in the case of no noise, while equations (61) and
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Figure 6. Shear (upper), flexion (middle) and second flexion (lower) for
simulated cluster; the cluster’s convergence map is shown underlying the
other weak lensing fields. Note that shear does not respond well to substruc-
ture, while the flexions strongly respond to these regions.

(65) show that this is still optimal in the presence of noise due to
intrinsic flexion.

The mapping process is illustrated in Figs 6 and 7. Here we have
simulated a projected surface density for a toy cluster of galaxies,
using a Gaussian cluster gravitational potential profile with width
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Figure 7. Recovered convergence maps from the shear alone (upper), the
two flexion fields (middle) and shear and flexion combined (lower) for sim-
ulated cluster, with noise properties appropriate for a deep space-based set
of observations.

o = 3 arcmin and mean « within this radius of x = 0.06. We have
laid down three substructure Gaussians containing 10 per cent of the
mass, with width o = 1 arcmin (one at the centre of the cluster). The
associated shear and flexion fields shown in Fig. 7 were calculated
directly from equations (11) and (14). Note from this figure that
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Figure 8. The cosmic flexion power spectrum. Top: power spectrum as a
function of angular wavenumber /; bottom: power spectrum per log interval
in angular scale. Solid line: (2, = 0.3, 2 = 0.7, 03 = 0.7); dotted line:
(Qm=0.3,25 =0.7,08 =0.9); dashed line: (2, =0.2, 25 =0.8,08 =
0.7); dash-dotted line: (2, = 0.2, 24 = 0.8, 05 =0.9).

the shear does not respond much to the small-scale structure, while
flexion is most affected at these scales; this is in line with our results
for galaxy—galaxy flexion, and is explored more in the following
section. We also note from the figure that the first flexion responds
locally to the density gradient, whereas the second flexion responds
non-locally while still giving large signals near substructure.

Shot noise is added to these fields with 0, = 0.2,07 = 0g =
0.04 and projected number density n = 60 as appropriate for a
space-based survey such as GEMS (e.g. Rix et al. 2004).

We have then used our inversion procedure (equations 61 and
65) together with the Kaiser—Squires inversion for shear, to obtain
maps of k from these fields, which are displayed in Fig. 8 together
with a combined convergence map from all fields added with min-
imum variance weighting. The shear field has been smoothed with
a Gaussian of radius 0.5 arcmin as it suffers from large fluctua-
tions on small scales, while the flexion is smoothed with radius
0.1 arcmin as it does not suffer from this problem. We note that the
surface density is reconstructed well from all three fields, with max-
imum signal-to-noise of 3.6 for the shear reconstruction and 3.5 for
the two flexion reconstructions combined. It is gratifying that the
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signal-to-noise for the two approaches are so similar, and strongly
emphasizes the value of measuring flexion as well as shear. We also
note that flexion does indeed measure the substructure concentra-
tions at the 1.4-2.60 level, whereas shear is not able to detect these
subhaloes. Future lensing maps of density will therefore benefit
from the inclusion of the flexion signal, especially for the purpose
of charting the substructure.

5.2 Three-dimensional mapping

We now briefly note how to extend this method in order to map the
density of matter in three dimensions with flexion, following the
concepts of Taylor (2001) and Bacon & Taylor (2003). For this, we
need to know what gravitational flexion we would measure upon a
galaxy atany 3D point in the Universe. We will see in the next section
that the effective flexion along a line of sight over cosmological
distances is given by

3HQ2 /w d Jw?(w — w') 08
= w——
0

2c? a(w) w Ox

(67)

where H, is the Hubble constant, €2,, is the matter density at the
present epoch, c is the speed of light, w is comoving distance, a
is the expansion factor, ¢ is the overdensity of matter and x is the
transverse physical distance.

Now for a function A(w) that can be written as the integral of a
function B(w’, w),

A(w) E/ dw' B(w', w), (68)
0

we can write the rate of change of A with respect to w as

0A(w) Y dB(w,w")
= dw ——
ow o ow

+ B(w, w). (69)

Now F is in a suitable form for A, with B given in equation (67).
We can therefore use equation (69) to invert the integral for 7, and
find that the transverse gradient of the matter overdensity, §’ can be
calculated in terms of the measured 3D flexion:

2¢*  a(w) 02

— wF). (70)

§w) = 3HQm w? dw?

Thus, we can obtain estimates of the density gradient along a line of
sight, if we have measurements of 7 (w) along that line of sight, im-
proving signal-to-noise from 3D maps measured using weak shear
alone (Taylor et al. 2004).

