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We develop the theory of weak bimonoids in braided monoidal categories and
show that they are in one-to-one correspondence with quantum categories with
a separable Frobenius object-of-objects. Weak Hopf monoids are shown to be
quantum groupoids. Each separable Frobenius monoid R leads to a weak Hopf
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Introduction

Weak Hopf algebras, introduced by Bohm, Nill, and Szlachdnyi in the papers
[Bohm and Szlachényi 1996; Nill 1998; Szlachdnyi 1997; Bohm et al. 1999], are
generalizations of Hopf algebras and were proposed as an alternative to weak quasi-
Hopf algebras. A weak bialgebra is both an associative algebra and a coassociative
coalgebra, but instead of requiring that the multiplication and unit morphism are
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coalgebra morphisms (or equivalently that the comultiplication and the counit are
algebra morphisms), other “weakened” axioms are imposed. The multiplication
is still required to be comultiplicative (equivalently, the comultiplication is still
required to be multiplicative), but the counit is no longer required to be an algebra
morphism and the unit is no longer required to be a coalgebra morphism. Instead,
these requirements are replaced by weakened versions (see Equations (v) and (w)
below). As the name suggests, any bialgebra satisfies these weakened axioms and
is therefore a weak bialgebra.

For a given a weak bialgebra A, one may define source and target morphisms
s,t:A— A whose images s(A) and 1 (A) are called the source and target (counital)
subalgebras. Nill [1998] has shown that Hayashi’s face algebras [1998] are special
cases of weak bialgebras for which the, say, target subalgebra is commutative.

A weak Hopf algebra is a weak bialgebra H that is equipped with an antipode
v : H — H satisfying the axioms'

pove)o=t, pu(l®v)d=s, and us3(vR1RQVv)d =y,

where u3 = u(u ® 1) and J3 = (0 ® 1)d. Again, any Hopf algebra satisfies these
weakened axioms and so is a weak Hopf algebra. Nill [1998] has also shown
that the (finite-dimensional) generalized Kac algebras of Yamanouchi [1994] are
examples of weak Hopf algebras with involutive antipode. Weak Hopf algebras
have also been called “quantum groupoids” [Nikshych and Vainerman 2002], but
in this paper this is not what we mean by quantum groupoid.

Perhaps the simplest examples of weak bialgebras and weak Hopf algebras are
category algebras and groupoid algebras, respectively. Suppose that  is a field, and
let 6 be a category with set of objects 6 and set of morphisms €. The category
algebra k[€] is the vector space k[€] over k with basis 6;. Elements are formal
linear combinations of the elements of ‘6, with coefficients in k, that is,

of +pfg+--- witha,f €kand f, g € €.
An associative multiplication on k[€] is defined by
w(fig)=fg= {gof ifgofexists,
otherwise

and extended by linearity to k[‘€]. This algebra does not have a unit unless € is
finite, in which case the unit is

n=e= > 1a,

A€(€0

IThere may be some discrepancy with what we call the source and target morphisms and what
exists in the literature. This arises from our convention of taking multiplication in the groupoid
algebratobe f - g = go f (whenever g o f is defined).
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making k[€] into a unital algebra; all algebras (monoids) considered in this paper
will be unital. A comultiplication and counit may be defined on k[€] as

afN=ref e«fH=L

making k[€] into a coalgebra. Note that k[€] equipped with this algebra and coal-
gebra structure will not satisfy any of the following usual bialgebra axioms:

Eu=€Qe, om=nQmn, €n =l

The one bialgebra axiom that does hold is du = (@ u)(1Rc®1)(0®J). Equipped
with this algebra and coalgebra structure, k[€] does, however, satisfy the axioms
of a weak bialgebra. Furthermore, if € is a groupoid, then k[€], which is then
called the groupoid algebra, is an example of a weak Hopf algebra with antipode
v 1 k[€]— k[€] defined by v(f) = f ! and extended by linearity. If f: A — B €%,
the source and target morphisms s, 7 : k[€] — k[€] are given by s(f) = 14 and
t(f) = 1p, as one would expect.

In this paper we define weak bialgebras and weak Hopf algebras in a braided
monoidal category V', where we prefer to call them “weak bimonoids” and “weak
Hopf monoids”. The only difference between our definition of a weak bimonoid
in V" and the one given by Béhm, Nill, and Szlachanyi [Bohm et al. 1999] is that a
choice of “crossing” must be made in the axioms. Our definition is not as general as
the one given by J. N. Alonso, J. M. Fernandez, and R. Gonzilez in [Alonso Alvarez
et al. 2008a; 2008b], but, in the case that their weak Yang—Baxter operator 74 4
is the braiding c4 4 and their idempotent Vag4 = 1aga, our choices of crossings
are the same. Our difference in defining weak bimonoids occurs in the choice of
source and target morphisms. We have chosens: A — A andf: A — A so that

(1) the “globular” identities ts = s and st = ¢ hold,

(2) the source subcomonoid and target subcomonoid coincide (up to isomor-
phism) and are denoted by C; and

(3)s:A— C°andt: A — C are comonoid morphisms.

These properties of the source and target morphisms are essential for our point
of view of quantum categories. These are s = ﬁﬁ and t = Hﬁ in the notation
of [Alonso Alvarez et al. 2008a; 2008b] and s = €, and t = € in the notation of
[Schauenburg 2003], with the appropriate choice of crossings.

We choose to work in the Cauchy completion 27" of V. The category 27" is also
called the “completion under idempotents” of 4" or the “Karoubi envelope” of V.
We do this rather than assume that idempotents split in V". Suppose A is a weak
bimonoid in 2V'. In this case we find C by splitting either the source or target
morphism. As in [Schauenburg 2003, Proposition 4.2], C is a separable Frobenius
monoid in 9V, meaning that (C, u, 7, 9, €) is a Frobenius monoid with ud = 1¢.
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Our definition of weak Hopf monoid is the same as the one proposed in [Bohm
et al. 1999] for the symmetric case and as in [Alonso Alvarez et al. 2008a; 2008b]
when restricted to the braided case. A weak bimonoid H is a weak Hopf monoid
if it is equipped with an antipode v : H — H satisfying

nv®1)0=r, p(d®v)yo=r, and u3(vR1RV)dH =y,

where r = vs. This r : H — H turns out to be the “usual” source morphism, that
is, Hﬁ, in the notation of [Alonso Alvarez et al. 2008a; 2008b]. Ignoring crossings r
is €; in the notation of [Schauenburg 2003], and our r and ¢ correspond respectively
to Mm% and M¥ in the notation of [Bohm et al. 1999], wherein the morphism s does
not appear. Usually, in the second axiom above, u(l1 ® v)d = r, the right side
is equal to the chosen source map s of the weak bimonoid H. The reason that
this » does not work for us as a source morphism is that it does not satisfy all three
requirements for the source morphism mentioned above. This choice of r allows
us to show that any Frobenius monoid in V" yields a weak Hopf monoid R ® R
with bijective antipode; see [Bohm et al. 1999, example in the appendix].

