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Weak hysteresis in a simplified model of the L-H transition

M. A. Malkov and P. H. Diamond
Center for Astrophysics and Space Sciences and Department of Physics, University of California,
San Diego, La Jolla, California 92093-0424, USA

!Received 19 September 2008; accepted 9 December 2008; published online 20 January 2009"

A simple one-field L-H transition model is studied in detail, analytically and numerically. The

dynamical system consists of three equations coupling the drift wave turbulence level, zonal flow

speed, and the pressure gradient. The fourth component, i.e., the mean shear velocity, is slaved to the

pressure gradient. Bursting behavior, characteristic for predator-prey models of the drift wave -

zonal flow interaction, is recovered near the transition to the quiescent H-mode !QH" and occurs as

strongly nonlinear relaxation oscillations. The latter, in turn, arise as a result of Hopf bifurcation

!limit cycle" of an intermediate fixed point !between the L- and H-modes". The system is shown to

remain at the QH-mode fixed point even after the heating rate is decreased below the bifurcation

point !i.e., hysteresis, subcritical bifurcation", but the basin of attraction of the QH-mode shrinks

rapidly with decreasing power. This suggests that the hysteresis in the H-L transition may be less

than that expected from S-curve models. Nevertheless, it is demonstrated that by shaping the heating

rate temporal profile, one can reduce the average power required for the transition to the

QH-mode. © 2009 American Institute of Physics. #DOI: 10.1063/1.3062834$

I. INTRODUCTION

The high confinement regime !H-mode" discovered by

the ASDEX team
1

a quarter-century ago is widely regarded

as a fundamental breakthrough in magnetic confinement

physics. Yet, the transition mechanism from the low !L" to

high !H" confinement mode is not fully understood.
2–6

There

are transport models, which are instrumental in furthering

our understanding of the transition. However, because of the

complexity of transition phenomenon, they tend to be in-

creasingly, if not excessively, detailed.
7–13

Therefore, there is

high demand for a simple, illustrative theoretical model with

a minimal number of critical quantities responsible for the

transition. Such models usually yield or encapsulate basic

insight into complicated phenomena. Some obvious practical

questions are: Does an observed transition occur at the mini-

mum power or it can be reduced by adjusting other param-

eters, or can the power be reduced after the transition to

H-mode? Understanding of the character of bifurcation !e.g.,

sub- versus supercritical, etc." and hysteresis !if present" is

required for the answer. In the quest of such simple physical

models, there are two avenues to explore.

One avenue is to develop a preferably one-dimensional

!1-D" evolutionary model with a minimal set of variables.

Since such models are often still complicated, one is forced

to turn to steady state solutions. Also, some of the variables

are not described self-consistently or obtained only numeri-

cally. All these shortcomings obscure the essence of L-H

transition phenomenon. Under these circumstances a second,

complementary approach based on zero-dimensional !0-D;

i.e., spatially averaged, Galerkin-type" models becomes use-

ful !see, e.g., Refs. 14 and 15". The 0-D models may be

reduced by a projection technique from the 1-D continuous

media models or from their more general prototypes. The

advantage of 0-D models is that the dynamics of L-H

transition can be studied using powerful tools of the bifurca-

tion theory of dynamical systems. It is this second approach

that this paper pursues.

The most likely mechanism behind the L-H transition is

an E!B shearing of turbulent eddies !drift wave, DW" that

actually drive the transport.
16–24

The E!B shear flow comes

in two flavors. One flavor is the mean flow in which the

radial electric field Er and thus the plasma poloidal velocity

change smoothly in r and are nearly stationary. The other is

the zonal flow !ZF" with a radially irregular behavior varying

slowly in time. An important difference between the two is

that the mean flow does not need to be sustained by DW

turbulence and thus can shear the DWs to zero, while the

second one !ZF" is fed on the DW turbulence and decays via

collisions if the DWs vanish. This suggests that both the

mean flow and the zonal flow must act in concert with each

other, suppressing the DW turbulence and transport. Clearly,

the primary driver of the DW turbulence, i.e., the pressure or

density gradient, must also be included to close the feedback

loop. Such a line of arguments led the authors of Refs. 25

and 26 to develop a minimalistic 0-D model where the DW

turbulence, both the mean and zonal flows, and the driving

pressure gradient are included. A slowly increasing heat

source powers the pressure gradient to let the system evolve

from the L-mode through a transient oscillatory behavior

into the quiescent H-mode. In the latter regime, neither DW

nor ZF survives and only the mean flow persists, supporting

an enhanced pressure gradient. Thus, an intermediate, oscil-

latory mode has been reproduced and its possible relation to

the dithering observed in many experiments
27

prior to the

establishing of H-mode has been discussed. Note that a third-

order model that does not distinguish between the zonal and

the mean flows was suggested earlier in Ref. 28.

