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Abstract: In this paper, we introduce the weak group inverse (called as the WG inverse in the present paper)

for square complex matrices of an arbitrary index, and give some of its characterizations and properties.

Furthermore, we introduce two orders: one is a pre-order and the other is a partial order, and derive several

characterizations of the two orders. The paper ends with a characterization of the core EP order using WG

inverses.
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1 Introduction

In this paper, we use the following notations. The symbol Cm,n is the set of m × n matrices with complex

entries; A∗, R(A) and rk (A) represent the conjugate transpose, range space (or column space) and rank of

A ∈ Cm,n, respectively. Let A ∈ Cn,n be singular, the smallest positive integer k satisfying rk (Ak+1) = rk (Ak)
is called the index of A and is denoted by Ind(A). The index of a non-singular matrix A is 0 and the index

of a null matrix is 1. The symbol CCM

n stands for a set of n × n matrices of index less than or equal to 1. The

Moore-Penrose inverse of A ∈ Cm,n is defined as the unique matrix X ∈ Cn,m satisfying the equations:

(1) AXA = A, (2) XAX = X, (3) (AX)∗ = AX, (4) (XA)∗ = XA,
and is denoted as X = A†; PA stands for the orthogonal projection PA = AA†. A matrix X such that AXA = A
is called a generalized inverse of A. The Drazin inverse of A ∈ Cn,n is defined as the unique matrix X ∈ Cn,n

satisfying the equations

(6k) XAk+1 = Ak
, (2) XAX = X, (5) AX = XA,

and is usually denoted as X = AD, where k = Ind(A). In particular, when A ∈ CCM

n , the matrix X is called the

group inverse of A, and is denoted as X = A# (see [1]). The core inverse of A ∈ CCM

n is defined as the unique

matrix X ∈ Cn,n satisfying

AX = AA†
, R(X) ⊆ R(A)

and is denoted as X = A #○ [2]. When A ∈ CCM

n , we call it a core invertible (or group invertible) matrix.

Several generalizations of the core inverse have been introduced, for example, the DMP inverse[3] the

BT inverse[4] and the core-EP inverse[5], etc. Let A ∈ Cn,n with Ind (A) = k. The DMP inverse of A is

Ad,† = ADAA† [3]. The BT inverse of A is A♢ = (A2A†)† [4, Definition 1]. The core-EP inverse of A is
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A †○ = Ak ((A∗)k Ak+1)− (A∗)k [5, Theorem 3.5 and Remark 2]. It is evident that A #○ = A♢ = Ad,† = A †○ in

case of A ∈ CCM

n . More results on the core inverse and related problems can be seen in [6–10].

Furthermore, it is known that the index of a group invertible matrix is less than or equal to 1, that

is, a matrix is core invertible if and only if it is group invertible. Although the generalizations of the core

inverse have attracted huge attention, the generalizations of group inverse have not received the same kind

of attention. Therefore, it is of interest to inquire whether one can do something similar to the group inverse

and that too by using some matrix decompositions as a tool as it has been used to study generalizations of

core inverse.

In this paper, our main tool is the core-EP decomposition. By using this decomposition, we introduce

a generalization of the group inverse for square matrices of an arbitrary index. We also give some of its

characterizations, properties and applications.

2 Preliminaries

In this section, we present some preliminary results.

Lemma 2.1 ([1]). Let A ∈ Cn,n with Ind(A) = k. Then
A
D = Ak (Ak+1)# . (1)

The following decomposition is attributed to Hartwig and Spindelböck[11] and is called Hartwig-Spindelböck

decomposition

Lemma 2.2 ([11, Hartwig-Spindelböck Decomposition]). Let A ∈ Cn,n with rk(A) = r. Then there exists a

unitary matrix U such that

A = U [ΣK ΣL

0 0
]U∗, (2)

where Σ = diag (σ1Ir1 , σ2Ir2 , . . . , σt Irt) is the diagonal matrix of singular values of A, σ1 > σ2 > ⋯ > σt > 0,
r1 + r2 +⋯ + rt = r, and K ∈ Cr,r, L ∈ Cr,n−r satisfy KK

∗ + LL∗ = Ir.
Furthermore, A is core invertible if and only if K is non-singular, [2]. When A ∈ CCM

n , it is easy to check that

A
#○ = U [T−1 0

0 0
]U∗, (3)

A
# = U [T−1 T−2S

0 0
]U∗, (4)

where T = ΣK and S = ΣL.

