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1 Introduction

If a significant primordial gravitational wave signal is detected in any near-future exper-

iment, it will imply that the inflaton traversed a distance in field space larger than MPl.

This is the famous Lyth bound [1] (for further refinements, see [2–5]). On first contemplat-

ing super-Planckian field ranges, an effective field theorist will tend to feel some discomfort,

being inclined to write down the most general effective Lagrangian,

L = −1

2
m2φ2 +

1

2
∂µφ∂

µφ− λ

4!
φ4 +

c

M2
Pl

φ2∂µφ∂
µφ− λ6

M2
Pl

φ6 − . . . . (1.1)

For order-one values of the coefficients of high-dimension operators in V (φ), the poten-

tial will oscillate wildly over super-Planckian field ranges and spoil inflation. However,

on further reflection, one realizes that a shift symmetry φ → φ + a would forbid every

term in the potential, and thus a theory with a single dominant source of shift symme-

try breaking can provide a technically natural approach to super-Planckian field ranges:

we would predict that for some f , λ ∼ m2/f2, λ6/M
2
Pl ∼ m2/f4, and so on. We could

accommodate this shift symmetry in our effective field theory by parametrizing its break-

ing with a spurion and building a Lagrangian out of fields that nonlinearly realize the

symmetry. The good behavior of the potential is enforced by the dominance of a single

spurion. In fact, many physicists readily accept the axion as a potential solution to the

strong CP problem, in spite of its severe Planck-suppressed operator problem [6–8]. To

explain the very tight experimental bound on the effective theta angle in our universe, a

theory of a generic pseudo-Goldstone axion must forbid high-dimension Planck-suppressed

Peccei-Quinn-violating operators, so that QCD instanton effects provide the leading shift-

symmetry-breaking spurion by several orders of magnitude. If the axion is a compact field

(or equivalently, has an exact gauged discrete shift symmetry, a → a + 2πf), then only

exponentially small instanton effects can break the symmetry and it may be relatively easy

to enforce single-spurion dominance. This may be realized by string theory axions, for

example [9, 10]. The similarities in the need for a good shift symmetry to solve the strong

CP problem and for large-field inflation have motivated concrete models of inflation which

are natural from the effective field theory viewpoint [11–28]. (Among these, the idea of

N -flation builds on earlier work on assisted inflation, which was first studied in the context

of exponential rather than axion-like potentials and then was generalized [29–32]. Another

variation is M -flation [33–35].)

While effective field theorists can find no dramatic problem with large-field inflation,

they may retain some skepticism about the existence of UV completions. It has been

suggested that quantum gravity will impose more severe constraints than EFT. Axion

fields with super-Planckian decay constants appear to be rare in string theory vacua [36, 37],

which may be a suggestive hint of a more general principle. It is generally believed that the

set of quantum gravity theories is discrete (at least for nonsupersymmetric theories, where

subtleties of continuous moduli spaces do not arise). This means that many apparently

sensible effective field theories are actually in the swampland of theories that cannot be

consistently coupled to gravity [38–41]. At this point we have relatively few guidelines for
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how to judge that a theory is in the swampland, but the Weak Gravity Conjecture (WGC)

is among the sharpest and most powerful and well-motivated [39, 42–45].

The WGC asserts that any theory containing both gravity and a massless abelian

gauge field should have a charged particle in the spectrum whose mass is less than its

charge in Planck units. To be precise, we require m <
√

2qeMPl in a four-dimensional

theory in which gravitons and photons are the only massless particles. The motivation is

to avoid having a plethora of exactly stable extremal black hole states, which are potentially

problematic [46]. This leads to:

The Weak Gravity Conjecture (WGC): for any large, semiclassical,

nearly-extremal black hole, there exists a state in the theory whose mass

is small enough relative to its charge that the black hole can move away

from extremality by emitting this state.

For a single U(1) gauge group, this implies that there is a state satisfying q/m ≥ z0 for

an appropriate constant z0. In the case of multiple U(1)s, the condition is that the convex

hull of the charge-to-mass vectors ~z = ~q/m of the kinematically available charged states

must contain the ball of radius z0 [44]. The is purely a kinematic requirement: black holes

should be able to decay.

From the very beginning, the WGC was claimed to rule out the theory of extranatural

inflation [13]. Recently, there has been renewed interest in how the WGC can constrain

large-field inflation [37, 47–55]. The essential idea is that theories of axions with good

shift symmetries often obtain four-dimensional axion fields by dimensional reduction of

higher-rank p-form fields, which are constrained by WGC arguments.

However, such arguments are not without subtlety. The WGC is a rather weak state-

ment at low energies, since large black holes could decay to states out of the reach of

low-energy effective field theory. Given an effective field theory with cutoff Λ, the light-

est semiclassical black holes have mass of order M2
Pl/Λ, so one could imagine that the

conjecture is satisfied by states with mass between Λ and M2
Pl/Λ that cannot be studied

without a full theory of quantum gravity. Moreover, extremal black holes can also satisfy

the WGC, provided that the subleading corrections to the extremality bound have the

correct sign [39, 42]. Nonetheless, the magnetic form of the WGC does have important

consequences for the low-energy effective field theory and for inflation, which we review

in section 2.2.

As effective field theorists, we might want to impose the stronger constraint that black

hole decay can be described in the low energy effective field theory. That is, we might want

to limit our attention to theories in which we can positively assert that black holes decay,

reasoning that any theory which violates this assumption lies outside theoretical control in

the absence of a full, quantum gravity description. This suggests a variant of the WGC:

The Effective Weak Gravity Conjecture (EWGC): the state which satis-

fies the weak gravity conjecture should be describable in the low-energy

effective field theory.

Indeed, we usually imagine black holes decaying to particles, hence the EWGC is

sometimes implicit in discussions of the WGC. However, we emphasize that it amounts to
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a further assumption, which however is much weaker than the “strong form” of the WGC

proposed in [39], which we discuss in section 6, but which plays no role in our arguments.

By contrast, the EWGC plays an important role in some — but not all — of our arguments.

(We note in passing that the EWGC is implied by the much-stronger “lattice

WGC” [56] — discussed briefly in section 4.5 — whenever there is any charged parti-

cle that can be described in the low-energy effective field theory.)

Unlike the WGC, the EWGC is not directly motivated by the problem of remnants,

since Planck-scale states satisfying the WGC can address this issue. If correct, the EWGC

may stem from a dynamical version of the (kinematic) WGC. For instance, one variation

on the Third Law of Thermodynamics in the black hole context could be that nearly-

extremal black holes should not spontaneously move closer to extremality. To realize

the implications of this statement, we note that black holes with sufficient charge do not

decay predominantly by Hawking radiation. Initially, since Hawking radiation carries very

little charge away, they decay towards extremality [57]. The temperature of a Reissner-

Nordström black hole goes to zero as the black hole approaches extremality, shutting off

the Hawking radiation, but charged particles satisfying the WGC can still be emitted

through an effect that is similar to Schwinger pair-production near the horizon [58–60],

which eventually becomes the dominant decay channel.

The effect may also be understood as a Breitenlohner-Freedman-type instability of

charged particles in the near-horizon geometry [61–63]. All that is required is that at

least one such particle exist; despite statements to the contrary in [43], it need not be the

lightest charged particle, as lighter particles violating the WGC inequality are not emitted.

Conversely, if there are no charged particles in the low-energy effective field theory satisfying

WGC, we expect that the black hole continues to approach extremality, as pair production

cannot occur whereas the emission of long string states or fission of the black hole into

smaller black holes should be a very slow process in comparison to Hawking radiation.1

Thus, the EWGC may be motivated by thermodynamic considerations.

As this paper was being finalized, we learned of work on the possibility that the WGC

is satisfied by states that are not captured in the low-energy effective field theory [64]. Even

if the EWGC does not hold in every consistent theory, the theories in which it is violated

have the unusual property that the decay of large, semiclassical black holes cannot be

described semi-classically. This suggests that the naive “low energy effective field theory”

is not a completely reliable description of the full theory at low energies, and in particular

any conclusions that we draw about inflation based solely on this class of theories may not

be reliable.

For the same reasons of theoretical control, in this paper we focus on the case where

the low-energy effective field theory is a weakly-coupled abelian gauge theory, containing

electrically charged particles light enough to discharge subextremal electrically charged

1In principle, when the black hole is very close to extremality, the temperature of the Hawking radiation

may become low enough that these strongly suppressed processes are competitive. However, we expect that

for a large black hole with a weakly curved horizon, this transition occurs exponentially close to extremality,

hence it may not even be visible in the thermodynamic limit. Moreover, it’s not clear that these processes

are effective at discharging the black hole, since their rates are typically not under theoretical control.

– 4 –



J
H
E
P
1
2
(
2
0
1
5
)
1
0
8

black holes and semiclassical (solitonic) monopoles light enough to discharge subextremal

magnetically charged black holes. This assumption could be circumvented in examples

where a more sophisticated field theory description of the charged particles is available,

e.g. in cases where the abelian gauge theory arises from Higgsing a non-Abelian gauge

group and the monopoles originate from “hedgehog” configurations in the parent theory.

However, we see no reason to expect that such theories will evade our constraints, hence

for simplicity we defer consideration of them to future work.

Our goal in this paper is to give a critical assessment of the state of large-field inflation

in light of the WGC. We focus on scenarios with compact axion fields, leaving noncompact

models of axion monodromy for future consideration (though some of our remarks may

extend to such models). We find that arguments against approximately isotropic models of

N -flation [15] and kinetic alignment [14, 23] are robust. The most difficult scenario to rule

out arises from loopholes pointed out by de la Fuente, Saraswat, and Sundrum [48, 65].

We present conjectured bounds on this scenario that depend on the way that the mass

spectrum shifts as the axion VEVs are varied. In every case that we find a bound, the

parametrics precisely compensates for any possible enhancement and determines that the

field range is bounded above by MPl (times at most an order-one number).