The purpose of the present paper is to study all possible
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stationary regimes including the intermediate mode, their

stability, and transition dynamics. Specifically, the following

questions will be addressed:

!1" stability of stationary regimes, their classification de-

pending on physical parameters;

!2" classification of transitions !character of bifurcations,

role of initial conditions", critical role of the zonal flow;

!3" power up/down asymmetry, the depth of hysteresis;

!4" structure and dimensionality of the phase space where

an essential dynamics occur !center manifolds";
!5" role and physical cause of nonlinear oscillations preced-

ing the transition !dithering", extent of the dithering

above the transition threshold.

It should be noted that the L-H transition through the

dithering phase is still difficult to describe within the con-

tinuous media type models mentioned above.
29–31

Although

those models do reproduce bursting, the pressure gradient

has been included, only not self-consistently !as opposed to

the present 0-D model", in the form of a fixed DW growth

rate. The bursting results from the interplay between the DW

and ZF turbulence !predator-prey type dynamics". The fixed

DW growth rate means that the “prey’s” living resources are

fixed. It is thus logical to start with an extension of a 0-D

model to a higher level by describing the transition phase

with a self-consistent evolution of the mean pressure gradi-

ent and the mean flow.
25,26

In the next section, we first demonstrate the necessity of

such an extension by considering limitations of a simplest

two ordinary differential equation !2-ODE" model with a

fixed pressure gradient !DW instability growth rate". We also

develop a more complicated 3-ODE model introduced in

Refs. 25 and 26 by analyzing its fixed points and other in-

variant manifolds. In Sec. III we consider the stability of

those invariant manifolds setting a stage for studying various

transition scenarios in Sec. IV. We summarize and discuss

the results in Sec. V.

II. ZERO-DIMENSIONAL MODELS
FOR LH TRANSITIONS

A. A simple 2-ODE Lotka–Volterra model

There exists an extensive literature on ODE models of

the L-H transition. Most of them are 3-ODE autonomous or

time-dependent systems !typically with a variable heating

rate". One such system will also be the subject of the present

paper. However, to make contact with the fundamental ideas

that are behind the low-dimensional dynamical systems, we

start with a simplest 2-ODE model. One of the first such

models was suggested in Ref. 32 !see also Ref. 33". It de-

scribes the evolution of temperature fluctuations and the

shear flow. It can be transformed into the following dimen-

sionless systems with only one parameter:

d"

dt
= !T − #"" , !1"

dT

dt
= !1 − ""T . !2"

Here the variable " represents a square of properly normal-

ized shearing rate and T represents the square of temperature

fluctuation level. The growth rate of the thermal instability is

normalized to unity !as seen from the second equation",
while the viscous damping of the flow is represented by the

only parameter of the system: #. The system of Eqs. !1" and

!2" is a familiar Lotka–Volterra system emphasizing ecologi-

cal resemblance of many popular L-H transition models of a

“predator-prey” family. Here the shearing rate " is a preda-

tor with a natural death rate # living on the prey T with a

unity reproduction rate. The system can be written in the

form

d"

dT
=

1 − #/T

1/" − 1
, !3"

where it shows an obvious first integral

T + " − ln!"T#" = const. !4"

This reveals the phase portrait of the system completely.

There is a hyperbolic singular point at "=T=0 !L-mode"
with one stable !T=0,"$0" and one unstable !"=0,

T$0" invariant manifold. The second singular point is a cen-

ter at "=1, T=# !H-mode", so that the rest of the phase

plane !" ,T$0" is covered by closed orbits around this

point. Obviously, the system by itself does not make any L-H

or H-L transition for that reason. Note that since Eqs. !1" and

!2" possess the above integral, they can easily be rewritten

in a Hamiltonian form, using the variables %=ln " and

&=ln T with the Hamiltonian H=exp!%"+exp!&"−%−#&.
34

However, we use a different formalism below.

In general, the dynamics of this system is a trivial rota-

tion around the H-mode, which can be most efficiently de-

scribed by transforming Eqs. !1" and !2" to the Poincaré nor-

mal form. This can be conveniently done by introducing a

complex variable z instead of " and T. The new variable z

characterizes the deviation from the H-mode singular point:

z = %#!" − 1" + i!T − #" . !5"

For z, we have the following equation that can be derived

from the system !1" and !2":

dz

dt
= − i%#z − '!z2

− z̄2" . !6"

Here, z̄ denotes a complex conjugate !c.c." of z and '= i /4

+1 /4%#.. The first step to the Poincaré normal form is to

remove the quadratic terms from Eq. !6" by transforming

z!w:

z = w −

i'

%#
&w2 +

1

3
w̄2' . !7"

Using this new variable, Eq. !6" can be rewritten as

dw

dt
= − i%#w +

2i'

%#
(w2&'w +

'̄

3
w̄' + c.c.) . !8"

