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Weak Informativity and the Information in
One Prior Relative to Another
Michael Evans and Gun Ho Jang

Abstract. A question of some interest is how to characterize the amount of
information that a prior puts into a statistical analysis. Rather than a gen-
eral characterization, we provide an approach to characterizing the amount
of information a prior puts into an analysis, when compared to another base
prior. The base prior is considered to be the prior that best reflects the cur-
rent available information. Our purpose then is to characterize priors that can
be used as conservative inputs to an analysis relative to the base prior. The
characterization that we provide is in terms of a priori measures of prior-data
conflict.

Key words and phrases: Weak informativity, prior-data conflict, informa-
tion, noninformativity.

1. INTRODUCTION

Suppose we have two proper priors �1 and �2 on a
parameter space � for a statistical model {Pθ : θ ∈ �}.
A natural question to ask is: how do we compare the
amount of information each of these priors puts into
the problem? While there may seem to be natural in-
tuitive ways to express this, such as prior variances, it
seems difficult to characterize this precisely in general.
For example, the consideration of several examples in
Sections 3 and 4 makes it clear that using the variance
of the prior is not appropriate for this task.

The motivation for this work comes from Gelman
(2006) and Gelman et al. (2008), where the intuitively
satisfying notion of weakly informative priors is intro-
duced as a compromise between informative and non-
informative priors. The basic idea is that we have a base
prior �1, perhaps elicited, that we believe reflects our
current information about θ, but we choose to be con-
servative in our inferences and select a prior �2 that
puts less information into the analysis. While it is com-
mon to take �2 to be a noninformative prior, this can
often produce difficulties when �2 is improper, and
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even when �2 is proper, it seems inappropriate, as it
completely discards the information we have about θ

as expressed in �1. In addition, we may find that a
prior-data conflict exists with �1 and so look for an-
other prior that reflects at least some of the information
that �1 puts into an analysis, but avoids the conflict.

We note that our discussion here is only about how
we should choose �2 given that �1 has already been
chosen. Of course, the choice of �1 is of central im-
portance in a Bayesian analysis. Ideally, �1 is chosen
based on a clearly justified elicitation process, but we
know that this is often not the case. In such a circum-
stance it makes sense to try and choose �1 reasonably
but then be deliberately less informative by choosing
�2 to be weakly informative with respect to �1. The
point is to inspire confidence that our analysis is not
highly dependent on information that may be unreli-
able. To do this, however, requires a definition of what
it means for one prior to be weakly informative with
respect to another and that is what this paper is about.

To implement the idea of weak informativity, we
need a precise definition. We provide this in Section 2
and note that it involves the notion of prior-data con-
flict. Intuitively, a prior-data conflict occurs when the
prior places the bulk of its mass where the likelihood
is relatively low, as the likelihood is indicating that the
true value of the parameter is in the tails of the prior.
Our definition of weak informativity is then expressed
by saying that �2 is weakly informative relative to �1
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whenever �2 produces fewer prior-data conflicts a pri-
ori than �1. This leads to a quantifiable expression of
weak informativity that can be used to choose priors.
In Section 3 we consider this definition in the context
of several standard families of priors and it is seen to
produce results that are intuitively reasonable. In Sec-
tion 4 we consider applications of this concept in some
data analysis problems. While our intuition about weak
informativity is often borne out, we also find that in
certain situations we have to be careful before calling
a prior weakly informative.

First, however, we establish some notation and then
review how we check for prior-data conflict. We sup-
pose that Pθ(A) = ∫

A fθ (x)μ(dx), that is, each Pθ is
absolutely continuous with respect to a support mea-
sure μ on the sample space X , with the density de-
noted by fθ . With this formulation a prior � leads
to a prior predictive probability measure on X given
by M(A) = ∫

� Pθ(A)�(dθ) = ∫
A m(x)μ(dx), where

m(x) = ∫
� fθ(x)�(dθ). If T is a minimal sufficient

statistic for {Pθ : θ ∈ �}, then it is well known that the
posterior is the same whether we observe x or T (x).

So we will denote the posterior by �(·|T ) hereafter.
Since T is minimal sufficient, we know that the condi-
tional distribution of x given T is independent of θ. We
denote this conditional measure by P(·|T ). The joint
distribution Pθ × � can then be factored as

Pθ × � = M × �(·|x)
(1)

= P(·|T ) × MT × �(·|T ),

where MT is the marginal prior predictive distribution
of T .

While much of Bayesian analysis focuses on the
third factor in (1), there are also roles in a statistical
analysis for P(·|T ) and MT . As discussed in Evans and
Moshonov (2006, 2007), P(·|T ) is available for check-
ing the sampling model, for example, if x is a surpris-
ing value from this distribution, then we have evidence
that the model {Pθ : θ ∈ �} is incorrect. Furthermore, it
is argued that, if we conclude that we have no evidence
against the model, then the factor MT is available for
checking whether or not there is any prior-data con-
flict, and we do this by comparing the observed value
of T (x) to MT . If we have no evidence against the
model, and no evidence of prior-data conflict, then we
can proceed to inferences about θ. Actually, the issues
involved in model checking and checking for prior-
data conflict are more involved than this (see, e.g., the
cited references and Section 5), but (1) gives the basic
idea that the full information, as expressed by the joint

distribution of (θ, x), splits into components, each of
which is available for a specific purpose in a statistical
analysis.

Accordingly, we restrict ourselves here, for any dis-
cussions concerning prior-data conflict, to working
with MT . One issue that needs to be addressed is how
one is to compare the observed value t0 = T (x0) to
MT . In essence, we need a measure of surprise and for
this we use a P -value. Effectively, we are in the situa-
tion where we have a value from a single fixed distribu-
tion and we need to specify the appropriate P -value to
use. In Evans and Moshonov (2006, 2007) the P -value
for checking for prior-data conflict is given by

MT

(
mT (t) ≤ mT (t0)

)
,(2)

where mT is the density of MT with respect to the
volume measure on the range space for T . In Evans
and Jang (2011) it is proved that, for many of the
models and priors used in statistical analyses, (2) con-
verges almost surely, as the amount of data increases,
to �(π(θ) ≤ π(θ∗)), where θ∗ is the true value of θ .
So (2) is assessing to what extent the true value is in
the tails of the prior, or, equivalently, to what extent
the prior information is in conflict with how the data is
being generated.

A difficulty with (2) is that it is not generally invari-
ant to the choice of the minimal sufficient statistic T .
A general invariant P -value is developed in Evans and
Jang (2010) for situations where we want to compare
the observed value of a statistic to a fixed distribution.
This requires that the model and T satisfy some reg-
ularity conditions, for example, all spaces need to be
locally Euclidean, support measures are given by vol-
ume measures on these spaces, and T needs to be suf-
ficiently smooth. A formal description of these condi-
tions can be found in Tjur (1974) and it is noted that
these hold for the typical statistical application. For ex-
ample, these conditions are immediately satisfied in the
discrete case. Furthermore, for continuous situations,
with densities defined as limits, we get the usual ex-
pressions for densities. When applied to checking for
prior-data conflict, this leads to using the invariant P -
value

MT

(
m∗

T (t) ≤ m∗
T (t0)

)
,(3)

where m∗
T (t) = ∫

T −1t m(x)μT −1{t}(dx) = mT (t) ·
E(J−1

T (x)|T (x) = t), μT −1{t} is the volume measure
on T −1{t}, JT (x) = (det(dT (x) ◦ dT ′(x)))−1/2 and
dT is the differential of T . Note that JT (x) gives the
volume distortion produced by T at x. So m∗

T is the
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density of MT with respect to the support measure
given by {E(J−1

T (x)|T (x) = t)}−1 times the volume
measure on the range space for T .

In applications all models are effectively discrete, as
we measure responses to some finite accuracy, and con-
tinuous models are viewed as being approximations.
The use of (3), rather than (2), then expresses the fact
that we do not want volume distortions induced by a
transformation to affect our inferences. So we allocate
this effect of the transformation with the support mea-
sure, rather than with the density, when computing the
P -value. In the discrete case, as well as when T is lin-
ear, (2) and (3) give the same value and otherwise seem
to give very similar values. Convergence of (3), to an
invariant P -value based on the prior, is established in
Evans and Jang (2011). We use (3) throughout this pa-
per but note that it is only in Section 3.3 where (3) dif-
fers from (2).

Our discussion here is based on a minimal suffi-
cient statistic T . We note that, except in mathemati-
cally pathological situations, such a statistic exists. It
may be, however, that T is high dimensional, for ex-
ample, T can be of the same dimension as the data. In
such situations the dimensionality of the problem can
often be reduced by examining components of the prior
in a hierarchical fashion. For example, when the prior
on θ = (θ1, θ2) is specified as π(θ) = π2(θ2|θ1)π1(θ1),
then π1 and π2(·|θ1) are checked separately and so the
definition of weak informativity applies to each com-
ponent separately. This is exemplified by the regression
example of Section 4.2 where θ = (θ1, θ2) = (β, σ 2).

More on checking the components of a prior can be
found in Evans and Moshonov (2006). Furthermore,
when ancillaries exist, it is necessary to condition on
these when checking for prior-data conflict, as this
variation has nothing to do with the prior. This results
in a reduction of the dimension of the problem. The
relevance of ancillarity to the problem of weakly infor-
mative priors is discussed in Section 5.

When choosing a prior it makes sense to consider
the prior distribution of more than just the minimal
sufficient statistic. For example, Chib and Ergashev
(2009) consider the prior distribution of a somewhat
complicated function of the parameters and data that
has a real world interpretation. If this distribution pro-
duces values that seem reasonable in light of what is
known, then this goes some distance toward justifying
the prior. Also, the level of informativity of the prior
can be judged by looking at the prior distribution of
this quantity when that is possible. While this is cer-
tainly a reasonable approach to choosing �1, it does

not supply us with a definition of weak informativity.
For example, a prior �1 can be chosen as discussed in
Chib and Ergashev (2009), but then �2 could be cho-
sen to be weakly informative with respect to �1, to in-
spire confidence that conclusions drawn are not highly
dependent on subjective appraisals.