The organization of this paper is as follows. In section 2, we review extranatural

inflation [13], the Weak Gravity Conjecture and its requirement of a low UV cutoff [39],

and arguments against large-field inflation with a single axion from both the electric [39] and

magnetic [48] points of view. In section 3, we present arguments for how the magnetic form

of the Weak Gravity Conjecture excludes the simplest models of N -flation [15] and models

based on the Kim-Nilles-Peloso alignment mechanism [14] when it is realized through the

structure of kinetic mixing [23]. These arguments do not address the case of decay constant

alignment where the leading instanton effects arise from highly aligned electric charges in

a basis in which the magnetic charges are not aligned [48]. In section 4, we discuss how

the spectrum of modes for extranatural inflation varies while traversing the axion moduli

space. We argue that the models that evade our earlier arguments involve spectra with

surprising features that one must accept in order to realize large-field inflation. We claim

that, in the presence of particles of large charge, the 5d effective field theory breaks down in

some regions of the moduli space if the compactification radius is not significantly smaller

than the UV cutoff. This motivates the Single-EFT Consistency Criterion (SECC), which

demands that any Kaluza-Klein mode which is light in some region of moduli space should

have mass below the UV cutoff throughout the moduli space. Equivalently, it requires that

the axion shift symmetry θ → θ + 2π can be understood as a large gauge transformation

within the domain of validity of the UV completion. We emphasize that the SECC can be

motivated within the 5d effective field theory in the presence of a Wilson line, not just the

dimensionally reduced viewpoint. (In appendix A we further illustrate the SECC using a

gauge-invariant lattice regulator.) A second new conjecture, the Extended Weak Gravity

Conjecture, requires that the spectrum of particles should satisfy the WGC bound at every

stationary point in moduli space (including local maxima). In section 5, we show that the

loopholes raised by [48] violate our stronger conjectures. This completes our discussion of

bounds on inflation from the WGC.
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Some prior claims exist in the literature of strong constraints on large-field infla-

tion models. Section 6 addresses such claims based on hypothetical strong forms of the

WGC [51]. Appendix B considers claims based on entropy bounds [66–68]. These sections

exist to place our paper in context and to convince the reader that we are not simply

providing weaker proofs of previously known facts; they can be freely skipped. We claim

that the entropy bound arguments in the literature rest on overly strong assumptions, and

that the “strong form” of the WGC is ambiguous when applied to multiple U(1)s. We

emphasize that we have never used such a strong form in this paper, and that we view the

issues of Kaluza-Klein mode monodromy to be the most important new requirements we

have used.

We conclude in section 7 with a discussion of our view of what remains to be done to

place our conjectured requirements on a sounder footing. We believe that further progress

along these lines can either thoroughly exclude parametrically large field inflation or identify

special theories that satisfy all consistency requirements of quantum gravity.

2 Preliminaries

In this section we review the concept of extranatural inflation, the Weak Gravity Conjecture

and its implications for the UV cutoff of a theory, and how the WGC rules out models of

inflation driven by a single axion field. Along the way we make a few small remarks not

present in the existing literature, but readers thoroughly familiar with the WGC can skip

to the next section for our new results.

2.1 Axions from extra dimensions

In this paper we will focus on extranatural inflation models [13] in which the axion field

arises by reducing a p-form gauge field (p ≥ 1) on a p-dimensional cycle within a com-

pactification manifold. String theory axions [9, 10] share this feature with simple phe-

nomenological models. It seems plausible that any consistent theory of a compact axion

field coupled to quantum gravity can be viewed, in some duality frame, as a member of

this class, so we view the restriction to extranatural models as a mild assumption.

For example, consider the case of an ordinary (1-form) gauge symmetry. If the com-

pactification manifold contains a circle, we can define an axion-like field in four dimensions

from the integral around this circle:

θ(x) =

∮ R

0
dx5A5(x, x5). (2.1)

Large gauge transformations of A5 lead to θ → θ + 2πn (where n ∈ Z) representing a

(gauged) discrete shift symmetry and signifying that the axion field is compact. The same

statement holds for axions obtained from higher-rank p-forms, where there is always the

freedom to perform a large gauge transformation shifting the field by an integral multiple

of the volume form of the p-cycle we integrate over.

– 6 –
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Beginning from a 5d action
∫
d5x(1

2M
3
5R− 1

4e25
F 2
µν), we obtain a 4d Planck scale set by

M2
Pl ≡M2

4 = 2πRM3
5 , gauge coupling 1/e2 = 2πR/e2

5, and an axion decay constant set by

Laxion =

∫
d4x

1

2
f2∂µθ∂

µθ, where f2 =
1

2πR e2
5

=

(
1

2πR e

)2

. (2.2)

In much of the paper, we will focus on this case, where a four-dimensional axion arises

from the dimensional reduction of a one-form gauge field in five dimensions. Nonetheless,

most of our arguments generalize straightforwardly to axions originating from p-form gauge

fields in D dimensions.

2.2 Weak Gravity Conjecture

A useful formulation of the Weak Gravity Conjecture is that any near-extremal charged

black hole should be able to move away from extremality by emitting a charged particle.

For a D-dimensional theory containing a p-form field with coupling gp also coupled to a

massless canonically normalized dilaton ϕ through its kinetic term ∝ e−αϕ
√

16πGF 2
p , the

WGC asserts that there should exist a (p − 1)-brane with charge q under the p-form and

tension T satisfying the inequality

8πG

[
α2

2
+
p(D − p− 2)

D − 2

]
T 2 ≤ g2

pq
2. (2.3)

We comment on the detailed α, p, and D dependence of this expression in a separate

paper [56].

For a U(1) gauge theory in four dimensions with coupling constant e, this has the

immediate implication that there should exist an electrically charged particle of mass m

and charge q satisfying m <
√

2eqMPl and a magnetic monopole of mass mmon and charge

qm satisfying mmon <
√

2qmMPl/e. As pointed out in [39], the existence of a monopole

satisfying such a bound implies that weakly-coupled gauge theories coupled to gravity

must have a UV cutoff that is parametrically below the Planck scale. The self-energy of

the monopole from integrating its classical magnetic field down to a distance rmin ∼ Λ−1 is

linearly divergent: δmmon ∼ q2m
e2

Λ. The precise coefficient is not essential because we make

a naturalness argument, that mmon
>∼ δmmon (in the absence of fine-tuning), which like all

naturalness arguments leaves the precise order-one coefficient in the bound as a matter of

taste. Combining the naturalness bound with the magnetic WGC, we learn that

Λ <∼
e

qm
MPl. (2.4)

In other words, the UV cutoff of the theory should be below eMPl, and if the magnetic WGC

is satisfied by a monopole of large charge the UV cutoff will be even lower. We emphasize

that this magnetic form of the WGC, from [39], does not depend on the EWGC, and our

arguments based on it are the most robust.

Notice that although one could attempt to apply the self-energy argument also to the

electric field of electrically charged particles, such an integral must be cut off at the Comp-

ton wavelength m−1 of the field. As is familiar from QED, the self-energy of the electron
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is a small correction to its mass. The argument that monopoles can bound the cutoff Λ

relies on the fact that the magnetic coupling is strong, the monopole is a solitonic object

with mass above the cutoff, and that electric and magnetic charges are mutually nonlocal,

so a theory containing both necessarily has a fundamental cutoff. The interpretation of

the quantity Λ that we are bounding is the scale at which it is no longer appropriate to

treat the theory as a weakly-coupled, local effective field theory of a U(1) gauge boson.

This may be because U(1) embeds into a nonabelian group which has W bosons at the

scale Λ, or may be due to more fundamental new physics such as the string scale or the

higher-dimensional Planck scale.

2.3 The list of ingredients

In this paper there are four ingredients that will play a role in our arguments:

1. The instanton effects. We are dealing with a set of axions that have a potential of

the form
∑

i ci cos(
∑

j Qijθj). The charge matrix Q is typically determined by a set

of wrapped worldvolumes of electrically charged particles in extranatural inflation

theories, but could originate from other physics.

2. The electric charges satisfying the WGC. A set of electrically charged particles exist

that satisfy the constraints demanded by Weak Gravity. That these may not be the

same charged particles contributing the dominant instanton effects is one source of

loopholes to the simplest arguments.

3. The magnetic charges satisfying the WGC. A set of magnetically charged particles

exist that satisfy the constraints of Weak Gravity. These particles give us crucial

access to information about the UV cutoff of the theory and are the central elements

of many of our arguments.

4. The kinetic mixing matrix. Our axions (or the higher-dimensional gauge fields they

originated as) in general mix with each other through a matrix K.

A number of models in the literature rely on “alignment,” following the work of Kim,

Nilles, and Peloso [14]. A general alignment model is one in which all four of our ingredients

can freely vary. In this paper we address two physically distinct special cases of alignment,

which are not simply the same idea in a different basis. We will use the term kinetic

alignment to refer to a scenario in which the electric charges contributing the dominant

instanton effects (our first ingredient) and the magnetic charges satisfying the WGC (our

third ingredient) are both simple (small integers in the charge lattice) in a basis where K

is arbitrary. This addresses models like [23], though we make the additional assumption of

simple magnetic charges. On the other hand, we could consider a model in which the kinetic

term is simple but the charge matrix of the instanton effects and the magnetic charges

satisfying the WGC are not (so that, for instance, there are large numbers appearing in the

instanton matrix while the magnetic charges are simple). This is the scenario of [48], which

we refer to as decay constant alignment. Given this scenario, we could always redefine our

basis to make the electric charges simple while scrambling the kinetic matrix. However, we

– 8 –
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would then have unusual charge assignments for the magnetic monopoles, and we require

a different physical argument than the one we applied to the scenario we referred to as

kinetic alignment. Although we only obtain bounds on these two special cases, we expect

that a combination of the ideas used in these bounds can exclude the general case.

To fix conventions for the electric charge in the extranatural case, we write the coupling

of a charged particle to the gauge potential as

S = Qa

∫
P
Aa , (2.5)

where the integral is over the worldline of the particle, and a indexes the different gauge

fields in the case of multiple U(1)’s. This leads to an axion potential of the form

V = V0

∑
n

cn cos(nQaθ
a) , (2.6)

in the dimensionally reduced theory, where θa =
∮
Aa. Likewise, we define the magnetic

charge enclosed in a spatial region Σ as

Q̃a ≡ 1

2π

∫
∂Σ
F a , (2.7)

where F a = dAa. The Dirac quantization condition is

Q̃aQa ∈ Z . (2.8)

Unless otherwise specified, we always work in a basis where Q̃a and Qa are

integrally quantized.

2.4 WGC and single-axion inflation: electric argument

An argument that the WGC excludes extranatural inflation with super-Planckian decay

constants was given already in the original paper [39]. The electric WGC in 5 dimensions

tells us that a charged particle exists with mass m <
√

3/2e5qM
3/2
5 . Upon reducing to

four dimensions, this implies that the charged particle contributes an instanton action

Sinst = 2πRm <

√
3

2

qMPl

f
. (2.9)

Let us assume that the same instanton generates the axion potential. If we want to focus on

large instanton actions so that higher-order corrections to the potential are exponentially

suppressed, this shows that we require f/q <∼ MPl, where f/q is the field range determined

by this potential.

