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Abstract
Recently, Halevi et al. (CCS ’11) proposed a cryptographic
primitive called proofs of ownership (PoW) to enhance secu-
rity of client-side deduplication in cloud storage. In a proof
of ownership scheme, any owner of the same file F can
prove to the cloud storage that he/she owns file F in a ro-
bust and efficient way, in the bounded leakage setting where
a certain amount of efficiently-extractable information about
file F is leaked. Following this work, we propose a secure
client-side deduplication scheme, with the following advan-
tages:

• our scheme protects data confidentiality (and some partial
information) against both outside adversaries and honest-
but-curious cloud storage server, while Halevi et al. trusts
cloud storage server in data confidentiality;

• our scheme is proved secure w.r.t. any distribution with
sufficient min-entropy, while Halevi et al. (the last and
the most practical construction) is particular to a specific
type of distribution (a generalization of “block-fixing”
distribution) of input files.

The cost of our improvements is that we adopt a weaker leak-
age setting: We allow a bounded amount one-time leakage
of a target file before our scheme starts to execute, while
Halevi et al. allows a bounded amount multi-time leakage of
the target file before and after their scheme starts to execute.
To the best of our knowledge, previous works on client-side
deduplication prior Halevi et al. do not consider any leakage
setting.
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1. Introduction
Cloud storage service is gaining popularity in recent years.
To reduce resource consumption in both network bandwidth
and storage, many cloud storage services including Drop-
box 1 and Wuala 2 employs client-side deduplication [21,
39]. That is, when a user tries to upload a file to the server,
the server checks whether this particular file is already in
the cloud (uploaded by some user previously), and saves the
uploading process if it is already in the cloud storage. In
this way, every single file will have only one copy in the
cloud (i.e. Single Instance Storage). SNIA white paper [34]
reported that the deduplication technique can save up to 90%
storage, dependent on applications.

According to Halevi et al. [20] and Dropship [17], an
existing implementation of client-side deduplication is as
below: Cloud user Alice tries to upload a file F to the cloud
storage. The client software of the cloud storage service
installed on Alice’s computer, will compute and send the
hash value hash(F ) to the cloud server. The cloud server
maintains a database of hash values of all received files,
and looks up the value hash(F ) in this database. If there
is no match found, then file F is not in the cloud storage
yet. Alice’s client software will be required to upload F
to the cloud storage, and the hash value hash(F ) will be
added into the look-up database. If there is a match found,
then file F is already in the cloud storage, uploaded by
other users or even by the same user Alice before. In this
case, uploading of file F from Alice’s computer to the cloud
storage is saved, and the cloud server will allow Alice to

1 http://www.dropbox.com/
2 http://www.wuala.com/



access the file F in its cloud storage. We may refer to the
above client-side deduplication method as “hash-as-a-proof”
method. In this method, the hash value hash(F ) serves two
purposes: (1) it is an index of file F , used by the cloud
server to locate information of F among a huge number of
files; (2) it is treated as a “proof” that Alice owns file F .
Previously, Dropbox3 applied the above “hash-as-a-proof”
method on block-level cross-users deduplication [20][17].
If the client software of the cloud storage service is trusted
and the hash function hash(·) is collision-resistant, then the
“hash-as-a-proof” method is sufficiently secure. However,
malicious users may develop their own version of client
software using public API4 of the cloud service, so that they
can send any manipulated messages (e.g. manipulated hash
output) to the cloud server. Therefore, a more sophisticated
solution without trusting the client software is required.

1.1 Security Concerns
Different users may possess some identical sensitive files for
many reasons, even if they have no knowledge on each other.
For example they may receive a classified or copyright-
protected file directly or indirectly from the same source.
Partial information of these sensitive files could be leaked
via various channels [20, 21] by some owners intentionally
or unintentionally. Despite its significant benefits in saving
resource, client-side deduplication may bring in new security
vulnerability and lead to leakage of users’ sensitive files,
especially when a certain amount of partial information of
these files have already been leaked.

1.1.1 Data Privacy against Outside Adversaries
Recently, an attack on “hash-as-a-proof” method in popular
cloud storage service like Dropbox and MozyHome is pro-
posed [17, 20]: If the adversary somehow has the short hash
value of a file stored in the cloud storage, he/she could fool
the cloud server that he has the file by presenting only the
hash value as “proof” in the client-side deduplication pro-
cess, and thus gain access to that file via the cloud. This at-
tack is practical and does not require the adversary to find a
collision of the hash function, since client software of cloud
service could be bypassed.

1.1.2 Data Privacy against Inside Adversaries (Cloud
Storage Servers)

Confidentiality of users’ sensitive data against the cloud stor-
age server itself is another important security concern that is
not addressed by Halevi et al. [20]. As long as it is possible,

3 In Feb 2012, we noticed that Dropbox disabled the deduplication across
different users, probably due to recent vulnerabilities discovered in their
original cross-user client-side deduplication method. This also indicates the
importance and urgency in the study of security in client-side deduplication.
4 Dropbox provides public API. Furthermore, this issue can not be elim-
inated just by hidding API, since the adversary could perform reverse-
engineering attack to guess the communication protocol of the cloud ser-
vice. Note the effect of obfuscating is limited [6].

prudent users hope to ensure that the cloud storage server
is technically unable to access their data. Dropbox claims
they protect users’ data with AES encryption. However, the
encryption keys are chosen and kept by Dropbox itself. It
is reported that, Dropbox mistakenly kept all user accounts
unlocked for almost 4 hours, due to a new bug in their soft-
ware [40]. If users’ data are encrypted on client side and the
encryption keys are kept away from Dropbox, then there will
be no such single point of failure of privacy protection of
all users’ data, even if Dropbox made such mistakes or was
hacked in. Very recently, a bug in Twitter’s client software
is discovered [37], which allows adversary to access users’
private data.

It is worth noting that, cloud storage service providers,
including Amazon (S3), Apple (iCloud), Dropbox, Google
(Drive) and Microsoft (SkyDrive), explicitly or implicitly
declare that they reserve rights to access users’ files, in their
official statements of privacy policy [2, 10, 16, 19, 22, 25].