There are a number of generalizations of bialgebras and Hopf algebras to their
“many object” versions, for example, Sweedler’s generalized bialgebras [1974],
which were later generalized by Takeuchi to x g-bialgebras [1977]; the quantum
groupoids of Lu [1996] and Xu [2001]; Schauenburg’s x g-Hopf algebras [2000];
the bialgebroids and Hopf algebroids of Bohm and Szlachanyi [2004]; the face
algebras [Hayashi 1998] and generalized Kac algebras [ Yamanouchi 1994]; and the
ones of interest in this paper, the quantum categories and quantum groupoids of Day
and Street [2004]. Brzezinski and Militaru [2002, Theorem 3.1] have shown that
the quantum groupoids of Lu and Xu are equivalent to Takeuchi’s x g-bialgebras.
Schauenburg [1998] has shown that face algebras are an example of x g-bialgebras
for which R is commutative and separable. In [2003, Theorem 5.1], Schauenburg
shows that weak bialgebras are also examples of x g-bialgebras for which R is
separable Frobenius (there called Frobenius-separable). Schauenburg also shows
in [2003, Theorem 6.1] that a weak Hopf algebra may be characterized as a weak
bialgebra H for which a certain canonical map H @ c H — u(6(5#(1)), H® H) is
a bijection. As a corollary he shows that the x g-bialgebra associated to the weak
Hopf algebra is actually a x g-Hopf algebra.

While bialgebras are self dual, bialgebroids are not. The dual of a bialgebroid
is called a “bicoalgebroid” by Brzezifiski and Militaru [2002] and further studied
by Baélint [2008b]. In the terminology of [Day and Street 2004], these structures
are quantum categories in the monoidal category of vector spaces.

According to [Day and Street 2004], a quantum category in %" consists of two
comonoids A and C in V', with A playing the role of the object of morphisms,
and C the object-of-objects. There are source and target morphisms s,¢: A — C,
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a “composition” morphism u : A ®c A — A, and a “unit” morphism 7 : C — A,
all in V. These data must satisfy a number of axioms. Indeed, ordinary categories
are quantum categories in the category of sets.

Motivated by the duality present in x-autonomous categories [Barr 1995], Day
and Street define a quantum groupoid to be a quantum category equipped with a
generalized antipode coming from a x-autonomous structure.

In this paper we show there is a bijection between weak bimonoids and quantum
categories for which the object-of-objects is a separable Frobenius monoid. In the
case that the weak bimonoid is equipped with an invertible antipode, making it a
weak Hopf monoid, we show how to yield a quantum groupoid.

The outline of this paper is as follows: In Section 1, we provide the definition
of a weak bimonoid A in a braided monoidal category %" and define the source
and target morphisms. We then move to the Cauchy completion 27" and prove the
three required properties of our source and target morphisms. In this section we
also prove that C, the object-of-objects of A, is a separable Frobenius monoid.

In Section 2, we introduce Weak Hopf monoids in braided monoidal categories.

In Section 3, we describe a monoidal structure on the categories Bicomod(C)
of C-bicomodules in V', and Comod(A) of right A-comodules in V', such that the
underlying functor U : Comod(A) — Bicomod(C) is strong monoidal. If H is
a weak Hopf monoid, we are then able to show that the category Comod s (H),
consisting of the dualizable objects of Comod(H), is left autonomous.

In Section 4, we prove that any separable Frobenius monoid R in a braided
monoidal category V" yields an example of a weak Hopf monoid R ® R with in-
vertible antipode in V.

In Section 5, we recall the definitions of quantum categories and of quantum
groupoids, and in Section 6, we show the correspondence between weak bimonoids
and quantum categories with separable Frobenius object-of-objects. In Section 6,
we also show that a weak Hopf monoid with invertible antipode yields a quantum
groupoid.

This paper depends heavily on the string diagrams in braided monoidal cate-
gories of Joyal and Street [1993], which were shown to be rigorous in [1991]. The
reader unfamiliar with string diagrams may first want to read Appendix A, where
we review some preliminary concepts using these diagrams. Many string proofs
also appear in Appendix B.

1. Weak bimonoids

A weak bialgebra [Bohm and Szlachényi 1996; Nill 1998; Szlachanyi 1997; Bohm
et al. 1999] is a generalization of a bialgebra with weakened axioms. These weak-
ened axioms replace the three that follow by requiring that the unit be a coalgebra
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morphism and the counit be an algebra morphism. With the appropriate choices
of under and over crossings, the definition of a weak bialgebra carries over rather
straightforwardly into braided monoidal categories, where we prefer to call it a
“weak bimonoid”.

1.1. Weak bimonoids. Suppose that V' = (V', ®, I, ¢) is a braided monoidal cate-
gory.

Definition 1.1. A weak bimonoid A = (A, u,n,9,€) in V' is an object A € V
equipped with the structure of a monoid (A, i, #) and a comonoid (A, J, €) satis-
fying the following equations.

Y-

A-M-H

Suppose A is a weak bimonoid, and define the source and target morphisms
s,t:A— Aof A as

(@) o
s:/i/, and t:&%.
|

Notice that s : A — A is invariant under rotation by z, while r : A — A is
invariant under horizontal reflection and the inverse braiding. Importantly, under
either of these transformations

« (m) and (c) are interchanged,’
¢ (b) is invariant, and
e (v) and (w) are interchanged.

Note that these are not the “usual” source and target morphisms. They were
chosen, as mentioned in the introduction, precisely because we need them to satisfy
the following three properties:

(i) the “globular” identities ts = s and st =t hold;

(i1) the source subcomonoid and target subcomonoid coincide (up to isomor-
phism), and are denoted by C;

(iii) s: A— C°andt: A — C are comonoid morphisms.

2The (m) and (c) refer to the monoid and comonoid identities found in Appendix A.
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These properties will be proved in this section. Note that we will run into the usual
source morphism (which we call r) in Definition 2.1, which defines weak Hopf
monoids.

We tabulate properties of the source morphism s in Figure 1, properties of the
target morphism ¢ in Figure 2, and properties involving the interaction of s and ¢
in Figure 3. Proofs of these properties may be found in Appendix B.

Suppose A and B are weak bimonoids in V. A morphism of weak bimonoids
f:A— Bisamorphism f: A — B in ¥ that is both a monoid morphism and a
comonoid morphism.

Under (b) and (w) Under (b) and (v)
(1) A H ﬁ Y - /@HD = /éi
ARV S SR

¥ @”\:ﬁ Y-
BRSPS
o %é:éYé @ﬁ@:@f&@

Under (b)

(6) =

Under (b) and [(w) or (V)]

o 0-4

Figure 1. Properties of s.



o R-IP-r Y-h-R
@ ®i\=ﬂ -1 %=Y 0=
0 Ao WY
o XN OK-K Kl -4
o 4P-a o=
(6) <>® =

Under (b) and [(w) or (V)]
m 0o

Figure 2. Properties of ¢.

Lemma 1.2. Suppose A and B are weak bimonoids in V' each with source and
target morphisms s and t. If f : A — B is a morphism of weak bimonoids, then

fs=sf and ft=

Proof. The proof of the first statement is

Aiasy a

The second statement follows from a similar proof.

tf.
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N

o AR A

(10) @/% = <§®
7/

Under (w) and (v)

rl@

Figure 3. Interactions of s and .

In what follows A = (A, u, 5, J, €) will always denote a weak bimonoid and
s,t: A — A will always denote the source and target morphisms.

From properties (7) and (7) in Figures 1 and 2 respectively, s and ¢ are idem-
potents. In the following we will work in the Cauchy completion (= completion
under idempotents = Karoubi envelope) 2V of V". We do this rather than assume
that idempotents split in .

1.2. Cauchy completion. Given a category V', its Cauchy completion 2V is the
category whose objects are pairs (X, e) with X eV and e : X — X € 7 an idem-
potent. A morphism (X, e) — (X', ¢’) in 2 is a morphism f : X — X’ € ¥ such
that ¢’ fe = f. Note that the identity morphism of (X, e) is e itself.