Transforming to yet a new variable w!u, introduced by
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w = u +
1

#
& *'*2

2
ū3 +

'2

3
*u*2ū − '2u3' , !9"

we finally obtain the Poincaré normal form

du

dt
= − i%#u&1 −

1 + #

24#2
*u*2' . !10"

Since *u*=const is an integral of motion, the system dynam-

ics is a simple circular motion around the origin u=0 with

the following angular frequency:

( = %#&1 −

1 + #

24#2
*u*2' . !11"

With increasing amplitude *u*, the frequency decreases to

zero when the trajectory reaches the second fixed point

!L-mode".
As we have already mentioned, this system does not

intrinsically describe any L-H transition, but merely the os-

cillations around the H-mode fixed point, which in the limit

of (→0 become strongly nonlinear reaching the L-mode

fixed point. Of course, since this system is structurally un-

stable, it may be easily modified in such a way that the center

at the H-mode will become a stable or unstable focus and

both fixed points may become connected !or a limit cycle

may be formed". However, the question arises as to whether

the description of the L-H transition phenomenon by modi-

fying a structurally unstable dynamical system is justified

and whether a structurally stable dynamical system with an

intrinsic transition is preferable. We believe that the last

question should be answered in the affirmative. The sponta-

neous character of L-H transitions has been repeatedly ob-

served in experiments.
18

There are a number of models in the literature that ex-

hibit a spontaneous L-H transition when parameters are set

close to their critical values. These models are more compli-

cated than the system considered above, yet they allow a

comprehensive analysis. They have more variables !typically

3-ODE systems and more; see, e.g., Refs. 14, 28, 31, and

35–39" and often a large number of parameters. Clearly, the

model selection criteria, apart from the sound physics behind

them, should be based on their capability to reproduce key

experimental facts such as spontaneous L-H transitions, char-

acteristic intermediate regimes !such as dithering", or hyster-

esis. In the next section we consider one recent model of this

kind.

B. 3-ODE system

The L-H transition model formulated in Refs. 25 and 26

operates on the following four quantities: !i" drift wave tur-

bulence level E, !ii" drift wave driving temperature gradient

N, !iii" zonal flow velocity VZF, and !iv" mean flow shear V.

Note that the latter quantity is slaved to the temperature gra-

dient, V=dN2, where d is a constant, so that the system is

actually of the third order !3-ODE". The dynamical system

was originally introduced in the following form
25

dE

d)
= !N − a1E − a2d2N4

− a3VZF
2 "E , !12"

dVZF

d)
= & b1E

1 + b2d2N4
− b3'VZF, !13"

dN

d)
= − !c1E + c2"N + q!)" . !14"

Apart from the driver q!)" in Eq. !14" !heat source", which

will play a role of the main control parameter in our studies

of different equilibria of the system, this system has as many

as nine other parameters; e.g., ai, bi, ci, and d. These param-

eters and various terms have the following meanings. The

first term on the right hand side !r.h.s." of Eq. !12" represents

the drift wave instability driven by the pressure gradient. The

instability has a scaled growth rate N. The other terms are:

nonlinear saturation with the coefficient a1 and suppression

of DW by the mean and zonal flow !coefficients a2 and a3".
The first term on the r.h.s. of Eq. !13" describes the ZF gen-

eration by the Reynolds stress in the DW turbulence !b1,

with the suppression effect from the mean flow b2". The

physical meaning of this suppression effect is the refraction

of the DWs in a sheared mean flow, which is also present in

Eq. !12". The second term on the r.h.s. of Eq. !13" corre-

sponds to the linear !collisional" damping of ZF !b3". Equa-

tion !14" describes the relaxation of the pressure gradient N

due to the turbulent diffusion !the first term on the r.h.s.,

coefficient c1" and the neoclassical transport c2.

A detailed explanation and derivation of various terms in

Eqs. !12"–!14" can be found in Ref. 40 !see also Refs. 3, 6,

34, and 38 for more recent and more general discussions".
We merely note here that Bian and Garcia

34
associate the

turbulent transport term with the convective transport of the

pressure. Since both interpretations result in the same !qua-

dratic" dependence of the transport term on the fluctuation

amplitude, most probably they are indistinguishable within

0-D models. A related question is that of whether the electric

field shear reduction of particle and heat fluxes can be ad-

equately accounted for within such models. Since the reduc-

tion leads to the formation of transport barriers, it can hardly

be included into these models without re-deriving them from

nonlocal standpoint.

To start, we note that the number of parameters in Eqs.

