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Abstract. In this paper we describe the first stage of a new learning
system for object detection and recognition. For our system we propose
Boosting [5] as the underlying learning technique. This allows the use of
very diverse sets of visual features in the learning process within a com-
mon framework: Boosting — together with a weak hypotheses finder —
may choose very inhomogeneous features as most relevant for combina-
tion into a final hypothesis. As another advantage the weak hypotheses
finder may search the weak hypotheses space without explicit calculation
of all available hypotheses, reducing computation time. This contrasts
the related work of Agarwal and Roth [1] where Winnow was used as
learning algorithm and all weak hypotheses were calculated explicitly.
In our first empirical evaluation we use four types of local descriptors:
two basic ones consisting of a set of grayvalues and intensity moments
and two high level descriptors: moment invariants [8] and SIFTs [12].
The descriptors are calculated from local patches detected by an inter-
est point operator. The weak hypotheses finder selects one of the local
patches and one type of local descriptor and efficiently searches for the
most discriminative similarity threshold. This differs from other work on
Boosting for object recognition where simple rectangular hypotheses [22]
or complex classifiers [20] have been used. In relatively simple images,
where the objects are prominent, our approach yields results comparable
to the state-of-the-art [3]. But we also obtain very good results on more
complex images, where the objects are located in arbitrary positions,
poses, and scales in the images. These results indicate that our flexible
approach, which also allows the inclusion of features from segmented re-
gions and even spatial relationships, leads us a significant step towards
generic object recognition.

1 Introduction

We believe that a learning component is a necessary part of any generic ob-
ject recognition system. In this paper we investigate a principle approach for
learning objects in still images which allows the use of flexible and extendible
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sets of features for describing objects and object categories. Objects should be
recognized even if they occur at abitrary scale, shown from different perspective
views on highly textured backgrounds. Our main learning technique relies on
Boosting [5]. Boosting is a technique for combining several weak classifiers into
a final strong classifier. The weak classifiers are calculated on different weight-
ings of the training examples to emphasize different portions of the training set.
Since any classification function can potentially serve as a weak classifier we can
use classifiers based on arbitrary and inhomogeneous sets of image features. A
further advantage of Boosting is that weak classifiers may be calculated when
needed instead of calculating unnecessary hypotheses a priori.

In our learning setting, the learning algorithm needs to learn an object cat-
egory. It is provided with a set of labeled training images, where a positive
label indicates that a relevant object appears in the image. The objects are not
segmented and pose and location are unknown. As output, the learning algo-
rithm delivers a final classifier which predicts if a relevant object is present in
a new image. Having such a classifier, the localization of the object in the im-
age is straightforward. The image analysis transforms images to greyvalues and
extracts normalised regions around interest (salient) points to obtain reduced
representations of images. As an appropriate representation for the learning pro-
cedure we calculate local descriptors of these patches. The result of the training
procedure is saved as the final hypothesis which is later used for testing (see
figure 1).
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Fig. 1. Overview showing the framework for our approach for generic object recogni-
tion. The solid arrows show the training cycle, the dotted ones the testing procedure.

We describe our general learning approach in detail in section 2. In section
3, we discuss the image analysis steps, including illumination and size normali-
sation, interest point detection, and the extraction of the local descriptors. An
explicit explanation of how we calculate the weak hypotheses used by the Boost-
ing algorithm, is given in section 4. Section 5 contains a description of the setup
we used for our experiments. The results are presented and compared with other
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approaches for object recognition. We regard the present system as a first step
and further work is outlined in section 6.

1.1 Related Work

Clearly there is an extensive body of literature on object recognition (e.g. [3],
[2], [22], [24], [6], [14]). In general, these approaches use image databases which
show the object of interest at prominent scales and with only little variation in
pose. We discuss only some of the most relevant and most recent results related
to our approach.

Boosting was successfully used by Viola and Jones [22] as the ingredient for a
fast face detector. The weak hypotheses were the thresholded average brightness
of collections of up to four rectangular regions. In our approach we experiment
with much larger sets of features to be able to perform recognition of a wider
class of objects.

Schneiderman and Kanade [20] used Boosting to improve an already complex
classifier. In contrast, we are using Boosting to combine rather simple classifiers
by selecting the most discriminative features.