As we will show, there will typically be many priors
�2 that are weakly informative with respect to a given
base prior �1. The question then arises as to which �2
we should use. This is partially answered in Section 2
where we show that the definition of weak informativ-
ity leads to a quantification of how much less informa-
tive �2 is than �1. For example, we can choose �2 in
a family of priors to be 50% less informative than �1.
Still, there may be many such �2 and at this time we do
not have a criterion that allows us to distinguish among
such priors. For example, suppose the base prior is a
normal prior for a location parameter. We can derive
weakly informative priors with respect to such a prior
in the family of normal priors (see Section 3.1) or in the
family of t priors (see Section 3.2). There is nothing in
our developments that suggests that a weakly informa-
tive t prior is to be preferred to a weakly informative
normal prior or conversely. Such distinctions will have
to be made based on other criteria.

2. COMPARING PRIORS

There are a variety of measures of information used
in statistics. Several measures have been based on the
concept of entropy, for example, see Lindley (1956)
and Bernardo (1979). While these measures have their
virtues, we note that their coding theory interpretations
can seem somewhat abstract in statistical contexts and
they can suffer from nonexistence in certain problems.
Also, Kass and Wasserman (1995) contain some dis-
cussion concerned with expressing the absolute infor-
mation content of a prior in terms of additional sam-
ple values. Rather than adopting these approaches, we
consider comparing priors based on their tendencies to
produce prior-data conflicts. This formulation of the
relative amount of information put into an analysis
has a direct interpretation in terms of statistical con-
sequences.

Suppose that an analyst has in mind a prior �1 that
they believe represents the information at hand con-
cerning θ. The analyst, however, prefers to use a prior
�2 that is conservative, when compared to �1. In such
a situation it seems reasonable to consider �1 as a base
prior and then compare all other priors to it. This idea
comes from Gelman (2006) and leads to the notion of
weakly informative priors.
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Before we observe data we have no way of knowing
if we will have a prior-data conflict. Accordingly, since
the analyst has determined that �1 best reflects the
available information, it is reasonable to consider the
prior distribution of P1(t0) = M1T (m∗

1T (t) ≤ m∗
1T (t0))

when t0 ∼ M1T . Of course, this is effectively uniformly
distributed [exactly so when m∗

1T (t) has a continuous
distribution when t ∼ M1T ] and this expresses the fact
that all the information about assessing whether or not
a prior-data conflict exists is contained in the P -value,
with no need to compare the P -value to its distribution.

Consider now, however, the distribution of P2(t0) =
M2T (m∗

2T (t) ≤ m∗
2T (t0)) which is used to check

whether or not there is prior-data conflict with respect
to �2. Given that we have identified that a priori the
appropriate distribution of t0 is M1T , at least for in-
ferences about an unobserved value, then P2(t0) is not
uniformly distributed. In fact, from the distribution of
P2(t0) we can obtain an intuitively reasonable idea of
what it means for a prior �2 to be weakly informa-
tive relative to �1. Suppose that the prior distribution
of P2(t0) clusters around 1. This implies that, if we
were to use �2 as the prior when �1 is appropriate,
then there is a small prior probability that a prior-data
conflict would arise. Similarly, if the prior distribution
of P2(t0) clusters around 0, then there is a large prior
probability that a prior-data conflict would arise. If one
prior distribution results in a larger prior probability
of there being a prior-data conflict than another, then
it seems reasonable to say that the first prior is more
informative than the second. In fact, a completely non-
informative prior should never produce prior-data con-
flicts.

So we compare the distribution of P2(t0) when t0 ∼
M1T , to the distribution of P1(t0) when t0 ∼ M1T , and
do this in a way that is relevant to the prior probability
of obtaining a prior-data conflict. One approach to this
comparison is to select a γ -quantile xγ ∈ [0,1] of the
distribution of P1(t0), and then compute the probability

M1T

(
P2(t0) ≤ xγ

)
.(4)

The value γ is presumably some cutoff, dependent on
the application, where we will consider that evidence
of a prior-data conflict exists whenever P1(t0) ≤ γ. Of
course, if m∗

1T (t0) has a continuous distribution when
t0 ∼ M1T , then xγ = γ. Our basic criterion for the
weak informativity of �2 relative to �1 will then be
that (4) is less than or equal to xγ . This implies that
the prior probability of obtaining a prior-data conflict
under �2 is no greater than when �1 is used, at least
when we have identified �1 as our correct prior.

DEFINITION 1. If (4) is less than or equal to xγ ,

then �2 is weakly informative relative to �1 at level γ.

If �2 is weakly informative relative to �1 at level γ for
every γ ≤ γ0, then �2 is uniformly weakly informative
relative to �1 at level γ0. If �2 is weakly informative
relative to �1 at level γ for every γ, then �2 is uni-
formly weakly informative relative to �1.

Typically we would like to choose a prior �2 that
is uniformly weakly informative with respect to �1.
This still requires us to select a prior from this class,
however, and for this we must choose a level γ .

Once we have selected γ , the degree of weak infor-
mativity of a prior �2 relative to �1 can be assessed
by comparing M1T (P2(t0) ≤ xγ ) to xγ via the ratio

1 − M1T

(
P2(t0) ≤ xγ

)
/xγ .(5)

If �2 is weakly informative relative to �1 at level γ,

then (5) tells us the proportion of fewer prior-data con-
flicts we can expect a priori when using �2 rather than
�1. Thus, (5) provides a measure of how much less in-
formative �2 is than �1 at level γ . So, for example,
we might ask for a prior �2 that is uniformly weakly
informative with respect to �1 and then, for a partic-
ular γ , select a prior in this class such that (5) equals
50%.

As we will see in the examples, it makes sense to talk
of one prior being asymptotically weakly informative at
level γ with respect to another prior in the sense that (4)
is bounded above by γ in the limit as the amount of
data increases. In several cases this simplifies matters
considerably, as an asymptotically weakly informative
prior is easy to find and may still be weakly informative
for finite amounts of data.

While (4) seems difficult to work with, the following
result is proved in the Appendix and gives a simpler
expression.

LEMMA 1. Suppose Pi(t) has a continuous distri-
bution under MiT for i = 1,2. Then there exists rγ
such that M1T (P2(t) ≤ γ ) = M1T (m∗

2T (t) ≤ rγ ), and
�2 is weakly informative at level γ relative to �1
whenever M1T (m∗

2T (t) ≤ rγ ) ≤ γ . Furthermore, �2 is
uniformly weakly informative relative to �1 if and only
if M1T (m∗

2T (t) ≤ m∗
2T (t0)) ≤ M2T (m∗

2T (t) ≤ m∗
2T (t0))

for every t0.

Note that the equivalent condition for uniform weak
informativity in Lemma 1 says that the probability con-
tent, under M1T , in the “tails” (regions of low den-
sity) of the density m∗

2T is always bounded above by
the probability content under M2T . So M2T puts more
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probability content into these tails than M1T and this
can be taken as an indication that M2T is more dis-
persed than M1T . Lemma 1 typically applies when we
are dealing with continuous distributions on X . It can
also be shown that Pi(t) has a continuous distribution
under MiT if and only if m∗

iT (t) has a continuous dis-
tribution under MiT .

3. DERIVING WEAKLY INFORMATIVE PRIORS

We consider several examples of families of pri-
ors that arise in applications. These examples support
our definition of weak informativity and also lead to
some insights into choosing priors. The results ob-
tained for the examples in this section are combined in
Section 4.2 to give results for a practically meaningful
context.

We first note that, while we could consider compar-
ing arbitrary priors �2 to �1, we want �2 to reflect
at least some of the information expressed in �1. The
simplest expression of this is to require that �2 have
the same, or nearly the same, location as �1. This re-
striction simplifies the analysis and seems natural.

3.1 Comparing Normal Priors

Suppose we have a sample x = (x1, . . . , xn) from a
N(μ,1) distribution where μ is unknown. Then t =
T (x) = x̄ ∼ N(μ,1/n) is minimal sufficient and since
T is linear, there is constant volume distortion and so
this can be ignored. Suppose that the prior �1 on μ is
a N(μ0, σ

2
1 ) distribution with μ0 and σ 2

1 known. We
then have that M1T is the N(μ0,1/n + σ 2

1 ) distribu-
tion. Now suppose that �2 is a N(μ0, σ

2
2 ) distribution

with σ 2
2 known. Then M2T is the N(μ0,1/n+σ 2

2 ) dis-
tribution and

P2(t0) = M2T

(
m∗

2T (t) ≤ m∗
2T (t0)

)
= M2T

(
m2T (t) ≤ m2T (t0)

)
= M2T

(
(t − μ0)

2 ≥ (t0 − μ0)
2)

= 1 − G1
(
(t0 − μ0)

2/(1/n + σ 2
2 )

)
,

where Gk denotes the Chi-squared(k) distribution
function. Now under M1T we have that (t0 − μ0)

2/

(1/n + σ 2
1 ) ∼ Chi-squared(1). Therefore,

M1T

(
P2(t0) ≤ γ

)
= M1T

(
1 − G1

(
(t0 − μ0)

2/(1/n + σ 2
2 )

) ≤ γ
)

(6)

= M1T

(
(t0 − μ0)

2

1/n + σ 2
1

≥ 1/n + σ 2
2

1/n + σ 2
1

G−1
1 (1 − γ )

)

= 1 − G1

(
1/n + σ 2

2

1/n + σ 2
1

G−1
1 (1 − γ )

)
.