!12"–!14" can be reduced to five by rescaling the variables

and time. First of all, one can set d=1 since d can be ab-

sorbed into a2 and b2. After introducing the following res-

caled variables, and time t,

N = a2
1/3

N, E = a1a2
1/3

E, U = a2
1/3a3VZF

2 , t = a2
1/3) ,

along with a new set of parameters

* =
2b1

a1a2
2/3

, + =
c2

a2
1/3

, , =
c1

a1a2
2/3

,

- =
b2

a2
4/3

, & =
b3

b1

a1a2
1/3,

the system of equations !12"–!14" can be rewritten as

dE

dt
= !N − N4

− E − U"E , !15"

012504-3 Weak hysteresis in a simplified model… Phys. Plasmas 16, 012504 !2009"



dU

dt
= *& E

1 + -N4
− &'U , !16"

dN

dt
= q!t" − !+ + ,E"N . !17"

It is worthwhile to summarize here the important features of

this dynamical system. Note that some of them were identi-

fied in Refs. 25 and 26. Depending on the parameters, the

system given by Eqs. !15"–!17" has up to the four fixed

points, as illustrated in Fig. 1 using a N−E projection. With

increasing q, the system typically !but not for all values of

other parameters and initial conditions" evolves from what

we call an L-mode to a transient !intermediate" oscillatory

T-mode, then to H-mode and finally to a quiescent H-mode

!or QH-mode".

• the L-mode is characterized by

U = 0,

!18"
E = EL + NL!1 − NL

3" $ 0,

where NL is the smaller of the two positive roots of the

equation

N2!1 − N3" +
+

,
N =

q

,
. !19"

Here, q is assumed to be constant or slowly varying in

time.

• The transient mode fixed point !T-mode" can be conve-

niently described by the following sequence of relations:

ET = &!1 + -NT
4" , !20"

UT = NT!1 − NT
3" − ET, !21"

NT =
q

+ + ,ET

. !22"

• The H-mode is given by EH+NH!1−NH
3 ", where NH is the

larger root of Eq. !19".
• Quiescent H-mode !QH-mode" establishes when the heat

balance curve #Eq. !22"$ intersects the N axis !E=U=0".
Obviously, NQH=q /+ at this fixed point #Eqs. !15" and

!16"$.

Note that the L- and H-modes share the property U=0,

but E#0. The T-mode is characterized by both E#0 and

U#0, while in the QH-mode, U=E=0. For both H- and

QH-modes to exist, it is necessary that NQH=q /+$1, which

is also the stability condition for the QH-mode.

Figure 1 shows the arrangement of the fixed points for

one particular set of parameters when all the fixed points of

the system exist. Clearly, some of the fixed points may dis-

appear while parameters change. For example, the H-mode

obviously fails to exist when QH-mode on the N axis goes

below unity. As we noted, for the H-mode to exist, it is

necessary that q /+$1. Note that if the latter is not the case,

then also the QH mode is unstable, according to Eq. !15". On

the other hand, for H- and L-modes to coexist, the heating

parameter should not exceed a limit qmax, 1.q /+.qmax /+.

It can be obtained by assuming that the curves given by Eqs.

!21" and !22" touch each other and the L- and H-modes

merge into one. The value of pressure gradient at this point is

determined by

N =
2

3,
&%+2 +

15

4
,q − +' .

The exact analytic expression for qmax is cumbersome and

we do not reproduce it here. A simple upper bound to q,

which can be obtained from the requirement N.1, is

q. !4++3," /5.

As it was already mentioned, we consider q as the main

control parameter and we generally follow the bifurcation

sequence as q increases. Note that Refs. 25 and 26 studied

the bifurcation of the system given by Eqs. !12"–!14" by

making q!t" slowly growing in time from zero to some final

value sufficient to reach the QH-mode in each run, so that all

the transitions occur consequently on much shorter time

scales. Here we study the reduced system given by Eqs.

!15"–!17" using two different approaches. The first approach

is to treat q as a fixed control parameter and look for the

fixed points and limit cycles that may branch off from some

of these fixed points. In particular, we study the Hopf bifur-

cation of the T-mode equilibrium into a limit cycle on a

center manifold of the system. The center manifold here is a

two-dimensional attractor of our three-dimensional system

formed by eigenspace spanned on the two purely imaginary

complex conjugated eigenvalues. The third eigenvalue has

Re /.0, which ensures local attraction to the center mani-

fold. We also consider stability of equilibria and the transi-

tion from the limit cycle to a next equilibrium. This eluci-

dates conditions under which the transitions to higher modes

0 0.5 1
N

0

0.5

E

L

T

H

QH

FIG. 1. Singular points of the dynamical system given by Eqs. !15"–!17".
The equilibria are shown as the intersection points of the three curves,

each of which nils one of the three right hand sides of the system in the

U=0 projection. The curve connecting the origin with N=1 is given by

E=N!1−N3", the rising curve is given by E=&!1+-N4", while the falling

curve is from the heat balance N=q!++,E"−1. The latter also intersects the

E=0 axis at the stable equilibrium point QH !see text". The parameters are

*=19, &=0.12, +=0.55, ,=0.6, -=1.7, and q=0.58.
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such as, e.g., L→T, T→H, or T→QH occur. Special atten-

tion is paid to the reverse transition and to the question of

hysteresis.