The core-nilpotent decomposition of a square matrix is widely used in matrix theory [1, 12] and just to

remind ourselves it is given as:

Lemma 2.3 ([12, Core-nilpotent Decomposition]). Let A ∈ Cn,n with Ind(A) = k, then A can be written as the

sum of matrices Â1 and Â2, i.e. A = Â1 + Â2, where

Â1 ∈ CCM

n , Â
k
2 = 0 and Â1Â2 = Â2Â1 = 0.

Very similar to core-nilpotent decomposition is the core-EP decomposition of a square matrix of arbitrary

index and was introduced by Wang [13]. We record it as:

Lemma 2.4 ([13, Core-EP Decomposition]). Let A ∈ Cn,n with Ind(A) = k, then A can be written as the sum of

matrices A1 and A2, i.e. A = A1 + A2, where
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(i) A1 ∈ CCM

n ;

(ii) Ak
2 = 0;

(iii) A∗1A2 = A2A1 = 0.
Here one or both of A1 and A2 can be null.

Lemma 2.5 ([13]). Let the core-EP decomposition of A ∈ Cn,n be as in Lemma 2.4. Then there exists a unitary

matrix U such that

A1 = U [T S

0 0
]U∗, A2 = U [0 0

0 N
]U∗, (5)

where T is non-singular, and N is nilpotent. Furthermore, the core-EP inverse of A is

A
†○ = U [T−1 0

0 0
]U∗. (6)

3 WG inverse

In this section, we apply the core-EP decomposition to introduce a generalized group inverse (i.e. the WG

inverse) and consider some characterizations of the generalized inverse.

3.1 Definition and properties of the WG inverse

Let A ∈ Cn,n with Ind(A) = k, and consider the system of equations
1

(2′) AX2 = X, (3c) AX = A †○
A. (7)

Theorem 3.1. The system of equations (7) is consistent and has a unique solution

X = U [T−1 T−2S

0 0
]U∗. (8)

Proof. Let A ∈ Cn,n with Ind(A) = k. Since A †○ = Ak ((A∗)k Ak+1)− (A∗)k,R(A †○A) ⊆ R(A). Therefore, (3c)
is consistent. Let A be as in (5). From (6), we obtain

(A †○)2 A = U [T−1 T−2S

0 0
]U∗ (9)

and

A ((A †○)2 A) = A †○
A, (10)

that is, (A †○)2 A is a solution to (3c).
It is obvious that (2′) is consistent. Applying (9), we have

A (((A †○)2 A)2) = (A †○)2 A, (11)

that is, (A †○)2 A is a solution to (2′).
Therefore, from (9), (10) and (11), we derive that (7) is consistent and (8) is a solution of (7).

1 Since A †○A is core invertible, we use the symbol 3c in (7).
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Furthermore, suppose that both X and Y satisfy (7), then

X = AX2 = A †○
AX = A †○

A
†○
A = A †○

AY = AY2 = Y ,
that is, the solution to the system of equations (7) is unique.

Definition 3.2. Let A ∈ Cn,n be a matrix of index k. The WG inverse of A, denoted as AW○ , is defined to be the

solution to the system (7) .

Remark 3.3. When A ∈ CCM

n , we have A
W○ = A#.

Remark 3.4. In [14, Definition 1], the notion of weak Drazin inverse was given: let A ∈ Cn,n and Ind(A) = k,

then X is a weak Drazin inverse of A if X satisfies (6k). Applying (8), it is easy to check that the WG inverse AW○

is a weak Drazin inverse of A.

Remark 3.5. Let A ∈ Cn,n. Applying Theorem 3.1, it is easy to check AW○AAW○ = AW○ andR(AW○) = R(Ak).
More details about the weak Drazin inverse can be seen in [14–16].

In the following example, we explain that the WG inverse is different from the Drazin, DMP, core-EP and

BT inverses.