Agarwal and Roth [1] used Winnow as the underlying learning algorithm for
the recognition of cars from side views. For this purpose images were represented
as binary feature vectors. The bits of such a feature vector can be seen as the
outcomes of weak classifiers, one weak classifier for each position in the binary
vector. Thus for learning it is required that the outcomes of all weak classifiers
are calculated a priori. In contrast, Boosting only needs to find the few weak
classifiers which actually appear in the final classifier. This substantially speeds
up learning, if the space of weak classifiers carries a structure which allows the
efficient search for discriminative weak classifiers. A simple example is a weak
classifier which compares a real valued feature against a threshold. For Winnow,
one weak classifier needs to be calculated for each possible threshold a priori1,
whereas for Boosting the optimal threshold can be determined efficiently when
needed.

A different approach to object class recognition was presented by Fergus,
Perona, and Zisserman [3]. They used a generative probabilistic model for ob-
jects built as constellations of parts. Using an EM-type learning algorithm they
achieved very good recognition performance. In our work we have chosen a
model-free approach for flexibility. If at all, the sets of weak classifiers we use can
be seen as model classes, but with much less structure than in [3]. Furthermore,
we propose Boosting as a very different learning algorithm from EM.

Dorko and Schmid [2] introduced an approach for constructing and selecting
scale-invariant object parts. These parts are subsequently used to learn a classi-
fier. They show a robust detection under scale changes and variations in viewing
conditions, but in contrast to our approach, the objects of interest are manu-
ally pre-segmented. This dramatically reduces the complexity of distinguishing
between relevant patches on the objects and background clutter.
1 More efficient techniques for Winnow like using virtual threshold gates [13] do not

improve the situation much.
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2 Our Learning Model for Object Recognition

In our setup, a learning algorithm has to recognize objects from a certain cate-
gory in still images. For this purpose, the learning algorithm delivers a classifier
that predicts whether a given image contains an object from this category or
not. As training data, labeled images (I1, �1), . . . , (Im, �m) are provided for the
learning algorithm where �k = +1 if Ik contains a relevant object and �k = −1
if Ik contains no relevant object. Now the learning algorithm delivers a function
H : I �→ �̂ which predicts the label of image I. To calculate this classification
function H we use the classical AdaBoost algorithm [5]. AdaBoost puts weights
wk on the training images and requires the construction of a weak hypothesis h
which has some discriminative power relative to these weights, i.e.

∑

k:h(Ik)=�k

wk >
∑

k:h(Ik) �=�k

wk , (1)

such that more images are correctly classified than misclassified, relative to the
weights wk. (Such a hypothesis is called weak since it needs to satisfy only a
very weak requirement.) The process of putting weights and constructing a weak
hypothesis is iterated for several rounds t = 1, . . . , T , and the weak hypotheses
ht of each round are combined into the final hypothesis H.

In each round t the weight wk is decreased if the prediction for Ik was correct
(ht(Ik) = �k), and increased if the prediction was incorrect. Different to the
standard AdaBoost algorithm we vary the factor βt to trade off precision and
recall. We set

βt =






√
1−ε

ε ∗ η if �k = +1 and �k �= ht(Ik).√
1−ε

ε else

with ε being the error of the weak hypothesis in this round and η as an additional
weight factor to control the update of wrongly classified positive examples.

Here two general comments are in place. First, it is intuitively quite clear
that weak hypotheses with high discriminative power — with a large difference
of the sums in (1) — are preferable, and indeed this is shown in the convergence
proof of AdaBoost [5]. Second, the adaptation of the weights wk in each round
performs some sort of adaptive decorrelation of the weak hypotheses: if an image
was correctly classified in round t, then its weight is decreased and less emphasis
is put on this image in the next round, yielding quite different hypotheses ht

and ht+1.2 Thus it can be expected that the first few weak hypotheses char-
acterize the object category under consideration quite well. This is particularly
interesting when a sparse representation of the object category is needed.

Obviously AdaBoost is a very general learning technique for obtaining classi-
fication functions. To adapt it for a specific application, suitable weak hypotheses
2 In fact AdaBoost sets the weights in such a way that ht is not discriminative in

respect to the new weights. Thus ht is in some sense oblivious to the predictions of
ht+1.
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have to be constructed. For the purpose of object recognition we need to extract
suitable features from images and use these features to construct the weak hy-
potheses. Since AdaBoost is a general learning technique we are free to choose
any type of features we like, as long as we are able to provide an effective weak
hypotheses finder which returns discriminative weak hypotheses based on this
set of features. The chosen features should be able to represent the content of
images, at least in respect to the object category under consideration. Since we
may choose several types of features, we represent an image I by a set of pairs
R (I) = {(τ, v)} where τ denotes the type of a feature and v denotes a value of
this feature, typically a vector of reals. Then for AdaBoost a weak hypothesis
is constructed from the representations R (Ik), labels �k, and weights wk of the
training images.