As recently emphasized in [48, 65], this argument is not completely convincing be-

cause there is a “small action loophole”: the prefactor in front of higher-instanton terms

can suppress them even if the instanton action S � 1. Direct calculation confirms that

the potential is a sum of terms proportional to exp(−2πnmR) cos(na/f) with coefficients

decreasing with powers of n [13, 69, 70]. Even at m = 0 where the instanton action gives

no suppression, the nth term in the sum has a 1/n5 suppression which is enough to safely
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allow inflation. A useful way to understand this power law suppression is to write the

contribution of winding number n in terms of the 5d Green’s function for charged particle

propagation n times around the circle (see appendix A of [71]), in which case the power

law is just the usual cost of propagating a massless field over the long distance 2πRn.

One can partially constrain this small action loophole by demanding that the convex

hull condition should be satisfied for a 4d theory that includes both the usual U(1) and a

Kaluza-Klein U(1). As shown in [56], this convex hull condition yields the inequality:

m0R ≥
1

2z0

(
z2

0 − 1
)1/2 , (2.10)

where

z0 =

√
3

2

eqMPl

m0
=

√
3

2

qMPl

2πfm0R
. (2.11)

Here m0 is the mass of the particle in 5d, and we have turned off the dilaton in the 5d

theory. The convex hull condition for the 5d theory just enforces z0 ≥ 1, which is equivalent

to (2.9). For q = 1, we see that f ∼ (m0R)−1, so the maximal value of the decay constant

grows inversely with the instanton action S = 2πm0R in the limit S → 0. However,

imposing the stronger condition (2.10) and looking at the m0R→ 0 limit, we find

f2 ≤
3M2

Pl

(2π)2m0R
. (2.12)

This tells us that the maximal allowed value of f grows like S−1/2, rather than the näıvely

expected S−1. Thus, the weak gravity bound on axion decay constants in the context of

extranatural inflation is stronger than expected, but it is not strong enough to close the

small action loophole — one may achieve a super-Planckian decay constant by taking S

small without violating the electric form of the WGC.

2.5 WGC and single-axion inflation: magnetic argument

The small action loophole led [48] to propose a different argument for how the WGC can

exclude single-axion extranatural inflation. Starting with the UV cutoff Λ <∼ eMPl, they

demand that the size of the compactification manifold be larger than Λ−1. Then

1 <∼ 2πRΛ <∼ 2πR eMPl =
MPl

f
. (2.13)

In this way we obtain the constraint f <∼ MPl, completely independent of the size of the

leading instanton effect or which charged particle generates it. Notice that because the

cutoff is Λ < eMPl/qm when the monopole satisfying magnetic WGC has charge qm and

a particle of electric charge q leads to an instanton proportional to cos(qa/f), choosing

nonminimal charge assignments anywhere in the argument only makes the bound stronger.

3 Weak Gravity Conjecture and multi-axion models

In this section we will extend the magnetic argument against single-axion inflation from

section 2.5 to more general scenarios with multiple axion fields. We will first tackle the
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simplest case of N -flation with the strong assumption of diagonal kinetic terms and minimal

charge assignments. Then we relax our assumptions to consider alignment models.

3.1 Warmup: diagonal N-flation

Suppose that we have N U(1) gauge fields Ai with couplings ei and that the kinetic

mixing among them is negligible. We will also assume that in this basis the charge lattice

simply consists of integer electric or magnetic charges under each U(1). These are strong

simplifying assumptions, but provide a useful starting point. The Weak Gravity Conjecture

applied to each gauge field separately implies the existence of electrically and magnetically

charged particles satisfying certain bounds. But the constraint for the set of N fields is

actually stronger than for any individual field: if we marginally saturate the bound for

each U(1) by postulating a magnetic monopole with charge qm = 1 and mass
√

2MPl/ei,

for example, then a nearly-extremal black hole with large and equal charges under every

U(1) will not be able to decay. This is because the extremality bound for a black hole

charged under multiple groups depends not on the sum of the charges but on the charges

added in quadrature: for a magnetically charged black hole in four dimensions, the bound

is Qeff ≡
√
Q2

1/e
2
1 + . . .+Q2

N/e
2
N < MBH/(

√
2MPl).

Consider extranatural N -flation that moves along the diagonal in each axion direction,

attempting to obtain an effective decay constant

f2
eff = f2

1 + f2
2 + . . .+ f2

N =

(
1

2πR

)2( 1

e2
1

+ . . .+
1

e2
N

)
. (3.1)

Notice that this is the appropriate expression under the assumption of no kinetic mixing

and the further assumption that the dominant instanton effects give rise to a potential of

the form
∑
ci cos(ai/fi), as would be generated for example from wrapped worldlines of

electrically charged particles of charge 1 under each gauge group. More general instantons

can lead to alignment phenomena in which inflation winds around one direction in axion

space multiple times. We will return to such a possibility later.

The linear combination of 1/e2
i factors appearing on the right-hand side of (3.1) is

precisely what appears in the extremality bound for a magnetically charged black hole

with equal charge Q under all N gauge groups. Let us build some intuition by considering

ways that such a diagonally magnetically charged black hole could decay:

• It could emit a monopole of diagonal charge (q, q, . . . q), so that its charge-to-mass

vector points in the same direction after the emission but is now shorter (we take

Q > q > 0). In this case, the problem essentially reduces to the one-field case. The

self-energy of the monopole imposes mmon
>∼ q

2
∑

i
1
e2i

Λ, while the condition that the

black hole moves away from extremality imposes that m2
mon

<∼ q2
∑

i
1
e2i
M2

Pl. These

conditions together with 2πRΛ >∼ 1 require that feff
<∼ MPl/q.

• It could emit a monopole charged under a single gauge group. Suppose it emits a

particle with mass m1 and charges (q1, 0, . . . , 0). The self-energy constraint leads to

m1
>∼ q2

1Λ/e2
1. If the diagonally-charged black hole emits this particle, its effective
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charge decreases only by (expanding the square root) −∆Qeff ≈ Qq1/(e
2
1Qeff) =

(q1/e1)(f1/feff). As a result, the condition that the monopole can be emitted is no

longer m1 <
√

2q1/e1MPl but the stronger condition m1 <
√

2q1/e1(f1/feff)MPl.

This leads to feff
<∼ MPl/q1.

• Now consider the general case in which the monopole emitted has mass m and charges

(q1, . . . qN ). For the black hole to move away from extremality we first require that

Qeff decreases, so that
∑
qi/e

2
i > 0. A straightforward generalization of the previous

argument leads to a bound

feff
<∼ MPl

∑
i qi/e

2
i∑

i q
2
i /e

2
i

<∼ MPl. (3.2)

The last step follows because charge quantization demands that q2
i > |qi|.

These arguments give a suggestive hint of how scenarios with multiple axions can be

more strongly constrained by the Weak Gravity Conjecture in a manner that precisely

compensates for the expected gain in field range. However, we have made a strong simpli-

fying assumption that the electric charges leading to dominant instanton effects are simple

in the same basis that the gauge field kinetic term is diagonal. We will now explore the

constraints imposed by the WGC if we relax this assumption.

3.2 Magnetic WGC and kinetic alignment

Consider the case of a general kinetic matrix for the gauge fields:

− 1

4
KijF

i
µνF

jµν . (3.3)

Assume that we are working in a basis in which there are N magnetic monopoles that

satisfy the magnetic WGC and have unit charges (1, 0, . . . , 0), (0, 1, . . . , 0), . . . (0, 0, . . . 1).

We can choose a different basis to diagonalize the kinetic terms:

K = ODOT , (3.4)

where O is an orthogonal matrix and D = diag(1/g2
1, . . . 1/g

2
N ) is a diagonal matrix. With-

out loss of generality we can choose

g2
min ≡ g2

1 ≤ g2
2 ≤ . . . ≤ g2

N ≡ g2
max. (3.5)

In this basis, the ith monopole has charge assignments ~oi that can be read off from the

matrix O. The self-energy of this monopole gives us an inequality relating the UV cutoff

Λ and the monopole mass mi: (∑
j

o2
ij

g2
j

)
Λ <∼ mi. (3.6)

In particular, if we sum over all i and exploit orthogonality, we learn that∑
j

1

g2
j

Λ <∼ m1 + · · ·+mN ≡ mtot. (3.7)
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The magnetic WGC tells us that the convex hull of the charge-to-mass vectors ±~zi of

the N monopoles contains the unit ball. We have

(~zi)j =
oijMPl

gjmi
. (3.8)

Since the ~zi form a basis, the convex hull condition can be restated as the requirement that

for any coefficients α1, . . . , αN , ∣∣∣∣∣∑
i

αi~zi

∣∣∣∣∣ ≥∑
i

|αi| . (3.9)

Consider the choice αi = σimi, where σi = ±1 is a choice of sign. In this case the convex

hull condition tells us that

m1 + · · ·+mN ≤

√√√√∑
j

(∑
i

σioij
gj

)2

MPl. (3.10)

Combining the convex hull condition with the constraint on the cutoff, we learn that for

any set of sign choices σi

∑
j

1

g2
j

Λ <∼

√√√√∑
j

[
1

g2
j

(∑
i

σioij

)2 ]
MPl. (3.11)

There are 2N choices of sign σi, some of which potentially provide much stronger bounds

than others.

Consider the case where the largest eigenvalue completely dominates, so that we

can drop all terms in the sum not proportional to 1
g21

. In [23], it was pointed out that

the eigenvector with largest eigenvalue 1/g2
1 of a randomly chosen kinetic matrix Kij

will almost certainly point close to a diagonal direction of the fundamental cube, e.g.

∼ (1, 1, . . . 1)/
√
N . Since the diagonal of an N -dimensional cube has length

√
N , this im-

plies (in the extranatural context with minimal instanton charges) an effective decay con-

stant of feff ≈
√
N/(2πRg1) in the direction of largest eigenvalue. However, in this case,

we can choose the signs σi to alternate and nearly cancel so that the sum
∑

i σioi1 ∼
1√
N

.

This leads to an estimated bound

1

g2
1

Λ <∼

√
1

g2
1N

MPl ⇒ Λ <∼
g1MPl√
N

. (3.12)

This bound is larger than the naive one-field version of the magnetic WGC by a factor of√
N , so imposing that ΛR <∼ 1 precisely produces feff

<∼ MPl.