Example 3.6. Let A =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 1 0

0 1 0 1

0 0 0 1

0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
. It is easy to check that Ind(A) = 2, the Moore-Penrose inverse A† and the

Drazin inverse AD are

A
† =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.5 0 0 0

0 1 −1 0

0.5 0 0 0

0 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
and A

D =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 1 1

0 1 0 1

0 0 0 0

0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

the DMP inverse Ad,† and the BT inverse A♢ are

A
d,† = AD

AA
† =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 1 0

0 1 0 0

0 0 0 0

0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
and A

♢ = (A2
A
†)† =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.5 0 0 0

0 1 0 0

0.5 0 0 0

0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

and the core-EP inverse A †○ and the WG inverse AW○ are

A
†○ =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
and A

W○ =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 1 0

0 1 0 1

0 0 0 0

0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

3.2 Characterizations of the WG inverse

Theorem 3.7. Let A ∈ Cn,n be as in (5). Then

A
W○ = A#

1 = U [T
−1 T−2S

0 0
]U∗. (12)

Proof. Let A = Â1 + Â2 be the core-nilpotent decomposition of A ∈ Cn,n. Then AD = Â#
1. Applying Lemma 2.4,

(5) and (8), we derive (12).
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Theorem 3.8. Let A ∈ Cn,n with Ind(A) = k. Then
A

W○ = (AA †○
A)# = (A †○)2 A = (A2) †○ A. (13)

Proof. Let A be as in (5). Then

AA
†○
A = U [T S

0 N
] [T−1 0

0 0
] [T S

0 N
]U∗ = U [T S

0 0
]U∗,

(A †○)2 = (U [T−1 0
0 0
]U∗)

2

= U [T−2 0
0 0
]U∗,

(A2) †○ = (U [T2 TS + SN
0 N2 ]U∗)

†○

= U [T−2 0
0 0
]U∗.

It follows from Theorem 3.7 that

(AA †○
A)# = (U [T S

0 0
]U∗)

#

= U [T−1 T−2S

0 0
]U∗ = AW○

,

(A †○)2 A = (A2) †○ A = U [T−2 0
0 0
] [T S

0 N
]U∗

= U [T−1 T−2S

0 0
]U∗ = AW○

.

Therefore, we obtain (13).

Theorem 3.9. Let A ∈ Cn,n with Ind(A) = k. Then
A

W○ = Ak (Ak+2)#○ A = (A2
PAk)† A. (14)

Proof. Let A be as in (5). Then

A
k = U [Tk

Φ

0 0
]U∗, (15)

where Φ = k∑
i=1

T i−1SNk−i. It follows that

A
k (Ak+2)#○ A = U [Tk

Φ

0 0
] [T−(k+2) 0

0 0
] [T S

0 N
]U∗

= U [T−1 T−2S

0 0
]U∗ = AW○

, (16)

PAk = Ak (Ak)† = U [Irk(Ak) 0

0 0
]U∗,

(A2
PAk)† A = U [T2

0

0 0
]
†

[T S

0 N
]U∗ = AW○

. (17)

Therefore, we have (14).

It is known that the Drazin inverse is one generalization of the group inverse. We will see the similarities and

differences between the Drazin inverse and the WG inverse from the following corollaries.

Corollary 3.10. Let A ∈ Cn,n with Ind(A) = k. Then
rk (AW○) = rk(AD) = rk(Ak) .
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It is well known that (A2)D = (AD)2, but the same is not true for the WG inverse. Applying the core-EP

decomposition (5) of A, we have

A
2 = U [T2 TS + SN

0 N2 ]U∗ (18)

and

(A2)W○ = U [T−2 T−4 (TS + SN)
0 0

]U∗, (AW○)2 = U [T−2 T−3S

0 0
]U∗. (19)

Therefore, (A2)W○ = (AW○)2 if and only if T−4 (TS + SN) = T−3S. Since T is invertible, we derive the following

Corollary 3.11.

Corollary 3.11. Let A ∈ Cn,n be as in (5). Then (A2)W○ = (AW○)2 if and only if SN = 0.
The commutativity is one of the main characteristics of the group inverse. The Drazin inverse too has the

characteristic. It is of interest to inquire whether the same is true or not for the WG inverse. Applying the

core-EP decomposition (5) of A, we have

AA
W○ = U [T S

0 N
] [T−1 T−2S

0 0
]U∗ = U [ I T−1S

0 0
]U∗; (20a)

A
W○
A = U [T−1 T−2S

0 0
] [T S

0 N
]U∗ = U [ I T−1S + T−2SN

0 0
]U∗. (20b)

Therefore, we have the following Corollary 3.12.