6 COSMIC FLEXION

We now turn our attention from dark matter mapping to the overall
matter distribution in the Universe. Can we use flexion to probe the
distribution of large-scale structure? In order to answer this ques-
tion, we carry out an analysis which is analogical to the theory of
cosmic shear; here, we are trying to calculate the ‘cosmic flexion’,
the flexion correlation function whose signal originates from the
large-scale structure. In this section we closely follow the analysis
of Bartelmann & Schneider (2001).

6.1 Flexion power spectrum

If we are to find the flexion correlation function from large-scale
structure, then from the definition of flexion as the gradient of the
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convergence, it is valuable to begin with the cosmological effective
convergence, given by Bartelmann & Schneider (2001) as

1 w o\ 32
z / Sl LS N B )
C 0 w

(0, w) = dx;0x;

where 6 is the position on the sky, w represents comoving distances,
x represents physical distances, and @ is the gravitational potential.
For simplicity, we are restricting ourselves throughout this section
to a flat Universe and a flat sky approximation; for a curved sky,
the calculation can be extended using the formalism of Castro et al.
(2005). The equation above for convergence can be put into terms
of the overdensity of matter using the Poisson equation

P 3HDus

~ 72
0x;0x; 2a (72)
which gives
3HQm [ —wHw' §[w'8, w’
(@, w) = 210 oy = W SLw6, T} 73)
2¢? w a(w’)

Now we wish to differentiate this to obtain a form for the effective
cosmological flexion. In order to do this, we note the relationship
between the required gradient with respect to angle on the sky, and
the gradient of physical distances:

0
0; = . 74
waxi (74)
Using this, we obtain for the first flexion
3H Q[ (w—w)Hw? 9
F =0k =""2 dw' —————3[w',
i 2c2 / w a(whHw  Ox; (w8, w]
H2Q v W w?
_ 3HoSn dw ™ 5w, w]. (75)
2c? 0 a(w)

Here, 8’ is the transverse gradient of the overdensity, and we have
defined

W= / dw’G(u/)w (76)

where G is the distribution of galaxies as a function of radial distance.

In order to find the power spectrum of cosmic flexion, we use a
form of the Limber equation, which states that if one can find two
projections g; and g, of the overdensity field §, written in terms of
radial weight functions ¢; as

g = /dW’qi(w’)S'[w'O, w'] 7
then the cross-power spectrum of g; and g, is

Plz(z)z/d ’W}D (k, w (78)

where ¢ is the angular wavenumber and Py is the power spectrum
of the transverse gradient of the density fluctuations. We note that
we can write the flexion in equation (75) in this way, with ¢ given
by

_ 3H0252m W(w)w?

79
2c? a(w) 79
Therefore we can write the flexion power spectrum as
9H 492 Wz(w)w L
Pr(f) = e Py — w]. (30
(w) w

Because flexion is the derivative of convergence, this power spec-
trum is in terms of the derivative of the overdensity. In order to
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describe the flexion power spectrum in terms of the more familiar
overdensity itself, we note that

18:17 = 187k, (81

where k; is one component of the wave vector, if the differentiation
of §; is understood to be along that component. This implies that

L L ¢
P(;f —w :P5 —w - (82)
w w w

Finally, then, we can describe the flexion power spectrum as

OHAQ2 e ¢
Prty = St o [ g, W) (—,w). (83)

4c* a*(w) w

We note that this has a very similar form to the convergence power
spectrum, differing only by a factor of £2. Thus flexion power will
be dominated by high £ components; again we see that flexion takes
the form of a high-bandpass filter for density fluctuations.

One can easily show that the two-point statistics of F and G are
identical; hence the first flexion power spectrum which we have
calculated here is identical to the second flexion power spectrum.

From this power spectrum, we can find the flexion correlation
function, as these are related by

= dzz —ie-0
GO = | G Pre
0

* ede
_ / Wt 30(t0). (84)
0 27
Thus
OHMQ: (M W (w)w*
(9 = —2Lm / dw———
57 4c* 0 a?(w)
* kdk
X / — Ps(k, w)k*To(kwo). (85)
o 27

‘We can now examine what these predictions provide in practice. We
numerically calculate the flexion power spectrum from equation (83)
using the matter power spectrum prescription used in Bacon et al.
(2005). This uses an initial Harrison—Zel’dovich power spectrum
with non-linear evolution following Smith et al. (2003).