The point of working in the Cauchy completion is that every idempotent f :
(X, e) > (X, e) in 27 has a splitting, namely,

(X,e) (X, e)

N

X, f).

If 7" is a monoidal category, then 27" is a monoidal category via

X, )@ (X,h=(X®X,exe).



158 Craig Pastro and Ross Street

The category V' may be fully embedded in 2V by sending X € V" to (X, 1) € 9V
and f: X —>Y eV to f:(X,1)— (Y, 1), which is obviously a morphism in 9.
When working in 27" we will often identify an object X € V" with (X, 1) € 2.

1.3. Properties of the source and target morphisms. Let A = (A, 1) be a weak
bimonoid in 2. From the definition of the Cauchy completion, the result of
splitting the source morphism s is (A, s), and similarly, the result of splitting the
target morphism 7 is (A, t). The following proposition shows that these two objects
are isomorphic.

Proposition 1.3. The idempotentt : (A, 1) — (A, 1) has the two splittings

(A, ) ——>(A,1) (A, 1) ——s (A,
NS N A
(A, 1) (A, s).

In this case s . (A,s) = (A,t)andt: (A, t) — (A, s) are inverse morphisms, and
hence (A, 1) = (A, s).

Proof. This result follows from the identities ts = s and st = ¢ (property (8) in
Figure 3). U

We will denote this object by C = (A, ¢) and call it the object-of-objects of A. In
the propositions next we will show that C is a comonoid and that it is a separable
Frobenius monoid; this is similar to what was done in [Schauenburg 2003] (where
it was called Frobenius-separable).

Proposition 1.4. The object C = (A, t) equipped with

o= (C2>CceCc"%>~C®C) and e=C— 1
is a comonoid in AV If C is furthermore equipped with

= (C®CL®'>C®C—H>C) and n= I—”>C,
then C is a separable Frobenius monoid in 2V (see Definition A.5).

Proof. We first observe that (t ®¢)0:C —> C®C and € : C — [ are in 2V, which
follows respectively from (5) and (2).
The comonoid identities are given as
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To see that C is a separable Frobenius monoid we first observe that u and #
are morphisms in 27 from (5) and (2), and the monoid identities are dual to the
comonoid identities. The following calculation proves that the Frobenius condition
holds.

RRERE wiﬂ@
©
(4)%25

Finally, that this is a separable Frobenius monoid follows from

Tog Ao 20 f W
ﬂﬁ@(éd?@@@élc. 0

Corollary 1.5. Every morphism of weak bimonoids induces an isomorphism on
the objects-of-objects. That is, if (A, 1) and (B, 1) are weak bimonoids, and
f (A, 1) = (B, 1) is a morphism of weak bimonoids, then the induced morphism
tft:(A,t) — (B,t) is an isomorphism.

and

4@%
=
ﬁ@i
e
—~—O—
Q.
O

Proof. If f: A — B is amorphism of weak bimonoids, then by Lemma 1.2 ft=¢f
and f's = st. The corollary now follows from Propositions 1.4 and A.3. (|

Proposition 1.6. If we write C° for the comonoid C with the “opposite” comulti-
plication defined via

c—2scoC2-CcrC—>CxaC = @é@
/

thens:A— C°andt: A — C are comonoid morphisms. That is, the diagrams
t

A C A—1 o
al lc(t@t)é and JL l(r@z)fs
AA—2 - cecC AA—2 s ceC

commute.
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Proof. The second diagram expresses

® 6 9 4

© o hpe 2w 2 e
AR ARSI ARE O SRk o

shows that the first diagram commutes. O

2. Weak Hopf monoids

In this section we introduce weak Hopf monoids. A weak Hopf monoid is a weak
bimonoid H equipped with an antipode v : H — H satisfying the three axioms

vxl=t, l¥kv=r, and vx*xlxv=v,

where f*g = u(f ®g)J is the convolution product, and the morphismr: H — H
is introduced below. This turns out to be the usual definition of weak Hopf monoids
as found in the literature; in the symmetric case see [Bohm et al. 1999], and in the
braided case see [Alonso Alvarez et al. 2008a; 2008b]. Note property (15), which
says that r = vs.

2.1. The endomorphism r and weak Hopf monoids. Define an endomorphism
r: A — A by rotating the target morphism ¢ : A — A by =, that is,

r= E\/

Since r is just ¢ rotated by 7, all the identities for ¢ in Figure 2 rotated by z hold
for r. We list some additional identities of r interacting with s and ¢.

7-4 -

hoke A o
PR ey
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The proofs of these properties may also be found in Appendix B.

Definition 2.1. A weak bimonoid H is called a weak Hopf monoid if it is equipped
with an endomorphism v : H — H, called the antipode, satisfying

-t et

The axioms of a weak Hopf monoid immediately imply the identities

e

The antipode is unique since if v’ is another, then

V=vsklsxv =txv =vslsxv =vsr=vxlxv=0.

Proposition 2.2 [Alonso Alvarez et al. 2003, Proposition 1.4]. Suppose H and K
are weak Hopf monoids in V' and that f : H — K is both a monoid and comonoid
morphism. Then f preserves the antipode, that is, fv =vf.

The proof is also due to the authors of [Alonso Alvarez et al. 2003], where a
similar proof may be found. We include it here for completeness.

Proof. Recall from Lemma 1.2 that 7f = ft, from which we may easily conclude
that rf = fr. The proposition is then established by the calculation

Therefore, if H and K are weak Hopf monoids in V', then a morphism of weak
Hopfmonoids f : H— K is a morphism f : H — K in % that is a monoid and a
comonoid morphism.

We list some properties of the antipode v : H — H.

—~
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Proposition 2.3.

(15)

&6
Il
4®7

b_b_
=64 o

o~
I
o

17

o< o
o

The last identity (17) states that v : H — H is both an anticomonoid morphism
and an antimonoid morphism.

Proof. The calculation

verifies the identity (15), and

® » ) L ® L © € ; L ©
SRRt e et

verifies the first identity of (16). The second follows from a similar calculation.
We prove the first two properties of (17), which show that v is an anticomonoid
morphism. The remaining two properties of (17), which show that v is an anti-
monoid mophism, following from rotating the diagrams by z.
The proof of the counit property is easy enough:

%;qg%gﬁ@y?@g



Weak Hopf monoids in braided monoidal categories 163

The following calculation proves that the antipode is anticomultiplicative.

i

3. The monoidal category of A-comodules

Suppose A = (A, 1) is a weak bimonoid in 27 and let C = (A, t), which we recall
is a separable Frobenius monoid. In this section we describe a monoidal structure
on the categories Bicomod(C) of C-bicomodules in 2, and Comod(A) of right
A-comodules in 2V, such that the underlying functor

U : Comod(A) — Bicomod(C)

is strong monoidal. If A is a weak Hopf monoid then we show that Comod f(A),
the subcategory consisting of the dualizable objects, is left autonomous.
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This section is fairly standard in the %" = Vect case — see for example [Bohm
and Szlachanyi 2000; Nill 1998; Nikshych and Vainerman 2002] —and carries
over rather straightforwardly to the general braided V" case; see [Day et al. 2003].

3.1. The monoidal structure on C-bicomodules. Suppose, for this section, that
idempotents split in V", that C € ¥ is a separable Frobenius monoid, and that
M €V is a C-bicomodule with coaction

y M—->CMQC.