Corollary 3.12. Let the core-EP decomposition of A ∈ Cn,n be as in (5). Then AA
W○ = AW○A if and only if SN = 0.

Corollary 3.13. Let A ∈ Cn,n with Ind(A) = k, the core-EP decomposition of A be as in (5) and SN = 0. Then
A

W○ = AD = (Ak+1)#○ Ak = (At+1) †○ At
,

where t is an arbitrary positive integer.

Proof. Let the core-EP decomposition of A ∈ Cn,n be as in (5).

By applying SN = 0 and Ind(A) = k, we have
A
k−1 = U [Tk−1 Tk−2S

0 Nk−1 ]U∗, Ak = U [Tk Tk−1S

0 0
]U∗, Ak+1 = U [Tk+1 TkS

0 0
]U∗.

It follows from applying (1), (4) and (6) that

(Ak+1)# = (Ak+1)#○ = U [T−(k+1) T−(k+2)S
0 0

]U∗,
A
D = (Ak+1)# Ak = U [T−(k+1) T−(k+2)S

0 0
] [Tk Tk−1S

0 0
]U∗

= U [T−1 T−2S

0 0
]U∗ = AW○

.

Therefore, AW○ = AD = (Ak+1)#○ Ak.

Let t be an arbitrary positive integer. By applying SN = 0, we have
A
t = U [T t T t−1S

0 N t ]U∗, At+1 = U [T t+1 T tS

0 N t+1]U∗.
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It follows from Lemma 2.5 that

(At+1) †○ = U [T−(t+1) 0
0 0

]U∗,
(At+1) †○ At = U [T−(t+1) 0

0 0
] [T t T t−1S

0 N t ]U∗ = AW○
, (21)

Therefore, we derive AW○ = (At+1) †○ At, in which t is an arbitrary positive integer.

4 Two orders

Recall the definitions of the minus partial order, sharp partial order, Drazin order and core-nilpotent partial

order [12] :

A
−≤B ∶ A, B ∈ Cm,n , rk(B − A) = rk(B) − rk(A), (22)

A
#≤B ∶ A, B ∈ CCM

n , A
2 = AB = BA, (23)

A
D≤B ∶ A, B ∈ Cn,n , Â1

#≤ B̂1, (24)

A
#,−≤ B ∶ A, B ∈ Cn,n , Â1

#≤ B̂1 and Â2

−≤ B̂2, (25)

inwhich A = Â1+Â2 and B = B̂1+B̂2 are the core-nilpotent decompositions of A and B, respectively. Similarly,

in this section,we apply the core-EP decomposition to introduce two orders: one is theWGorder and the other

is the CE partial order.

4.1 WG order

Consider the binary relation:

A
WG≤ B ∶ A, B ∈ Cn,n , if A1

#≤B1, (26)

in which A = A1 + A2 and B = B1 + B2 are the core-EP decompositions of A and B, respectively.

Reflexivity of the relation is obvious. Suppose A
WG≤ B and B

WG≤ C, in which A = A1 + A2, B = B1 + B2 and

C = C1 + C2 are the core-EP decompositions of A, B and C, respectively. Then A1

#≤B1 and B1

#≤ C1. Therefore
A1

#≤ C1. It follows from (26) that A
WG≤ C.

Example 4.1. Let

A =
⎡⎢⎢⎢⎢⎢⎢⎣
1 1 1

0 0 1

0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦
, B =

⎡⎢⎢⎢⎢⎢⎢⎣
1 1 1

0 0 2

0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦
Although A

WG≤ B and B
WG≤ A, A ≠ B. Therefore, the anti-symmetry of the binary operation (26) does not hold in

general.

Therefore, we have the following Theorem 4.2.

Theorem 4.2. The binary relation (26) is a pre-order. We call this pre-order the weak-group (WG for short)

order.

Remark 4.3. The WG order coincides with the sharp partial order on CCM

n .
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Wegive below two examples to show thatWGorder is different fromDrazin order and that either of two orders

does not imply the other order.

Example 4.4. Let A and B be as in Example 4.1. We have

A
D =
⎡⎢⎢⎢⎢⎢⎢⎣
1 1 2

0 0 0

0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦
.

It is easy to check that A
WG≤ B.

Since ADA ≠ ADB, we derive A
D≰B. Therefore, the WG order does not imply the Drazin order.