The second approach aims at testing the possibility of

reaching one of the H-mode fixed points at lower values of

average power input ,q!t"- by choosing properly modulated

heating rate q!t", which makes the fixed point a stable attrac-

tor. This resembles the stabilization of an inverted pendulum

by applying an oscillating force. A ramification of this ap-

proach is to study power up/down asymmetry in order to

better understand the character of hysteresis.

III. STABILITY OF THE FIXED POINTS

The first simple result about the stability of the fixed

points described in the previous section relates to the U=0

!no ZF" manifold. The fixed points are the L- and H-modes,

and the QH-mode which, however, also requires E=0 !no

DWs". The stability of the QH-mode is obviously guaranteed

by the condition N$1, or by

q/+ $ 1. !23"

The sufficient condition for the stability of the U=0 mani-

fold in general follows from the consideration of a function

V!N" = N − !1 + -&"N4
− & !24"

#see Eq. !16"$. In particular, if V!Nmax".0, where

Nmax = 4−1/3!1 + -&"−1/3

is the maximum point of V!N", the manifold U=0 is stable.

The stability condition can thus be written as

&!1 + -&"1/3 $ 3/44/3. !25"

Note that the stability condition of the U=0 manifold is in-

dependent of the control parameter q. The manifold U=0 is

a center manifold of this system, and when the stability con-

dition V!N".0 is fulfilled, the dynamics is limited to this

manifold and remains essentially two dimensional.

Having established the criterion for the system to remain

on the U=0 manifold, we turn to the conditions under which

the fixed points L and H may become unstable, under the

constraint U=0; i.e., if the inequality !25" holds. Since both

the L and H fixed points are determined by Eq. !19", we can

use the same equations for L, H modes and write

E = EL,H + E1,

N = NL,H + N1.

Next, we linearize the system given by Eqs. !15" and !17"
around these fixed points assuming U+0. The result can be

written as one second-order equation for, e.g., N1:

d2N1

dt2
+ !EL,H + + + ,EL,H"N1 − EL,H

!#,NL,H!4NL,H
3

− 1" − + − ,EL,H$N1 = 0. !26"

The instability condition can be obtained in a straightforward

way and reads

NL,H!5NL,H
3

− 2" $ +/, .

Now, after differentiating the left hand side !l.h.s." of Eq.

!19" with respect to N, the above inequality becomes equiva-

lent to the condition of choosing the larger root of Eq. !19";
i.e., the one to the right of the maximum point of its l.h.s.

Therefore, the instability condition can be fulfilled only for

the H-mode. We thus draw the following conclusions about

the routs to the improved confinement modes:

• Since the L-mode is stable on the U=0 manifold, any tran-

sition from L-mode to a higher confinement mode occurs

by leaving the U=0 manifold; i.e., the zonal flow must be

generated.

• Since the H-mode is a saddle point on the U=0 plane, the

reverse !H→L" transition can occur on U=0 manifold.

These simple properties of the transition dynamics will

be illustrated below.

Next, we consider the stability of the transient fixed

point given by Eqs. !20"–!22". As opposed to the previous

case the center manifold associated with this singular point

of the system is not limited to any of the three coordinate

planes in the !E ,U ,N" space. Nevertheless, as we shall see,

there is one essentially negative eigenvalue at this fixed point

so that there is a local manifold transversal to the corre-

sponding eigenvector, to which all the trajectories rapidly

attract and the further dynamics occur on this two-

dimensional manifold. To study stability in this situation we

linearize Eqs. !15"–!17" around the fixed point #which is

given by Eqs. !20"–!22"$ by representing E ,U and N as

follows:

E = ET + E1, U = UT + U1, N = NT + N1.

Here, E1, U1, and N1 are assumed to be small. Rescaling time

as t!=ETt for convenience, we obtain the following system

of equations:

dE1

dt!
= − E1 − U1 − 0N1,

dU1

dt!
= #E1 − 'N1, !27"

dN1

dt!
= − 1N1 − 2E1.

In addition, we have introduced the following notations:

# =
*UT

ET!1 + -NT
4"

, ' =
4*-UTNT

3

!1 + -NT
4"2

,

2 = ,NT/ET, 1 = , + +/ET 0 = 4NT
3

− 1.

The equation for the eigenvalues / takes the form

/3 + !1 + 1"/2 + !1 + # − 20"/ + 1# + 2' = 0. !28"

Of the three roots of this equation, one is real and negative

for the values of parameters of interest. We denote it by

/3.0, while the two remaining /1,2 are complex and

/1= /̄2. As the control parameter q increases !with all the
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other parameters fixed", the real parts Re /1,2 cross zero at

some critical value of q=q
*
, and the system undergoes Hopf

bifurcation to a limit cycle whose amplitude grows with

q−q
*

$0. For q.q
*

the fixed point is a stable focus.