In the next section we describe the types of features we are currently using,
although many other features could be used, too. In Section 4 we describe the
effective construction of the weak hypotheses.

3 Image Analysis and Feature Construction

We extract features from raw images, ignoring the labels used for learning. To
lower the number of the points in an image we have to attend to, we use an
interest point detector to get salient points. We evaluate three different detec-
tors, a scale invariant interest point detector, an affine invariant interest point
detector, and the SIFT interest point detector ([15], [16], [12], see section 3.1).
Using these salient points we can reduce the content of an image to a number of
points (and their surroundings) while being robust against irrelevant variations
in illumination and scale. Since the most salient points3 may not belong to the
relevant objects, we have to take a rather large number of points into account,
which implies choosing a low threshold in the interest point detectors. The num-
ber of SIFTs is reduced by a vector quantization using k-means (similarly to
Fergus et al. [3]). The pixels enclosing an interest point are refered to as a patch.
Due to different illumination conditions we normalise each patch before the local
descriptors are calculated. Representing patches through a local descriptor can
be done in different ways. We use subsampled grayvalues, intensity moments,
Moment Invariants and SIFTs here.

3.1 Interest Point Detection

There is a variety of work on interest point detection at fixed (e.g. [9,21,25,10]),
and at varying scales (e.g. [11,15,16]). Based on the evaluation of interest point
detectors by Schmid et al. [19], we decided to use the scale invariant Harris-
Laplace detector [15] and the affine invariant interest point detector [16], both
by Mikolajczyk and Schmid. In addition we use the interest point detector used
by Lowe [12] because it is strongly interrelated with SIFTs as local descriptors.
3 E.g. by measuring the entropy of the histogram in the surrounding [3] or doing a

Principal Component Analysis.
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The scale invariant detector finds interest points by calculating a scaled ver-
sion of the second moment matrix M and localizing points where the Harris
Measure H = det(M) − αtrace2(M) is above a certain threshold th. The char-
acteristic scale for each of these points is found in scale-space by calculating the
Laplacians L(x, σ) = |σ2(Lxx(x, σ) + Lyy(x, σ))| for each desired scale σ and
taking the one at which L has a maximum in an 8-neighbourhood of the point.

The affine invariant detector is also based on the second moment matrix
computed at a point which can be used to normalise a region in an affine invariant
way. The characteristic scale is again obtained by selecting the scale at which the
Laplacian has a maximum. An iterative algorithm is then used which converges
to affine invariant points by modifying the location, scale and neighbourhood of
each point.

Lowe introduced an interest point detector invariant to translation, scaling
and rotation and minimally affected by small distortions and noise [12]. He also
uses the scale-space but built with a difference of Gaussian (DoG). Additionally,
a scale pyramid achieved by bilinear interpolation is employed. Calculating the
image gradient magnitude and the orientation at each point of the scale pyramid,
salient points with characteristic scales and orientations are achieved.

3.2 Region Normalisation

To normalise the patches we have to consider illumination, scale and affine trans-
formations. For the size normalisation we have decided to use quadratic patches
with a side of l pixels. The value of l is a variable we vary in our experiments.
We extract a window of size w = 6 ∗ σI where σI is the characteristic scale of
the interest point delivered by the interest point detector. Scale normalisation is
done by smoothing and subsampling in cases of l < w and by linear interpolation
otherwise. In order to obtain affine invariant patches the values of the transfor-
mation matrix resulting from the affine invariant interest point detector are used
to normalise the window to the shape of a square, before the size normalisation.

For illumination normalisation we use Homomorphic Filtering (see e.g. [7],
chapter 4.5). The Homomorphic Filter is based on an image formation model
where the image intensity I(x, y) = i(x, y)r(x, y) is modeled as the product of
illumination i(x, y) and reflectance r(x, y). Elimination of the illumination part
leads to a normalisation. This is achieved by applying a Fast Fourier Transform
to the logarithm image ln(I). Now the reflectance component can be separated
by a high pass filter. After a back transformation and an exponentiation we get
the desired normalised patch.