It is possible to make a more general version of the argument that excludes any case in

which one eigenvalue g1 dominates the sums (3.11), without making an assumption about

the eigenvector. The cutoff Λ in this case obeys

Λ . g1

∣∣∣∣∣∑
i

σioi1

∣∣∣∣∣MPl. (3.13)
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On the other hand, the 4d Lagrangian for the axions is given by

1

2(2πR)2
Dij∂µθi∂

µθj −
∑
i

Aie
−Si cos

(∑
j

oijθj

)
, (3.14)

where D is the diagonal matrix of (3.4). In the limit in which 1/g2
1 is much larger than the

other eigenvalues of D, we may approximate the axion moduli space radius by considering

only the field displacement in the direction of largest eigenvalue |∆θ1|. The maximal

displacement is given by the largest value of |θ1| satisfying the conditions

|oi1∆θ1| ≤ π,

for all i. Thus,

|∆θ1|max =
π

Maxi|oi1|
. (3.15)

Combining this with our previous bound (3.13) and setting ΛR >∼ 1, we get a bound on the

radius of axion moduli space,

r <∼
Λ

2πg1
|∆θ1|max

<∼
1

2

∣∣∣∣ ∑i σioi1
Maxi|oi1|

∣∣∣∣MPl (3.16)

Finally, it is not hard to see that we can choose the signs σi so that this fraction is

smaller than 1. Order the oi1’s in descending order of their magnitude. Set σ1 = +1.

Then, recursively define,

σk =

{
sgn(ok1) :

∑k−1
i=1 σioi1 < 0

−sgn(ok1) :
∑k−1

i=1 σioi1 ≥ 0
(3.17)

Since the ok1s are decreasing in magnitude, the partial sum |
∑k−1

i=1 σioi1| can never jump

more than |o11| by adding a new term. By picking the signs in this way, we ensure that we

are always moving towards the origin, so the magnitude of the partial sums is necessarily

decreasing with k. Since the magnitude of the first partial sum is just |o11|, we see that

the full sum must be smaller in magnitude than |o11|. Thus, (3.16) gives

r <∼
1

2
MPl. (3.18)

This excludes any kinetic alignment model with a single dominant large eigenvalue, again

under the assumption that the instanton effects are controlled by minimal electric charges in

the same basis for which the magnetic monopoles satisfying the WGC have minimal charge.

A parametric violation of this assumption, such as instanton effects that are highly aligned,

can evade our arguments. We will discuss such a case in section 5. The assumption of single-

eigenvalue dominance, on the other hand, is made only for simplicity. It is straightforward

to check in the two-axion case that the bound holds for completely arbitrary eigenvalues.

Furthermore, simple numerical studies in which the kinetic matrix is chosen from a Wishart

distribution, Kij ∼ WN (σ2, N), reveal that indeed the radius of moduli space decreases

with increasing N .
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4 New conjectures on EFT over the moduli space

4.1 Exploring the moduli space: masses and Kaluza-Klein reduction

In this section we develop a new tool for constraining large-field axion models arising from

extra dimensions, which opens an opportunity to obtain powerful constraints on models

of axion monodromy. This approach relies, in part, on the nontrivial manner in which

shift symmetries are realized in the effective theory. The potential energy in extranatural

inflation (including string axion models) is a sum of cosine terms from instantons of various

winding numbers, respecting an exact discrete shift symmetry. However, other terms in the

effective theory preserve the shift symmetry in a less transparent way. Consider the case

of a 4d axion obtained by dimensional reduction of a 5d 1-form gauge field, and suppose

that in five dimensions there is a fermion Ψ with charge q under the gauge field. (The case

of a charged scalar field is similar.) Its action is∫
d5x
√
−g
(
iΨ̄ΓMDMΨ +m5Ψ̄Ψ +

c

Λ
DM Ψ̄DMΨ + . . .

)
, (4.1)

where DM = ∂M − iqAM , Λ is the UV cutoff of the theory, and the dots represent various

higher-dimension operators. The five Dirac matrices ΓM correspond to the usual 4d Dirac

matrices together with −iγ5. We emphasize that Λ is the scale at which the local, 5d

abelian gauge theory breaks down. In particular, we have no guarantee of five-dimensional

locality holding at distances shorter than Λ−1.

We study this theory on a background of R3,1 × S1 with the fifth dimension having a

periodic identification y ∼ y + 2πR with a background gauge field A5 = θ
2πR . Although

fixing A5 to be constant is a gauge choice, there is a gauge-invariant Wilson loop determined

by θ which is well-defined modulo 2π. The compactified theory contains a term∫
d5x
√
−g qθ

2πR
Ψ̄Γ5Ψ, (4.2)

that we may think of as an effective mass (albeit one that depends on the spontaneous

breaking of 5d Lorentz symmetry) which potentially decouples Ψ from the effective theory

if θ is large enough. This 5d term gives rise to a (CP-odd) mass term ∝ iθψ̄γ5ψ in

the 4d theory, which can have important dynamical consequences when θ is large. At

first glance, such a mass term constitutes a hard breaking of the shift symmetry for θ

—even of the gauged θ → θ + 2π symmetry! The resolution of this puzzle is that there

is a monodromy in the Kaluza-Klein spectrum. Using the Kaluza-Klein decomposition

Ψ(x, y) =
∑∞

n=−∞ exp(iny/R)ψn(x)/
√

2πR, this action leads to a 4d effective theory

Leff =

∞∑
n=−∞

(
iψ̄nγ

µDµψn+m5ψ̄nψn+ i
n− qθ

2π

R
ψ̄nγ

5ψn+
c

Λ

∣∣∣∣∣n− qθ
2π

R

∣∣∣∣∣
2

ψ̄nψn+ . . .

)
. (4.3)

If we were to truncate this theory to a few low-lying modes, we would find a violation

of the shift symmetry θ → θ + 2π. But this symmetry is a large gauge transformation

in the higher-dimensional UV completion, so it cannot be violated. Writing the EFT for
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all Kaluza-Klein modes makes the answer manifest. There is a monodromy effect that

rearranges the spectrum; when θ → θ+ 2π, the mode with label n acquires the same mass

spectrum that the mode with label n − q previously had. Because the derivative ∂5 and

the contribution of A5 are always packaged together in a covariant derivative, this will be

true of arbitrary higher-dimension operators as well.

Recall that for a Dirac fermion with mass term mψ̄ψ + iµψ̄γ5ψ, the physical mass is√
m2 + µ2. In particular, all 4d fields have mass larger than the 5d mass m5.

4.2 Consistency of a single EFT across axion moduli space

We have seen that the 5d theory compactified on a circle with a Wilson loop θ =
∮
A5dx

5

turned on has a spectrum that depends nontrivially on the value of θ. Let us ask what

happens when we move a large distance in moduli space. Tracking a single KK mode

adiabatically as θ varies, we find that its CP-odd mass is shifted by

∆m =
q∆θ

2πR
(4.4)

In particular, if ∆θ >∼ 2πRΛ/q, then a KK mode which is initially light acquires a large

mass of order the cutoff Λ, and exits the effective theory. In fact, when we move this far

in moduli space, the entire KK spectrum is shifted, so that the modes which were initially

light are heavy, and modes initially above the cutoff are light. Since our description of

the five-dimensional theory breaks down at Λ (and in particular 5d locality may not hold

above this scale), it is possible that in the process new physics can emerge from the cutoff

and become light, ruining our effective description. Thus, if we wish to retain control of

the KK spectrum, we should impose:

q∆θ <∼ 2πRΛ. (4.5)

We emphasize that this is not a statement about the 4d effective theory cut off at the

compactification scale, which obviously does not include Kaluza-Klein modes that may be

important elsewhere in the moduli space. It is a statement about the 4d theory including

a tower of weakly coupled modes all the way up to the cutoff Λ, which is fully equivalent

to the 5d theory on the Wilson loop background. One point that we should emphasize is

that the breakdown of effective field theory that are we discussing does not correspond to

a violation of perturbative unitarity in high-energy scattering in 5d. The Wilson loop is

gauge-invariant only when integrated over the full circle, so short-distance 5d scattering

experiments do not detect it. Local scattering experiments are not the only way to detect a

failure of EFT, however, and the KK mode spectrum is a physical observable that does so.

One clear instance in which a subtlety of this kind does not arise is when the path in

moduli space that we have taken winds many times around a small periodic circle (without

monodromy). In this case, the exact shift symmetry of the axion ensures that nothing

dramatic can occur. However, we emphasize that inflation requires a motion in moduli

space which is not periodic, either due to monodromy or because the size of the circle is

large. In this case, the shift symmetry does not help.
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This suggests an alternate perspective on the problem. The periodicity of θ arises

because we can do a large gauge transformation AM → AM − ∂Mχ for which χ is not

single-valued on the circle but eiχ is. In particular, we can identify θ = 2π with θ = 0 by

performing the transformation

A5 → A5 − 1/R, χ = y/R, Ψ→ e−iqy/RΨ. (4.6)

While this appears at first glance to be a completely innocent operation, notice that if we are

working within an effective field theory with UV cutoff Λ, this large gauge transformation

can bring in modes that are outside the validity of our effective field theory. In particular,

if we do not require

q

R
<∼ Λ, (4.7)

then the low-frequency modes of the gauge-transformed Ψ field involve very high-frequency

modes of the original field, and vice versa. If we do not require (4.7), then even the

periodicity of θ becomes a subtle question in the low-energy theory!

Heuristically, another way to see a problem with these large field ranges is to consider

the effective mass for Ψ (4.2): ∫
d5x
√
−g qθ

2πR
Ψ̄Γ5Ψ . (4.8)

If (4.5) is violated then Ψ receives an effective mass which removes it from the low-energy

effective field theory. Of course, the full term involves ∂5− iqA5, so the large mass obtained

from the Wilson loop can be compensated by high-frequency oscillations in y, but these

high-frequency modes are not part of the EFT that we started with at the origin of moduli

space. We elaborate on this point in appendix A, using a manifestly gauge-invariant lattice

regulator to explore how physical quantities can depend on the cutoff if ΛR is not large

compared to q. Large effective masses far out on the moduli space are particularly suspect

in cases where Ψ plays an important dynamical role. For instance, if Ψ provides one of

the dominant instanton contributions to the potential, what does it mean to compute V (θ)

for a value of θ for which it is inconsistent to keep track of the particle generating the

potential? If Ψ is a field that is necessary to satisfy the electric WGC, decoupling it from

the effective theory is inconsistent with the EWGC.