To see how the loss of stability occurs at q=q
*
, it is

convenient to separate the stable eigenvalue /3 from /1,2.

For, we use the following substitution:

/ =
2

%3
%1

3
!1 − 12

− 1" + # − 023 −

1 + 1

3
, !29"

and work with 3 rather than with /. For 3, we obtain the

following equation,

433 + 33 + w = 0, !30"

where we have denoted

w =
213 + 3!1 + 1"!302 − 1" + 9#!21 − 1" + 272' + 2

6%3# 1

3 !1 − 12
− 1" + # − 02$3/2

.

!31"

From Eq. !30", we can express one of the roots 33 as

33 = − sinh! 1

3 sinh−1 w" ,

so that /3 will be given by Eq. !29" with 3=33. The other

two roots can thus be expressed through 33 using the qua-

dratic equation, which can be derived from Eq. !30":

32 + 333 + 33
2 +

3

4 = 0.

The two remaining roots are

31,2 = −

1

2
33 4

i%3

2
%1 + 33

2.

Using Eq. !29" again, we obtain from the last equation the

following criterion of instability of the transient fixed point:

%3%1

3 !1 − 12
− 1" + # − 02 sinh! 1

3sinh−1 w" $ 1 + 1.

!32"

Although the last condition is a general one, it is somewhat

impractical due to the large number of parameters involved.

However, in terms of the main control parameter q, it is

locally equivalent to q$q
*
.

IV. TRANSITION DYNAMICS

The location of singular points !Fig. 1" along with their

stability analysis presented in the previous section helps to

understand the transition dynamics. For sufficiently low q,

only the L-mode is stable, which lies in the plane U=0 and is

characterized by a finite level of the drift turbulence given by

Eq. !18". As the control parameter q grows, so that E exceeds

the critical level of the zonal flow stability

EL 5 &!1 + -NL
4" ,

the zonal flow is generated. The only stable point for this set

of parameters is the transient oscillatory fixed point !stable

focus", which, however is situated outside of the U=0 mani-

fold #see Eqs. !20"–!22"$ so that the system leaves the U=0

manifold and moves to the transient fixed point. However,

the dynamics is richer than that. In particular, as it is seen

from the previous section, the H-mode corresponds to a

saddle point on the U=0 plane so that it contains both stable

and unstable invariant manifolds. The significance of this is

demonstrated in Fig. 2, where the system undergoes a series

of transitions for the fixed values of parameters. The solution

starts from an overpowered state near H-mode which is un-

stable along with the QH-mode, since q.qcrit. As we just

mentioned, however, the H-mode fixed point has a stable

manifold, so some trajectories are attracted to the H-mode,

and stay there for a very long time !t.400, for the particular

trajectory shown in Fig. 2". The system then makes a quick

transition to the L-mode. Although the latter is also unstable

for the given parameters, the above argument about the

stable manifold of the saddle point applies as well so that the

system stays in the L-mode for another 150 units of time.

Thus, both H- and L-modes constitute distinct metastable

states for the given values of parameters. Eventually, the

system transits to the oscillatory stable state, which is the

only stable fixed point in this case. Note that metastable

states have been observed earlier by Hu and Horton
14

in

11-ODE system.

The further evolution of the system is possible only

when parameters are changed. The most natural such change

is to increase q. As soon as it crosses the threshold q=q
*
, the

T-state becomes unstable #see. Eq. !32"$. As we found in the

previous subsection, this fixed point undergoes a Hopf bifur-

cation into a limit cycle that grows with growing criticality

parameter q−q
*

$0. At small q−q
*

$0, the limit cycle os-

cillations are nearly linear in character, similar to the decay-

ing oscillations at the final stage the T-mode relaxation dy-

namics, shown in Fig. 2. However, even a slight increase of

q gives rise to the strong nonlinear oscillations, in which the

zonal flow activity comes in bursts !Fig. 3". Each burst of the

zonal flow causes strong suppression of the drift wave activ-

0 100 200 300 400 500 600
time

0

0.5

1

E
,N

E(t)

N(t)

500 550 600
time

0

1

2

3

U

FIG. 2. Upper panel: Transition from H to L and then to the transient

oscillatory !T" mode, which is stable focus for the given set of parameters,

shown in variables N and E. The heating rate q=0.47; other parameters are

fixed at the same values as in Fig. 1. The transition starts from the overpow-

ered state near the H-mode and proceeds to the unstable H-mode, then to the

unstable L-mode, and finally to the stable transient mode. Lower panel:

Transition to the T-mode shown for U.
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ity and, as a result, significant increase of the temperature

gradient N.