3.3 Feature Extraction

To represent each patch we have to choose some local descriptors. Local descrip-
tors have been researched quite well (e.g. [4], [12], [18], [8]). We selected four
local descriptors for our patches. Our first descriptor is simply a vector of all
pixels in a patch subsampled by two. The dimension of this vector is l

4
2

which is
rather high and increases computational complexity. As a second descriptor we
use intensity moments Ma

Ipq
=

∫ ∫
ω

i(x, y)axpyq dx dy with a as the degree and
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p + q as the order, up to degree 2 and order 2. Without using the moments of
degree 0 we get a feature vector with a dimension of 10. This reduces the compu-
tational costs dramatically. With respect to the performance evaluation of local
descriptors done by Mikolajczyk and Schmid [17] we took SIFTs (see [12]) as a
third and Moment Invariants (see [8]) as a fourth choice. In this evaluation the
SIFTs outmatched the others in nearly all tests and the Moment Invariants were
in the middle ground for all aspects considered.

According to [8] we selected first and second order Moment Invariants. We
chose the first order affine Invariant and four first order affine and photometric
Invariants. Additionally we took all five second order Invariants described in [8].
Since the Invariants require two contours, the whole square patch is taken as one
contour and rectangles corresponding to one half of the patch are used as a second
contour. All four possibilities of the second contour are calculated and used to
obtain the Invariants. The dimenson of the Moment Invariants description vector
is 10.

As shown in [12] the description of the patches with SIFTs is done by mul-
tiple representations in various orientation planes. These orientation planes are
blurred and resampled to allow larger shifts in positions of the gradients. A local
descriptor with a dimension of 128 is obtained here for a circular region around
the point with a radius of 8 pixels, 8 orientation planes and sampling over a 4x4
and a 2x2 grid of locations.

4 Calculation of Weak Hypotheses

Using the features constructed in the previous section, an image is represented
by a list of features (τf , vf ), f = 1, . . . , F , where τf denotes the type of a
feature, vf denotes its value as real vector, and F is the number of extracted
features in an image. The weak hypotheses for AdaBoost are calculated from
these features. For object recognition we have chosen weak hypotheses which
indicate if certain feature values appear in images. For this a weak hypothesis h
has to select a feature type τ , its value v, and a similarity threshold θ. The
threshold θ decides if an image contains a feature value vf that is sufficiently
similar to v. The similarity between vf and v is calculated by the Mahalanobis
distance for Moment Invariants and by the Euclidean distance for SIFTs. The
weak hypotheses finder searches for the optimal weak hypothesis — given labeled
representations of the training images (R (I1), �1), . . . , (R (Im), �m) and their
weights w1, . . . , wm calculated by AdaBoost — among all possible feature values
and corresponding thresholds.

The main computational burden is the calculation of the distances between
vf and v, since they both range over all feature values that appear in the training
images.4 Given these distances which can be calculated prior to Boosting, the
remaining calculations are relatively inexpensive. Details for the weak hypotheses
finder are given in Figure 2. After sorting the optimal threshold for feature
(τk,f , vk,f ) can now be calculated in time O(m) by scanning through the weights

4 We discuss possible improvements in Section 6.
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Input: Labeled representations (R (Ik), �k),
k = 1, . . . , m, R (Ik) = {(τk,f , vk,f ) : f = 1, . . . , Fk}.
Distance functions: Let dτ (·, ·) be the distance in respect to the feature values of
type τ in the training images.
Minimal distance matrix: For all features (τk,f , vk,f ) and all images Ij calculate
the minimal distance between vk,f and features in Ij ,

dk,f,j = min
1≤g≤Fj :τj,g=τk,f

dτk,f (vk,f , vj,g) .

Sorting: For each k, f let πk,f (1), . . . , πk,f (m) be a permutation such that

dk,f,πk,f (1) ≤ · · · ≤ dk,f,πk,f (m) .

Select best weak hypothesis (Scanline): For all features (τk,f , vk,f ) calculate
over all images Ij

max
s

s∑

i=1

wπk,f (i) ∗ �πk,f (i) .

and select the feature (τi,f , vi,f ) where the maximum is achieved. Select threshold
θ: With the position s where the scanline reached a maxium sum the threshold θ is
set to

θ =
dk,f,πk,f (s) − dk,f,πk,f (s+1)

2
.