A left C-coaction and a right C-coaction are obtained from y by involving the
counit € as follows:

= (M-">coMec —2%=CcoM),
p=M-">comec - mne0).

Suppose now that N is another C-bicomodule. We now wish to define the tensor
product of M and N. Before doing so we will need the following definition.

Definition 3.1. Let f, g : X — Y be a parallel pair in V'. This pair is called cosplit
when there is an arrow d : ¥ — X such that

df =1x and fdg=gdg.

It is not hard to see that, in this case, dg : X — X is an idempotent and a splitting
of dg, that is,
d

NZANZ

provides an absolute equalizer (Q, y) for f and g.

X

Now M and N are C-bicomodules and we have two morphisms
7®l

M®N M®C®N.

1®y1
Proposition 3.2. The pair y, ® 1 and 1 Q y; are cosplit by
d=(1e)(1ue)(),®1®1): MCRN - MQN.

Proof. Here we barely sketch the proof and note that we prove a very similar
statement in greater detail in Proposition 3.3.

Thatd(y,®1) =1 follows from the separable property of the Frobenius monoid,
and (y, @ 1)d(1®7y;) = (1® y)d(1 ® y;) follows from the Frobenius property. [
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Thus, the equalizer of the two morphisms y, ® 1 and 1 ® y; is found by splitting
the idempotent d (1 ® y;), which is possible from our assumption that idempotents
split in V. So the equalizer exists and is absolute. This equalizer is then defined to
be the tensor product of M and N over C, denoted M ®¢ N.

That this defines a monoidal structure on the category Bicomod(C) with tensor
product ®¢ and unit C is yet to be proved. However, we thought it better to write
the next section more explicitly from which the details here may be filled in.

3.2. The tensor product of A-comodules. Let A = (A, 1) be a weak bimonoid
inQV. Let C = (A, t). It will be shown that the monoidal structure on the category
of right A-comodules is ®c, the tensor product over C, with unit C.

Suppose that M is a right A-comodule. We know thats: A — C°andt: A — C
are comonoid morphisms and that property (10) holds, recalling that property (10)
expresses the commutativity of the diagram

) AA > cecC
e
S

AA 2. cecC.

Therefore M may be made into a C-bicomodule via

p= M>MeA S MeaeA b aoMeA T E coMeC),

which is

cC M C
in strings. The left and right C-coactions are

Vl=@} and VrZ#@.

The tensor product of two A-comodules M and N over C then may be defined
as in Section 3.1. We derive an explicit description of M ®¢ N. Suppose M and
N are A-comodules. Two morphisms M @ N - M ® C ® N are given as

M
A
7r®1= |

N M N

and 1®y, =




166 Craig Pastro and Ross Street

Proposition 3.3. The pair vy, ® 1 and 1 Q y; are cosplit by

MCN

M N
Proof. That d is a morphism in 2V follows immediately as ¢ is idempotent. The
calculation

7 6
Ay, @)= o |2 = Qﬁo 2 \=1M®N
shows that d(y, ® 1) = 1, and the identity
(7@ Dd(1Qy) =1 y)d(1® )
follows from
8 ®> 2 12
(3, ® D18 ) = % = = = ‘ 21 S
o \ | | ‘
\
@ © ®} ® |0
2 o = = \i$
i o
=1 ®y)d(1® ). O

The idempotent d(1 ® y;) will be denoted by m, which gains a simpler repre-
sentation from the calculation

m@% -
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A splitting of m, that is,
(M®N,1) (M®N, 1) (M ®N,m) (M ®N,m)

O T

(M®N,m) (M®N, 1),

m m

provides an absolute equalizer (M ® N, m) of (y, ® 1) and (1 ® y;). Thus, the
tensor product of M and N over C is

M®cN=(M®N,m).

3.3. The coaction on the tensor product. 1f Comod(A) is to be a monoidal cat-
egory with underlying functor U : Comod(A) — Bicomod(C) strong monoidal,
then the tensor product of two A-comodules must also be an A-comodule. In this
section we show that the obvious coaction on M ®¢ N, namely,

y=M:M®cN—>M®cN®A,

Lemma 3.4. The coactiony : M @c N - M @c N ® A, as defined above, is a
morphism in OV That is,

does the job.

Proposition 3.5. (M ®¢ N, y) is an A-comodule.
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Proof. Coassociativity is proved as usual, by

and the counit condition is proved as

MLemgaSA © ® © = 1 ygeN O
\ \ -

3.4. Comod(A) is a monoidal category. We now set out to prove the claim, at the
beginning of this section, that (Comod(A), ®¢, C) is a monoidal category. It will
turn out that associativity is a strict equality (if it is so in V") and the unit conditions
are only up to isomorphism.

We state this as a theorem and devote the remainder of this section to its proof.

Theorem 3.6. Comod(A) = (Comod(A), ®c, C) is a monoidal category.

First note that C itself is an A-comodule with coaction

C

®
A

c A

The following lemma will be useful.

Lemma 3.7. The following identities hold.

H He

Proof. The first identity is proved by

b ol D whoold
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and the second is proved by

bt

Proof of Theorem 3.6. Consider (M ®@c N)®c¢ P and M ®¢c (N ®¢ P) in 9V'. The
former is (M ® N ® P, u) and the latter is (M Q N ® P, v), where

Since, by Lemma 3.4, y is a morphism in 27", both 1 and » may be rewritten as

proving the (strict) equality (M ®c N) ®c P = M ®c (N ®c¢ P) in 27 (since we
are writing as if V" were strict).
It remains to prove M @ c C = M = C ®¢ M. By definition

0 0

M®CC=(M®C, ) and C®cM=(C®M, )

We will show that the morphisms

®

M cC—> M and #@ M —>MQcC
|

will establish the isomorphism M ®¢c C = M, and

<f):C(Ei)CM—)M and ®}:M—>C®CM

will establish the isomorphism M = C ®¢ M. These morphisms are easily seen to
be in 2V, and the fact that they are mutually inverse pairs is given in one direction
by Lemma 3.7, and in the other by an easy string calculation making use of the
identity (6) in Figure 1 or (6) in Figure 2.
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It now remains to show that these four morphisms are A-comodules morphisms,
that is, that they are in Comod(A). Note that M ® ¢ C and C®¢ M are A-comodules

via the coactions
® O

and
| |

respectively. We then have these facts:

®

o M ®c C — M is an A-comodule morphism since

¢ |6
Lem2a3.7\\<? mﬁ <cgé>ﬁé><ghégbi@h\%fgﬁ.

. ﬁ@ :M — M Q¢ C is an A-comodule morphism since
|

L‘ (M R Lemma 3.7 %@ (©) (6) ;
[

. % :C®c M — M is an A-comodule morphism since

mﬁwg@@
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. @} M — C ®c M is an A-comodule morphism since
[

g = ek

Thus, M Q@Qc C=M =C Q®c M in 2. OJ
Thus, Comod(A) = (Comod(A), ®¢, C) is a monoidal category.

3.5. The forgetful functor from A-comodules to C-bicomodules. There is a for-
getful functor U : Comod(A) — Bicomod(C) that assigns to each A-comodule M
a C-bicomodule U M that is M itself with coaction
M
A

|

cCMZC
Obviously a morphism of A-comodules f : M — N is automatically a morphism
of the underlying C-bicomodules f : UM — UN.

Proposition 3.8. The forgetful functor U : Comod(A) — Bicomod(C) is strong
monoidal.