Finally, after some small increase of q up to q=qcrit

/0.582, the limit cycle disappears and the orbit attracts to

the QH-mode fixed point !Fig. 4". Note that the transition

itself is preceded by the strongest zonal flow burst, strong

enough to damp the drift wave turbulence completely, thus

facilitating the transition to the QH-mode.

It should be emphasized that the above critical value

of the control parameter q arises at the transition to the

QH-mode from the vicinity of the T-mode, or more precisely

from the local center manifold associated with the T-mode

fixed point !e.g., the limit cycle". One can find other initial

conditions that are away from the basin of attraction of

the T-mode fixed point and the system will transit to the

QH-mode for smaller values of q, down to approximately

q.0.54. This will be discussed in more detail below.

A. Hysteresis

After the conditions for the forward transition from T- to

QH-mode have been determined, the question whether the

inverse transition occurs at the same value of the control

parameter q is in order. The answer to this question essen-

tially depends on how close to the QH fixed point the initial

conditions are set. This is similar to the forward transition

described earlier. For initial conditions set no farther than

6N, 6U, and 6E00.01 from the QH-mode fixed point, the

inverse transition to the T-mode fixed point can be delayed in

the heating parameter q down to q.0.55, which is the sta-

bility boundary for the current set of parameters #Eq. !23"$.
If, however, the trajectory of the system starts farther away

from the QH-fixed point, it attracts to the T-mode for

progressively higher values of q, which tends to the instabil-

ity threshold of the limit cycle around the T-mode fixed

point. This makes the hysteresis phenomenon not well pro-

nounced. An accurate determination of the basin of attraction

of the QH-mode fixed point for subcritical values of

q.qcrit/0.582 is beyond the scope of this paper. It appears,

however, that the role of hysteresis in the T→QH-mode

transition is not very important. The reason for that is the

following. Although there is a region of bistability

0.55 . q . 0.58,

where both the T-mode and the QH-mode are stable, the

basins of attraction to these fixed points seem to be limited to

the respective local center manifolds. Besides that, the inter-

val of bistability !i.e., hysteresis" is less than 10% of the

critical value of the control parameter q.

The above discussion is illustrated in Fig. 5, where four

trajectories are shown for q.0.56; i.e., well inside of the

bistability range. The first thing to notice is that the H-mode

fixed point separates trajectories tending to the T-mode from

those eventually making their way to the QH-mode. These

two kinds of trajectories are marked in Fig. 5 as 2,4 and 1,3,

respectively. It is clear that the orbits 1,2 and 3,4 run close

together on the opposite sides of the H-mode stable manifold

!separatrix" and then diverge along the unstable manifold and

are ultimately attracted to the QH- and T-mode singular

points, respectively. Therefore, the hysteresis is sensitive to

the initial conditions and not robust.

It is important to emphasize that the forward and back

transitions to the QH-mode are not symmetric, even though

the hysteresis is not well pronounced. The fundamental

asymmetry is in that the forward transition from a stable

L-state proceeds, as the power input q increases to the stable

QH-state through the oscillatory, intermediate T-mode, so

that the system goes out of the U=0 plane. The back transi-

tion QH→L typically occurs on the U=0; i.e., without ZF

excitation. This property of the system is demonstrated in

Fig. 6.

B. Stabilization of the QH-mode fixed point

Apart from the hysteresis described above, the QH-mode

can be stabilized at a subcritical heating level by applying

modulated rather than constant heating rate q. We illustrate

the stabilization phenomenon in Fig. 7. In addition to the

constant q= q̄=0.54 #which corresponds to a slightly unstable

QH-mode, Eq. !23"$ we add the modulated part q̃=0.08. The

QH-mode then sustains for about 150 dimensionless time

0 100 200 300 400 500

time

0

0.5

1

1.5

2

E
,U

,N

N

E
U

FIG. 4. Destruction of the limit cycle and transition to the QH-mode fixed

point at q/0.582.

0 50 100 150 200

time
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0.5
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1.5

E
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E
U

FIG. 3. Developed limit cycle oscillations around the oscillatory transient

fixed point prior to the transition to the QH-mode, q/0.58.

012504-7 Weak hysteresis in a simplified model… Phys. Plasmas 16, 012504 !2009"



units, as opposed to the runs with q̃=0, where the QH-mode

quickly decays to the T-mode going through the metastable

states near the H- and L-modes !Fig. 2".

V. SUMMARY AND CONCLUSIONS

In this paper we have investigated a low order !3-ODE"
model of L-H transition formulated earlier in Refs. 25 and

26. Particular emphasis has been made on the study of the

oscillatory transient mode which appears to be a key for

understanding the dynamics of the L-H transition.