1.1.3 Divide and Conquer Attack
Let us consider an example: A classified document consists
of many pages. Although the whole document has sufficient
min-entropy to the view of adversaries, the first page has
very low min-entropy, say 1 bit min-entropy which indicates
“Acceptance” or “Rejection”. Suppose this classified docu-
ment is stored in a cloud storage, which supports block-level
cross-user deduplication. Then the adversary could recover
the 1 bit unknown information in the first page, through the
block-level deduplication5. This is because: (1) deduplica-
tion inevitably provides adversaries a way to do brute force
search for unknown information, and (2) block-level dedu-
plication that divides a file into blocks and applies dedupli-
cation on each block, will isolate min-entropy of each block,
and allow adversaries to do brute force search in a much
smaller search space. It is not unusual that a file with high
min-entropy contains some part, which has very low min-
entropy compared to its bit-length. Deterministic encryption
scheme also need resolve this issue [26]. We emphasize that
block-level cross-user client-side deduplication should not
be applied over sensitive files.

Very recently, Ng et al. [28] proposed a scheme, which
aimed to support PoW over encrypted data. However, their
work [28] did not address the above issue and consequently
is secure only if every block of the file of interest has suf-
ficient min-entropy. We will discuss this work later in the
related work section.

1.1.4 Poison Attack
When a file F is encrypted on client side with randomly cho-
sen encryption key, the cloud server may not be able to verify
consistency between the ciphertext and meta-data of file F

5 Users can find whether deduplication occurs by timing the uploading time
or monitoring communication packet between the cloud client software and
cloud server, or develop a custom cloud client software using public API.
Here we assume each block contains only one page.



uploaded by a user. For example, given a tuple (HF , CF ),
the cloud server is unable to verify whether there exists a
file F and an encryption key k such that HF = hash(F )
and CF = Enck(F ). A malicious user may substitute the
valid ciphertext CF with an equal size poisoned file before
uploading it to the cloud. Suppose a subsequent user Carol
tries to upload the same file F to the cloud. She will be told
that F is already in cloud and uploading of F is saved. She
may delete her local copy of F to save local storage, and will
retrieve file F from the cloud when required in the future.
However, what she can retrieve from the cloud is a poisoned
file—her file F is lost! This attack is also known as Target
Collision attack [36]. We remark that this attack does not re-
quire to find a collision of the underlying hash function, and
could be practical if the client-side deduplication over en-
crypted data is not properly implemented. For example, the
“hash-as-a-proof” method suffers from such poison attack,
if the cloud server does not verify the hash computation in
order to save computation burden.

1.1.5 Plausible Approaches

Convergent Encryption. Intuitively, convergent encryp-
tion [14, 15] together with PoW might provide a solution for
client-side deduplication of encrypted files: Encrypt file F to
generate ciphertext CF with hash value hash(F ) as encryp-
tion key and then apply PoW scheme overCF . Indeed, cloud
storage service provider Wuala adopts convergent encryp-
tion to encrypt users files on client side and supports cross-
user deduplication. However, the threat models of PoW and
convergent encryption are incompatible. In the setting of
PoW where a bounded amount of efficiently-extractable in-
formation about the file F can be leaked, convergent en-
cryption is insecure, since its short encryption key is gen-
erated from the input file in a deterministic way and could
be leaked. Roughly speaking, convergent encryption is as
insecure as “hash-as-a-proof” method (i.e using hash value
hash(F ) as a proof of ownership of file F ), in the presence
of leakage. Therefore, all existing works on applying con-
vergent encryption method to implement deduplication of
encrypted data (e.g. [3, 24, 36]) are insecure in the bounded
leakage setting.
Per-User Encryption Key. Another approach is that each
cloud user chooses his/her own per-user encryption key, and
all files uploaded to the cloud by the same user will be de-
terministically encrypted under this user’s encryption key. If
a single user uploads the same file more than once to the
cloud, the subsequent upload will be saved. This approach
only allows deduplication of files that belong to the same
user, which will severely whittle down the effect of dedupli-
cation. In this paper, we are interested in the deduplication
cross different users, that is, identical duplicated files from
different uses will be detected and removed safely.

1.1.6 Current states of various Cloud Storage Services
We collect some technique information about various cloud
storage services (Dropbox, SpiderOak 6 and Wuala) in Ta-
ble 1. All information comes from public official blogs,
white papers, private communication with these cloud stor-
age service providers, or through simple experiments with
their public service. We notice that Microsoft SkyDrive and
Google Drive do not provide client-side deduplication func-
tion, even within a single user account. We conjecture that
all cloud storage service with simple web access support (i.e.
without requiring special browser plug-in) either do not en-
crypt users’ data or encrypt users’ data on server side only.

Table 1. Comparison of various cloud storage services.
Name Deduplication Cross-User Encryption

Dropbox Yes No (See footnote 1) Server side enc
SpiderOak Yes No [35] Client side enc

Wuala Yes Yes Convergent enc

1.2 Our results and contribution
1.2.1 Overview of proposed scheme
We briefly describe the proposed client-side deduplication
scheme over encrypted files as below.
First Upload of File F . Suppose Alice is the first user who
uploads a sensitive file F to the cloud storage. She will
independently choose a random AES key τ , and produces
two ciphertexts as below (See Figure 1): The first ciphertext
CF is generated by encrypting file F with encryption key
τ using AES method, and the size of CF is almost equal
to the size of F ; the second ciphertext Cτ is generated by
encrypting the short AES key τ with file F as the encryption
key using some custom encryption method, and the size of
Cτ is in O(|τ |) which is very small.

Long User File F Short Secret Key τ

Ciphertext CF = Encτ (F ) Ciphertext Cτ = ÊncF (τ)

Plaintext Plaintext
Encryption Key Encryption Key

Figure 1. The generation of large ciphertext CF and short
ciphertext Cτ .

Finally, Alice will send a hash value hash(F ) and two
ciphertexts (CF , Cτ ) to the cloud storage server. The cloud
storage server will compute the hash value hash(CF ), insert
a short entry (key = hash(F ); value = (hash(CF ), Cτ ))
into its lookup database, and store the potentially large ci-
phertext CF separately.