Proof. We must establish the C-bicomodule isomorphisms
C=UC and UM®cUN=U(M®cN).

The first is obvious. To establish the second we observe that the object UM @ c U N
is (M ®c N, m) with coaction
| #@

and U(M ®¢ N) is also (M ®¢ N, m) but with coaction
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The following calculation shows that these two coactions are the same, and hence
the isomorphism U(M ®¢c N)EUM Qc UN.

e

@ © | )

K

This may seem to be a strict equality, but as tensor products are really only
defined up to isomorphism, we prefer “strong”.

| O
|

3.6. Comod s (H) is left autonomous. Let V'; denote the subcategory of V' con-
sisting of the objects with a left dual (since V" is braided, left duals are right
duals), and suppose that H is a weak Hopf monoid. There is a forgetful func-
tor U; : Comod(H) — V" defined as the composite of the two forgetful functors
Comod(H) — Bicomod(C) and Bicomod(C) — V. Sometimes this composite
U; : Comod(H) — ¥ is called the long forgetful functor, as opposed to the short
forgetful functor U : Comod(H) — Bicomod(C).

Let us say an object M € Comod(H) is dualizable if U;M has a left dual in V',
that is, UyM € V' ;. Denote by Comod (H) the subcategory of Comod(H) con-
sisting of the dualizable objects.

The goal of this section is to prove the following proposition.

Proposition 3.9. If H is a weak Hopf monoid, then the category Comod (H) is
left autonomous (= left compact = left rigid).

Suppose M € Comod ;(H) has a left dual M* in V. Using the antipode of H,
a coaction on M* is defined as
M*
LQ
M

@")‘
*A

By (17) it is easy to see that this defines a comodule structure on M*. We claim
that M* is the left dual of M in Comod ;(H ). Define morphisms e : M*®@c M — C
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andn:C —> M Qc M* via

Proposition 3.10. Suppose M € Comod y(H) with underlying left dual M*. Then
M* with evaluation and coevaluation morphisms e and n respectively is the left
dual of M in Comod ¢ (H). That is, Comod ;(H) is left autonomous.

Proof. Let M, M*, e, and n be as above. We will first show that ¢ and n are
comodule morphisms, and secondly that they satisfy the triangle identities.
The following calculation shows that e is a comodule morphism.

‘ tri (©) ’ v ‘ (3).(7) U\@
PN Vg any
| |

AN

To show that n is a comodule morphism, we must establish the equality

- ik

which is proved by the calculation

It remains to show that e and n satisfy the triangle identities, that is, that the
following composites are the identity:
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() M2CRcM "2 M@cM*QcM 2~ MecC=M;
(i) M*=M*®cC —2" M*®c M ®c M* —Z% C ®c M* = M* .

Recallthat M E M Qc C and M = C Q¢ M via

ﬁ@ , and ®} R i}
\ I ‘
respectively.

The calculation

gﬁ .
wi | @ (©,(13) @2),(©)
B!

™

proves (i), and (ii) is given by

é@i (g) =1M:

D
YA AD)

This completes the proof that M* is the left dual of M in Comod;(H), and
hence that Comod ;(H) is left autonomous. U
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4. Frobenius monoid example

Let R be a separable Frobenius monoid in V. In this section we prove that R ® R

is an example of a weak Hopf monoid with an invertible antipode. In the case

V' = Vect, this example is essentially the same as in [Bohm et al. 1999, Appendix].
Let R be a Frobenius monoid in V. Then R ® R becomes a comonoid via

6://\\\ and e= \U.

where, for simplicity, in this section we will adopt the simpler notation

/O\zm and Y:U,

and R ® R becomes a monoid via

,u:?\/ and n:c‘)(‘).

The comonoid structure is via the comonad generated by the adjunction R - R.
The monoid structure is the usual monoid structure (viewing R as a monoid) on
the tensor product R° ® R, where R° is the opposite monoid of R.

Proposition 4.1. If R is separable, meaning pd = 1g, then R ® R is a weak bi-
monoid. An invertible antipode v on R ® R is given by

which makes R @ R into a weak Hopf monoid.
The next three sets of calculations establish the axioms (b), (v), and (w), and

hence the first claim.
Axiom (b) is given by

i /
l AN W N
@@ W(I®c®NO®J) = /%/ =%\ Sg?\(:éﬂ'
M
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Axiom (v) is seen from the diagrams

For (w), by the naturality of the braiding and the counit property of R, each
equation in (w), that is,

is easily seen to be equal to the diagram

O O
Y1k

Thus, R® R is a weak bimonoid. We next prove that R® R is a weak Hopf monoid

with invertible antipode
/
V= C\/ .

An inverse to v is easily seen to be given by
—1 \
Vo= A,
)Q)

|
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and so the antipode is invertible. We note that (in simplified form)

/
r= 0Oy o and t=0\(.

The following calculations then prove the antipode axioms.

Qe oreiv-

utews=| |

e
Cy q/ o y
13 ®@1®v)o | sep Q} sep Q\\(C) / )
’ 3T = = e} = /\ =
e l\/ q

Thus, R ® R is a weak Hopf monoid with invertible antipode.

5. Quantum groupoids

In this section we recall the quantum categories and quantum groupoids of Day and
Street [2004], where there is a succinct definition on [page 216] in terms of “basic
data” and “Hopf basic data”. Here we give the unpacked definition of quantum
category and quantum groupoid which is essentially found in [page 221]; however,
we do make a correction.
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Our setting is a braided monoidal category V' = (', ®, I, ¢) in which the functors
AQ—:V >

with A € V, preserve coreflexive equalizers, that is, equalizers of pairs of mor-
phisms with a common left inverse.

5.1. Quantum categories. Suppose A and C are comonoids in V' and s : A — C°
and ¢ : A — C are comonoid morphisms such that the diagram

AA 2 -cecC

J
A/ ¢

N

AA 2 -ceC

commutes. Then A may be viewed as a C-bicomodule with left and right coactions
defined respectively via

= (A—">404 "2 a0C>CoA),
= (A—"=A0A—">ARC).

Recall that the tensor product P = A @c A of A with itself over C is defined as
the equalizer

7r®1
P—>AQA ARCQA.
1®y;
The diagrams
f Vl®1 1®Vr®]
P ARA CRARA CRARCRA,
101y,
1 1®7r yr®l®1
P ARA ARARC ARCR®ARC
1®y®1

may be seen to commute and therefore induce respectively a left C- and right C-
coaction on P. These coactions make P into a C-bicomodule.
The commutativity of the diagram

1019y,81

00 1Qc®1

P—>AQA

A®4 A®4 ARARARCRA

1911®y;



Weak Hopf monoids in braided monoidal categories 179

may be seen from

A AL A

and since 1 ® 1 ®1 is the equalizerof 11 Qy, ® 1l and 1®1® 1R y;, there is a
unique morphism
O:P—>ARARQP

making the diagram

P—~A®A 2 AQARQA®A
o 1®c®1

B M

It is easy to see (postcompose with the monomorphism 1 ® 1 ® 1 ® 1 ® 1) that
the morphism d; is the left coaction of the comonoid A ® A on P that makes P
into a (left) A ® A-comodule. This means that the diagrams

d

commute. In strings,

P ARAQP 5
&J/ P—>AQAQ®P
ARARP 1®1®4J ) J/e@e@l
(5®5®1J/ p

AQARARARQP 2% AQARAQAQP

commute.