Example 4.5. Let

Â =
⎡⎢⎢⎢⎢⎢⎢⎣
1 0 0

0 0 0

0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦
, B̂ =

⎡⎢⎢⎢⎢⎢⎢⎣
1 0 0

0 0 1

0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦
, P =

⎡⎢⎢⎢⎢⎢⎢⎣
1 −2 0

0 1 0

0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦
,

A = PÂP−1 =
⎡⎢⎢⎢⎢⎢⎢⎣
1 2 0

0 0 0

0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦
, B = PB̂P−1 =

⎡⎢⎢⎢⎢⎢⎢⎣
1 2 −2
0 0 1

0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦
,

A1 =
⎡⎢⎢⎢⎢⎢⎢⎣
1 2 0

0 0 0

0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦
, A2 = 0, B1 =

⎡⎢⎢⎢⎢⎢⎢⎣
1 2 −2
0 0 0

0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦
, B2 =

⎡⎢⎢⎢⎢⎢⎢⎣
0 0 0

0 0 1

0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦
,

in which A = A1 + A2 and B = B1 + B2 are the core-EP decompositions of A and B, respectively. Then A
D≤B and

A1

#≰B1. Therefore, the Drazin order does not imply the WG order.

It is well known that A
D≤B ⇒ A2

D≤B2, but the same is not true for the WG order as the following example

shows:

Example 4.6. Let A and B be as in Example 4.1, then

A
2 =
⎡⎢⎢⎢⎢⎢⎢⎣
1 1 1

0 0 0

0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦
, B

2 =
⎡⎢⎢⎢⎢⎢⎢⎣
1 1 3

0 0 0

0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦
.

We derive A2
WG≰ B2. Therefore, A

WG≤ B⇏ A2
WG≤ B2.

Theorem 4.7. Let A, B ∈ Cn,n. Then A
WG≤ B if and only if there exists a unitary matrix Û such that

A = Û
⎡⎢⎢⎢⎢⎢⎢⎣
T Ŝ1 Ŝ2

0 N11 N12

0 N21 N22

⎤⎥⎥⎥⎥⎥⎥⎦
Û
∗
, (27a)

B = Û
⎡⎢⎢⎢⎢⎢⎢⎣
T Ŝ1 − T−1 Ŝ1T1 Ŝ2 − T−1 Ŝ1S1
0 T1 S1

0 0 N2

⎤⎥⎥⎥⎥⎥⎥⎦
Û
∗
, (27b)

where T and T1 are invertible, [N11 N12

N21 N22

] and N2 are nilpotent.
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Proof. Assume A
WG≤ B. Let A = A1 + A2 and B = B1 + B2 be the core-EP decompositions of A and B, A1 and A2

be as given in (5), and partition

U
∗
B1U = [B11 B12

B21 B22

] . (28)

Applying (12) gives

A1A
#
1 = U [T S

0 0
] [T−1 T−2S

0 0
]U∗ = U [ I T−1S

0 0
]U∗;

B1A
#
1 = U [B11 B12

B21 B22
] [T−1 T−2S

0 0
]U∗ = U [B11T

−1 B11T
−2S

B21T
−1 B21T

−2S
]U∗.

Since A
WG≤ B, A1

#≤B1. It follows from A1A
#
1 = B1A

#
1 that

B11 = T and B21 = 0. (29)

By applying (12) and (29), we have

A
#
1A1 = U [ I T−1S

0 0
]U∗,

A
#
1B1 = U [ I T−1B12 + T−2SB22

0 0
]U∗.

It follows from A#
1A1 = A#

1B1 that

T
−1 (S − T−1SB22 − B12) = 0.

Therefore,

B12 = S − T−1SB22, (30)

in which B22 is an arbitrary matrix of an appropriate size. From (29) and (30), we obtain

B1 = U [T S − T−1SB22

0 B22
]U∗. (31)

Since B1 is core invertible and T is non-singular, B22 is core invertible. Let the core-EP decomposition of B22

be as

B22 = U1 [T1 S1

0 0
]U∗1 , (32)

where T1 is invertible. Denote

Û = U [ I 0

0 U1
] .

It is easy to see that Û is a unitary matrix. Let SU1 be partitioned as follows:

SU1 = [Ŝ1 Ŝ2] ,
where the number of columns of Ŝ1 coincides with the size of the square matrix T1. Then