6 https://spideroak.com/



Subsequent Upload of File F . Suppose another user Carol
tries to upload the same file F into the cloud, after Alice
has already uploaded F . Carol sends hash value hash(F )
to the cloud storage server, and the cloud storage server
finds a matched entry in its lookup database: (key =
hash(F ); value = (hash(CF ), Cτ )). Next, the cloud stor-
age server will send the short ciphertext Cτ to Carol. Carol
can decrypt Cτ using file F as decryption key and obtain the
secret AES key τ . Carol can encrypt her file F with AES key
τ to generate CF and send the newly computed hash value
hash(CF ) to the cloud storage server. The cloud will com-
pare Carol’s version of hash value hash(CF ) with the one
computed by itself. If the two hash values are equal, then
Carol is allowed to download CF from the cloud storage
from now on. If the two hash values are different, then with
overwhelming high probability7, either Alice has launched
a poison attack w.r.t. file F , or Carol is cheating, or both. If
Alice is honest, she can recover file F from the cloud, and
present file F as a proof; if Carol is honest, she can present
her local copy of F as a proof.

After this, assuming that both Alice and Carol are honest,
Carol may remove the local copy of file F if she likes and
keeps the AES key τ safely in local storage. Carol can
always recover file F by downloading the ciphertext CF
from the cloud and decrypting it with key τ .

1.2.2 Our Contributions
In this paper, we focus on cross-user client-side deduplica-
tion over users’ sensitive data files, and protect data privacy
from both outside adversaries and the honest-but-curious
cloud storage server. Our contributions in this paper can be
summarized as below:

• In Section 3, we propose a formulation for client-side
deduplication of encrypted files. Our formulation pro-
tects confidentiality of users’ sensitive files against both
malicious outside adversaries and honest-but-curious in-
side adversaries. Furthermore, our formulation also pro-
tects an important type of partial information (particu-
larly, any physical bit F [i] at position i of file F ) of users’
sensitive files, although the nature of deduplication im-
plies that semantic-security is unachievable. In contrast,
the recent work by Ng et al. [28] does not protect partial
information and suffers from divide and conquer attack.

• In Section 4, we propose the first secure (Definition 2)
client-side deduplication scheme of encrypted files in the
bounded leakage setting. We prove its security against
malicious outside adversaries and honest-but-curious in-
side adversaries and with respect to any distribution of
user file in Theorem 1. In contrast, the PoW schemes by
Halevi et al. [20] only deals with outside adversaries, and
their most practical construction is only proved secure

7 Except the negligibly rare case that a collision of the hash function is
found.

against a particular type of distribution of user file and
their proof (in random oracle) relies on an untypical as-
sumption (More details are given later in Section 2).

Our scheme can be applied for deduplication of sensitive
files that have very low min-entropy due to a one-time leak-
age. It is worth pointing out our leakage setting is weaker
than Halevi et al. [20], so that our scheme achieves a weaker
goal in this aspect and allows exposure of the whole file by
leaking a short string (rather than account id/password) in
the strong leakage setting of Halevi et al. This weakness has
been resolved in our full paper [42].

The next Section 2 briefs the background and discusses
related works. Experiment result is reported in Section 5.
Section 6 concludes this paper.

2. Related works
2.1 Pairwise-Independent Hash Family
A hash family {Hk : M→ {0, 1}L} is pairwise-independent
(or say universal hash [8, 38]), if for any two distinct inputs
x1, x2 ∈M, Prk[Hk(x1) = Hk(x2)] = 2−L.

2.2 Works on Secure Deduplication before PoW
Deduplication of encrypted files have been studied since the
design of convergent encryption by Douceur et al. [14]. To
the best of our knowledge, all existing works (e.g. [3, 14, 24,
36]) before Halevi et al. [20] do not consider leakage setting
and most of them focus on server-side deduplication.

2.3 Proofs of Ownership
To prevent private data leakage to outside adversary, Halevi et
al. [20] proposed a notion of “proofs of ownership” (PoW).
In a PoW scheme, any owner of a file F , without necessar-
ily knowing other owners of F , can efficiently prove to the
cloud storage server that he/she owns the file F ; any out-
side adversary cannot prove that he/she has the file F with
probability larger than a predefined threshold, even if a cer-
tain amount of efficiently-extractable information of file F
is leaked to the adversary. Such leakage may occur at any
time except during the course of interactive proof between
the cloud storage server and the cloud user.

Halevi et al. [20] proposed three constructions. The
first construction encodes a file using some error erasure
code, and then applies the standard Merkle Hash Tree proof
method over the encoded file. The second construction is
a generic framework. Let Hk : {0, 1}M → {0, 1}L be
any pairwise independent hash family. Given a file F of
M bits long, the second construction computes the hash
value Hk(F ) with a public randomness k as hash key
and applies the standard Merkle Hash Tree proof method
over the L bits value Hk(F ). The third construction is
the most practical one. It designs an efficient hash family
H
′

k : {0, 1}M → {0, 1}L and applies the standard Merkle
Hash Tree proof method over H

′

k(F ). However, their con-
struction of H

′

k is not pairwise-independent (even if in the



random oracle model). Consequently, the generic framework
in the second construction cannot apply and a new secu-
rity proof is required. As the authors explicitly mentioned,
Halevi et al. [20]’s security proof for their third construc-
tion has some limitations: (1) the proof assumes that the
file F is sampled from a particular type of distribution (a
generalization of “block-fixing distribution”); (2) the proof
is given “under the unproven assumption that their scheme
will generate a good code” (See text around Theorem 3 in
their paper [20] ); (3) the proof is given in random oracle
model, where SHA256 is treated as a random function.

2.4 Extremely Efficient but Less Secure “PoW”
Very recently, Pietro and Sorniotti [32] proposed an efficient
“PoW” scheme: They use the projection of the file F onto
K 8 randomly selected bit-position i1, . . . , iK as the “proof”
of ownership of the file F , that is, the knowledge of bit-string
F [i1]‖ . . . ‖F [iK ] is a “proof” of ownership of file F .

This scheme is extremely efficient. However, this work [32]
has at least these limitations: (1) it does not protect privacy
against honest-but-curious cloud storage server; (2) it is se-
cure only if the min-entropy of file F to the view of adver-
saries is close to the bit-length of file F , after the leakage
occurs.

2.5 Existing Plausible Attempt for Privacy-Preserving
PoW

Recently, Ng et al. [28] made an attempt to support PoW
over encrypted files. Their method encrypted files on client
side and shared the encryption key among a group of
users who know each other. Their method applies exist-
ing scheme [12] to do key management within the group,
and focus on formulating and devising proofs of ownership
scheme in a privacy preserving manner.