We see immediately that (6) will be less than γ if
and only if σ2 > σ1. In other words, �2 will be uni-
formly weakly informative relative to �1 if and only if
�2 is more diffuse than �1. Note that M1T (P2(t0) ≤
γ ) converges to 0 as σ 2

2 → ∞ to reflect noninfor-
mativity. Also, as n → ∞, then (6) increases to 1 −
G1((σ

2
2 /σ 2

1 )G−1
1 (1 − γ )). So we could ignore n and

choose σ 2
2 conservatively based on this limit, to obtain

an asymptotically uniformly weakly informative prior,
as we know this value of σ 2

2 will also be weakly infor-
mative for finite n.

If we specify that we want (5) to equal p ∈ [0,1],
then (6) implies that σ 2

2 = (1/n + σ 2
1 )(G−1

1 (1 − γ +
pγ )/G−1

1 (1 − γ )) − 1/n. Such a choice will give
a proportion p fewer prior-data conflicts at level γ

than the base prior. This decreases to σ 2
1 G−1

1 (1 − γ +
pγ )/G−1

1 (1 − γ ) as n → ∞ and so the more data we
have the less extra variance we need for �2 for weak
informativity.

We can generalize this to t ∼ Nk(μ,n−1I ) with �i

given by μ ∼ Nk(μ0,	i). Note we have that MiT is
the Nk(μ0, n

−1I + 	i) distribution. It is then easy to
see that P2(t0) = 1−Gk((t0 −μ0)

′(n−1I +	2)
−1(t0 −

μ0)) and

M1T

(
P2(t0) ≤ γ

)
= M1T

(
(t0 − μ0)

′(n−1I + 	2)
−1(t0 − μ0)(7)

≥ G−1
k (1 − γ )

)
.

Note that (7) increases to the probability that (t0 −
μ0)

′	2
−1(t0 − μ0) ≥ G−1

k (1 − γ ), when t0 ∼ Nk(μ0,

	1), as n → ∞. This probability can be easily com-
puted via simulation.

The following result is proved in the Appendix.

THEOREM 1. For a sample of n from the statisti-
cal model {Nk(μ, I) :μ ∈ Rk}, a Nk(μ0,	2) prior is
uniformly weakly informative relative to a Nk(μ0,	1)

prior if and only if 	2 − 	1 is positive semidefinite.

The necessary part of Theorem 1 is much more dif-
ficult than the k = 1 case and shows that we can-
not have a Nk(μ0,	2) prior uniformly weakly infor-
mative relative to a Nk(μ0,	1) prior unless 	2 ≥
	1. It follows from Theorem 1 that a Nk(μ0,	2)

prior is uniformly weakly informative relative to a
Nk(μ0,	1) prior if and only if a N(atμ0, a

t	2a)

prior is uniformly weakly informative relative to a
N(atμ0, a

t	1a) prior for every a ∈ Rk .
For the choice of 	2 we have that, if 	1 and 	2 are

arbitrary k × k positive definite matrices, then r	2 ≥
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	1 whenever r ≥ λk(	1)/λ1(	2) where λi(	) de-
notes the ith ordered eigenvalue of 	. Note that this
condition does not require that the 	i have the same
eigenvectors. When they do have the same eigenvec-
tors, so 	i = QDiQ

′ is the spectral decomposition
of 	i, then 	2 ≥ 	1 whenever λi(	2) ≥ λi(	1) for
i = 1, . . . , k.

3.2 Comparing a t Prior with a Normal Prior

It is not uncommon to find t priors being substi-
tuted for normal priors on location parameters. Sup-
pose x = (x1, . . . , xn) is a sample from a N(μ,1) dis-
tribution where μ is unknown. We take �1 to be a
N(μ0, σ

2
1 ) distribution and �2 to be a t1(μ0, σ

2
2 , λ)

distribution, that is, t1(μ0, σ
2
2 , λ) denotes the distribu-

tion of μ0 + σ2z with z distributed as a 1-dimensional
t distribution with λ degrees of freedom. We then want
to determine σ 2

2 and λ so that the t1(μ0, σ
2
2 , λ) prior is

weakly informative relative to the normal prior.
We consider first the limiting case as n → ∞. The

limiting prior predictive distribution of the minimal
sufficient statistic T (x) = x̄ is N(μ0, σ

2
1 ) while P2(t0)

converges in distribution to 1 − H1,λ((t0 − μ0)
2/σ 2

2 )

where H1,λ is the distribution function of an F1,λ

distribution. This implies that (4) converges to 1 −
G1((σ

2
2 /σ 2

1 )H−1
1,λ(1 − γ )) and this is less than or equal

to γ if and only if σ 2
2 /σ 2

1 ≥ G−1
1 (1−γ )/H−1

1,λ(1−γ )).

So to have that �2 is asymptotically weakly informa-
tive relative to �1 at level γ , we must choose σ 2

2 large
enough. Clearly we have that �2 is asymptotically uni-
formly weakly informative relative to �1 if and only if

σ 2
2 /σ 2

1 ≥ K(λ) = sup
γ∈[0,1]

G−1
1 (1 − γ )/H−1

1,λ(1 − γ ).

In Figure 1 we have plotted K(λ) against log(λ).
Since K(1) = 0.6366, we require that σ 2

2 ≥
σ 2

1 (0.6366) for a Cauchy prior to be uniformly weakly
informative with respect to a N(μ0, σ

2
1 ) prior.

A t1(μ0, σ
2
2 ,3) prior has variance 3σ 2

2 . If we choose σ 2
2

so that the variance is σ 2
1 , then σ 2

2 /σ 2
1 = 1/3. Since this

is less than K(3) = 0.8488, this prior is not uniformly
weakly informative. A t1(μ0, σ

2
2 ,3) prior has to have

variance at least equal to (2.5464)σ 2
1 if we want it to be

uniformly weakly informative relative to a N(μ0, σ
2
1 )

prior. This is somewhat surprising and undoubtedly is
caused by the peakedness of the t distribution. Note
that K(λ) → 1 as λ → ∞, so this increase in variance,
for the t prior over the normal prior, decreases as we
increase the degrees of freedom.

The situation for finite n is covered by the following
result proved in the Appendix.

FIG. 1. Plot of K(λ) against log(λ) where a t1(μ0, σ 2
2 , λ)

prior is asymptotically uniformly weakly informative relative to a
N(μ0, σ 2

1 ) prior if and only if σ 2
2 /σ 2

1 ≥ K(λ).

THEOREM 2. For a sample of n from the statisti-
cal model {N(μ,1) :μ ∈ R1}, a t1(μ0, σ

2
2 , λ) prior is

uniformly weakly informative relative to a N1(μ0, σ
2
1 )

prior whenever σ 2
2 ≥ σ 2

0n, where σ 2
0n is the unique so-

lution of (1/n + σ 2
1 )−1/2 = ∫ ∞

0 (1/n + σ 2
0n/u)−1/2 ·

kλ(u) du with kλ the Gammarate(λ/2, λ/2) density.
Further, σ 2

0n/σ
2
1 increases to

K(λ) = sup
γ∈[0,1]

G−1
1 (1 − γ )

H−1
1,λ(1 − γ )

= 2

λ

�2((λ + 1)/2)

�2(λ/2)
(8)

as n → ∞ and so a t1(μ0, σ
2
2 , λ) prior is asymptoti-

cally uniformly weakly informative if and only if σ 2
2 /σ 2

1
is greater than or equal to (8).

Theorem 2 establishes that we can conservatively
use (8) to select a uniformly weakly informative t prior.

In Figure 2 we have plotted the value of (4) that
arises with t1(0, σ 2

2 ,3) priors, where σ 2
2 is chosen in

a variety of ways, together with the 45-degree line.
A uniformly weakly informative prior will have (4)
always below the 45-degree line, while a uniformly
weakly informative prior at level γ0 will have (4) be-
low the 45-degree line to the left of γ0 and possibly
above to the right of γ0. For example, when σ 2

2 = 1/3,
then the t1(0, σ 2

2 ,3) prior and the N(0,1) prior have
the same variance. We see that this prior is only uni-
formly weakly informative at level γ0 = 0.0357 and is
not uniformly weakly informative.

Note that (5) converges to 1 −G1((σ
2
2 /σ 2

1 )H−1
1,λ(1 −

γ ))/γ as n → ∞, and setting this equal to p implies
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FIG. 2. Plot of (4) versus γ for t1(0, σ 2
2 ,3) priors relative to a

N(0,1) prior when n = 20, where σ 2
2 is chosen to match vari-

ances (thick solid line), match the MAD (dashed line), just achieve
uniform weak informativity (dotted line), just achieve asymp-
totic uniform weak informativity (dash-dot line), and equal to 1
(long-dashed line).

that σ 2
2 = σ 2

1 G−1
1 (1−γ +γp)/H−1

1,λ(1−γ ) which con-
verges, as λ → ∞, to the result we obtained in Sec-
tion 3.1. So when λ = 3, γ = 0.05 and p = 0.5, we
must have σ 2

2 /σ 2
1 = 5.0239/10.1280 = 0.49604.

Our analysis indicates that one has to be careful
about the scaling of the t prior if we want to say that
the t prior is less informative than a normal prior, at
least when we want uniform weak informativity.

Consider now comparing a multivariate t prior to
a multivariate normal prior. Let tk(μ0,	2, λ) denote
the k-dimensional t distribution given by μ0 + 	

1/2
2 z,

where 	
1/2
2 is a square root of the positive definite ma-

trix 	2 and z has a k-dimensional t distribution with
λ degrees of freedom. This is somewhat more compli-
cated than the normal case, but we prove the following
result in the Appendix which provides sufficient condi-
tions for the asymptotic uniform weak informativity.

THEOREM 3. When sampling from the statisti-
cal model {Nk(μ, I) :μ ∈ Rk}, a tk(μ0,	2, λ) prior
is asymptotically uniformly weakly informative rel-
ative to a Nk(μ0,	1) prior whenever 	2 − τ 2

λ	1

is positive semidefinite, where τ 2
λ = (2/λ)�2/k((k +

λ)/2)/�2/k(λ/2).