5.2. The definition. We are now ready to state the definition. A quantum category
in V' consists of the data A = (A, C, s, ¢, i, 1) where A, C, s, t are as above, and
Uu:P=A®cA— Aandy:C — A are morphisms in V', called the composition
morphism and unit morphism, respectively. This data must satisfy axioms (B1)
through (B6) below.

(B1) (A, u, n) is a monoid in Bicomod(C).
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(B2) The following diagram commutes.
1Re®1

7l l®u
P—AQAQ®P CQP——CQ®A

€Rs®1

Before stating (B3), we use (B2) to show that the diagram
7,Q1®1

P AgAepr 2% ApA®A AQCRARA

1®y:®1

7 //\

Since 1 ® 1 is the equalizer of y, ® 1 ® 1 and 1 ® y; ® 1, there is a unique morphism
or : P — P ® A making the square

commutes, as seen by the calculation

P ARAQP
&L Ll@l@/x
PoA—2-A0A®A
commute. We can now state (B3).
(B3) The following diagram commutes.
P—" 4
I
PRA—L2 A4

(B4) The following diagram commutes.

—A
A®A4>l

(B5) The following diagram commutes.



Weak Hopf monoids in braided monoidal categories 181

(B6) The following diagram commutes.

A 0 A®A s®1 C®A
n ne1
// ; S NS
C A ARA
1 0 t®1 /’7;1
A AR A CRA

A consequence of these axioms is that P becomes a left A ® A-, right A-
bicomodule.
The axiom (B6) makes C into a right A-comodule via

c—1-a-254 QRA——CQRA.
We refer to A as the object-of-arrows and C as the object-of-objects.

5.3. Quantum groupoids. Suppose we have comonoid isomorphisms

~

0:C®°—=>C and v:A°—>A.

Denote by P; the left A®3-comodule P with coaction defined by

P ARARPRA 28 A AP RA - AR ARARP,

and by P, the left A®3-comodule P with coaction defined by

N —1 ;)
P~ AQAQPRA LY AQARPRA— "L AQAQAQP .

Furthermore, suppose that 6 : P, — P, is a left A%3-comodule isomorphism. We
define a quantum groupoid in V' to be a quantum category A in V" equipped with
an v, v, and @ satisfying (G1) through (G3) below.

(G1) sv =r,
(G2) tv = vs, and
(G3) the diagram3

P—>CRCRCScocec
0 1®1Q0v
P : CRCRC

3This corrects [Day and Street 2004, Section 12, page 223].
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commutes, where the morphism ¢ : P — C®3 is defined by taking either of
the equal routes

rr®l s@1®1

ARCR®A ——— (%3,

P—>AQA

1®y;

6. Weak Hopf monoids and quantum groupoids

The goal of this section is to prove the following theorem.

Theorem 6.1. There is a bijection in QV between weak bimonoids and quantum
categories with separable Frobenius object-of-objects. Also, if the weak bimonoid
is equipped with an invertible antipode, making it a weak Hopf monoid, then the
quantum category becomes a quantum groupoid.

In the case V' = Vect, it has been shown in [Brzezinski and Militaru 2002,
Proposition 5.2] that a weak Hopf monoid with invertible antipode yields a quan-
tum groupoid.

Concerning the converse, we would like to warmly thank Gabriella B6hm for
not only suggesting that it may be true, and pointing out that the V" = Vect case
appears in the PhD thesis of Imre Balint [2008a], but for also helping us with the
proof.

The theorem has an obvious corollary.

Corollary 6.2. Any Frobenius monoid in OV yields a quantum groupoid in 2V

Proof. By Proposition 4.1, every Frobenius monoid R in 2V leads to a weak Hopf
monoid with invertible antipode R ® R. Apply Theorem 6.1 to this weak Hopf
monoid with invertible antipode to get a quantum groupoid in 9V O

Now let us discuss the necessary data for the theorem. The proof involves many
string calculations, which may be found in Sections 6.1 and 6.2.

Suppose A = (A, 1) is a weak bimonoid in 2V with source morphism s and
target morphism ¢, and put C = (A, ). Our claim is that this data along with

ﬂ:Y:P—)A, n=t:C—> A

forms a quantum category in 2V. If moreover A is a weak Hopf monoid in 9V
with an invertible antipode v : A — A, then setting

v=twr:C°—>C, v=v:A°—> A, 9:(% :P— P.

\
yields a quantum groupoid in 2. The details will be proved in Section 6.1.
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For the other direction, recall from Section 3.1 that, if C is a separable Frobenius
monoid and M and N are C-comodules, we may form M Q¢ N, the tensor product
over C of M and N. Moreover, the tensor product over C is a retract of the tensor
product in V" so that

M®N——>M®N

has a retractionm : M @ N - M ®¢ N. Again, from Section 3.1, we see that we
may explicitly write im as

m= (M&N "> MeCoCoN 2 MeCoN -2 MaN).

Graphically,

M N M®cN
CcC é
M®CN M{@)}N = . (@)

Now suppose A = (A, C,s,t, u, n) is a quantum category in ¥, in which
C=(C, u,n,d,e¢)is a separable Frobenius monoid. The comonoid A is therefore
a C-bicomodule, so that:: P — A ® A has a retraction m : A® A — P. This is

such that
m = ®> and mi=1p.

If we then define a multiplication and unit for A as
p=(A®A">PL>4), 5= (I—>C—>A),

where # : I — C comes from the fact that C is a Frobenius module, then we have
the data for a weak bimonoid A. That this is actually a weak bimonoid will be
proved in Section 6.2.

Let us see that this correspondence between weak bimonoids and quantum cate-
gories with separable Frobenius object-of-objects is one-to-one. Suppose we have
a weak bimonoid A = (A, u, 1, 6, €) in 2V It becomes a quantum category in 2V
by setting

=(A,1), s:=s, t:=t, n:=t, and u:=u.
This quantum category then becomes a weak bimonoid by setting

u:=pom and n:=toy
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ot

and, as we see from the first paragraph of Section 6.1, 4 o m = u, and moreover,
the morphism 7 o # = # by axiom (2) for weak bimonoids. Thus, we have ended
up with the weak bimonoid A that we started with.

Let us now go in the other direction. Suppose that we have a quantum category
A=(A,C,s,t,u,n) with (A, d, €) a comonoid, and C = (C, uc, n¢c, dc, €c) a
separable Frobenius monoid. Then A becomes a weak bimonoid with

where, in this case,

u:=pom, wherem:A®A— P, and 75 :=norc.

We note that the source and target morphisms for the weak bimonoid are given by

s':=nos and t :=pnot.

First, we observe that C = (A, t) and P = (A ® A, um) respectively via

n m

T T
(A,f)———(C,1) and (P,1)——(A®A,im).

The first isomorphism is established in one direction by definition and in the other
by
=011 (e®1)on
=(€e®1D(n1oc since # is a C-comodule morphism
= (ec ® 1)dc by (BS)
=lc.

The second isomorphism is again established in one direction by definition and
in the other by the fact that m is a retract of ;. This weak bimonoid becomes
a quantum category by stripping off the m from u’ so that we are left with the
original u. Since ¢’ is a morphism from (A, t) to (A, 1), if we wish to consider it
as a morphism from C to A, we must precompose with 7 : (C, 1) — (A, t). This
gives ' o =noton =y, and so we are left with the original #. We have already
seen that C = (A, 1), so we are left with our original quantum category.

This establishes the bijection one-to-one correspondence between quantum cat-
egories and weak bimonoids, and moreover shows how to construct a quantum
groupoid from a weak Hopf monoid.