Here we brief their PoW scheme as below: A file is di-
vided into many blocks xi’s, and a commitment ci is com-
puted from each xi under a secret key. Then the standard
Merkle Hash Tree method applies over the commitments
(c1, c2, . . .). After the completion of Merkle Hash Tree proof
protocol, the verifier knows some commitment value ci, and
the prover has to show that he/she has the knowledge of
some secret value xi whose commitment is ci, without re-
vealing information on xi to the verifier.

We observe that their proof of knowledge of xi against ci
is similar to the generalized Okamoto-Identification scheme
[30], given by Alwen et al. [1]. This proof of identification
scheme allows the verifier to efficiently decide whether the
secret value xi is equal to any given candidate value x, thus
allows brute-force search of x.

In summary, Ng et al. [28]’s PoW scheme has the follow-
ing limitations: (1) it is very slow in computation: in every
execution of the proof protocol, to generate all commitment

8 K is a system parameter. In their experiment [32], K takes values in the
range [100, 2000].

values ci’s, |F |/1024 number of exponentiations9 in a mod-
ulo group of size≈ 21024 are required where |F | denotes the
bit-length of file F ; (2) the encryption key is shared among
a group of “friends”, which is not suitable for client-side
deduplication over encrypted files, since in current typical
client-side duplication setting, owners of the same file will
be anonymous to each other; (3) it suffers from “divide and
conquer attack” mentioned previously in Section 1.1.3, al-
though (i) it is provably privacy-preserving under their for-
mulation [28] and (ii) it is applied in file-level instead of
block-level.

In an extreme example, a large file F with L(≥ λ)
bits min-entropy to the view of the curious cloud server
is divided into L blocks xi’s where each xi has exactly 1
bit min-entropy to the view of the curious cloud server. If
Ng et al. [28]’s method is applied over such a file F , then
the honest-but-curious cloud server could learn everything
of the file efficiently in time O(L) instead of O(2L) during
the proof process, by brute-force searching of the value of
each xi independently. In contrast, if the proposed scheme in
this paper applies over the same file F , any efficient curious
cloud server or outside adversary cannot recover the file and
cannot obtain the bit value F [i] at any bit-position i in file
F , assuming F [i] was unknown to adversaries before the
execution of the proof protocol.

Another recent work [43] combines proofs of storage (i.e
POR [9, 23, 33, 41] and PDP [4]) with proofs of owner-
ship. However, this work [43] fails to fulfill the efficiency
requirement on server side given by Halevi et al. [20], not to
mention privacy protection of user data against the curious
server.

It is worth noting that, after our work (the full version [42]
of this paper), a very recent independent work by Bellare et
al. [7] contains a scheme called “Randomized Convergent
Encryption” (RCE), which has encryption part essentially
identical to the encryption part of our scheme. However,
Bellare et al. does not consider any leakage setting.

3. Security Model
In this section, we propose a security formulation for client-
side deduplication of encrypted files.

3.1 System Model and Trust Model
3.1.1 Cloud Storage Server
Cloud Storage Server (Cloud Server or Cloud for short) is
the entity who provides cloud storage service to various
users. Cloud Storage Server has a small and fast primary
storage and a large but slow secondary storage. Although the
computation power (CPU, I/O, network bandwidth, etc) of
Cloud Storage Server is much stronger than a single average

9 One such group exponentiation requires more than 3 milliseconds in a
model PC, which means that it requires more than 3000 seconds to generate
all commitments for a file of size 1 giga-bits. Such expensive operation will
be executed every time when a user tries to upload the same file to the cloud.



user, the average computation power per each online user
is usually very limited. We assume that the small and fast
primary storage is well-protected from outside adversaries,
and the large but slow secondary storage could be visible to
outside adversaries.

An example of cloud storage server is Dropbox. Users’
files uploaded to Dropbox are actually stored in Amazon’s
S3 data center (i.e. Dropbox’s secondary storage) and Drop-
box only runs relatively small server to manage meta data
(i.e. Dropbox’s primary storage). Another cloud storage ser-
vice provider Wuala stored users’ files in P2P network (the
secondary storage) in the early stage of the company.

3.1.2 Cloud Users
Many cloud users may upload their files to the cloud storage
and possibly remove their local copies. These users may
download files, which are uploaded by themselves, from
cloud storage. File sharing among users is not the focus
of this paper, although it can be achieved along with our
solution for encrypted data.

3.1.3 Adversaries
We consider two types of adversaries: Malicious outside
adversary and honest-but-curious Cloud server.
Malicious Outside Adversary. The outside adversary may
obtain some knowledge (e.g. a hash value) of the file of
interest via some channels, and plays a role of cloud user
to interact with the cloud server.
Semi-honest Inside Adversary (Honest-but-Curious Cloud
Server). This honest but curious cloud storage server (also
known as inside adversary) will maintain the integrity of
users’ files and availability of the cloud service, but is curi-
ous about users’ sensitive files. This could capture at least
the following cases in real world applications:

1. Some technical employee or even the owner of the cloud
tries to access user data due to some reason.

2. The company, which provide the cloud storage service,
made careless technical mistakes which may leak users’
private data, e.g. introducing a software bug. It is reported
that Dropbox [40] made users’ data open to public for al-
most 4 hours due a new software bug. Very recently, a bug
is discovered in one of Twitter’s official client software,
which allows attackers to access users’ accounts [37].

3. The cloud storage server is hacked in.

3.2 Syntax Definition
A Client-side Deduplication (called CSD for short) scheme
(E ,D, P , V) consists of four PPT algorithms E ,D, P and V ,
which are explained as below:

• E(F, 1λ) → (τ, C0, C1): The probabilistic encoding al-
gorithm E takes as input a data file F and a security
parameter λ, and outputs a short secret per-file encryp-
tion key τ , a short encoding C0 which contains hash(F )

as a part, and a long encoding C1. C0 will be stored in
cloud server’s small and secure primary storage and C1

will be stored in cloud server’s large but potentially inse-
cure secondary storage. The lengths of τ and C0 should
be both in O(λ), and the length of C1 should be in
|F |+O(poly(λ)).

• D(τ, C1) → F : The deterministic decoding algorithm
takes as input a secret key τ and the long encoding C1,
and outputs a file F .

• 〈P(F ),V(C0)〉 → (y0; y1, y2): The prover algorithm P ,
which takes a file F as input, interacts with the verifier
algorithm V , which takes a short encoding C0 as input.
At the end of interaction, the prover algorithm P gets
output y0 ∈ {τ,⊥} and the verifier algorithm V gets
output (y1, y2) where y1 ∈ {Accept, Reject} and y2 ∈
{hash(C1),⊥}.