Fig. 2. Explanation of the weak hypotheses finder.

w1, . . . , wm in the order of the distances dk,f,j . Searching over all features, the
calculation of the optimal weak hypothesis takes O(Fm) time.

To give an example of the absolute computation times we used a dataset
of 150 positive and 150 negative images. Each image has an average number
of approximately 400 patches. Using SIFTs one iteration after preprocessing
requires about one minute computation time on a P4, 2.4GHz PC.

5 Experimental Setup and Results

We carried out our experiments as follows: the whole approach was first tested
on the database used by Fergus et al. [3]. After demonstrating a comparable
performance, the approach was tested on a new, more difficult database5, see
figure 5. These images contain the objects at arbitrary scales and poses. The
images also contain highly textured background. Testing on these images shows
that our approach still performs well. We have used two categories of objects,
persons (P) and bikes (B), and images containing none of these objects (N). Our
database contains 450 images of category P, 350 of B and 250 of category N.
The recognition was based on deciding presence or absence of a relevant object.
5 Available at http : //www.emt.tugraz.at/ ∼ pinz/data/



Weak Hypotheses and Boosting for Generic Object Detection 79

Preparing our data set we randomly chose a number of images, half belonging
to the object category we want to learn and half not. From each of these two
piles we take one third of the images as a set of images for testing the achieved
model. The performance was measured with the receiver-operating characteristic
(ROC) corresponding error rate. We tested the images containing the object (e.g.
category B) against non-object images from the database (e.g. categories P and
N). Our training set contains 100 positive and 100 negative images. The tests
are carried out on 100 new images, half belonging to the learned class and half
not. Each experiment was done using just one type of local descriptor.

Figure 3(a) shows the recall-precision curve (RPC) of our approach (obtained
by varying η), the approach of Fergus et al. [3] and the one of Agarwal and Roth
[1], trained on the dataset used by Fergus et al. [3]6. Our approach performs
better than the one of Agarwal and Roth but slightly worse than the approach
of Fergus et al.

Table 1 shows the results of our approach (using the affine invariant interest
point detection and Moment Invariants) compared with the ones of Fergus et
al. and other methods [23], [24], [1]. While they use a kind of scale and viewing
direction normalisation (see [3]), we work on the original images. Our results are
almost as good as the results of Fergus et al. for the motorbikes dataset. For the
other datasets our error rate is somewhat higher than the one of Fergus et al.,
but mostly lower than the error rate of the other methods.

Table 1. The table gives the ROC equal error rates on a number of datasets from
the database used by Fergus et al. [3]. Our results (using the affine invariant interest
point detection and Moment Invariants) are compared with the results of the approach
of Fergus et al. and other methods [23], [24], [1]. The error rates of our algorithm are
between the other approaches and the ones of Fergus et al. in all cases except for the
faces where the algorithm of Weber et al. [24] is also slightly better.

Dataset Ours Fergus et al. [3] Others Ref.

Motorbikes 92.2 92.5 84 [23]
Airplanes 88.9 90.2 68 [23]

Faces 93.5 96.4 94 [24]
Cars(Side) 83.0 88.5 79 [1]

This comparison shows that our approach performs well on the Fergus et
al. database. We proceed with experiments on our own dataset and show some
effects of parameter tuning7. Figure 3(b) shows the influence of the additional
weighting of right positive examples in the Boosting algorithm (η). We can see
that with a factor η smaller than 1.8, the recall increases faster than the precision

6 Available at http : //www.robots.ox.ac.uk/ ∼ vgg/data/
7 Parametes not given in these tests are set to η = 1.8, T = 50, l = 16px, th =

30000, smallest scale is skipped. Depending on textured/homogenous background,
the number of interest points detected in an image varies between 50 and 1000.
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Fig. 3. The curves in (a) and (b) are obtained by varying the factor η. In (a) the
diagram shows the recall-precision curve for [3], [1] and our approach on the cars (side)
dataset. Our approach is superior to the one of Agarwal and Roth but slightly worse
than the one of Fergus et al. The diagram (b) shows the influence of an additional
factor η for the weights of correctly positive classified examples. The recall increases
faster than the precision drops until a factor of 1.8.

drops. Then both curves have nearly the same (but inverse) gradient up to a
factor of 3. For η > 3 the precision decreases rapidly with no relevant gain of
recall.