In contrast with Theorem 1, we do not have an
equivalent characterization of the uniform weak in-
formativity of multivariate t priors in terms of the
marginal priors of atμ. For example, when k = 2,

then τ 2
λ = 1 and when k = 1, then τ 2

λ = 2�2((λ +
1)/2)/λ�2(λ/2) < 1 for all λ. Therefore, at	2a −
{2�2((λ + 1)/2)/λ�2(λ/2)}at	1a > 0 for all a does
not imply that 	2 − 	1 is positive semidefinite, for
example, take 	2 = 	1(1 + 2�2((λ + 1)/2)/

λ�2(λ/2))/2.

For the choice of 	2 we have that, if 	1 and 	2 are
arbitrary k × k positive definite matrices, then r	2 ≥
τ 2
λ	1 whenever r ≥ τ 2

λλk(	1)/λ1(	2). When the 	i

have the same eigenvectors, then 	2 ≥ τ 2
λ	1 whenever

λi(	2) ≥ τ 2
λλi(	1) for i = 1, . . . , k.

3.3 Comparing Inverse Gamma Priors

Suppose now that we have a sample x = (x1, . . . , xn)

from a N(0, σ 2) distribution where σ 2 is unknown.
Then t = T (x) = (x2

1 + · · · + x2
n)/n is minimal suf-

ficient and T ∼ Gammarate(n/2, n/2σ 2). Now sup-
pose that we take �i to be an inverse gamma prior
on σ 2, namely, σ−2 ∼ Gammarate(αi, βi). From this
we get that αiT /βi ∼ F(n,2αi) and, since JT (x) =
(4x′x/n)−1/2 = (4t/n)−1/2,m∗

iT ,n(t) = miT,n(t) ·
(4t/n)1/2 ∝ t (n−1)/2(1 + nt/2βi)

−n/2−αi , which im-
plies

Pi,n(t0) = MiT,n

(
t (n−1)/2(1 + nt/2βi)

−n/2−αi

≤ t
(n−1)/2
0 (1 + nt0/2βi)

−n/2−αi
)
.

We want to investigate the weak informativity of a
Gammarate(α2, β2) prior relative to a Gammarate(α1,

β1) prior. For finite n this is a difficult problem, so we
simplify this by considering only the asymptotic case.
When the prior is �i, then, as n → ∞, we have that
miT,n(t) → miT (t) = (β

αi

i /�(αi))t
−αi−1e−βi/t , that

is, 1/t ∼ Gammarate(αi, βi) in the limit. Therefore,
P2,n(t0) → P2(t0) = �2(t

−α2−1/2e−β2/t ≤ t
−α2−1/2
0 ·

e−β2/t0) and we want to determine conditions on
(α2, β2) so that �1(P2(t) ≤ γ ) ≤ γ.

While results can be obtained for this problem, it is
still rather difficult. It is greatly simplified, however,
if we impose a natural restriction on (α2, β2). In par-
ticular, we want the location of the bulk of the mass
for �2 to be located roughly in the same place as the
bulk of the mass for �1. Accordingly, we could re-
quire the priors to have the same means or modes, but,
as it turns out, the constraint that requires the modes
of the m∗

iT functions to be the same greatly simpli-
fies the analysis. Actually, m∗

iT ,n(t) converges to 0,
but the n’s cancel in the inequalities defining Pi,n(t0)

and so we can define m∗
iT ,n(t) = t−αi−1/2e−βi/t which

has its mode at t = βi/(αi + 1/2). Therefore, we must
have β2/(α2 + 1/2) = β1/(α1 + 1/2) so that (α2, β2)
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lies on the line through the points (0, β1/2(α1 + 1/2))

and (α1, β1). We prove the following result in the Ap-
pendix.

THEOREM 4. Suppose we use a Gammarate(α1, β1)

prior on 1/σ 2 when sampling from the statistical
model {N(0, σ 2) :σ 2 > 0}. Then a Gammarate(α2, β2)

prior on 1/σ 2, with β2/(α2 + 1/2) = β1/(α1 + 1/2),

is asymptotically weakly informative relative to the
Gammarate(α1, β1) prior whenever α2 ≤ α1 and β2 =
β1(α2 + 1/2)/(α1 + 1/2) or, equivalently, whenever
β1/2(α1 + 1/2) ≤ β2 ≤ β1 and α2 = (α1 + 1/2)β2/

β1 − 1/2.

Of particular interest here is that we cannot reduce
the rate parameter β2 arbitrarily close to 0 and be guar-
anteed asymptotic weak informativity.

4. APPLICATIONS

We consider now some applications of determining
weakly informative priors.

4.1 Weakly Informative Beta Priors for the
Binomial

Suppose that T ∼ Binomial(n, θ) and θ ∼ Beta(α,

β). This implies that mT (t) = (n
t

)
�(α + β)�(t +

α)�(n− t +β)/�(α)�(β)�(n+α +β) and from this
we can compute (4) for various choices of (α,β).

As a specific example, suppose that n = 20, the
base prior is given by (α,β) = (6,6), and we take
γ = 0.05 so that x0.05 = 0.0588. As alternatives to
this base prior, we consider Beta(α,β) priors. In Fig-
ure 3 we have plotted all the (α,β) corresponding to
Beta(α,β) distributions that are weakly informative
with respect to the Beta(6,6) distribution at level 0.05,
together with the subset of all (α,β) corresponding to
Beta(α,β) distributions that are uniformly weakly in-
formative relative to the Beta(6,6) distribution. The

graph on the left corresponds to n = 20, the middle
graph corresponds to n = 100, and the graph on the
right corresponds to n = ∞. The plot for n = 20 shows
some anomalous effects due to the discreteness of the
prior predictive distributions and these effects disap-
pear as n increases. In such an application we may
choose to restrict to symmetric priors, as this fixes the
primary location of the prior mass. For example, when
n = 20, a Beta(α,α) prior for α satisfying 1 ≤ α ≤
12.3639 is uniformly weakly informative with respect
to the Beta(6,6) prior and we see that values of α > 6
are eliminated as n increases.

4.2 Weakly Informative Priors for the Normal
Regression Model

Consider the situation where y ∼ Nn(Xβ,σ 2I ),
X ∈ Rn×k is of rank k and β ∈ Rk,σ 2 > 0 are un-
known. Therefore, T = (b, s2) with b = (X′X)−1X′y
and s2 = ‖y − Xb‖2. Suppose we have elicited a prior
on (β, σ 2) given by 1/σ 2 ∼ Gammarate(α1, τ1), and
β|σ 2 ∼ Nk(β0, σ

2	1). We now find a prior that is
asymptotically uniformly weakly informative relative
to this choice. For this we consider gamma priors for
1/σ 2 and t priors for β given σ 2. For the asymptotics
we suppose that λk((X

′X)−1) → 0 as n → ∞.
As discussed in Evans and Moshonov (2006, 2007),

it seems that the most sensible way to check for prior-
data conflict here is to first check the prior on σ 2, based
on the prior predictive distribution of s2. If no prior-
data conflict is found at this stage, then we check the
prior on β based on the conditional prior predictive for
b given s2, as s2 is ancillary for β. Such an approach
provides more information concerning where a prior-
data conflict exists than simply checking the whole
prior via (3).

So we consider first obtaining an asymptotically uni-
formly weakly informative prior for 1/σ 2. We have

FIG. 3. Plot of (α,β) corresponding to Beta(α,β) priors that are weakly informative at level γ = 0.05 (light and dark shading) and
uniformly weakly informative (light shading) for n = 20 (on the left), n = 100 (middle) and n = ∞ (on the right).
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that s2|σ 2 ∼ Gammarate((n − k)/2, (n − k)/2σ 2) and
so, as in Section 3.3, when 1/σ 2 ∼ Gammarate(αi, τi),
the limiting prior predictive distribution of 1/s2 is
Gammarate(αi, τi) as n → ∞. Furthermore, when
T2(x) = s2, then JT2(x) = (4s2/(n − k))−1/2. There-
fore, the limiting value of (4) in this case is the same
as that discussed in Section 3.3 and Theorem 4 ap-
plies to obtain a Gammarate(α2, τ2) prior asymptot-
ically uniformly weakly informative relative to the
Gammarate(α1, τ1) prior.

If we consider s2 as an arbitrary fixed value from
its prior predictive distribution, then, when β|σ 2 ∼
Nk(β0, σ

2	1), the conditional prior predictive distri-
bution of b given s2 converges to the Nk(β0, s

2	1) dis-
tribution. Furthermore, when β|σ 2 ∼ tk(β0, σ

2	2, λ),
the conditional prior predictive distribution of b given
s2 converges to the tk(β0, s

2	2, λ) distribution. So
we can apply Lemma 1 to these limiting distribu-
tions. It is then clear that the comparison is covered
by Theorem 3, as the limiting prior predictives are of
the same form. Therefore, the tk(β0, σ

2	2, λ) prior is
asymptotically uniformly weakly informative relative
to the Nk(β0, σ

2	1) prior whenever s2	2 ≥ s2τ 2
λ	1

or, equivalently, whenever 	2 ≥ τ 2
λ	1 where τ 2

λ is de-
fined in Theorem 3. Note that this condition does not
depend on s2. Also, as λ → ∞, we can use Theo-
rem 2 to obtain that a Nk(β0, σ

2	2) prior is asymp-
totically uniformly weakly informative relative to the
Nk(β0, σ

2	1) prior whenever 	2 ≥ 	1.