The remainder of this section is devoted to proving the details of the theorem.
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6.1. Weak bimonoids yield quantum categories. In this section, we prove that a
weak bimonoid in 27" yields a quantum category in 9. Suppose that A = (A, 1)
is a weak bimonoid with source and target morphisms s and ¢, respectively. Set
C = (A, 1) as usual. The morphisms s and ¢ are obviously in 27, hence so is # =1,

and
nat N (b) \(
= = = /,t

shows that u is as well. Recall that

P=(A®A,M).

The morphisms d; : P > AQ A® P and J, : P — P ® A are given by

The two calculations

and

show that these are morphisms in 2.

To see that (A, i, n) is a comonoid in Bicomod(C), notice that associativity
follows from that of ¢ viewed as a weak bimonoid, and the counit property may
be seen from property (6), that is,

u(1@0d=14 and u(sQDc 'd=14,
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and so (B1) holds. (B2) follows from one application of (12), (B3) follows from
(b), (B4) from (c), and (BS) follows from (2). The calculation

®

g\@ Ed\

verifies (B6). Thus, A = (A, C, s, t, u, ) is a quantum category in 2.

We now wish to show that a weak Hopf monoid with invertible antipode yields
a quantum groupoid. So suppose that our weak bimonoid A is equipped with an
invertible antipode v : A — A, and set

v=1t:C*°—=C, v=v:A°— A, 9(% :P— P.

The morphisms v and v are obviously morphisms in 2V, and the two calculations

and

@

a7 (16) \ @ \
S i

=
@
c
1=
e
-

show that 6 is as well.
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Lemma 6.3. An inverse for 0 is given by

Proof. Since

it is clear that ! is a morphism in 9%". That 6~! is an inverse for # may be seen
in one direction from

. ;
A% g M
| |

vV
- 1P3

—

£
e
=

where (1) is given by
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and in the other direction by

99—1:/@; @/@W ®
Qj [o ] M

et bi

for which the first step (}) holds because  is a morphism in 27" O

—~

—

That the antipode v : A° — A is a comonoid isomorphism is our assumption.
That v : C°° — C is as well may be seen from the calculation

(t®1t)ov = (t@1)otvvt

= (t ®t)ovvt by (3)
=(t®t)c(v@v)ovt by (17)
=tRt)c(v®v)c(v Qv)ot by (17)
=NV RV)(vQV)ccdt by nat

=)t/ V)V ®v)ccot by (7)
=)WV RV)(r®r)(veUv)ccot by (16)
=)V RV)(VRV)(RI1)ccot by (16)
=tRNHY RV RV)(tRt)cco by (5)
= (v ®v)cco by (5).

1 1

An inverse for v is given by the morphism v~! = rv~'v !¢, as may be seen in

one direction by the calculation

v Yo =tv W vt

=trv e by (16)
= v s by (7)
=1t

=t=1lc by (7).
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The other direction is similar.
Recall that the left A ® A-, right A-coaction J on P is defined by taking the
diagonal of the commutative square

P ARARP

oy 1®1®9,
1)

PoA—%  ARA®P®A.

We note that 0 may be written as

We must show that 0 is a left A®3-comodule isomorphism P; — P,. That is, we
must prove the commutativity of the square

P A®3®PI
0l J/1®0
P — > A% g P,

where the left A®3-coactions on P, and P, were defined using o (see Section 5.3).
The clockwise direction around the square is
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where the last step (§) is given by the calculation

\5(2) \/@(2
XX

The counterclockwise direction is

Thus, 6 is a left A®3-comodule morphism P; — P,. The inverse of § then is a
left A®3-comodule morphism P, — P;.
We now prove the properties (G1) through (G3) required of a quantum groupoid.

The calculation
i 2) i (2) i (g
R

—~

—0-0-
[E
®7
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verifies (G1), and (G2) is established by

It remains to prove (G3), that is, we must show that & makes the square

P ¢ 83 cc,cec %3
H\L l1®1®v
P ¢ C®3

commute. The clockwise direction around the square is

for which the last step holds since

tvvts = tvvs by (8)

=tvr by (15)
=ttv by (16)
=1ty by (7).

The counterclockwise direction is

%@ Zi{@@ ﬁ@@ i@@
iy B

-6

®
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el gl

\
\
\

This establishes the commutativity of the square.

6.2. Quantum categories are weak bimonoids. In this section we prove that a
quantum category with a separable Frobenius object-of-objects yields a weak bi-
monoid. Thus, suppose that A= (A, C, s, t, u, ) is a quantum category in V" with
C = (C, u,n,0,¢€) a separable Frobenius monoid. The object A is a comonoid
in ¥, and our goal here is to show that equipping it with a multiplication and unit
as

p= A®A">pPLsn)y, p=1—-"1sc—=1>n

then yields a weak bimonoid A in ¥ (and hence in 2).
Let us begin by establishing that the multiplication and unit defined here give a
monoid structure on A. Note that the morphisms

N®c1:CRUIA—->AR®cA and 1Qcn:AR®cC —> ARQc A

are the unique morphisms such that (@ 1)1 =1(#®¢c 1) : C®c A - A® A and
1®n)i=1(1®cn): A®cC - AR A, respectively. Thus, we have

nQ®cl=m(np1)y and 1®cn=m(Qn);,

so that
n®c DA=mn®1)d and (1Qcn)p=m(® n)o,

where A:A— C®cAand p:A— A®cC are the left and right unit isomorphisms,
respectively.

Also, u®c 1 and 1®¢ u are the unique morphisms such that (u®@ 1)1 =1(u®c1)
and (1 ® p)i =1(1 ®¢ w). Thus,

IQcu=m(AQ@u) and pucl=m(u® ).

Given these identities, one of the unit conditions is seen from the calculation
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The third equality uses the fact that # is a C-comodule morphism. The other unit
condition may be calculated similarly.
To establish associativity, we first prove the following lemma.

Lemma 6.4. f = %/ and E}f = \@@
AR T AT

Proof. We prove the first equality. The second is similar.

® |
X2 dh- W 4y

where the second step follows since u is a C-comodule morphism. U

The following calculation then shows that associativity holds.
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This then proves that (A, i, #) is a monoid in . We now prove the remaining

axioms for a weak bimonoid.
Axiom (b) is given by the calculation

W ooy %

Axiom (v) is established with three calculations. The first is given as follows, where
the third equality below follows from the fact that 4 is a C-comodule morphism.

WloW| ¥ \ W
Jud)ed [ % bu 8
% g @

db

definition g ;, |
of yr g /! @ &g@?@y@/ _ @)
® o 0

The second:
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The third:

@é@ @) @éwa @ \@Xf@g@)/ _ l\@jd%y@}

O/J%

To prove the final axiom (w) for a weak bimonoid, we need a lemma.

ORI © o

®
S @
Lemma 6.5. é{@{é’) = /L@ and é\@{é) - ?

oo R4

Proof. The first property of the lemma may be seen as follows. (The second
equality below holds since # is a C-comodule morphism.)

ééé

T
¢ ? 9

%&D (@) (f) (]3:6) _ (:6)
%@?@é % ¥ gﬁ I/E

The second property of the lemma is proven as

where the second equality holds again since # is a C-comodule morphism and the
last equality follows from the proof of the first part. U
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The following two calculations prove the axiom (w). In both calculations the
last equality follows from the monoid structure on A.

=) 4

1!

This completes the proof. Thus, a quantum category with a separable Frobenius
object-of-objects yields a weak bimonoid.