We point out, the efficiency requirement in the above de-
scription follows Halevi et al. [20]. Such efficiency require-
ment excludes some straightforward secure methods: For ex-
ample, both prover and verifier have access to the file F dur-
ing the interactive proof and compute a key-ed hash value
over F with a randomly chosen fresh nonce as hash key per
each proof session. Another negative example is Zheng et
al. [43] which turns a proof of storage scheme into a proof
of ownership scheme.

Definition 1 (Correctness). We say a CSD scheme (E ,D,
〈P , V〉) is correct, if the following conditions hold with
overwhelming high probability (i.e. 1 − negl(λ)): For any
data file F ∈ {0, 1}∗ and any positive integer λ, and
(τ, C0, C1) := E(F, 1λ),

• D(τ, C1) = F .
• 〈P(F ),V(C0)〉 = (τ ; Accept, hash(C1)).

Here the hash value hash(C1) is required, in order to
defend poison attack. In case that the cloud does not have
plaintext of file F , the cloud storage server alone is not
able to decide whether a given tuple (hash(F ), C0, C1) is
consistent or inconsistent (i.e. poisoned).

3.3 Security Definition
In this subsection, we will propose a security formulation
for client-side deduplication. Our formulation will address
the protection of useful partial information (particularly any
physical bit F [i] in the sensitive file F ) from the malicious
outside adversary or the honest-but-curious cloud server:
Roughly speaking, PPT outside/inside adversary cannot
learn any new information on any physical bit F [i] of file
F from client-side deduplication process beyond the side
channel leakage.

The CSD security game GCSDA (ξ0, ξ1) between a PPT ad-
versaryA and a challenger w.r.t. CSD scheme (E ,D, 〈P,V〉)
is defined as below, where ξ0 > ξ1 ≥ λ. Here ξ0 is the lower
bound of min-entropy of the challenged file F at the be-



ginning of the game, and the adversary is allowed to learn at
most (ξ0−ξ1) bits information of file F from the challenger.
Setup. The description of (E ,D, 〈P,V〉) is made public. Let
F be sampled from any distribution over {0, 1}M with min-
entropy ≥ ξ0, where the public integer parameter M ≥ ξ0 is
polynomially bounded in λ. The challenger sends hash(F )
to the adversary A.
Learning-I. The adversary A can make a LEAK-QUERY in
the following form to the challenger:

• LEAK-QUERY(Func): This query consists of a PPT-
computable function Func. The challenger responses this
query by computing y := Func(F ) and sending y to the
adversary, where the bit-length of output y is required to
be smaller than (ξ0 − ξ1).

Commit. The adversary A chooses a subset of v indices
i1, . . . , iv from [1, |F |], where v ≥ 1 and v + |y| ≤ ξ0 − ξ1.
The challenger finds the subsequence α ∈ {0, 1}v of F ,
such that, for each j ∈ [1, v], α[j] = F [ij ]. The challenger
chooses a random bit b ∈ {0, 1} and sets αb := α and
α1−b

$←− {0, 1}v . The challenger sends (α0, α1) to the ad-
versary A.

Guess-I. Let ViewCommit
A denote the view of the adver-

sary A at this moment. Given ViewCommit
A as input, an-

other PPT algorithm (called “extractor”) A∗ outputs a guess
bA∗ ∈ {0, 1} of value b.

Learning-II. The adversary A can adaptively make queries
to the challenger, where concurrent queries are not allowed10

and each query is in one of the following forms:

• ENCODE-QUERY: The challenger responses the ENCODE-
QUERY by running the probabilistic encoding algorithm
on F to generate (τ, C0, C1) := E(F, 1λ) and sending
(C0, C1) to the adversary. The adversary can make ex-
actly one query in this type.

• VERIFY-QUERY: The challenger, running the prover
algorithm P with input F , interacts with adversary
A which replaces the verifier algorithm V , to obtain
(y0; y1, y2) := 〈P(F ),A〉. The adversary knows the
values of y1 and y2, and can make polynomially many
queries in this type.

• PROVE-QUERY: The challenger, running the verifier al-
gorithm V with input C0, interacts with the adversary
A which replaces the prover algorithm P , to obtain

10 Similar to Halevi et al. [20], concurrent PROVE-QUERY and VERIFY-
QUERY will allow the adversary to replay messages back and forth be-
tween these two queries, and eliminate the possibility of any secure and
efficient solution to client-side deduplication. Therefore, both this work and
Halevi et al. [20] do not allow concurrent queries of different types in the
security formulation. We clarify that, concurrent queries of the same type
can be supported. Thus, in the real application, the cloud storage server (ver-
ifier) can safely interact with multiple cloud users (prover) w.r.t. the same
file concurrently.

(y0; y1, y2) := 〈A,V(C0)〉. The adversary A knows the
value of y0, and can make polynomially many queries in
this type.

Guess-II. The adversary A outputs a guess bA ∈ {0, 1} of
value b.

Definition 2 (Secure CSD against inside/outside attack).
Let integer λ be the security parameter and ξ0 > ξ1 ≥ λ.
We say a CSD scheme (E ,D, 〈P,V〉) is (ξ0, ξ1)-secure, if
for any PPT (inside or outside) adversary A, there exists
some PPT extractor algorithm A∗, such that in the security
game GCSDA (ξ0, ξ1),

Pr [A finds b in Guess-II phase ]

≤Pr [A∗ finds b in Guess-I phase ] + negl(λ). (1)

Equivalently, the above Equation (1) can be written as

Pr [bA = b] ≤ Pr [bA∗ = b] + negl(λ). (2)

Remarks on the security formulation.
• Our formulation (particularly, Equation (1) and (2) in

Definition 2) requires that Pr[bA = b] ≤ Pr[bA∗ = b] +
negl(λ), which means the adversaryA essentially cannot
learn any new information on physical bits F [i1] . . . F [iv]
in file F during Learning-II phase. We emphasize that it
is important to ask some extractor A∗ instead of the ad-
versary A to make a guess bA∗ before Learning-II, to
exclude a trivial plausible attack: Adversary A intention-
ally outputs a random guess of b before Learning-II, and
outputs its maximum-likelihood of b after Learning-II,
in order to increase the difference between success prob-
ability in Guess-I and Guess-II. Note that this require-
ment follows the style of original definition of semantic
security (Definition 5.2.1 in Goldreich [18]).