The principal results of this study are:

!1" There are as many as four stationary states of the system

!singular points of ODEs" which can be organized by

growing pressure gradient !and generally by the increas-

ing control parameter q" in the following manner:

L-mode, transient oscillatory T-mode, H-mode, and, fi-

nally, the quiescent H-mode !QH". Physically, their

meaning is as follows. In the L-mode, the DW instability

driven by the pressure gradient saturates due to the non-

linearity of the DW mode and due to the mean flow. The

ZF is not active. With the increasing power the T-mode

is activated in which the ZF is generated and provides an

additional suppression of the DW which, in turn, drives

ZF. This feedback loop naturally results in an oscillatory

behavior of the T-mode, which can be attributed to the

dithering observed in various experiments on the L-H

transition.
18

In the H-mode, the ZF is again suppressed

completely as in L-mode, but the pressure gradient is

higher because of the multiplicity of the DW stationary

states, caused by their nonlinear pressure gradient de-

pendence. In the QH-mode, not only the ZF but also the

DW vanishes completely and the heat production is bal-

anced by the neoclassical transport.

!2" We identified center manifolds of these fixed points.

These are two-dimensional attractors which the system

orbits quickly approach when they are close to the cor-

0 100 200 300 400
time

0

0.5

1

1.5

E
,U

,N
,q

E(t)

U(t)

N(t)

q(t)

FIG. 6. Sequence of transitions shown for q!t" slowly varying from

q=0.47 !stable L-mode condition" to q=0.62 !stable QH" and back. Other

parameters are the same as in Fig. 1.
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0 100 200 300 400

time

0
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3

FIG. 7. Stabilization of the QH-mode by the modulation of heating rate q.

The upper panel shows a numerical solution with the average q̄=0.54, the

oscillatory part q̃=0.08, and the modulation frequency (=0.31. The initial

conditions are chosen close to the QH-mode with U=E=0.01. The lower

panel shows the run with q̃=0 and for the same values of the remaining

parameters.

FIG. 5. Three-dimensional trajectories, shown for the following set of

initial conditions N=1.1, 0.7, 0.8; U=0.01 !in all three cases";
E=0.01, 0.03, 0.05. Other parameters are fixed at the same values as in

Fig. 1.

012504-8 M. A. Malkov and P. H. Diamond Phys. Plasmas 16, 012504 !2009"



responding fixed points. The further dynamics unfolds

essentially on these center manifolds.

!3" The center manifold associated with the L,H and QH

equilibria is simply the U=0 plane !zero zonal flow in-

tensity", while on the T-mode center manifold all the

three variables are active. The T-mode is a stable focus

that undergoes Hopf bifurcation to a stable limit cycle

when q$q
*
. When q increases further, q$qcrit, the limit

cycle solution is destroyed, and the system proceeds to

the QH-mode. While the T-mode center manifold does

not coincide with any coordinate plane of the three vari-

ables, it is still two dimensional and therefore the dy-

namical chaos is absent. This fact was not revealed from

more detailed previous models with large numbers of

equations !see, e.g., Ref. 14".
!4" There is a parameter range of bistability where both the

T- and QH-modes coexist and are stable !or the stable

limit cycle around T-mode exists" which underpins hys-

teresis. The hysteresis range is relatively narrow, less

than 10% of qcrit.

!5" The L mode is a stable node on the U=0 center mani-

fold, while the H-mode is a hyperbolic fixed point on

this manifold. The latter fixed point has thus a stable

invariant manifold !branch of a separatrix", but being

hyperbolic is unstable in general. However, a distinct

metastable state at the H-mode, that persists for a few

hundred dimensionless time units, is identified. The

L-mode, when unstable with respect to the zonal flow

generation, also constitutes a strong attractor on the U

=0 manifold. The corresponding metastable state can

last for more than 100 time units before it leaves the

U=0 manifold and transits to the T-mode.

!6" Transition from L-mode to higher stable confinement

modes !T or QH" cannot be made without zonal flow

generation, even though zonal flow eventually dies out

when the system reaches the QH-mode. Physically, the

T-mode occurs when the system is powered at an inter-

mediate rate !between the L- and QH-modes" and cannot

be overridden at the ramp-up stage.

!7" However, the reverse QH→L transition is not symmet-

ric with the forward transition in that it can occur with-

out ZF generation, which is also indicative of hysteresis

!see Ref. 4".

The above results allow one to describe time-dependent

L→H transition including quiescent H-mode and the oscil-

latory transient mode. The three-dimensional dynamical sys-

tem utilized in this paper is clearly the minimal one to fea-

ture these aspects of the transport bifurcation. On the other

hand, it is simple enough to allow one to construct the two-

dimensional center manifolds near the respective singular

points of the system, to study their structure, and to estimate

the strength of hysteresis associated with the transition. In

particular, bursting and dithering are interpreted by standard

means of the theory of dynamical systems as a limit cycle on

the center manifold near the transient oscillatory !T" fixed

point. In addition, it is demonstrated mathematically that the

zonal flow excitation is a necessary step in a transition to an

improved confinement mode, even though the latter may ul-

timately eliminate the zonal flow.
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