Appendix A. String diagrams and basic definitions

In this appendix we give a quick introduction to string diagrams in a braided
monoidal category V' = (V, ®, I, ¢) [Joyal and Street 1993] and use these to define
monoid, module, comonoid, comodule, and separable Frobenius monoid in V. The
string calculus was shown to be rigorous in [Joyal and Street 1991].
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A.1. String diagrams. Suppose that V' = (', ®, I, ¢) is a braided (strict) monoidal
category. In a string diagram, objects label edges and morphisms label nodes. For
example, if f: A® B— CQ® D ® E is a morphism in V, it is represented as

A B
f=

/|

C D E

where this diagram is meant to be read top to bottom. The identity morphism on
an object will be represented as the object itself, as in

A
A=

A special case is the object / € V', which is represented as the empty string.
If, in V", there are morphisms f: AQB— CQDRF andg: DREQF — GRH,
then they may be composed as

1 1
A9BRF 12 C@DRE®F 2 CoGoH,

which may be represented as vertical concatenation

(1®(feh= [\
/ ®
A

(where we have left off the objects). The tensor product of morphisms, say

is represented by horizontal juxtaposition:

f®g—

(again leaving off the objects).
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The braiding c4. 5 : A® B — B ® A is represented as a left-over-right crossing.
The inverse braiding is then represented as a right-over-left crossing:

A B B A
CAB_\/ C_l—\/
B = , AB = :
/ \
B A A B

Suppose A €%V has a chosen left dual A*, which we denote by A* - A (it would
be an adjunction if we were to view V" as a one object bicategory). The evaluation
and coevaluation morphisms ¢4 : A*®@ A — [ andny : I — A® A* are represented
as

A* A
CpA = and np = m .
\ L)
The triangle equalities become
A A*
A A*
* _ A { _
/\6 = and W = .
A A*

To simplify the string diagrams in what follows, we will omit the nodes from
certain morphisms (for example, multiplication and comultiplication morphisms)
or simplify them (for example, unit and counit morphisms).

A.2. Monoids and modules. A monoid A = (A, i, n) in ¥V is an object A € V'
equipped with morphisms

y:Y:A@AeA and n:T:I—)A,

called the multiplication and unit of the monoid respectively, satisfying

Y:Y:\f/and CY::\(O. (m)

If A and B are monoids, a monoid morphism f : A — B is a morphism in V'
satisfying
A A

A A
o
% A3
= and = |
‘ B
‘ B
B B
Monoids make sense in any monoidal category, however, in order that the tensor
product A ® B of monoids A, B € V" should again be a monoid, there must be a
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“switch” morphism c4 p: A® B — B ® A in ¥ given by, say, a braiding. In this
case, A ® B becomes a monoid in V" via

/
,u:\(\/ and n:c‘) T.

Suppose that A is a monoid in V. A right A-module in V" is an object M € V'
equipped with a morphism

M A

u= Y TM®®A—-> M,
M

called the action of A on M, satisfying

MAA MAA M

M
Y = \f/ and \(?4 = . (m)
M M M

Notice that we use the same label “(m)” as in the monoid axioms (and “(c)” below
for the comodule axioms). This should not cause any confusion as the labeling
of strings disambiguates a multiplication and an action; however, the labeling will
usually be left off.

If M and N are modules, a module morphism f : M — N is a morphism in V'

satisfying
MgA é; A

A.3. Comonoids and comodules. Comonoids and comodules are dual to monoids
and modules. Explicitly, a comonoid C =(C, J, €) in V' is an object C € V" equipped
with morphisms

§=/K:A—>A®A and e=(L:A—>I,

called the comultiplication and counit of the comonoid respectively, satisfying

Arhe b A A
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If C, D are comonoids, a comonoid morphism f : C — D is a morphism in V'
satisfying

B/KBi{% and Bﬁ):f‘i.

Similarly here, V" must contain a switch morphism cc.p : C® D - D® C in
order that the tensor product C ® D of comonoids C, D € ¥V should again be a
comonoid. In this case the comultiplication and counit are given by

5:A& and c= | |.

Suppose that C is a comonoid in V'. A right C-comodule in V" is an object M € V'
equipped with a morphism

M
y = /K M- MQC,

M C

called the coaction of A on M, satisfying

M M M M
/& = /<K and )%C: . (©)

MC C MC C M

If M and N are C-comodules, a comodule morphism f : M — N is a morphism
in V" satisfying

N C N C
In this paper we also make use of C-bicomodules. Suppose that M is both a left
C-comodule and a right C-comodule with coactions

y:M—->CQM and y,:M—->MQC.

If the square

M i COM

Vrl ll‘@)’r
y1®1

MIC——CRIMRC
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;g\ /C<K
MCM MCM

in string diagrams, then M is called a C-bicomodule. The diagonal of the square
will be denotedby y : M - CQ M Q C.

commutes, meaning

A 4. Frobenius monoids. A Frobenius monoid R in V' is both a monoid and a
comonoid in V" that additionally satisfies the “Frobenius condition”:

ROR— - RQR®R

1®6L ll(@ﬂ
1

ROROR '~ R®R.

In strings the Frobenius condition is displayed as

N-1A o

We will now review some basic facts about Frobenius monoids.
LemmaA.l. (1Qu)0®1)=0u=(u®1)(1®J):R®R—> RJR.
Proof. The left equality is proved by the string calculation

The right equality follows from a similar calculation. O

Define morphisms p and o by
o

p=(I-">R—"~R®R) :/K’

o= (R®R >R ->1) =Y.

Proposition A.2. The morphisms p and o respectively form the unit and counit of
an adjunction R - R.

Proof. One of the triangle identities is given as

o
0 ] o
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and the other should now be clear. O

A morphism of Frobenius monoids f : R — S is a morphism in V" that is both a
monoid and comonoid morphism.

Proposition A.3. Any morphism of Frobenius monoids f : R — S is an isomor-
phism.

Proof. Given f : R — S, define f~!: § — R by
o

e s Re RS -2 Reses %R =

It is then an easy calculation to show that f~! is the inverse of f, namely,

byt

That ff~! = 1 may be seen by viewing the previous calculation upside down. [

A similar calculation shows that

f

1 1 1 o
s soRR—1% seseRrR 2% R =

is also an inverse of f. Therefore:

Corollary A.4. For any morphism of Frobenius monoids f : R — S, we have

Definition A.5. A Frobenius monoid R is said to be separable if and only if uo=1,

that is,
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Appendix B. Proofs of the properties of s, ¢, and r

As we have noted in Section 1, the source morphism s : A — A is invariant under
rotation by 7, the target # : A — A is invariant under horizontal reflection, and the
endomorphism r is ¢ rotated by 7. This reduces the number of proofs we present,
since the others are derivable.

> >e >e >
[I=

o " | ‘

= |

O ﬁo
=
—7°
AN

é/i/\“:atm(ﬁ/i\(i_’x )

3)



>5> 12 WD 15 Hé
Xk b\ %

“

)

(6)

(N

®)
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®
i i i ©)
A
©

0

&\

¢ o 990

AT FATA

o2 (9 =4@?ﬁ2 A ee a0
- @ \ a ®/<@

M@Q@ﬂ@ﬂ@ﬂ@ﬂ@& (11)

2/
i/?d}{ﬁ}i/“//é (12)

@% [ K/\i (13)
\éé & \éé » \(gé & X (14)
|

Yy
\5@ @ \é@ @) \g@ oY
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