A1 =Û
⎡⎢⎢⎢⎢⎢⎢⎣
T Ŝ1 Ŝ2

0 0 0

0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦
Û
∗

(33)
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and

B1 = U
⎡⎢⎢⎢⎢⎢⎢⎣
T S − T−1SB22

0 U1 [T1 S1

0 0
]U∗1
⎤⎥⎥⎥⎥⎥⎥⎦
U
∗

= U [ I 0

0 U1

]
⎡⎢⎢⎢⎢⎢⎢⎣
T SU1 − T−1SU1U

∗
1B22U1

0 [T1 S1

0 0
]

⎤⎥⎥⎥⎥⎥⎥⎦
[ I 0

0 U∗1
]U∗

= Û
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

T [Ŝ1 Ŝ2] − T−1 [Ŝ1 Ŝ2] [T1 S1

0 0
]

0 [T1 S1

0 0
]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
Û
∗

= Û
⎡⎢⎢⎢⎢⎢⎢⎣
T Ŝ1 − T−1 Ŝ1T1 Ŝ2 − T−1 Ŝ1S1
0 T1 S1

0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦
Û
∗
. (34)

From (26), (33) and (34), we derive (27a) and (27b).

4.2 CE partial order

Consider the binary relation:

A
CE≤ B ∶ A, B ∈ Cn,n , A1

#≤B1 and A2

−≤B2, (35)

in which A = A1 + A2 and B = B1 + B2 are the core-EP decompositions of A and B, respectively.

Definition 4.8. Let A, B ∈ Cn,n. We say that A is below B under the core-EP-minus (CE for short) order if A and

B satisfy the binary relation (35).

When A is below B under the CE order, we write A
CE≤ B.

Remark 4.9. According to (26) and (35) we derive that the CE order implies the WG order, that is,

A
CE≤ B ⇒ A

WG≤ B. (36)

Furthermore,

A
CE≤ B⇔ A

WG≤ B and A2

−≤B2. (37)

Theorem 4.10. The CE order is a partial order.

Proof. Reflexivity is trivial.

Let A
CE≤ B, B CE≤ C and A = A1 + A2, B = B1 + B2 and C = C1 + C2 are the core-EP decompositions of A, B

and C, respectively. Then A1

#≤B1, B1

#≤ C1 and A2

−≤B2, B2

−≤ C2. Therefore A1

#≤ C1 and A2

−≤ C2. It follows from
Definition 4.8 that A

CE≤ C.
If A

CE≤ B and B
CE≤ A, Then A1 = B1 and A2 = B2, that is, A = B.

Theorem 4.11. Let A, B ∈ Cn,n. Then A
CE≤ B if and only if there exists a unitary matrix Û satisfying

A = Û
⎡⎢⎢⎢⎢⎢⎢⎣
T Ŝ1 Ŝ2

0 0 0

0 0 N22

⎤⎥⎥⎥⎥⎥⎥⎦
Û
∗
, (38a)
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B = Û
⎡⎢⎢⎢⎢⎢⎢⎣
T Ŝ1 − T−1 Ŝ1T1 Ŝ2 − T−1 Ŝ1S1
0 T1 S1

0 0 N2

⎤⎥⎥⎥⎥⎥⎥⎦
Û
∗
, (38b)

where T and T1 are invertible, N22 and N2 are nilpotent, and N22

−≤N2.

Proof. Let A
CE≤ B, and A = A1 + A2 and B = B1 + B2 are the core-EP decompositions of A and B, respectively.

Then A1

#≤B1 and A2

−≤B2. By applying Lemma 2.5, Theorem 4.7 and A1

#≤B1, we have

A1 = Û
⎡⎢⎢⎢⎢⎢⎢⎣
T Ŝ1 Ŝ2

0 0 0

0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦
Û
∗
, A2 = Û

⎡⎢⎢⎢⎢⎢⎢⎣
0 0 0

0 N11 N12

0 N21 N22

⎤⎥⎥⎥⎥⎥⎥⎦
Û
∗
,

B1 = Û
⎡⎢⎢⎢⎢⎢⎢⎣
T Ŝ1 − T−1 Ŝ1T1 Ŝ2 − T−1 Ŝ1S1
0 T1 S1

0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦
Û
∗
, B2 = Û

⎡⎢⎢⎢⎢⎢⎢⎣
0 0 0

0 0 0

0 0 N2

⎤⎥⎥⎥⎥⎥⎥⎦
Û
∗
,

where Û, T, T1, [N11 N12

N21 N22
] and N2 are as in Theorem 4.7.