We propose a new constraint on theories of extranatural inflation based on this con-

sistency requirement. One statement of the constraint is the following:

Single-EFT Consistency Criterion (SECC): in order to have a controlled

description of a portion of the moduli space within a single effective field

theory, we demand that any field which is part of the EFT at one point

of the moduli space is not decoupled by terms like (4.2) in a different

region of the moduli space. Equivalently, if a Kaluza-Klein mode is

light somewhere in the moduli space, this mode should exist within the

effective theory at the origin of moduli space. This constrains RΛ to

satisfy (4.5).
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Loosely, in a controlled theory a mode cannot appear “out of the blue.” This seems

to us to be a sufficiently well-motivated criterion that it is worthwhile to explore its con-

sequences. An equivalent statement, if we want to describe the entire moduli space in a

single EFT, is:

Single-EFT axion periodicity criterion : the periodic identification of

4d axions arising from an underlying higher-dimensional gauge the-

ory should arise from large gauge transformations that are well-defined

within the higher-dimensional EFT. Specifically, if the theory has a UV

cutoff Λ, then fields which are smooth on scales much larger than Λ−1

should not oscillate on length scales shorter than Λ−1 after the gauge

transformation.

The SECC assumes that we should be able to work with a single well-defined 5d

effective field theory. One might imagine a patchwork of effective field theories, each valid

over a limited range of θ, which are matched onto each other in overlapping regimes.

Nothing intrinsically seems to prevent us from considering the 5d theory on a Wilson

line background with any particular value of θ; what we have seen is that connecting the

theories at different values of θ may be difficult. One might consider the case of Seiberg-

Witten theory [72], in which vacua with weakly coupled electrons and with weakly coupled

monopoles cannot coexist in the same EFT from the IR point of view but are guaranteed

to be smoothly joined together due to well-understood UV physics. Our claim is that

because our 5d theory came with a built-in cutoff at Λ, we do not actually have such a

sharp understanding of the UV physics in this case. It may exist if we embed the 5d theory

in a more complete UV setting.

If the large gauge transformations that guarantee an identification θ ∼ θ + 2π in

the four-dimensional effective field theory are not actually valid operations in the UV

completion that we started with, this suggests that we do not truly have a controlled

theory of axions. In such a case it is unclear what a computation of the axion potential as

a periodic function of the θ’s even means. Nonetheless, we cannot give any fully rigorous

argument in favor of the Single-EFT Consistency Criterion. In this paper, we will explore

the consequences of the SECC, while welcoming debate on its merits.

4.3 Consequences of Single-EFT Consistency for monodromy

The Single-EFT Consistency Criterion, in the form of the bound (4.5), is a significant

potential obstacle to any model based on axion monodromy. To see why, consider any model

in which an axion field winds around the circle N times in the presence of monodromy. We

have the constraint

N <∼ RΛ (4.9)

from the SECC. But we also have, from the magnetic form of the WGC, the additional

constraint

Λ <∼ eMPl. (4.10)
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These conditions together with f = 1/(2πR e) imply

Nf <∼ MPl, (4.11)

so the effective total field range from winding N times around the circle is still bounded

above by the Planck scale.

Monodromy was important in this argument. Without monodromy, if the physical

state were exactly the same after each trip around the circle, we could get away with

only requiring that a gauge transformation θ → θ + 2π is well-defined (and then repeat

it N times) rather than that a larger field range ∆θ ∼ 2πN is accessible within the

effective theory.

Although we have phrased our argument in terms of 1-form gauge fields in five dimen-

sions, a similar constraint will arise from the SECC for the more general p-form models.

Just as our charged field Ψ obtained an effective Lorentz-violating mass ∼ A5Ψ̄Γ5Ψ in

the presence of a background gauge field, the presence of a background p-form will add

a Lorentz-violating tension term to the worldvolume effective theory of a (p − 1)-brane,

potentially decoupling it from the effective field theory.

The SECC argument against monodromy is not airtight. In section 5 we will consider

a two-axion model of inflation in which one axion winds N times around the circle, but

we will see in section 5.1 that this does not necessarily violate the SECC. The reason is

that there is a compensating contribution to the mass of the charged fields coming from

the second axion. This gives some insight into how a monodromy model might successfully

escape the SECC. However, in the model we will discuss, the existence of any charged fields

with different charges than those producing the dominant instanton effects will restore the

power of the SECC, whereas the one case that evades the SECC is constrained by a different

requirement that we will formulate in section 4.4.

4.4 The Weak Gravity Conjecture across moduli space

There is one other conjecture, in a similar spirit to the SECC but differing in its details

and its implications, that is worth considering:

Extended Weak Gravity Conjecture (XWGC): the weak gravity conjec-

ture should be satisfied at any stationary point of the potential.

In fact, we will only use this condition applied at extrema of the potential, rather than

generic stationary points. We could also have imposed a stronger condition that the WGC

holds everywhere in the moduli space, though at least for the cases we consider the results

would be equivalent.

This provides a new viewpoint on the small-action loophole. A charged particle with

5d mass m5 = 0 obviously satisfies the (electric) WGC in five dimensions, and we saw

that such a particle can generate a potential compatible with inflation despite the lack

of exponential suppression of higher harmonics. However, the XWGC demands that the

electric WGC is satisfied also at stationary points of the potential away from θ = 0. These

are classically stable states, but those that are not local minima will eventually tunnel

away from the critical point. Because tunneling can be a slow process, and charged black
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holes discharge quickly when the WGC is satisfied [58–60], it seems plausible that the

WGC should hold even in these unstable states. As mentioned in the introduction, we

suspect that the requirement that black holes decay is actually a dynamical requirement

that they shed charge often enough relative to uncharged Hawking quanta, rather than

a simple kinematic statement that they can decay at all. Further work on black hole

thermodynamics may help to justify or refute the XWGC by quantifying the timescale on

which we require charge to be lost.

The Kaluza-Klein modes have masses spaced by 1/R, so at the maximum of the poten-

tial θ = π/q the masses are maximally shifted and the lightest electrically charged particle

has m = 1/(2R), or larger if we begin with m5 6= 0. Let us assume, as in section 2.4, that

the same particle which generates the leading contribution to the axion potential satisfies

the XWGC. Let us first give a simple heuristic argument for why the XWGC could close

the small-action loophole. For a particle of charge q, we obtain the bound:

1

2R
<
√

2qeMPl =
qMPl√
2πRf

⇒ f

q
<

√
2MPl

π
. (4.12)

Assuming that the same particle generates the axion potential, f/q is precisely the effec-

tive axion field range, and the small action loophole appears to have been closed without

invoking the magnetic form of the conjecture.2

The argument we have just given ignores an important effect. The compactification on

the circle produces a second U(1) gauge field, namely the KK U(1) arising from graviton

modes with one leg on the circle. At nonzero values of θ, the two U(1) gauge fields mix and

the correct WGC to consider is the convex hull condition applied to our original U(1) gauge

theory and the Kaluza-Klein U(1). We present a detailed derivation of this statement and

discussion of the mixing effect in [56]. The weak gravity bound becomes

m2 ≤ γe2q2M2
Pl +

gKK

R2

(
n− qθ

2π

)2

. (4.13)

The constant γ is 2 as above if the radion mode is stabilized, but is 3/2 if the radion

is unstabilized. Similarly, the constant gKK is 1 for an unstabilized radion and 2 for a

stabilized radion. If a 5d particle obeys the WGC, then any of its KK modes in 4d will

in fact obey this inequality for any value of θ, undermining the heuristic argument we

gave above. However, our conclusion survives once we take the convex hull condition

into account.

The reason we obtain a bound from the convex hull condition is that there is not a

KK mode in every direction in charge space. We want to apply the convex hull condition

to the charge-to-mass vectors

~z = (z, zKK) =
1

m(n, θ)

(
√
γeqMPl,

gKK

R

(
n− q θ

2π

))
, (4.14)

m(n, θ) =

√
m2

5 +
1

R2

(
n− q θ

2π

)2

. (4.15)

2The argument based on the magnetic WGC is still somewhat stronger, because we don’t need to

assume that the charged particle which generates the leading contribution to the axion potential has any

other special role to play.
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z

zKK
(z1, 1)

Figure 1. How the XWGC closes the small-action loophole when θ = π. We depict the case gKK = 1

for convenience. The horizontal axis is the charge-to-mass ratio z for the U(1) gauge group giving

rise to the axion. The vertical axis is the charge-to-mass ratio for Kaluza-Klein charge. The points

on the vertical axis (orange circles) correspond to graviton KK modes. The points off the axis (blue

squares) correspond to charged particle KK modes, which as n → ∞ accumulate near the orange

points. We see that the convex hull condition demands that the horizontal coordinate z1 at n = 1

be ≥ 1, leading to the bound f <
√
γ

π MPl.

Without loss of generality, we specialize to the case q = 1 for simplicity and set f =

1/(2πeR). We choose θ
2π = 1/2 so that the KK charge of the particles is n − θ

2π , an odd

half-integer. We take m5 = 0 to study the small-action loophole. Any other value of m5

will, for fixed charges q and n, lead to a shorter vector ~z and thus a tighter constraint. We

have a set of charge-to-mass vectors

~zn =

(
1

n− 1
2

√
γMPl

2πf
, sgn

(
n− 1

2

)
gKK

)
. (4.16)

We also have a set of charge-to-mass vectors from KK gravitons or dilatons, which are

uncharged under the U(1) but carry KK charge, and for unstabilized radion will always

saturate the WGC for their direction in the charge lattice:

~zgrav;n = (0, sgn(n) gKK) . (4.17)

All of these vectors are outside the open unit ball, so in the direction of any ~zn, we satisfy

WGC. But of course the striking thing about these vectors is that they all have a “±gKK”

in the second entry. That is, the KK charge always satisfies the WGC bound (saturating

it when the radion is unstabilized), and we’re at a point on the moduli space where every

charged particle has KK charge due to the axion effect.

The convex hull requirement for these vectors is depicted in figure 1. We see that the

requirement that the unit circle is contained in the convex hull imposes z1 ≥ 1, i.e.

f <

√
γ

π
MPl. (4.18)

If this requirement is not satisfied, a black hole with charge vector (Q, 0) under the two U(1)

gauge groups will not be able to decay. Notice that we can easily construct such charge

vectors from combinations of KK modes with opposite signs of the KK number. Thus, we
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see that the XWGC (in its convex hull formulation) closes the small-action loophole for a

single axion, despite the subtleties introduced by the KK U(1).

It is clear from figure 1 that, because the value of zKK is the same for every state,

we can simply project the problem down to the lower-dimensional problem of considering

only z. This will continue to be true in a scenario where we consider multiple U(1) gauge

bosons: a theory of n gauge bosons in 5d gives rise to an (n+ 1)-dimensional convex hull

problem in 4 dimensions, but so long as we go to a point on the moduli space where every

charged particle in the theory has a common value (up to a sign) for zKK, the added KK

direction can be projected out of the argument. We will exploit this below in discussing a

scenario with two U(1) groups in 5d.