4.3 Weakly Informative Priors for Logistic
Regression

Supposing we have a single binary valued response
variable Y and k quantitative predictors X1, . . . ,Xk ,
we observe (Y,X1, . . . ,Xk) at q settings of the predic-
tor variables and have ni observations at the ith set-
ting of the predictors. The logistic regression model
then says that Yij ∼ Bernoulli(pi) where log(pi/(1 −
pi)) = β0 + β1(xi1 − x̄·1) + · · · + βk(xik − x̄·k) for
j = 1, . . . , ni and i = 1, . . . , q and the βi are un-
known real values. For simplicity, we will assume no
xij − x̄·j is zero. For this model T = (T1, . . . , Tq), with
Ti = Yi1 + · · · + Yini

, is a minimal sufficient statistic.
For the base prior we suppose that �1 is the product
of independent priors on the βi ’s and we consider the
problem of finding a prior �2 that is weakly informa-
tive relative to �1. For example, we could take �1 to
be a product of N(0, σ 2

1i ) priors and �2 to be a prod-
uct of N(0, σ 2

2i ) priors and choose the σ 2
2i so that weak

TABLE 1

Dose (g/ml) Number of animals ni Number of deaths ti

0.422 5 0
0.744 5 1
0.948 5 3
2.069 5 5

informativity is obtained. Note that since T is discrete
we can use (2) in our computations.

As we will see, it is not the case that choosing the σ 2
2i

very large relative to the σ 2
1i will necessarily make �2

weakly informative relative to �1. In fact, there is only
a finite range of σ 2

2i values where weak informativity
will obtain.

While this can be demonstrated analytically, the ar-
gument is somewhat technical and it is perhaps easier
to see this in an example. The following bioassay data
are from Racine et al. (1986) and were also analyzed in
Gelman et al. (2008). These data arise from an experi-
ment where 20 animals were exposed to four doses of
a toxin and the number of deaths recorded (Table 1).

Following Gelman et al. (2008), we took X1 to be the
variable formed by calculating the logarithm of dose
and then standardizing to make the mean of X1 equal
to 0 and its standard deviation equal to 1/2. Gelman
et al. (2008) placed independent Cauchy priors on the
regression coefficients, namely, β0 ∼ t1(0,102,1) in-
dependent of β1 ∼ t1(0,2.52,1).

We consider four possible scenarios for the inves-
tigation of weak informativity at level γ = 0.05 and
uniform weak informativity. In Figure 4(a) we com-
pare �2 = N(0, σ 2

0 ) × N(0, σ 2
1 ) priors with the prior

�1 = N(0,102) × N(0,2.52). The entire region gives
the (σ0, σ1) values corresponding to priors that are
weakly informative at level γ = 0.05, while the lighter
subregion gives the (σ0, σ1) values corresponding to
priors that are uniformly weakly informative. Note
that some of the irregularity in the plots is caused
by the fact that the prior predictive distributions of
T are discrete. The three remaining plots are similar
where in Figure 4(b) �1 = t1(0,102,1)× t1(0,2.52,1)

and �2 = t1(0, σ 2
0 ,1) × t1(0, σ 2

1 ,1), in Figure 4(c)
�1 = N(0,102) × N(0,2.52) and �2 = t1(0, σ 2

0 ,1) ×
t1(0, σ 2

1 ,1), and in Figure 4(d) �1 = t1(0,102,1) ×
t1(0,2.52,1) and �2 = N(0, σ 2

0 )×N(0, σ 2
1 ). Note that

these plots only depend on the data through the values
of X1.
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(a) (b)

(c) (d)

FIG. 4. Weakly informative �2 priors relative to �1 at level 0.05 (light and dark shading) and uniformly weakly informative
(light shading) where (a) �1 = N(0,102) × N(0,2.52) and �2 = N(0, σ 2

0 ) × N(0, σ 2
1 ), (b) �1 = t1(0,102,1) × t1(0,2.52,1)

and �2 = t1(0, σ 2
0 ,1) × t1(0, σ 2

1 ,1), (c) �1 = N(0,102) × N(0,2.52) and �2 = t1(0, σ 2
0 ,1) × t1(0, σ 2

1 ,1) and

(d) �1 = t1(0,102,1) × t1(0,2.52,1) and �2 = N(0, σ 2
0 ) × N(0, σ 2

1 ).

We see clearly from these plots that increasing the
scaling on any of the βi does not necessarily lead to
weak informativity and in fact inevitably destroys it.
Furthermore, a smaller scaling on a parameter can lead
to uniform weak informativity. These plots underscore
how our intuition does not work very well with the lo-
gistic regression model, as it is not clear how priors on
the βi ultimately translate to priors on the pi . In fact, it
can be proven that, if we put independent priors on the
βi, fix all the scalings but one, and let that scaling grow
arbitrarily large, then the prior predictive distribution
of T converges to a distribution concentrated on two

points, for example, when the scaling on β0 increases
these points are given by {∑q

i=1 Ti = 0} ∪ {∑q
i=1 Ti =∑q

i=1 ni}, and this is definitely not desirable. This par-
tially explains the results obtained.

Of some interest is how much reduction we actu-
ally get, via (5), when we employ a weakly informa-
tive prior. In Figure 5 we have plotted contours of
the choices of (σ0, σ1) that give 0%, 25%, 50% and
75% reduction in prior-data conflicts for the case where
�2 = N(0, σ 2

0 ) × N(0, σ 2
1 ) and �1 = N(0,102) ×

N(0,2.52) when γ = 0.05 (this corresponds to xγ =
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FIG. 5. Reduction levels of N(0, σ 2
0 ) × N(0, σ 2

1 ) relative to

N(0,102) × N(0,2.52) priors using (5) when γ = 0.05. The plot-
ted reduction levels are 0% (solid line), 25% (dashed line), 50%
(dotted line) and 75% (long dashed line).

0.0503). Note that a substantial reduction can be ob-
tained.

We can also consider fixing one of the scalings and
seeing how much reduction we obtain when varying
the other. For example, when we fix σ0 = 2.5 we find
that the maximum reduction is obtained when σ1 is
close to 2.2628, while if we fix σ1 = 2.5, then the
maximum reduction is obtained when σ0 is close to
0.875.

It makes sense in any application to check to see
if any prior-data conflict exists with respect to the
base prior. If there is no prior-data conflict, this in-
creases our confidence that the weakly informative
prior is indeed putting less information into the anal-
ysis. This is assessed generally using (3), although
(2) suffices in this example. When �1 = N(0,102) ×
N(0,2.52), then (2) equals 0.1073 and when �1 =
t1(0,102,1) × t1(0,2.52,1) (the prior used in Gel-
man et al., 2008), then (2) equals 0.1130, so in nei-
ther case is there any evidence of prior-data con-
flict.

5. REFINEMENTS BASED UPON ANCILLARITY

Consider an ancillary statistic that is a function of
the minimal sufficient statistic, say, U(T ). The varia-
tion due to U(T ) is independent of θ and so should be
removed from the P -value (3) when checking for prior-
data conflict. Removing this variation is equivalent to
conditioning on U(T ) and so we replace (3) by

MT

(
m∗

T (t) ≤ m∗
T (t0)|U(T )

)
,(9)

that is, we use the conditional prior predictive given the
ancillary U(T ). To remove the maximal amount of an-
cillary variation, we must have that U(T ) is a maximal
ancillary. Therefore, (4) becomes

M1T

(
P2(t0|U(T )) ≤ xγ |U(T )

)
,(10)

that is, we have replaced P2(t0) by P2(t0|U(T )) =
M2T (m∗

2T (t) ≤ m∗
2T (t0)|U(T )) and M1T by M1T (·|

U(T )).
We note that the approach discussed in Section 2

works whenever T is a complete minimal sufficient
statistic. This is a consequence of Basu’s Theorem, as,
in such a case, any ancillary is statistically indepen-
dent of T and so conditioning on such an ancillary is
irrelevant. This is the case for the examples in Sections
3 and 4.

One problem with ancillaries is that multiple max-
imal ancillaries may exist. When ancillaries are used
for frequentist inferences about θ via conditioning, this
poses a problem because it is not clear which maximal
ancillary to use and confidence regions depend on the
maximal ancillary chosen. For checking for prior-data
conflict via (9), however, this does not pose a prob-
lem. This is because we simply get different checks
depending on which maximal ancillary we condition
on. For example, if conditioning on maximal ancil-
lary U1(T ) does not lead to prior-data conflict, but
conditioning on maximal ancillary U2(T ) does, then
we have evidence against no prior-data conflict exist-
ing.

Similarly, when we go to use (10), we can also
simply look at the effect of each maximal ancillary
on the analysis and make our assessment about �2
based on this. For example, we can use the maxi-
mum value of (10) over all maximal ancillaries to as-
sess whether or not �2 is weakly informative rela-
tive to �1. When this maximum is small, we conclude
that we have a small prior probability of finding evi-
dence against the null hypothesis of no prior-data con-
flict when using �2. We illustrate this via an exam-
ple.

EXAMPLE 1. Suppose that we have a sample of
n from the Multinomial(1, (1 − θ)/6, (1 + θ)/6, (2 −
θ)/6, (2 + θ)/6) distribution where θ ∈ [−1,1] is
unknown. Then the counts (f1, f2, f3, f4) consti-
tute a minimal sufficient statistic and U1 = (f1 +
f2, f3 + f4) is ancillary, as is U2 = (f1 + f4, f2 + f3).

Then T = (f1, f2, f3, f4)|U1 is given by f1| U1 ∼
Binomial(f1 +f2, (1 − θ)/2) independent of f3| U1 ∼
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FIG. 6. Plot of all (α,β) corresponding to Beta(α,β) priors that
are weakly informative at level γ = 0.05 (light and dark shading)
and uniformly weakly informative (light shading).

Binomial(f3 + f4, (2 − θ)/4), giving

mT (f1, f2, f3, f4|U1)

=
(

f1 + f2
f1

)(
f3 + f4

f3

)

·
∫ 1

−1

(
1 − θ

2

)f1(1 + θ

2

)f2(2 − θ

4

)f3

·
(

2 + θ

4

)f4

π(θ) dθ.

We then have two 1-dimensional distributions f1|U1
and f3|U1 to use for checking for prior-data conflict.
A similar result holds for the conditional distribution
given U2.