Table 2 presents the performance of the Moment Invarants as local descriptor,
compared with our low level descriptors (using the affine invariant interest point
detector). Moment Invariants delivered the best results but the other low level
descriptors did not perform badly, either. This behaviour might be explained by
the fact that the extracted regions are already normalised against the same set
of transformations as the Moment Invariants.

Table 2. The table shows the results we reached with the three different kinds of
local descriptors. We used an additional weight factor η = 1.7 here. Moment Invariants
delivered the best results.

Local Descriptor recall precision

Moment Invariants 0.88 0.61
Intensity Moments 0.70 0.57

Subsampled Grayvalues 0.82 0.62

In table 3 the results of our approach using the scale invariant interest point
detector compared with the use of the affine invariant interest point detector are
shown. We also vary the additional weight for right positive classified examples
η. The affine invariant interest point detector achieves better results for the recall
but precision is higher when we use the scale invariant version of the interest
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Fig. 4. In (a) the recall-precision curve of our approach with Moment Invariants and the
affine invariant interest point detection, and the recall-precision curve of our approach
using SIFTs for category bike are shown. (b) shows the recall-precision curves with the
same methods for the category person.

point detector. This is to be expected since the affine invariant detector allows
for more variation in the image, which implies higher recall but less precision.

Table 3. The table shows the results of our approach using the scale invariant interest
point detector compared with using the affine invariant interest point detector varying
the additional weight for right positive classified examples η.

η recall (scale inv.) precision (scale inv.) recall (affine inv.) precision (affine inv.)

1.7 0.78 0.70 0.88 0.61
1.9 0.79 0.64 0.92 0.59
2.1 0.82 0.62 0.94 0.57

We skipped the smallest scale in our experiments because experiments show
that this reduction of number of points does not have relevant influence to the
error rates. Again, using the parameters that performed best, figure 4(a) shows
an example of a recall-precision curve (RPC) of our approach trained on the
bike dataset from our image database with Moment Invariants and the affine
invariant interest point detection compared with our approach using SIFTs.
Using the same methods we obtain the recall-precision curves (RPC) shown in
figure 4(b) for the category person.

For directly comparing the results reached using the Moment Invariants with
the affine invariant interest point detector or using SIFTs, the ROC equal error
rates on various datasets are shown in table 4. As seen here the SIFTs perform
better on our database. Tested on a category of the database from Fergus et
al. one can see that the Moment Invariants perform better in that case.
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Table 4. This table shows a comparison of the ROC equal error rates reached with
the two high level features. On our database the SIFTs perform better, but on the
database of Fergus et al. the Moment Invariants reach the better error rate.

Dataset Moment Invariants SIFTs

Airplanes 88.9 80.5
Bikes 76.5 86.5

Persons 68.7 80.8

6 Discussion and Outlook

In conclusion, we have presented a novel approach for the detection and recog-
nition of object categories in still images. Our system uses several steps of image
analysis and feature extraction, which have been previously described, but suc-
ceeds on rather complex images with a lot of background structure. Objects are
shown in substantially different poses and scales, and in many of the images the
objects (bikes or persons) cover only a small portion of the whole image. The
main contribution of the paper, however, lies in the new concept of learning.
We use Boosting as the underlying learning technique and combine it with a
weak hypothesis finder. In addition to several other advantages of this approach,
which have already been mentioned, we want to emphasize that this approach
allows the formation of very diverse visual features into a final hypothesis. We
think that this capability is the main reason for the good experimental results on
our complex database. Furthermore, experimental comparison on the database
used by Fergus et al. [3] shows that our approach performs similarly well to
state-of-the-art object categorization on simpler images.

We are currently investigating extensions of our approach in several direc-
tions. Maybe the most obvious is the addition of more features to our image
analysis. This includes not only other local descriptors like differential invari-
ants [12], but also regional features8 and geometric features9. To reduce the
complexity of our approach we are considering a reduction of the number of
features by clustering methods.

As the next step we will use spatial relations between features to improve
the accuracy of our object detector. To handle the complexity of many possible
relations between features, we will use the features constructed in our current
approach (with parameters set for high recall) as starting points. Boosting will
again be the underlying method for learning object representations as spatial
combinations of features. This will allow the construction of weak hypotheses
for discriminative spatial relations.

Acknowledgements. This work was supported by the European project LAVA
(IST-2001-34405) and by the Austrian Science Foundation (FWF, project S9103-
8 Regional features describe regions found by appearance based clustering.
9 A geometric feature describes the appearance of geometric shapes, e.g. ellipses, in

images.
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