Our main motivation for studying the SECC and XWGC is to apply them to a version

of alignment inflation which the usual WGC is not strong enough to exclude. We will

consider this scenario in the next section.

4.5 The Lattice Weak Gravity Conjecture

In [56], we introduced another form of the WGC:

The Lattice Weak Gravity Conjecture (LWGC): at every point in the

charge lattice, there exists a state that satisfies the WGC.

This conjecture is obeyed, for instance, by string states of the SO(32) heterotic string

as well as Kaluza-Klein reduction of pure gravity on a torus.

At first, this conjecture seems to highlight an apparent loophole in our arguments

against N -flation in section 3. If there is an instanton for every point on the charge lattice

lying outside the unit ball, then the leading instantons can lie on or just outside the unit

ball, implying actions which are larger by a factor of
√
N relative to the case where only

N instantons satisfy the convex hull condition.

However, the large number of subleading instantons required by the LWGC are suffi-

cient to spoil the flatness of the potential. In particular, consider a theory with N axions

that just marginally satisfies the LWGC in every possible direction. This implies the ex-

istence of infinite tower of instantons of every possible integral charge ~Q = (Q1, . . . , QN ).

Further, setting the actions of the leading instantons to be O(1), and setting each of the

decay constants to be Planckian, fi ∼MPl, we have

feff ∼
√
NMPl. (4.19)

The convex hull condition is satisfied because of the infinite number of subleading instan-

tons, which densely fill the unit sphere. A necessary condition for this inflationary model

is that the subleading instanton actions must scale with the instanton charges as

S2
~Q
∼
∑
i

Q2
i . (4.20)

If, on the other hand, the actions were to grow linearly with the charges, S ~Q ∼
∑

i |Qi|,
then the subleading instantons would not densely fill in the unit sphere but instead a cube
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of diagonal length MPl centered at the origin. This would not contain the unit ball, so the

convex hull condition would be violated.

However, the particular growth of the instanton actions in (4.20) that allows this

scenario to satisfy the LWGC is also what leads to its downfall. The instanton actions

are smaller in this scenario than in a model in which the instanton actions grow linearly,

which means their contributions to the potential are larger. We will now show that this

enhancement yields large corrections to the inflationary potential, making it unsuitable

for inflation.

For this, we need only consider the special class of instantons with charges (±1, . . .± 1).

Of course, there are many more instantons that will contribute to the inflationary poten-

tial, but for our purposes it suffices to show that just the instantons in this special class

combine to give large contributions. There are 2N such instantons, which have action

S ≈
√
NSleading relative to the actions of the leading instantons, Sleading. The N -flation

potential generated by the leading instantons is of the form

V (φi) ⊃ Ae−Sleading cos(φi/f) (4.21)

The subleading instantons under consideration, on the other hand, give a potential of

the form

V (φi) ⊃ Ae−
√
NSleading cos

(∑
i

ηiφi/f

)
. (4.22)

Here ηi = ±1 depending on which instanton is being considered. We consider inflation

along the diagonal direction φi = φ. A necessary condition for inflation is that the potential

contributions from these instantons must in fact be negligible compared to those from the

leading instantons. However, there are 2N instantons of the form in question, and each one

introduces a potential contribution of magnitude e−
√
NSleading . Thus, the total potential

contribution from these instantons grows roughly as 2Ne−
√
NSleading . To protect the N -

flation potential of (4.21) from these subleading effects at large N , we must therefore take

Sleading &
√
N . However, the LWGC implies f . MPl/Sleading, so feff ∼

√
Nf . MPl.

Hence, parametric enhancement of the effective decay constant via isotropic N -flation is

inconsistent with the LWGC. The LWGC also restricts models of decay constant alignment,

which we discuss in the following section.

5 Decay constant alignment

The arguments we have given in section 3 break down when the charge assignments of the

dominant instanton effects are not small integers in the same basis where the magnetic

monopole charges satisfying the magnetic WGC are. This case is especially subtle. For

concreteness, we will focus the two-axion model of [48]. We assume a basis in which

two compact axion fields, θA and θB, have diagonal kinetic terms with decay constants

fA and fB:

Lkin =
1

2
f2
A∂µθA∂

µθA +
1

2
f2
B∂µθB∂

µθB. (5.1)
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θA

θB

—

2π

—

−2π

− 2π

− 4π

− 6π

− 8π

−10π

◦

◦

×

×

θA

θB

—

2π

−2π

Figure 2. Two views of the fundamental domain (shaded) of the two axions for the case N = 5,

together with a trajectory (thick blue arrow) beginning at a maximum of the potential and ending

at the origin. For clarity, the view on the left and right are not drawn to the same scale. The right

hand view is a “natural” parametrization with 0 ≤ θA,B ≤ 2π but requires that we discontinuously

change the value of θ and execute a corresponding monodromy on the Kaluza-Klein spectrum when

wrapping around the torus. The left-hand view chooses a parametrization in which the values

of θA,B and the Kaluza-Klein masses change smoothly during all of inflation. To illustrate the

periodic identifications imposed on the boundaries, we show two points labeled with a red ◦ that

are identified and two points labeled with a purple × that are identified.

We further assume that in this basis the magnetic monopoles satisfying WGC have charge

assignments (1, 0) and (0, 1), leading to the constraints

fA, fB <∼ MPl. (5.2)

However, we assume that the dominant instanton effects arise from electric charges (1, 0)

and (N, 1) that are highly aligned in this basis. As a result, the potential behave as

V (θA, θB) ≈ V0 (1− cos(θA)) + Ṽ0 (1− cos(NθA + θB)) . (5.3)

As emphasized in [48], this provides a UV setting for the alignment mechanism of Kim,

Nilles, and Peloso [14] which appears to satisfy the WGC constraint. Inflation occurs on a

trajectory for which θA winds once around the circle while θB winds N times, leading to

an effective decay constant

feff ≈ NfB. (5.4)

This inflationary trajectory is illustrated in figure 2. The instantons can be generated from

worldlines of charged particles, but [48] also discusses a scenario in which the factor of N

can be the level of a Chern-Simons coupling A ∧ Ga ∧ Ga in the 5d theory, potentially

arising from a quantized flux in an even higher-dimensional theory.
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5.1 Parametrizing the fundamental domain

If we consider the axion fields to range over 0 ≤ θA, θB ≤ 2π, as depicted in the right-hand

side of figure 2, then the periodic identification θA → θA + 2π that wraps the left-hand

side of the square onto the right-hand side shifts the mass of a state with charge (N, 1) by

N/R, suggesting the possibility that a cutoff near 1/R is too low for consistency. On the

other hand, the inflaton trajectory winds multiple times, and we can think of this large

mass shift as a consequence of the monodromies induced every time we wrap around the

torus and shift our coordinate θ discontinuously.

A more useful parametrization of the moduli space is to “unwind” it so that it is

aligned with the inflaton trajectory, as in the left panel of figure 2. In this case, moving

off the right edge of the space wraps back to the left edge at a lower point, corresponding

to θB → θB − 2π with θA unchanged. The identification of the upper left edge with the

bottom right edge corresponds to (−2π, θB) → (0, θB − 2Nπ). This is a large change in

θB, but it leaves NθA + θB fixed, so for a particle of charge (N, 1) there is no change in the

mass spectrum for this transformation. Thus, if the only particles in our effective theory

have charges (1, 0) and (N, 1), the SECC imposes no obstacle to taking Λ ∼ 1/R. The

masses of the Kaluza-Klein modes of these fields are at most of order 1/R throughout the

moduli space.

This illustrates a general fact: the physical criterion that we would like to impose is

that there is a single effective theory that is valid everywhere on the moduli space. Some

parametrizations of the moduli space might obscure the existence of this theory, while

others make it manifest.

5.2 Case 1: dominant instantons satisfy electric WGC

The first case we consider is that the same charges (1, 0) and (N, 1) that control the

axion potential also are responsible for satisfying the electric WGC. The argument of [48],

emphasized to us by the authors [65], is that once the magnetic WGC constraint that

fA, fB <∼ MPl is imposed, there is no further WGC constraint. The charged particles can

be arbitrarily light, and direct calculation confirms that higher instanton contributions are

numerically small. However, this changes if we impose our stronger XWGC conjecture

from section 4.4. The potential has a local maximum where the arguments of both cosines

are π, i.e. NθA + θB = π and θA = π. At this point, the lightest KK modes for both

charged particles have mass 1/(2R) (assuming that m5 = 0). As in the XWGC discussion

above, there is also a third, Kaluza-Klein, U(1) gauge group to consider, but at this point in

moduli space every charged particle in the theory has zKK = ±gKK, so the third dimension

can be projected out of the argument. Thus the XWGC tells us that, assuming we started

with the best-case scenario where the charged particles have negligible 5d masses, the

charge-to-mass vectors at the maximum of the potential (and indeed at any generic point

in moduli space) are of order

~z1 =

(√
2eAMPl

m1
, 0

)
∼ (eARMPl, 0) ∼

(
MPl

fA
, 0

)
,

~z2 =

(√
2NeAMPl

m2
,

√
2eBMPl

m2

)
∼
(
NMPl

fA
,
MPl

fB

)
. (5.5)
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Now we require that the convex hull of the vectors ±~z1,±~z2 contains the unit sphere.

The line passing through the points (−α, 0) and (Nα, β) in the (x, y) plane is (N + 1)αy =

β(α+x), so if we read off where this crosses the y-axis, we obtain the constraint β ≥ N+1.

Substituting the vectors we’re interested in,

MPl

fB
>∼ N + 1 ⇒ feff = NfB <∼ MPl. (5.6)

This shows that our conjecture that the electric WGC should be satisfied at all stationary

points in the axion moduli space is strong enough to exclude decay constant alignment

in the scenario where the same particles are responsible for both satisfying the WGC and

supplying the dominant instanton effects.

The LWGC postulates the existence of an instanton satisfying the WGC at every point

on the charge lattice. If this version of the WGC is true, we must therefore consider models

with additional instantons. We now turn our attention to these models.

5.3 Case 2: additional particles satisfy electric WGC

On the other hand, we could consider a different scenario. The reason we obtained such

a large bound on fB from the convex hull condition is that its charge-to-mass vector was

nearly aligned with that of fA. This was necessary to obtain a large field range in inflation,

but what if we satisfy the convex hull condition (and hence the electric WGC) with different

vectors than the ones that dominate the instanton contributions? This possibility was,

again, suggested to us by the authors of [48]. Suppose that we have three relevant charges,

(1, 0), (N, 1), and (0, 1). The first two supply the dominant instanton contributions, while

the first and third satisfy the WGC. We can take the 5d mass of the (0, 1) particle to be

somewhat large compared to 1/R, so that its instanton contribution is suppressed, but not

parametrically large by a factor of N , so that we do not shrink its mass-to-charge vector

by enough to obtain the desired bound on fB.