For example, suppose π is a Beta(20,20) distri-
bution on [−1,1], so the prior concentrates about 0,
and for a sample of n = 18 we have that U1 = f1 +
f2 = 10 and U2 = f1 + f4 = 8. In Figure 6 we have
plotted all the values of (α,β) that correspond to a
Beta(α,β) prior that is weakly informative relative to
the Beta(20,20) prior at level γ = 0.05, as well as
those that are uniformly weakly informative. So for
each such (α,β) we have that (10) is less than or equal
to 0.05 for both U = U1 and U = U2.

6. CONCLUSIONS

We have developed an approach to measuring the
amount of information a prior puts into a statistical
analysis relative to another base prior. This base prior
can be considered as the prior that best reflects current

information and our goal is to determine a prior that is
weakly informative with respect to it. Our measure is in
terms of the prior predictive probability, using the base
prior, of obtaining a prior-data conflict. This was ap-
plied in several examples where the approach is seen to
give intuitively reasonable results. The examples cho-
sen here focused on commonly used prior families. In
several cases these were conjugate families, although
there is no special advantage computationally to con-
jugacy in this context.

As noted in several examples, we need to be careful
when we conceive of a prior being weakly informative
relative to another. Ultimately this concept needs to be
made precise and we feel our definition is a reasonable
proposal. The definition has intuitive support, in terms
of avoiding prior-data conflicts, and provides a quan-
tifiable criterion that can be used to select priors.

In any application we should still check for prior-
data conflict for the base prior using (3). If prior-data
conflict is found, a substitute prior that is weakly infor-
mative relative to the base prior can then be selected
and a check made for prior-data conflict with respect
to the new prior. While selecting the prior based on the
observed data is not ideal, this process at least seems
defensible from a logical perspective. For example, the
new prior still incorporates some of the information
from the base prior and is not entirely driven by the
data. Certainly, in the end it seems preferable to base
an analysis on a prior for which a prior-data conflict
does not exist. Of course, we must still report the orig-
inal conflict and how this was resolved.

We have restricted our discussion here to proper pri-
ors. The concept of weak informativity is obviously re-
lated to the idea of noninformativity and improper pri-
ors. Certainly any prior that has a claim to being nonin-
formative should not lead to prior-data conflict. At this
time, however, there is no precise definition of what a
noninformative prior is, whereas we have provided a
definition of a weakly informative prior. In the exam-
ples of Section 3.1 and 3.2 we see that if the spread of
�2 is made large enough, then �2 is uniformly weakly
informative with respect to the base prior. This sug-
gests that the flat improper prior, which is Jeffreys’
prior for this problem, can be thought of as always
being uniformly weakly informative. The logistic re-
gression example of Section 4.3 suggests caution, how-
ever, in interpreting increased diffuseness as a charac-
terization of weak informativity. In the binomial exam-
ple of Section 4.1 the uniform prior is always weakly
informative with respect to the base prior, while the
Beta(1/2,1/2) (Jeffreys’) prior is not. Further work
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is required for a full examination of the relationships
among the concepts of prior-data conflict, noninforma-
tivity and weak informativity.

APPENDIX

PROOF OF LEMMA 1. We have that xγ = γ

since P1(t) has a continuous distribution under M1T .

Suppose m∗
iT (t) has a point mass at r0 when t ∼

MiT . The assumption MiT (m∗
iT (t) = r0) > 0 implies

(m∗
iT )−1{r0} �= ∅. Then, pick tr0 ∈ (m∗

iT )−1{r0} so
that m∗

iT (tr0) = r0 and let ηi = Pi(tr0). Then, Pi(t)

has point mass at ηi because MiT (Pi(t) = ηi) ≥
MiT (m∗

iT (t) = m∗
iT (tr0)) = MiT (m∗

iT (t) = r0) > 0.

This is a contradiction and so m∗
iT (t) has a continu-

ous distribution when t ∼ MiT .

Let rγ = sup{r ∈ R :M2T (m∗
2T (t) ≤ r) ≤ γ } where

R = {m∗
2T (t) : t ∈ T } and T is the range space of

T . Then, M2T (m∗
2T (t) ≤ rγ ) = γ and M2T (m∗

2T (t) ≤
rγ + ε) > γ for all ε > 0. Thus, we have that {t :
P2(t) ≤ γ } = {t :m∗

2T (t) ≤ rγ }, M1T (P2(t) ≤ γ ) =
M1T (m∗

2T (t) ≤ rγ ), and �2 is weakly informative at
level γ relative to �1 if and only if M1T (m∗

2T (t) ≤
rγ ) ≤ γ . The fact that {rγ :γ ∈ [0,1]} ⊂ R implies the
last statement. �

PROOF OF THEOREM 1. Suppose first that 	1 ≤
	2. We have that n−1I + 	1 ≤ n−1I + 	2 and so
(n−1I +	1)

−1 ≥ (n−1I +	2)
−1. This implies that (7)

is less than γ and so the Nk(μ0,	2) prior is uniformly
weakly informative relative to the Nk(μ0,	1) prior.

For the converse put Vi = {y :y′(n−1I + 	i)
−1y ≤

1}. If V1 ⊂ V2, then for y ∈ Rk\{0} there exists c > 0
such that c2y′(n−1I +	1)

−1y = 1 which implies cy ∈
V2 and so c2y′(n−1I + 	2)

−1y ≤ 1. This implies that
y′(n−1I + 	1)

−1y ≥ y′(n−1I + 	2)
−1y and so 	1 ≤

	2 and the result follows. If V2 ⊂ V1, then the same
reasoning says that 	2 ≤ 	1 and (7) would be greater
than γ if 	2 < 	1.

So we need only consider the case where V1 ∩ V c
2 ,

V c
1 ∩ V2 both have positive volumes, that is, we are

supposing that neither 	2 −	1 nor 	1 −	2 is positive
semidefinite and then will obtain a contradiction. Let
δ = inf{y′(n−1I +	1)

−1y :y ∈ V1 ∩∂V2} and note that
δ < 1, since V o

1 ∩ ∂V2 �= φ, that is, there are points
in the interior of V1 on the boundary of V2. Now put
V0 = {y ∈ V1 ∩ V c

2 :y′(n−1I + 	1)
−1y ≤ (1 + δ)/2}

and note that V0 has positive volume.
Let Y ∼ Nk(0, n−1I + 	1) and τ 2

γ = G−1
k (1 − γ ).

Then M1T (P1(t) ≤ γ ) = P(Y ′(n−1I + 	1)
−1Y ≥

τ 2
γ ) = P(Y /∈ τγ V1) = 1 − PY (τγ (V1 ∩ V2) ∪ τγ (V1 ∩

V c
2 )) while M1T (P2(t) ≤ γ ) = P(Y ′(n−1I + 	2)

−1 ·
Y ≥ τ 2

γ ) = P(Y /∈ τγ V2) = 1 − PY (τγ (V1 ∩ V2) ∪
τγ (V c

1 ∩ V2)). Since γ = M1T (P1(t) ≤ γ ), we need
only show that PY (τγ (V1 ∩ V c

2 )) > PY (τγ (V c
1 ∩ V2))

for all γ sufficiently small, to establish the result.
Let f (x) = k1e

−x/2 be such that f (y′(n−1I +
	1)

−1y) is the density of Y. Then PY (τγ (V c
1 ∩ V2)) =∫

τγ (V c
1 ∩V2)

f (y′(n−1I +	1)
−1y)dy ≤ f (τ 2

γ y′∗(n−1I +
	1)

−1y∗)Vol((V c
1 ∩ V2))τ

k
γ where y∗ = arg min{y′ ·

(n−1I + 	1)
−1y :y ∈ V c

1 ∩ V2}. Note it is clear that
y∗ ∈ ∂V1 and so y′∗(n−1I + 	1)

−1y∗ = 1 and f (τ 2
γ y′∗ ·

(n−1I + 	1)
−1y∗) = k1e

−τ 2
γ /2. Also, PY (τγ (V1 ∩

V c
2 )) ≥ PY (τγ V0) = ∫

τγ V0
f (y′(n−1I + 	1)

−1y)dy ≥
f (τ 2

γ (1 + δ)/2)Vol(V0)τ
k
γ where f (τ 2

γ (1 + δ)/2) =
k1e

−τ 2
γ (1+δ)/4. Therefore, as γ → 0,

PY (τγ (V1 ∩ V c
2 ))

PY (τγ (V c
1 ∩ V2))

≥ eτ 2
γ (1−δ)/4 Vol((V c

1 ∩ V2))

Vol(V0)
→ ∞,

since τγ = (G−1
k (1 − γ ))1/2 → ∞ as γ → 0 and 0 <

δ < 1. �
PROOF OF THEOREM 2. First note that we can

use (2) instead of (3) in this case as JT (x) is constant
in this case. We assume without loss of generality that
μ0 = 0.

We first establish several useful technical results. If
�i is a probability distribution that is unimodal and
symmetric about 0, and φν denotes a N(0, ν) density,
we have that miT (t) = ∫

R φν(t − μ)�i(dμ) is uni-
modal and symmetric about 0. We have the following
result.

LEMMA A.1. If T is a minimal sufficient statistic,
JT (x) is constant in x, �1 and �2 are unimodal and
symmetric about 0, the Pi(t) have continuous distribu-
tions when t ∼ MiT ,m1T (0) > m2T (0), and m1T (t) =
m2T (t) has a unique solution for t > 0, then �2 is uni-
formly weakly informative relative to �1.