Since A2

−≤B2, we have rk (B2 − A2) = rk (B2) − rk (A2), that is,
rk([0 0

0 N2
] − [N11 N12

N21 N22
]) = rk (N2) − rk([N11 N12

N21 N22
]) . (39)

In addition, it is easy to check that

rk (N2)−rk([N11 N12

N21 N22
]) ≤ rk (N2) − rk (N22)

≤ rk (N2 − N22) ≤ rk([0 0

0 N2
] − [N11 N12

N21 N22
]) .

(40)

Applying (39) to (40) we obtain

rk (N22) = rk([N11 N12

N21 N22
]) (41)

rk (N2) − rk (N22) = rk (N2 − N22) . (42)

Therefore, we obtain

N22

−≤N2. (43)

Since N22

−≤N2, there exist nonsingular matrices P and Q such that

N22 = P
⎡⎢⎢⎢⎢⎢⎢⎣
D1 0 0

0 0 0

0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦
Q, N2 = P

⎡⎢⎢⎢⎢⎢⎢⎣
D1 0 0

0 D2 0

0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦
Q,

where D1 and D2 are nonsingular, (see [12, Theorem 3.7.3]). It follows that

rk (N22) = rk (D1) and rk (N2) − rk (N22) = rk (D2) . (44)

Denote

N12 = [M12 M13 M14]Q and N21 = P
⎡⎢⎢⎢⎢⎢⎢⎣
M21

M31

M41

⎤⎥⎥⎥⎥⎥⎥⎦
. (45)
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Then

[N11 N12

N21 N22

] = [Irk(N11) 0

0 P
]
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

N11 M12 M13 M14

M21 D1 0 0

M31 0 0 0

M41 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
[Irk(N11) 0

0 Q
]

and

rk([N11 N12

N21 N22

]) = rk (D1) + rk ([M13 M14]) + rk([M31

M41

])
+ rk(N11 −M12D

−1
1 M21)

It follows from (44) and (41) that

M13 = 0, M14 = 0, M31 = 0 and M41 = 0. (46)

Therefore,

[−N11 −N12−N21 N2 − N22

] = [Irk(N11) 0

0 P
]
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

−N11 −M12 0 0

−M21 0 0 0

0 0 D2 0

0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
[Irk(N11) 0

0 Q
] .

By applying (41), (44) and [N11 N12

N21 N22

] −≤ [0 0

0 N2

] , we derive that

rk([0 0

0 N2

] − [N11 N12

N21 N22

]) =rk([N11 M12

M21 0
]) + rk (D2)

=rk (N2) − rk (N22)
=rk (D2) .

Therefore,[N11 M12

M21 0
] = 0, that is,N11 = 0,M12 = 0 andM21 = 0. By applying (45) and (46), we obtainN11 = 0,

N12 = 0 and N21 = 0. So, we obtain (38a) and (38b).
Let A and B be of the forms as given in (38a) and (38b). It is easy to check that A = A1+A2 and B = B1+B2

are the core-EP decompositions of A and B, respectively, and

A1 = Û
⎡⎢⎢⎢⎢⎢⎢⎣
T Ŝ1 Ŝ2

0 0 0

0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦
Û
∗
, A2 = Û

⎡⎢⎢⎢⎢⎢⎢⎣
0 0 0

0 0 0

0 0 N22

⎤⎥⎥⎥⎥⎥⎥⎦
Û
∗
;

B1 = Û
⎡⎢⎢⎢⎢⎢⎢⎣
T Ŝ1 − T−1 Ŝ1T1 Ŝ2 − T−1 Ŝ1S1
0 T1 S1

0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦
Û
∗
, B2 = Û

⎡⎢⎢⎢⎢⎢⎢⎣
0 0 0

0 0 0

0 0 N2

⎤⎥⎥⎥⎥⎥⎥⎦
Û
∗
.

It follows from (23) and N22

−≤N2 that A1

#≤B1 and A2

−≤B2. Therefore, A
CE≤ B.