This is the point at which the SECC becomes crucial. We can consider which modes

are present in our effective theory as we move around the moduli space. The particles with

charge (qA, qB) have their masses shifted by 1
2πR (q1θA + q2θB). As discussed in section 5.1,

in order to adiabatically track the mass of a particular mode, we should work in the

“unwound” moduli space where the inflaton trajectory is continuous, as in the left-hand

panel of figure 2. In this fundamental domain neither θA nor NθA + θB is parametrically

large, but θB itself is. Precisely because the inflaton direction winds around the θB circle

multiple times, when we unwind the moduli space we find that 0 ≤ θB ≤ 2πN . Thus, the

new particle of charge (0, 1) that we invoked to satisfy the electric WGC without running

into difficulty with the convex hull condition is not part of a single consistent effective field

theory defined over the entire axion moduli space unless we satisfy the bound

2πRΛ >∼ 2πN. (5.7)

Again, this is the precise parametric bound that we need to obtain feff
<∼ MPl. In fact, in

this particular case we do not even have to invoke the full SECC. We only need to require a
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consistent set of modes along the inflaton trajectory. This leaves open the possibility that

this weaker requirement and the XWGC are sufficient assumptions, without the full SECC.

Notice that this argument, unlike many of our previous arguments, relies on the

EWGC: if the state of charge (1, 0) which satisfies the convex hull condition is never in the

effective theory to begin with, then the SECC does not further constrain the model. How-

ever, so long as there is some effective field theory description of this state, the SECC will

rule out the model, whereas theories which violate the EWGC may present other control

problems, as explained in the introduction.

5.4 Status of decay constant alignment

To summarize, we have excluded the particular example of decay constant alignment with

charges (1, 0) and (N, 1) using the two conjectured constraints from section 4. The XWGC

is crucial for avoiding the small-action loophole in which we use the same light fields to

generate the dominant instanton effects and to satisfy the electric WGC. The SECC is

needed for the case when the particles generating the instanton effects and satisfying the

electric WGC are not the same. In both cases, the parametric constraint that we extract

is precisely what is necessary to obtain a maximum field range of MPl. This is, at the

least, very suggestive. It calls for further effort to understand how strongly motivated our

conjectured constraints are. Again, the possible counterargument to the XWGC is that

stationary points in the moduli space that are not minima have a finite lifetime before

tunneling to a lower point on the potential, so arguments based on concerns about exactly

stable remnants are not directly relevant. For the SECC, the concern is that despite the

inconsistency of a single effective field theory, an ultraviolet completion may somehow allow

a patchwork theory to be constructed. We do not have definitive rebuttals to these possible

counterarguments, but our constraints appear plausible and well-motivated to us, and it is

very interesting that the XWGC and the SECC precisely exclude a model that otherwise

appears to sail through the WGC’s tests with flying colors.

Throughout this section we have referred to charged particles of charge (N, 1). As

explained in [48], it may be possible to generate instanton effects through other means,

such as Chern-Simons couplings to nonabelian gauge theories that confine. This will not

affect our arguments. Some set of charged particles must exist to satisfy the electric WGC,

and even if they do not contribute significant instanton effects, their charge assignments

still lead to uncontrolled large gauge transformations at the boundaries of moduli space.

We have not attempted to derive a bound in detail for arbitrary charge assignments or

arbitrary numbers of axions, but by putting together the ideas of this section with those

we employed in section 3, we expect that any model based on compact axion fields with

no crucially new physics idea as input can be excluded.

6 Assessing strong conjectures

The original weak gravity paper [39] posited a “strong form” of the WGC, which stipulates

that in theories with a single U(1), the lightest charged particle in the spectrum, and

not just any charged particle, should have a charge-to-mass ratio larger than that of an

– 27 –



J
H
E
P
1
2
(
2
0
1
5
)
1
0
8

extremal black hole. As pointed out in [48, 65] and later discussed in [49, 51–54], there is a

loophole in the electric WGC which leaves open the possibility of axion inflation, but which

would be closed by this strong form of the WGC. In particular, consider a theory with a

single axion a and two instantons of action S1 � S2 and associated decay constants f1, f2,

respectively. Each instanton will introduce a term in the axion potential of the form,

V (a) ⊃ Aie−Si cos a/fi, (6.1)

with Ai some coefficients. Now, as long as f2S2 < MPl, the ordinary, mild form of the

WGC will be satisfied. f1 is left unbounded, and since S1 � S2, the potential contributions

from the first instanton will dominate those from the second. On the other hand, the strong

form of the WGC requires that the instanton of smaller action, which is S1 in our scenario,

must also satisfy the bound f1S1 < MPl. Thus, if we assume S1 > 1, we find that f1 is

constrained to be sub-Planckian, and the axion is unsuitable for inflation.

However, there are a few problems with invoking the “strong form” of the WGC to

close such loopholes. First off, straightforwardly generalizing the strong form to theories

with multiple U(1)s proves problematic, as it implies constraints on the spectrum that

are clearly far too strong. To see why, consider a very simple theory with two U(1)s and

two particles of mass m1, m2 with charges (q1, 0) and (0, q2). If one considers either of

the U(1)’s in this basis, the näıve “strong form of the WGC” holds that lightest particle

charged under each U(1) should have q/m > 1/MPl. However, suppose we now make a

very small basis rotation of our U(1)s, so that particles 1 and 2 now have charges

(q1 +O(ε2), q1ε+O(ε2)) , (−q2ε+O(ε2), q2 +O(ε2)),

respectively. In this new basis, the statement that the lightest particle charged under each

U(1) should have sufficiently large charge-to-mass ratio is problematic: if m1 < m2, then

by taking ε small enough, we can ensure that q1ε/m1 is too small to satisfy the bound. If

m2 < m1, then we can do the same with q2ε/m2. The only way this conjecture could hold

is if m1 = m2 i.e. if every particle in the spectrum has precisely the same mass. This is

clearly unacceptable.

This problem may be remedied. Namely, we may define the “strong form” of the WGC

for theories with N U(1)s to be the statement that the lightest particles whose charge-to-

mass vectors span the full RN should satisfy the convex hull condition. It is easy to check

that in a theory with a single U(1), this definition of the strong WGC reduces to the usual

one. Furthermore, the 0-form generalization of this strong form would indeed place strong

restrictions on axion moduli space diameters and close the aforementioned loophole.

However, even if we use this updated N -species strong form of the conjecture, there

are other problems with invoking the strong WGC to rule out axion inflation. To begin

with, it does not rule out a closely related loophole achieved by taking A1 < A2 in (6.1).

In this case, one could take f2 arbitrarily large and S1 . S2 and still satisfy the strong

WGC. As long as A1e
−S1 cos a/f1 is sufficiently smaller than A2e

−S2 cos a/f2, the potential

will be dominated by the latter term. Secondly, it does not close the small action loophole

discussed previously, in which the instanton actions are taken smaller than 1. This limit
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is difficult to arrange in a controlled string compactification, but as we have seen, it is not

such a problem in simpler extranatural scenarios. Most important, however, is the fact

that the strong form of the WGC does not derive from arguments based on either effective

field theory or black hole thermodynamics. Though further developments could change

the situation, we currently see no compelling reason to believe that the WGC holds in its

stronger form.3

7 Conclusions

We have argued that the original magnetic form of the Weak Gravity Conjecture and the

UV cutoff that it implies, appropriately generalized to multiple U(1) gauge fields, exclude

a variety of N -flation models including models of kinetic alignment. We summarize the

claimed constraints, and the assumptions on which they rely, in table 1. The theories

that are excluded in this way have in common the feature that the magnetic charges

satisfying the magnetic WGC and the electric charges leading to the dominant instanton

effects are simple (not parametrically large and aligned) in the same basis. We believe

that these arguments are robust. They can possibly be evaded by considering a theory

with a cancelation or tuning in the monopole masses (so that the monopoles are much

lighter than the semiclassical self-energy estimate). The only other potential way out is if

the compactification radius could somehow be consistently taken to be much smaller than

the smallest distance Λ−1 for which we trust the monopole solution. Because we expect

the description of a local U(1) gauge theory to break down at Λ, this would require going

beyond the abelian effective field theory to a more complete ultraviolet description.

A very interesting model in which the electric charge vectors for the instantons are

highly aligned in the basis where magnetic charges are simple has been previously claimed

to evade the Weak Gravity Conjecture [48]. We agree that it cannot be straightforwardly

ruled out by the original WGC. However, this model implies surprising features that arise

from the nontrivial dependence of the masses of charged particles on the values of the axion

fields. We have proposed additional conjectures that would exclude such surprises. The two

assumptions are that the mass spectrum at all extrema in the moduli space should satisfy

the Weak Gravity Conjecture and that a light mode that is present in some region of moduli

space should be part of the effective theory throughout the entire moduli space (rather than

moving above the cutoff). We have no definitive proof of these statements, but they appear

to be plausible, and we find it very compelling that they precisely parametrically exclude

the one scenario that otherwise evades our arguments. Further study of these conjectures,

as well as possible application of them to other models like axion monodromy inflation [16–

18, 20, 21] (with non-periodic potentials, unlike all cases considered in this paper), seem to

us to be the most likely avenue for progress. We expect that the general argument sketched

in section 4.3 can exclude many such models, although they must be considered on a case-

by-case basis to see if loopholes exist. Ultraviolet completions of other theories that apply

3See however [56] for a discussion of the “lattice WGC” (LWGC), a candidate strong form which avoids

some of these pitfalls and can be motivated by consistency considerations and string theory examples.
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large field ranges to the hierarchy problem [73] or to generating a light dilaton [74–76] may

be susceptible to similar constraints.

More generally, noncompact fields (like the scalar moduli which are supersymmetric

counterparts of string axions) could give rise to large-field inflation, and the prospects

for constraining them with the WGC are not clear. Still, it is thought that noncompact

fields in string theory are highly constrained, and that effective field theory always breaks

down in the presence of super-Planckian field ranges [38, 40, 41]. Super-Planckian field

excursions in space, rather than in time, tend to collapse into black holes [77], which may

point in the direction of general arguments against the consistency of effective field theories

of super-Planckian fields coupled to gravity [78].