PROOF. By the unimodality and symmetry of miT ,

we must have that Pi(t) = MiT (miT (u) ≤ miT (t)) =
MiT (|u| ≥ |t |). We show M1T (|t | ≥ t0) ≤ M2T (|t | ≥
t0) for all t0 > 0 because it is equivalent to �2
being uniformly weakly informative relative to �1
by Lemma 1. Let ts be the solution of m1T (t) =
m2T (t) on (0,∞). From the unique solution assump-
tion, m1T (t) > m2T (t) for t ∈ (0, ts) and m1T (t) <

m2T (t) for t > ts . For 0 ≤ t0 < ts,M1T (|t | ≥ t0) =
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2
∫ ∞
t0

m1T (t) dt = 1 − 2
∫ t0

0 m1T (t) dt ≤ 1 −
2

∫ t0
0 m2T (t) dt = 2

∫ ∞
t0

m2T (t) dt = M2T (|t | ≥ t0) and
for t0 ≥ ts , M1T (|t | ≥ t0) = 2

∫ ∞
t0

m1T (t) dt ≤
2

∫ ∞
t0

m2T (t) dt = M2T (|t | ≥ t0). Thus, we are done.
�

We can apply Lemma A.1 to comparing normal and t

priors when sampling from a normal.

LEMMA A.2. Suppose we have a sample of n from
a location normal model, �1 is a N(0, σ 2

1 ) prior and
�2 is a t1(0, σ 2

2 , λ) prior. If m1T (0) > m2T (0), then
�2 is uniformly weakly informative relative to �1.

PROOF. We have that m1T = φ1/n+σ 2
1

and, us-
ing the representation of the t (λ) distribution as a
gamma mixture of normals, we write m2T (t) =∫ ∞

0 φ1/n+σ 2
2 /u(t)kλ(u) du where kλ is the density of

Gammarate(λ/2, λ/2) distribution. By the symmetry of
φv , m2T is symmetric. Also, φv(t1) > φv(t2) for 0 ≤
t1 < t2 and so m2T (t1) = ∫

φ1/n+σ 2
2 /u(t1)kλ(u) du ≥∫

φ1/n+σ 2
2 /u(t2)kλ(u) du = m2T (t2). Thus, m2T is de-

creasing on (0,∞), that is, m2T is unimodal. To
show that m2T (t) is log-convex with respect to t2,
we prove that (d2/d(t2)2) logm2T (t) ≥ 0. Note that
(d/d(t2))φv(t) = (d/d(t2))[(2πv)−1/2 exp{−t2/

2v}] = −φv(t)/2v,

dm2T (t)

dt2

= −
∫ ∞

0

φ1/n+σ 2
2 /u(t)

2(1/n + σ 2
2 /u)

kλ(u) du,

d2 logm2T (t)

d(t2)2

= 1

m2T (t)

∫ ∞
0

φ1/n+σ 2
2 /u(t)

[2(1/n + σ 2
2 /u)]2

kλ(u) du

− 1

m2T (t)2

(∫ ∞
0

φ1/n+σ 2
2 /u(t)

2(1/n + σ 2
2 /u)

kλ(u) du

)2

and so d2 logm2T (t)/d(t2)2 = VarV ([2(1/n + σ 2
2 /

V )]−1) ≥ 0, where V is the random variable having
density φ1/n+σ 2

2 /v(t)kλ(v)/m2T (t). Thus, m2T (t) is

log-convex in t2.
The functions m1T (t) and m2T (t) meet in at most

two points on (0,∞) because logm1T (t) is linear
in t2 and logm2T (t) is convex in t2. Also, m1T (t)

and m2T (t) share at least one point on (0,∞) be-
cause m1T (0) > m2T (0), and the following shows that
m1T (t) < m2T (t) for all large t. Note first that if u ≥

σ 2
2 /2σ 2

1 , then (1/n + σ 2
1 )/(1/n + σ 2

2 /u) ≥ 1/2 and
t2/(u/n + σ 2

2 ) ≥ (2σ 2
1 /σ 2

2 )t2/(1/n + 2σ 2
1 ). Then,

m2T (t)

m1T (t)

≥
∫ ∞
σ 2

2 /2σ 2
1

(λ/2)λ/2

�(λ/2)

(2π(1/n + σ 2
2 /u))−1/2

(2π(1/n + σ 2
1 ))−1/2

uλ/2−1

· exp{−(u/2)(λ + t2/(u/n + σ 2
2 ))}

exp{−(1/2)t2/(1/n + σ 2
1 )} du

≥ (λ/2)λ/2

�(λ/2)

1

21/2

(
σ 2

2

2σ 2
1

)λ/2−1

·
∫ ∞
σ 2

2 /2σ 2
1

exp
{
−

(
u

2

)(
λ + (2σ 2

1 /σ 2
2 )t2

1/n + 2σ 2
1

)}

·
(

exp
{ −(1/2)t2

(1/n + σ 2
1 )

})−1

du

= (λ/2)λ/2

�(λ/2)

1

21/2

·
(

σ 2
2

2σ 2
1

)λ/2−1

exp{−(1/2)(σ 2
2 /2σ 2

1 )λ}

· exp
{(

1

2

)
t2

((
1

n
+ σ 2

1

)−1

−
(

1

n
+ 2σ 2

1

)−1)}

·
{

2−1
(
λ + (2σ 2

1 /σ 2
2 )t2

(1/n + 2σ 2
1 )

)}−1

→ ∞

as t2 → ∞.

The above conditions together imply that m1T (t) and
m2T (t) meet in exactly one point on (0,∞). Therefore,
�2 is uniformly weakly informative relative to �1 by
Lemma A.1. �

Since
∫ ∞

0 (1/n + σ 2/u)−1/2kλ(u) du is strictly de-
creasing in σ 2, we see that m1T (0) = (2π(1/n +
σ 2

1 ))−1/2 ≥ m2T (0) = (2π)−1/2 ∫ ∞
0 (1/n+σ 2

2 /u)−1/2 ·
kλ(u) du is equivalent to σ2 ≥ σ0n where σ0n satis-
fies (1/n+σ 2

1 )−1/2 = ∫ ∞
0 (1/n+σ 2

0n/u)−1/2kλ(u) du.

This proves the first part of Theorem 2.
We also need the following results for the remaining

parts of Theorem 2.

LEMMA A.3. (i) σ 2
0n/σ

2
1 increases as nσ 2

1 →
∞, (ii) σ 2

0n/σ
2
1 → (2/λ)�2((λ + 1)/2)/�2(λ/2) as

nσ 2
1 → ∞.

PROOF. (i) We have n−1/2(1/n + σ 2
1 )−1/2 =

n−1/2 ∫ ∞
0 (1/n + σ 2

0n/u)−1/2kλ(u) du and putting α =
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nσ 2
1 , β = nσ 2

0n, we can write this as

(1 + α)−1/2 =
∫ ∞

0
(1 + β/u)−1/2kλ(u) du.(A.1)

Differentiating both sides of (A.1) with respect to α,
we have (1 + α)−3/2 = ∫ ∞

0 (1 + β/u)−3/2u−1kλ(u) du

(dβ/dα). If we let U ∼ Gammarate(λ/2, λ/2), then
this integral can be written as the expectation

E
(
(1 + β/U)−3/2U−1)
= E

(
(1 + β/U)−3/2(β/U + 1 − 1)/β

)
= β−1E

(
(1 + β/U)−1/2)

− β−1E
(
(1 + β/U)−3/2)

≤ β−1E
(
(1 + β/U)−1/2)

− β−1{
E

(
(1 + β/U)−1/2)}3

= β−1(1 + α)−1/2 − β−1(1 + α)−3/2

= (1 + α)−3/2(α/β),

where the inequality follows via Jensen’s inequal-
ity. Hence, dβ/dα = (1 + α)−3/2[E((1 + β/U)−3/2 ·
U−1)]−1 ≥ β/α and so β/α is an increasing function
of α because d(β/α)/dα = α−1(dβ/dα) − β/α2 ≥ 0.

This proves σ 2
0n/σ

2
1 = nσ 2

0n/nσ 2
1 = β/α increases as

α = nσ 2
1 → ∞.

(ii) It is easy to check that β = 0 when α = 0 and
β > 0 for α > 0. Let α0, β0 be a pair satisfying α0 >

0 and (A.1). Then, β/α ≥ β0/α0 > 0 for α > α0 and
β → ∞ as α → ∞. Therefore,

lim
α→∞

(
β

α

)1/2

= lim
α→∞

√
β√

1 + α

= lim
α→∞E

( √
β√

1 + β/U

)

= lim
β→∞E

( √
β√

1 + β/U

)
= E

(√
U

)

=
∫ ∞

0

√
ukλ(u)du

= (2/λ)1/2�
(
(λ + 1)/2

)
/�(λ/2)

and this proves (ii). �
LEMMA A.4. Suppose we have a sample of n from

a location normal model, �1 is a N(0, σ 2
1 ) prior and

�2 is a t1(0, σ 2
2 , λ) prior. Then �2 is asymptotically

uniformly weakly informative relative to �1 if and only
if σ 2

2 /σ 2
1 ≥ (2/λ)�2((λ + 1)/2)/�2(λ/2).

PROOF. Suppose that σ 2
2 /σ 2

1 ≥ (2/λ)�2((λ + 1)/

2)/�2(λ/2). Then by Lemma A.3 σ 2
2 /σ 2

1 ≥ σ 2
0n/σ

2
1

for all n and so �2 is uniformly weakly informative
with respect to �1 for all n. So (4) is bounded above
by γ for all n and so the limiting value of (4) is
also bounded above by γ. This establishes that �2 is
asymptotically uniformly weakly informative relative
to �1.