• The adversary is allowed to obtain the long encoding C1

of users’ data file F in the above security game, since in
real applications, C1 is typically stored in the large but
potentially insecure secondary storage, as mentioned in
Section 3.1.1.

• A CSD scheme does not have any master secret key.
Therefore, the adversary A himself/herself can find an-
swers to any queries (i.e. ENCODE-QUERY, VERIFY-
QUERY, PROVE-QUERY, and LEAK-QUERY, etc) w.r.t
any input file F ′ that is owned by A, without help of the
challenger.

• If the long encoding C1 is obtained by encrypting file F
using the convergent encryption [14, 15], i.e. encrypting
the file F under AES method with some hash value
hash′(F ) as encryption key, then the adversary (i.e. the
curious cloud server) will have both ciphertext C1 and
decryption key hash′(F ), and thus obtain the file F ,
where

the ciphertext C1 is given by the challenger in the
security game;



the convergent encryption key hash′(F ) can be ob-
tained by making a LEAK-QUERY in Learning-I
phase.

Therefore, convergent encryption is insecure in our secu-
rity game due to the bounded leakage setting. One may
argue that this was not a fair setting for convergent en-
cryption scheme, since leakage of encryption key will
render any encryption scheme insecure. However, if the
encryption key is chosen independent on the plaintext
(i.e. the file F ), then LEAK-QUERY in our setting will
be unable to reveal the encryption key. Thus the distinc-
tive feature of convergent encryption—deriving encryp-
tion key from plaintext—becomes a two-bladed-sword:
on one side, it makes deduplication of encrypted data
possible; on the other side, it becomes the security vul-
nerability in the higher level of security formulation. We
will give a more detailed comparison between convergent
encryption and our approach later in Section 4.3.

• For similar reasons as above, the “hash-as-a-proof”
method is also insecure in our leakage setting. Therefore,
when the owner of file F does not understand well what
information of F has been leaked by other owners of the
same file, our scheme will be much more preferable than
the efficient “hash-as-a-proof” method.

3.4 Comparison of two formulations: Proofs of
Ownership and Client-side Deduplication

In this subsection, we compare the formulation of PoW [20]
and our formulation of CSD. Recall that more details on
PoW is given in Section 2.

Both PoW [20] and CSD formulation aim to secure dedu-
plication mechanism in cloud storage service and protect the
confidentiality of users’ data in the setting that a bounded
amount of information of users’ data has been leaked. How-
ever, the two formulations differ in both breadth and depth
of protection of confidentiality of users’ data and also differ
in the leakage setting:

• Breadth: PoW only formulates the protection of confi-
dentiality of users’ data from outside adversaries; CSD
formulation protects the confidentiality of users’ data
from both outside adversaries and inside adversaries (i.e.
the honest-but-curious cloud storage server). In other
words, PoW formulation trusts the cloud storage server
in data confidentiality, but CSD formulation doesn’t.

• Depth: PoW formulation only prevents attackers from
recovering the whole user file F and potentially allows
attackers to recover some partial unknown information
of F ; CSD gives a stronger formulation and prevents at-
tackers from recovering any unknown bits F [i], which
implies that the adversary cannot recover F . Here, we
make two clarifications: (1) The nature of deduplication
problem inevitably provides adversaries a way to do brute
search for unknown information by observing whether

client-side deduplication occurs11, and thus make seman-
tic security impossible. Therefore, any solution to client-
side deduplication cannot achieve semantic security and
has to reveal some partial information. Our formulation
will protect an important type of partial information: the
physical bits F [i]’s in file F . (2) Although PoW formu-
lation does not address protection of partial information,
the constructions in Halevi et al. [20] indeed protects the
privacy of physical bits F [i]’s against outside adversaries
(Of course, this is not true for inside adversaries).

• Leakage: PoW allows a stronger leakage setting than
CSD. PoW allows multi-time leakage at any time ex-
cept during the course of the interactive proof between
the verifier and prover, while CSD allows only one-time
leakage before CSD scheme starts to execute. Putting
the PoW formulation in our context, the security game
of PoW consists of multiple interleaved executions of
Learning-I and Learning-II phases, i.e. (Learning-I,
Learning-II, Learning-I, Learning-II, . . .), subject to
an additional constraint that the adversary cannot make
the LEAK-QUERY and PROVE-QUERY concurrently. On
the other side, our CSD allows larger amount of leakage
than the PoW formulation (precisely Definition 2 and 3
in PoW [20]).

4. Secure Client-side Deduplication
4.1 Construction
We present the construction of a CSD scheme (E ,D, 〈P,V〉)
in Figure 2 on page 9. Since this construction relies on uni-
versal hash function to achieve leakage-resilience, we call
the constructed CSD scheme as UH-CSD. Suppose Alice
is the first user who uploads file F . She will execute al-
gorithm E with file F and security parameter 1λ as input
and obtain a short secret encryption key τ , a short encod-
ing Cτ ∈ {0, 1}3λ and a long encoding CF . Alice will send
both Cτ and CF to the cloud storage server Bob. Bob will
compute the hash value hash(CF ), put Cτ in secure and
small primary storage, and put CF in the potentially inse-
cure but large secondary storage. At the last, Bob will add
(key = hash(F ), value = (hash(CF ), Cτ ) into his lookup
database. Suppose Carol is another user who tries to up-
load the same file F after Alice. Carol will send hash(F )
to the cloud storage server Bob. Bob finds that hash(F ) is
already in his lookup database. Then Bob, who is running
algorithm V with Cτ as input, interacts with Carol, who is
running algorithm P with F as input. At the end of interac-
tion, Carol will learn τ and Bob will compare the hash value
hash(CF ) provided by Carol with the one computed by him-
self. Later, Carol is allowed to downloadCF from Bob at any

11 Probabilistic deduplication that saves the duplicated copy only with a
certain probability (say 0.5) still allows brute force attack, since the success
probability of deduplication can be amplified close to 1 via repetition.



time and decrypt it to obtain the file F by running algorithm
D(τ, CF ).

Figure 2. The construction of a CSD scheme, denoted as
UH-CSD. Let E = (KeyGen, Enc, Dec) be a symmetric
encryption scheme with λ (= ρ) bits long key length and
hk : {0, 1}∗ → {0, 1}ρ be a key-ed hash function. Notice
that the random coin of Enc will be put in the generated
ciphertext.