The Weak Gravity Conjecture has been established as a powerful tool to cull the space

of theories of inflation. The possibility of future measurements of nonzero r offers the hope

that we can confront our understanding of general properties of quantum gravity against

real empirical knowledge of our universe. We hope that the study of the WGC can offer

tentative steps in the direction of a phenomenology of quantum gravity.
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A The SECC and gauge-invariant regulators

Our argument about the SECC relies, in part, on a discussion of short-wavelength modes

of charged fields. In a gauge theory we expect that arbitrarily high-frequency gauge trans-

formations should not be considered: gauge theories can be emergent long-distance de-

scriptions of other physics, and the short distance degrees of freedom may be entirely

different. However, because ∂µ is not gauge invariant, while Dµ is, one may be concerned

that the problem we are discussing is not actually a physical one. We believe that tracking

physical (gauge invariant) masses of individual Kaluza-Klein modes adiabatically as the

physical Wilson loop variable θ varies and seeing that they pass through the cutoff already

demonstrates that the problem is physical. For completeness, in this appendix we provide

a different perspective by looking at how two different gauge-invariant regulators treat the

spectrum of modes across the moduli space.
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Kaluza-Klein Mass Spectrum: q = 11, N = 4, 9, 28, ∞

Figure 3. Kaluza-Klein mode spectrum for a particle of charge q = 11 with an N -site lattice

regulator for multiple choices of N . Blue curves are N = 4; purple, N = 9; red, N = 28; and

orange, the continuum result N →∞. Observe that the spectrum of low-lying modes at mR <∼ 1 is

the same for any number of lattice sites. However, the behavior of an individual mode tracked as θ

is continuously varied is dramatically different at small N and large N . The solid lines are modes

with zero mass at the origin of moduli space, and the dashed lines are modes with zero mass at
θ
2π = 10

11 . Faint curves in the background show the other modes.

Our first regulator is the lattice, with spacing a = Λ−1. This regulator gives a good

example in which 5d locality breaks down at short distances, but gauge invariance is pre-

served and we have a convenient setting to discuss only physical quantities. We will only

discretize the fifth dimension, for simplicity. In other words, we will apply the idea of

dimensional deconstruction [79–82]. We replace the continuous fifth dimension with a pe-

riodic lattice with N sites. The SECC criterion of section 4.2 tells us that, in order to

work within the context of a single effective field theory valid everywhere in moduli space,

we should take N � q. Let us explore what happens at smaller N and how the spectrum

alters as we take N large. For a scalar field, we find a finite set of N modes with masses

m2
n =

N2

π2R2
sin2

(
nπ − qθ/2

N

)
, (A.1)

with integer n in the range −N/2 < n ≤ N/2. In the large N limit, for n� N , this reduces

to the continuum Kaluza-Klein mode result m2
n = (n− qθ

2π )2/R2. Notice that the heaviest

modes will have mass ≈ N/(πR), so to recover the continuum result for mode numbers up

to q we will need to take N large compared to πq.

From the expression (A.1) we see that there is a zero mode whenever θ = 2πn/q (for

integer n). This means that the lattice regulator brings down a light mode whenever the

5d continuum theory with a high cutoff would tell us to expect one, independent of how
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small we take N . One could take this as a hint that gauge invariance is subtle and any UV

regulator will guarantee the consistency of the effective field theory. On the other hand,

the origin of the light mode varies dramatically as we change N . In the continuum theory

with a cutoff satisfying the SECC, the zero mode at θ = 2πn/q is different for each n. In

the lattice theory at small N , there simply aren’t enough modes for this to be true: a mode

can be a zero mode, increase in mass as θ is varied, then turn around and decrease again

to become a new zero mode at a different value of θ. We illustrate this in figure 3. If the

cutoff is sufficiently high, i.e. N � q, then a mode that becomes light at order-one values

of θ was heavy at small θ. When N � q, the modes that become light at any point in the

moduli space were already light at the origin.

On the other hand, we could consider a different gauge invariant regulator. Suppose

that we use a Pauli-Villars regulator, adding a mode with wrong-sign kinetic term and

mass Λ in the bulk. When n− qθ
2π � ΛR, the contribution of a mode and its Pauli-Villars

partner nearly cancel. In this case, in some sense all the modes are present for all n, but the

regulator suppresses their contributions if they are not low-lying states. If we adiabatically

track a mode that becomes light at large θ, it will have been heavy at the origin, and vice

versa. This is very different from the case of a lattice regulator, where individual modes

periodically become light multiple times.

What we have found is that, for different gauge-invariant regulators with the same UV

cutoff, the spectrum of light states will be similar but the behavior of individual modes as

we move across the moduli space can be radically different. At the risk of belaboring the

point, consider a physical state containing particles that are light at θ = 0, and adiabatically

vary θ to order-one values. The Pauli-Villars regulator would tell us that our particles keep

becoming heavier. The lattice regulator would suggest that they would again become light.

This is a sign of UV sensitivity and a breakdown of effective field theory. Only by taking

a UV cutoff large enough to encompass at least q modes at one time can we obtain a

consistent answer that is insensitive to the regulator. Cutoffs that do not satisfy qθ <∼ ΛR

require additional ultraviolet knowledge beyond the EFT. An interesting question to pursue

further is just how mild this additional ultraviolet knowledge is: for instance, the lattice

regulator discussed here is incompatible with knowing that the ultraviolet completion obeys

Lorentz invariance in the extra dimension.

B Do entropy bounds exclude large-field inflation?

One constraint widely believed to apply in any theory of quantum gravity is an entropy

bound, loosely speaking that the logarithm of the number of microstates accessible to

a system bounded by a surface of area A is at most of order AM2
Pl. Such conjectures

originated with Bekenstein [83] and were given a sharp covariant form by Bousso [84].

Entanglement entropy in quantum field theory [85, 86] has been shown to satisfy such a

bound [87–89], suggesting that it will be difficult to place theories in the swampland simply

by arguing that they violate an entropy bound. On the other hand, several authors have

argued for precisely such statements regarding large-field inflation models [66–68], including

recently in the context of the Weak Gravity Conjecture [51]. Our goal in this section is to
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critically review these arguments. We find that they rely on unjustified assumptions. Our

assessment is that models of large-field inflation are consistent with entropy bounds.

B.1 The reheating objection

An argument against theories with a large number of e-folds has been given based on

entropy production during reheating [51, 66]. Essentially, the objection is that to the extent

that we can trust the semiclassical picture of the post-reheating universe as a radiation-

dominated phase, it will contain a hot plasma with entropy per unit volume s ∝ T 3.

Because the entropy scales with volume and the entropy bound scales with area, it seems

there is a potential conflict. But if we consider a radiation-dominated universe,

ρ ∼ H2M2
Pl ∼ T 4, (B.1)

so in a volume of radius R ∼ H−1, the entropy associated with the radiation is

S ∼ T 3R3 ∼ 1

T
H2M2

PlH
−3 ∼

M2
Pl

H2

H

T
∼ SBek

T

MPl
. (B.2)

Thus, the Bekenstein bound is safely satisfied in a Hubble-size volume provided the tem-

perature is much less than the Planck energy, which is surely true whenever effective field

theory is valid.

The potential to derive a contradiction between inflation with many e-folds and en-

tropy bounds arises from considering volumes of radius R� H−1. [66] framed the problem

in terms of the particle horizon, which grows exponentially during inflation, so the ratio

of volume to area becomes much larger than for a Hubble-sized volume. The uncertainty

about what region to apply entropy bounds to was a major motivating reason for Bousso’s

covariant entropy conjecture [84], which had a significant impact because it gave a precise

criterion for which such problems do not arise. Given that substantial evidence has accu-

mulated that Bousso’s variation of the entropy bound is the correct criterion, it does not

appear that reheating after inflation is problematic even in theories with many e-folds.

B.2 Bit-counting arguments

Another argument that axions with super-Planckian decay constants can violate entropy

bounds arises from a bit-counting argument. We impose an ultraviolet cutoff on the theory

by defining a minimum distance scale ` and count pixels of area `2 on the horizon. There

are ∼ 1/(`2H2) such pixels. This exceeds the bound if ` < M−1
Pl . If we keep the UV cutoff

of our theory below the Planck scale, there should be no problem.

The UV cutoff in refs. [67, 68] was taken to be ` ∼ f−1
a . The argument was that the

free-particle two-point function of our axion field, 〈a(x)a(0)〉 ∼ 1
x2

, can no longer be a

valid estimate at x <∼ f
−1
a , because it grows without bound even though the field itself is

compact and satisfies a(x) < 2πfa. This is a reasonable argument. We could refine it a bit,

by noting that the two-point function is not physical because a(x) is not gauge invariant,

but eia(x)/fa is, so we can build a Lagrangian out of the latter and expand to find non-

renormalizable interactions suppressed by the scale fa, which fixes the cutoff. Although
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the argument that compactness of the field space implies a UV cutoff is correct, it only

imposes an inequality, ` > f−1
a . A contradiction with entropy bounds arises only if we take

this to be an equation. But of course, in any theory of quantum gravity we expect it will

not be sensible to talk about distances below the Planck length, so we should never take

` < M−1
Pl . Nothing in this argument precludes the possibility of theories with a range of

scales fa �MPl � `−1.

B.3 The classical entropy current argument

A further argument considered the inflaton as a perfect fluid and constructed the entropy

density from its stress energy tensor [68]. This leads to an equation

Ṡφ =
8π2

H3
φ̇2. (B.3)

[68] then gives an argument with the following logical structure: ∆Sφ is computed by

integrating the above derivative. The expression for ∆Sφ is broken into two pieces and

bounded by considering the absolute value of these two pieces. This establishes that ∆Sφ <

Smax ∼ f2
a/H

2. It is then observed that Smax > SBek for large-field inflation. But, without

some estimate of how close ∆Sφ actually comes to Smax, this proves nothing.

In fact, we can obtain a much better estimate of ∆Sφ. For slow-roll inflation we have

φ̇ ≈ − 1
3H

∂V
∂φ , so we can rewrite the integral as:

∆Sφ =

∫
dt

8π2

H3
φ̇

(
− 1

3H

∂V

∂φ

)
≈ − 8π2

3H4

∫
dφ
∂V

∂φ
≈ 8π2

3H4
|∆V | , (B.4)

with the approximation that H is relatively constant during the time period considered.

Given that during inflation V ≈ 3H2M2
Pl, this is exactly consistent with the Gibbons-

Hawking entropy of a Hubble patch of de Sitter space [90], so no bound is violated. In

fact, a detailed study of de Sitter thermodynamics in the context of inflation, including

perturbations, was undertaken some time ago by Frolov and Kofman, who found no incon-

sistencies [91].

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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