Remark 4.12. In Ex. 4.5, it is easy to check that A
#,−≤ B. Since A1

#≰B1, we have A
CE≰ B. Therefore, the core-

nilpotent partial order does not imply the CE partial order.

Corollary 4.13. Let A, B ∈ Cn,n. If A
CE≤ B, then A −≤B.

Proof. Let A, B ∈ Cn,n. Then A and B have the forms as given in Theorem 4.11. According to A
CE≤ B, we have

N22

−≤N2, that is,

rk (N2 − N22) = rk (N2) − rk (N22) . (47)
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Since T and T1 are invertible, it follows that

rk(B) = rk (T) + rk (T1) + rk (N2) ;
rk(A) = rk (T) + rk (N22) ;

rk(B − A) = rk⎛⎜⎜⎝
⎡⎢⎢⎢⎢⎢⎢⎣
0 −T−1 Ŝ1T1 −T−1 Ŝ1S1
0 T1 S1

0 0 N2 − N22

⎤⎥⎥⎥⎥⎥⎥⎦
⎞⎟⎟⎠

= rk⎛⎜⎜⎝
⎡⎢⎢⎢⎢⎢⎢⎣
Irk(T) T

−1 Ŝ1 0

0 Irk(T1) 0

0 0 In−rk(T)−rk(T1)

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
0 −T−1 Ŝ1T1 −T−1 Ŝ1S1
0 T1 S1

0 0 N2 − N22

⎤⎥⎥⎥⎥⎥⎥⎦
⎞⎟⎟⎠

= rk([T1 S1

0 N2 − N22
]) = rk([T1 0

0 N2 − N22
])

= rk (T1) + rk (N2 − N22) . (48)

Therefore, by applying (22), (47) and (48) we derive rk(B − A) = rk(B) − rk(A), that is, A −≤B.

5 Characterizations of the core-EP order

As is noted in [13], the core-EP order is given:

A
†○≤B ∶ A, B ∈ Cn,n , A

†○
A = A †○

B and AA
†○ = BA †○

. (49)

Some characterizations of the core-EP order are given in [13].

Lemma 5.1 ([13]). Let A, B ∈ Cn,n and A
†○≤B. Then there exists a unitary matrix U such that

A = U
⎡⎢⎢⎢⎢⎢⎢⎣
T1 T2 S1

0 N11 N12

0 N21 N22

⎤⎥⎥⎥⎥⎥⎥⎦
U
∗
, B = U

⎡⎢⎢⎢⎢⎢⎢⎣
T1 T2 S1

0 T3 S2

0 0 N2

⎤⎥⎥⎥⎥⎥⎥⎦
U
∗
, (50)

where [N11 N12

N21 N22
] and N2 are nilpotent, T1 and T3 are non-singular .

Theorem 5.2. Let A, B ∈ Cn,n. Then A
†○≤B if and only if

AA
W○ = BAW○

and A
∗
A

W○ = B∗AW○
. (51)

Proof. Let A be as given in (5), and denote

U
∗
BU = [B1 B2

B3 B4
] . (52)

By applying (20a) and

BA
W○ = U [B1 B2

B3 B4
] [T−1 T−2S

0 0
]U∗ = U [B1T

−1 B1T
−2S

B3T
−1 B3T

−2S
]U∗,

we have AAW○ = BAW○ if and only if

B1 = T and B3 = 0.
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It follows that

A
∗
A

W○ = U [T∗ 0

S∗ N∗
] [T−1 T−2S

0 0
]U∗ = U [T∗T−1 T∗T−2S

S∗T−1 S∗T−2S
]U∗,

B
∗
A

W○ = U [T∗ 0

B∗2 B∗4
] [T−1 T−2S

0 0
]U∗ = U [T∗T−1 T∗T−2S

B∗2T
−1 B∗2T

−2S
]U∗.

Therefore, AAW○ = BAW○ and A∗AW○ = B∗AW○ if and only if

B1 = T, B3 = 0, B2 = S, and B4 is arbitrary, (53)

that is, A and B satisfy AAW○ = BAW○ and A∗AW○ = B∗AW○ if and only if there exists a unitary matrix U such that

A = U [T S

0 N
]U∗, B = U [T S

0 B4

]U∗, (54)

where N is nilpotent, T is non-singular and B4 is arbitrary. Therefore, by applying Lemma 5.1, we derive the

characterization (51) of the core-EP order.
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