E(F, 1λ)

1. τ := KeyGen(1λ) ∈ {0, 1}λ.

2. s $←− {0, 1}λ.

3. CF := Encτ (F ).

4. Cτ := (s, hs(F )⊕ τ, hash(F )).

5. Output (τ, Cτ , CF ).

D(τ, CF )

1. F ′ := Decτ (CF )

2. Output F ′.

〈P(F ′), V(Cτ )〉
V1: Parse Cτ as (s, hs(F )⊕τ, hash(F )). Send (s, hs(F )⊕
τ) to the prover.

P1: Compute the secret key y0 as below

y0 := hs(F
′) ⊕

(
hs(F )⊕ τ

)
,where ⊕ refers to XOR.

Encrypta F ′ with key y0 to generate ciphertext CF ′
and compute the hash value y2 := hash(CF ′) of the
ciphertext. Send y2 to verifier.

V2: Let HCF
:= hash(CF ) be computed previously when

receiving ciphertext CF . If y2 = HCF
, set y1 :=

accept, otherwise y1 := reject.

a As mentioned in the overview in Section 1, this encryption step is re-
quired to compute the hash value hash(CF ′ ), which will help the verifier
(i.e. cloud storage server) to detect poison attack.

4.2 Security Analysis
Theorem 1. Let ξ0 > ξ1 = 2λ + Ω(λ). Let hash be a
collision-resistant full domain hash function. Suppose the
encryption scheme E is private-key semantic secure (Defi-
nition 5.2.1 in Goldreich [18]) and the hash function family
{hk} is a universal hash. Then the UH-CSD scheme in Fig-
ure 2 is (ξ0, ξ1)-secure. (Proof is in Appendix A)

The proof of correctness of UH-CSD scheme under Def-
inition 1 is straightforward. We save the details. Notice that
the leakage rate (i.e. the ratio of the amount of leakage to
the entropy of the sensitive file) of our scheme UH-CSD is
1− ξ1/ξ0, which could be close to 1 for suitable ξ0 and ξ1.

4.3 Comparison with Convergent Encryption
4.3.1 Our custom encryption method is derived from

convergent encryption
Convergent encryption encrypts a file F as Enchash(F )(F ).
In our scheme UH-CSD given in Figure 2, the encryption of

file F is (s, hs(F ) ⊕ τ,Encτ (F )). This encryption method
can be treated as a natural extension of convergent encryp-
tion which overcomes the below shortcomings of convergent
encryption.
Revocation of encryption key. It is very difficult, if not
impossible, to revoke the encryption key of convergent en-
cryption, when the current encryption key is compromised.
Suppose a user tries to encrypt file F using hash(F ) as AES
encryption key, and finds that the value of hash(F ) has al-
ready been revealed to Internet by some other owner of file
F . He may switch to use hash′(F ) as encryption key where
hash′(·) is another secure hash function. Meanwhile, the
user has to broadcast this switch of hash function to all future
users. This approach will face two issues: (1) The number of
different secure hash function is very limited. (2) Users may
abuse the above hash-revoking functionality. A natural fixes
to the above two issues are: (1) Use a secure key-ed hash
function and revoke the hash key if necessary. (2) It is not
necessary that every user adopts the same hash function (i.e.
the same keyed-hash function and hash key) to generate the
AES encryption key. Every user can independently choose
a new hash key without notifying others. As a result, a user
can encrypt a file F in this way: Randomly choose a hash
key s and generate the ciphertext (s,AEShs(F )(F )).
Can any hash value be a valid encryption key? It is a
coincidence that the range of hash function (e.g. SHA256)
is consistent with the key space of encryption method (e.g.
AES). Many other encryption schemes have special key gen-
erating algorithm and the generated key should have a par-
ticular structure, for example, some public key encryption
schemes. Therefore, convergent encryption cannot general-
ize to generic encryption scheme. Our proposed encryption
method overcomes this weakness, by invoking the key gen-
erating algorithm of the underlying encryption method to
generate an encryption key and protect this generated en-
cryption key using a one-time pad. Let (KeyGen,Enc,Dec)
be the underlying encryption method. The ciphertext of F
will be (s, hs(F ) ⊕ τ,Encτ (F )), where the hash key s is
randomly generated and the underlying encryption key τ is
generated by algorithm KeyGen.
Leakage Resilient. More importantly, convergent en-
cryption is insecure if a bounded amount of efficiently-
extractable information of the plaintext F is leaked before
encryption (i.e. the leakage setting of CSD in this paper).
Our encryption method is resilient to such bounded leak-
age of the plaintext F , in the random oracle (assuming h
is a random oracle) or in the standard model (assuming h is
pairwise-independent hash function). It is worth pointing out
that no encryption schemes could be secure in the stronger
leakage setting model (e.g. POW [20]) where leakage may
occur before and after the encryption process.

4.3.2 Advantage of Convergent Encryption
Convergent encryption can be used for both client-side
and server-side deduplication. In contrast, our encryption



method can be used only for client-side deduplication, since
the one round interaction in the client-side deduplication
is essential for our solution to synchronize the hash key.
Unsurprisingly, both convergent encryption and our custom
encryption method are not semantically secure [18].

5. Performance
We have implemented a prototype of the proposed scheme
UH-CSD with SHA256 as the collision-resistant full domain
hash function hash(·), and with SHA256(k‖x) as the keyed-
hash12 hk(x), and AES encryption13 as the semantic-secure
symmetric cipher E. The hash function SHA256 [29] and the
symmetric cipher AES [11] are provided in OpenSSL [31]
library (version 1.0.0g). The whole program is written in C
language and compiled with GCC 4.4.5. It runs in a single
process. Our implementation is not optimized and further
performance improvements can be expected.

The test machine is a laptop computer, which is equipped
with a 2.5GHz Intel Core 2 Duo mobile CPU (model
T9300), a 3GB PC2700-800MHZ RAM and a 7200RPM
hard disk. The test machine runs 32 bits version of Gentoo
Linux OS with kernel 3.1.10. The file system is EXT4 with
4KB page size.

We run the proposed client-side deduplication scheme
UH-CSD over files14 of size 128MB, 256MB, 512MB, and
1024MB, respectively. The running time of the proof pro-
tocol (i.e. interactive algorithm 〈P,V〉 ) in UH-CSD is re-
ported in Figure 3, compared with network transfer time of
test files without encryption or deduplication. The running
time of encoding algorithm E is very close to (and smaller
than) the interactive algorithm 〈P,V〉. The decoding algo-
rithm D is just the AES decryption algorithm, which is more
efficient than E . Here we save the actual running time for
E and D. All measurement represents the mean of 5 trails.
Since the variants are very small, we do not report it.