Fig. 8 shows the flexion power spectrum in two forms. In the
top panel, we present the power spectrum as a function of angular
wavenumber [/, for median redshift z = 1. It is clear that the flexion
power predictions are rather dependent on the cosmological model;
below we discuss whether this affords measurement of cosmological
parameters in the context of correlation functions. We note that
the flexion power peaks at smaller angular scales than the shear
power spectrum, i.e. ~1 arcmin as opposed to a few 100 arcmin
(cf. Bartelmann & Schneider 2001, fig. 16). We also note that the
flexion power spectrum has a very familiar shape; since the shear
power spectrum is often shown pre-multiplied by £2, the flexion
power spectrum (without pre-multiplication by £2) is identical in
shape to the pre-multiplied shear power spectrum.

The bottom panel shows the flexion power per logarithmic interval
in angular wavenumber. This shows that, for reasonable cosmolog-
ical models, the power per log interval increases without limit for
Smith et al. (2003) density spectra. This is in contrast to the shear
power spectrum, where one finds a broad maximum in power per
log interval below ~1 arcmin (cf. Bartelmann & Schneider 2001,
fig. 16). This again illustrates that cosmic flexion is increasingly
sensitive to dark matter concentrations on small scales.

Fig. 9 shows predictions for the cosmic flexion correlation func-
tion for median redshift z = 1, where we plot flexion in units

107E

108 F 00y

105

¢r(0)

104 ¢

103¢

10?2 | M

6 [arc sec]

Figure 9. Cosmic flexion correlation function for the cosmological models
shown in Fig. 8. Also plotted is the error on cosmic flexion for a 100-deg?
ground-based survey.

rad~'. Note again the disparate predictions for different cosmolo-
gies. However, we also plot errors in measuring the cosmic flexion,
for a 100-deg? ground-based survey with galaxy number density of
20 arcmin 2. Note that these error bars will have significant covari-
ance between angular scales. We see that, while on small scales we
can obtain a clear measurement of the small-scale structure, we can-
not obtain measurements of the flexion in the linear density regime.
This makes cosmological parameter prediction unfeasible, as it is
difficult to predict amplitudes for structure on very non-linear scales
from cosmological models. Nevertheless, cosmic flexion is useful
in probing these scales in order to understand them on their own
terms, describing substructure and the cuspiness of haloes; cosmic
flexion is also complementary to cosmic shear, probing small scales
in an isolated fashion, whereas cosmic shear has a broad window
function for power. The cosmic flexion signal will be a useful means
of testing theories of stable clustering or stable merging (cf. Smith
et al. 2003).

It should be noted that in this analysis we have neglected the
power that might exist from intrinsic, physical flexion correlations
between galaxies. The analogous intrinsic ellipticity correlation be-
tween galaxies has been shown (e.g. Heymans et al. 2004) to be
small; however, further work will be necessary to measure the
level of contamination of cosmic flexion due to intrinsic flexion
alignments.

6.2 Convergence—flexion cross-power spectrum

In addition to the flexion power spectrum, we are also able to cal-
culate the convergence—flexion cross-power spectrum, which can
easily be related to the shear—flexion cross-power spectrum. We
note that to do this we can again use the Limber equation (78), but
this time using Pj from the outset rather than Py . In this case, from
our final power spectrum for flexion (equation 83) we see that the
relevant choice of ¢ for flexion in the Limber equation is

3 HO2 QW (w)w?
qQF = — 5 5~
2c?a(w)
In addition, from equation (73), we see that the choice of g suitable
for convergence is
_ 3HQuW(w)w
- 2c2a(w)

(86)

(87)

K
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Figure 10. The cosmic convergence—flexion cross-power spectrum. Top:
power spectrum as a function of angular wavenumber /. Bottom: power
spectrum per log interval in angular scale. The lines represent the same
cosmological models as in Fig. 8.

Hence the cross-power spectrum between convergence and flexion
can be written as
9HIQ? W2(w) £

Pr.(0) = 40C4 n | dw 2w Ps <E’ w) L. (88)
This is shown in Fig. 10, together with the associated convergence—
flexion cross-correlation function in Fig. 11 with appropriate errors
for a 100-deg® survey. We see that this quantity has a measure-
ment limit on an intermediate scale to shear and flexion limits
(~2 arcmin). It is a valuable quantity to measure, as it gives a
stronger signal-to-noise than cosmic flexion, and offers a stringent
check on systematic errors between the shear or convergence and
flexion signals.

7 CONCLUSIONS

In this paper, we have examined how flexion can be applied to obtain
both astrophysical and cosmological information. We have explored
the use of galaxy—galaxy flexion to measure the mass and profile of
galaxy dark matter haloes; we have shown how flexion can generate
maps of dark matter; and we have calculated the cosmic flexion
correlation signal.
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Figure 11. Cosmic convergence—flexion cross-correlation function for the
cosmological models shown in Fig. 8. Also plotted is the error on cosmic
flexion—convergence cross-correlation for a 100-deg? ground-based survey.