Suppose now that σ 2
2 /σ 2

1 < (2/λ)�2((λ + 1)/

2)/�2(λ/2). Note that m1T (t) =
limn→∞ m1T ,n(t) = (2πσ 2

1 )−1/2 exp(−t2/(2σ 2
1 )) and

m2T (t) = limn→∞ m2T ,n(t) = �((λ + 1)/2)/

(�(λ/2)
√

πλσ 2
2 )(1 + x2/(σ 2

2 λ))−(λ+1)/2. Therefore,

we get m1T (0) = 1/
√

2πσ 2
1 < �((λ + 1)/2)/�(λ/

2)
√

πλσ 2
2 = m2T (0). Let B = {t :m2T (t) >

m1T (0)} and γ = M2T (Bc). Then, m1T (t) ≤ m1T (0) ≤
m2T (t) on B and M1T (P2(t) ≤ γ ) = M1T (Bc) =
1 −M1T (B) = 1 − ∫

B m1T (t) dt ≥ 1 − ∫
B m1T (0) dt ≥

1 − ∫
B m2T (t) dt = M2T (Bc) = γ. Hence, �2 is not

weakly informative relative to �1 at level γ . There-
fore, σ 2

2 /σ 2
1 ≥ (2/λ)�2((λ + 1)/2)/�2(λ/2). �

It is now immediate that supγ∈[0,1] G−1
1 (1 − γ )/

H−1
1,λ(1 − γ ) = (2/λ)�2((λ + 1)/2)/�2(λ/2) and the

proof of Theorem 2 is complete. �
PROOF OF THEOREM 3. Since the minimal suffi-

cient statistic T (x) = x̄ is linear, there is no volume
distortion and we can use (2) instead of (3). The lim-
iting prior predictive distribution of T (x) = x̄ under
�1 is N(μ0,	1) and under �2 it is tk(μ0,	2, λ). It
is easy to check that U1 = (T − μ0)

′	−1
1 (T − μ0) ∼

χ2(k) when T ∼ �1 and U2 = (T − μ0)
′	−1

2 (T −
μ0) ∼ kFk,λ when T ∼ �2. This implies that P2,n(t0)

converges to P2(t0) = �2(π2(t) ≤ π2(t0)) = 1 −
Hk,λ((t0 − μ0)

′	−1
2 (t0 − μ0)/k), where Hk,λ is the

distribution function of an Fk,λ distribution. Further,
we have that (4) converges to �1(P2(t) ≤ γ ).

Let Vi = {u ∈ Rk :u′	−1
i u < 1} for i = 1,2. By

the continuity of �2(π2(t) ≤ r) as a function of r,

and the continuity of π2(t), there exists t0 such that
P2(t) ≤ γ if and only if π2(t) ≤ π2(t0). Hence, �2 is
asymptotically uniformly weakly informative relative
to �1 if and only if �1(π2(t) ≤ π2(t0)) ≤ �2(π2(t) ≤
π2(t0)) for all t0 ∈ Rk by Lemma 1. Since π2(t) is
decreasing in u2 = U2(t), the set {π2(t) ≤ π2(t0)} =
{u2(t) ≥ u2(t0)} = μ0 + u2(t0)V

c
2 . So we must prove

that �1(μ0+r1/2V c
2 ) ≤ �2(μ0+r1/2V c

2 ) for all r ≥ 0.

The positive semidefiniteness of 	2 − τ 2
λ	1 implies

that 	−1
1 /τ 2

λ − 	−1
2 is positive semidefinite. Then, for
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u ∈ V c
2 , that is, u′	−1

2 u ≥ 1, we have u′	−1
1 u = τ 2

λ ·
u′(	−1

1 /τ 2
λ )u ≥ τ 2

λu′	−1
2 u ≥ τ 2

λ . Thus, V c
2 ⊂ τλV

c
1 .

Now we prove a stronger inequality �1(μ0 +r1/2τλ ·
V c

1 ) ≤ �2(μ0 + r1/2V c
2 ) for all r ≥ 0. Note that

�1(μ0 + r1/2τλV
c
1 )

= �1
(
u1(t) ≥ rτ 2

λ

)

=
∫ ∞
rτ 2

λ

2−k/2

�(k/2)
uk/2−1e−u/2 du,

�2(μ0 + r1/2V c
2 )

= �2(u2(t) ≥ r)

=
∫ ∞
r/k

�((k + λ)/2)

�(k/2)�(λ/2)

·
(

k

λ

)k/2

uk/2−1
(

1 + ku

λ

)−(k+λ)/2

du,

and set f (r) = �2(μ0 + r1/2V c
2 ) − �1(μ0 + r1/2τλ ·

V c
1 ). Then, f (0) = 0 and

df (r)

dr
= 2−k/2

�(k/2)
(rτ 2

λ )k/2−1e−rτ 2
λ /2τ 2

λ

· �((k + λ)/2)

�(k/2)�(λ/2)

(
k

λ

)k/2(
r

k

)k/2−1

· (1 + r/λ)−(k+λ)/2 1

k

= (τ 2
λ/2)k/2

�(k/2)
rk/2−1e−rτ 2

λ /2

− �((k + λ)/2)

�(k/2)�(λ/2)
λ−k/2rk/2−1

· (1 + r/λ)−(k+λ)/2

= p1 − p2.

Note that p1 − p2 ≥ 0 is equivalent to p1/p2 ≥ 1. Fur-
ther recalling the definition of τ 2

λ from the statement of
the theorem,

p1

p2
= τ k

λ�(λ/2)

�((k + λ)/2)

(
λ

2

)k/2

(1 + r/λ)(k+λ)/2

· exp(−rτ 2
λ/2)

= (1 + r/λ)(k+λ)/2 exp(−rτ 2
λ/2) ≥ 1.

The logarithm of p1/p2 given by log(p1/p2) = −rτ 2
λ/

2 + ((k + λ)/2) log(1 + r/λ) is concave as a function
of r > 0. Hence, log(p1/p2) = 0 has exactly two so-
lutions: r = 0 and r = rs. Because of its concavity,

the function log(p1/p2) is positive on (0, rs) and nega-
tive on (rs,∞). This implies that f (r) is increasing on
(0, rs) and decreasing on (rs,∞). Since f (0) = 0 and
limr→∞ f (r) = 0, the function f is nonnegative, that
is, f (r) ≥ 0 for all r ≥ 0. Thus, �1(μ0 + r1/2V c

2 ) ≤
�1(μ0 + r1/2τλV

c
1 ) ≤ �2(μ0 + r1/2V c

2 ) for all r ≥ 0.
�

PROOF OF THEOREM 4. Let x−1
c = β1/(α1 +

1/2) = β2/(α2 + 1/2). For i = 1,2, let ti(t0) =
1/(xcri(t0)) be the two solutions of m∗

2T (ti) = m∗
2T (t0)

(one of the ti equals t0) so 0 < r1 ≤ 1 ≤ r2. Note that
r2(t0) = 1 if and only if t0 = x−1

c and then r1(t0) = 1
as well. Then, log(r1/r2) = r1 − r2 and dr1/dr2 =
(r2 − 1)r1/[(r1 − 1)r2]. Now {t :m∗

2T (t) ≤ m∗
2T (t0)} =

{t : 1/t ≤ xcr1(t0) or 1/t ≥ xcr2(t0)}. By Lemma 1
we have that uniform weak informativity is equiv-
alent to M1T (m∗

2T (t) ≤ m∗
2T (t0)) ≤ M2T (m∗

2T (t) ≤
m∗

2T (t0)) for all t0 and so we must prove that M1T (t /∈
(t2(t0), t1(t0))) = M1T (1/t ≤ xcr1(t0) or 1/t

≥ xcr2(t0)) = 1 − M1T (xcr1(t0) ≤ 1/t ≤ xcr2(t0)) ≤
1 − M2T (xcr1(t0) ≤ 1/t ≤ xcr2(t0)) for all t0. Since
r1 is implicitly a function of r2, it is equivalent to
prove that M1T (xcr1 ≤ 1/t ≤ xcr2) − M2T (xcr1 ≤
1/t ≤ xcr2) ≥ 0 for all r2 ≥ 1. Using (r1/r2)

α =
exp(α(r1 − r2)), we have that the derivatives of the
two terms are given by

p1 = d

dr2

∫ xcr2

xcr1

c1u
α1−1e−β1u du

= c1(xcr2)
α1−1e−β1xcr2xc

− c1(xcr1)
α1−1e−β1xcr1xc

dr1

dr2

= c1x
α1
c r

α1−1
2 e−β1xcr2

·
(

1 − r2 − 1

r1 − 1
exp

(
(r2 − r1)(β1xc − α1)

))
,

p2 = c2x
α2
c r

α2−1
2 e−β2xcr2

·
(

1 − r2 − 1

r1 − 1
exp

(
(r2 − r1)(β2xc − α2)

))
,

where ci = β
αi

i /�(αi). Then, recalling the definition
of xc, we have that the ratio p1/p2 = (c1/c2)x

α1−α2
c ·

r
α1−α2
2 e(β2−β1)xcr2 = (c1/c2)x

α1−α2
c (r2e

−r2)α1−α2

strictly decreases as r2 increases from 1 to ∞ when
α1 > α2 because α1 − α2 = (β1 − β2)xc ≥ 0, and
is identically 1 when α1 = α2. Suppose then that
α1 > α2 so there is at most one r2 value where
p1 = p2 and the derivative is 0. If (p1/p2)|r2=1 < 1,
then p1 − p2 < 0 for all r2 ≥ 1 and M1T (xcr1 ≤
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1/t ≤ xcr2) − M2T (xcr1 ≤ 1/t ≤ xcr2) strictly de-
creases from 0. This cannot hold because M1T (xcr1 ≤
1/t ≤ xcr2) − M2T (xcr1 ≤ 1/t ≤ xcr2) → 0 as r2 →
∞. Hence, (p1/p2)|r2=1 ≥ 1 and M1T (xcr1 ≤ 1/t ≤
xcr2) − M2T (xcr1 ≤ 1/t ≤ xcr2) increases from 0 near
r2 = 1 and decreases to 0 as r2 → ∞. Therefore,
M1T (xcr1 ≤ 1/t ≤ xcr2) − M2T (xcr1 ≤ 1/t ≤ xcr2)

goes up from 0 and down to 0 as r2 increases from
1 to ∞, and we have M1T (xcr1 ≤ 1/t ≤ xcr2) −
M2T (xcr1 ≤ 1/t ≤ xcr2) ≥ 0 for all r2 ≥ 1. �
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