We have presented a flexion formalism, showing how the effect
arises from the variation of the shear field over an object, and giving a
brief discussion of how the effect can be measured using shapelets. A
second flexion, which was not considered in previous work, has also
been presented; this second flexion contains non-local information
which generates arcs from point mass lenses, while the first flexion
contains local information about the gradient of the density.

We have examined the efficiency of flexion as a description of
third-order lensing information, in comparison with simply describ-
ing this in terms of gradients of shear. Flexion is found to be an
optimal description for point mass lensing, and is about as efficient
as shear gradients for SISs.

We have calculated flexion predictions for galaxy—galaxy lensing,
for avariety of galaxy halo profiles including the SIS, with or without
softening, the elliptical isothermal, and the NFW profile. It is found
that by combining shear and flexion galaxy—galaxy lensing, we are
able to produce powerful constraints on the halo profile, for both
the mass and the concentration of the halo.

Flexion can be used to reconstruct mass profiles directly, using a
similar process to the Kaiser & Squires (1993) and Taylor (2001)
inversions in two and three dimensions, respectively. We have noted
how flexion can act as an excellent tool for measuring substructure.

‘We have also calculated predictions for cosmic flexion, the flexion
arising from large-scale structure. It is found that this signal is only
measurable on small scales; it is useful for measuring small-scale
structure and halo profiles, but will not yield independent cosmolog-
ical parameters, as predictions for structure amplitudes are difficult
in this highly non-linear regime.

We have seen from these applications of flexion that this quantity
is a highly useful tool for a variety of methods of measuring mass
fluctuations in the Universe. Flexion constitutes a valuable comple-
ment to shear, as it is sensitive where shear is not, and vice versa.
With upcoming surveys from ground and space, flexion will provide
a useful addition to the armoury of those who seek to understand
mass in the Universe.
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APPENDIX A: NFW HALO PARAMETER
CONVENTIONS

We follow the lead of Kleinheinrich et al. (2005b) and briefly dis-
cuss the differing conventions used to describe NFW haloes in the
literature. In this comparison, and in Section 3, we have adopted the

convention used by Navarro et al. (1996, 1997) and by HYG04 of
defining a radius o from the centre of a CDM halo within which
the mean density is 200 times the critical density for closure of the
Universe in that epoch. The mass of the halo can then be quantified
via M5, the mass contained within r,qo such that

8007t

Moo = Tpcm(z)rfoo. (AL)

The scaling radius ¢ of equation (35) is then expressed by Navarro
et al. (1997) in terms of rypp and another dimensionless scaling
parameter, the concentration ¢, as ry = r,g/c. From the definition
of My, the parameters ¢ and A, are linked by the relation
200 A
A= — . (A2)
3 [n(1+c)—c/(1+0)]

The convention outlined above is not used by all authors, with
Kleinheinrich et al. (2005b) choosing to define r,gy as the radius
from the halo centre within which the mean density is 200 times
the overall mean matter density of the Universe at that epoch. This
convention, which we hereafter denote via the use of primes, thus
relates M, to 1, through

Mino = 2 (@) pe27 (A3)
200 = T3 mZ)Perit(Z) 00

where 2,,(z) is the matter density parameter at the epoch of the halo
in question. For any given halo at a redshift z we can hence define a
concentration ¢’ such that ry = r},,/c’ and a characteristic density
related to the concentration as follows:

;200 Q(2) c?
© 3 [In(1 +¢") — ¢’/(1L + )]’

We note that while M), 5y, and ¢’ take different values to their
unprimed counterparts, ry must not change and we must have
A, = A, as both these parameters describe the real physical density
profile of the halo.

Given the potential for confusion of having two differing NFW
conventions in the literature, it is worthwhile to describe the conver-
sion between the two. If we have a halo of concentration ¢, defined
as by Navarro et al. (1997), at a redshift z, then it can be quickly seen
that the corresponding concentration for the primed convention is
found by solving

Q) c? _ 3
(i +c)— /A +e)  In(l+0)—c/A+ol

Once ¢’ is determined, the conversion relations for 7}, and M/,
follow trivially:

’ / ’ / 3
w_ ¢ T _g ) (c—> . (A6)
C

200 c Moo

(A4)

(A5)

Finally, we note that in practice the primed values of ¢’, M), and
15y are somewhat larger than their unprimed counterparts.
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