We observe that, for small files, the saving in uploading
time is small if the network upload speed is as fast as 5Mbps
or even 20Mbps, but saving in server storage still matters
to the cloud storage server and is independent on network
speed. We remark that, leakage resilient server-side dedupli-
cation over encrypted files remains an open problem.

6. Conclusion and Future work
In this paper, we addressed an important security concern in
cross-user client-side deduplication of encrypted files in the
cloud storage: confidentiality of users’ sensitive files against

12 We treat SHA256 as a random oracle and choose SHA256(k‖x) to simu-
late the universal hash function hk(x) in order to achieve high performance.
Software performance of universal hash is reported by Nevelsteen and Pre-
neel [27].
13 AES encryption in CBC mode with fresh random IV, where IV will be a
part of the ciphertext.
14 Our test files are generated by encrypting a large file using AES method
with a random encryption key, so could be considered as random files.
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Figure 3. Comparison between the running time of the
proof protocol (i.e. interactive algorithm 〈P,V〉 ) of our
client-side deduplication scheme UH-CSD and the network
transfer time of files without encryption.

both outside adversaries and the honest-but-curious cloud
storage server in the bounded leakage model. On technique
aspect, we enhanced and generalized the convergent en-
cryption method, and the resulting encryption scheme could
support client-side deduplication of encrypted file in the
bounded leakage model.

We clarify that this paper adopts a weaker leakage setting
than Halevi et al. [20]. Our unpublished full paper [42] with
stronger result adopts the same leakage setting as Halevi et
al. w.r.t. outside adversaries. Furthermore, construction of
secure client-side deduplication scheme in the strong leak-
age setting w.r.t. both outside adversaries and honest-but-
curious cloud storage server is in our future work.
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A. Proof of Theorem 1
Proof. For any PPT adversary ACSD against the UH-CSD
scheme in Figure 2, we construct a PPT adversary AE

against the underlying private-key semantic secure encryp-
tion scheme E. We emphasize that we adopt the equivalent
alternative definition of “private-key semantic secure en-
cryption” given by Goldreich [18].
Construction of AE: The adversary AE is given a cipher-
text CF = E.Encτ (F ) where the encryption key τ and the
input file F are unknown and F has at least ξ0 bits min-
entropy. AE is allowed to learn any output of Func(F ) from
the oracle OF , where the PPT-computable function Func is
chosen by AE.
AE can simulate a security game GSim as below, where

AE plays the role of challenger and ACSD plays the role of
adversary:
Setup. AE learns the hash value hash(F ) from the oracle
OF and sends hash(F ) to ACSD.
Learning-I. AE simply forwards LEAKQUERY made by
ACSD to the oracle OF and forwards the response given by
the oracle to ACSD.
Commit.AE learns the value of the challenged subsequence
α = F [i1]‖ . . . ‖F [iv] from the oracle OF and then exactly
follows the rest part of Commit phase in the real game
GCSDA .
Guess-I. Denote the output of the extractorA∗CSD as bSimA∗CSD ∈
{0, 1}.
Learning-II. Challenger AE answers the following queries
made by ACSD:

• ENCODE-QUERY: In response to the encode query,
the challenger AE independently and randomly chooses
τ̂

$←− KeyGen(1λ) and s1, s2
$←− {0, 1}λ, and set

Cτ̂ := (s1, s2, hash(F )). Let (C0, C1) = (Cτ̂ , CF ) and
sends (C0, C1) to ACSD. Recall that AE is given the ci-
phertext CF , and hash(F ) is obtained from the oracle
OF in the Setup phase.
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• VERIFY-QUERY: AE runs the prover algorithm and
ACSD replaces the verifier algorithm. Denote with (u1, u2)
the message received from ACSD. If (u1, u2) = (s1, s2),
then send hash(CF ) to ACSD; otherwise, send a random
value H $←− {0, 1}λ to ACSD.

• PROVE-QUERY: AE runs V(C0) to interact with adver-
sary ACSD which replaces the prover algorithm, follow-
ing the description in game GCSDA exactly.

Guess-II. The adversary ACSD outputs a guess bSimACSD ∈
{0, 1} of b. The game GSim simulated by AE completes.

At the end, AE outputs αbSimACSD
∈ {α0, α1} and wins

the semantic-security game w.r.t. encryption scheme E if
αbSimACSD

= α = F [i1]‖ . . . ‖F [iv].
So far,AE has received at most (λ+ξ0−ξ1) bits (in term

of length) message about the unknown file F from the oracle
OF . Thus, after leakage from the oracle, the unknown file F
should have at least (ξ1 − λ) = λ+ Ω(λ) bits min-entropy,
according to Lemma 2.2 in Dodis et al. [13].

Claim 1. Suppose E is private key ciphertext-indistinguishable
and {hk(·)} be a universal hash family. The simulated game
GSim is computationally indistinguishable with the real game
GReal = GCSDACSD (ξ0, ξ1), to the view of adversary ACSD.

Proof of Claim 1. In game GReal all messages that the ad-
versary ACSD obtain from the challenger are (derived from)(
SReal, hash(F ), s, hs(F )⊕ τ, CF

)
, where SReal = (y, α)

and y is the output of LEAK-QUERY and α is computed in
Commit phase. Similarly, in game GSim, the counterpart is(
SSim, hash(F ), s1, s2, CF

)
. For the same adversary ACSD

with the same random coin, SReal = SSim. So we just write
them as S for simplicity.

Sample a file F ′ from {0, 1}|F | following the same dis-
tribution from which F is sampled. Generate a key τ ′ =
E.KeyGen(1λ) and encrypt F ′ with key τ ′ to obtain cipher-
text CF ′ = E.Encτ ′(F

′). Let X ≈c Y denote that random
variableX and Y are computationally-indistinguishable. We
have

(
S, hash(F ), s, hs(F )⊕ τ, CF

)
(3)

≈c
(
S, hash(F ), s, hs(F )⊕ τ, CF ′

)
(4)

≈c
(
S, hash(F ), s1, s2, CF ′

)
(5)

≈c
(
S, hash(F ), s1, s2, CF

)
. (6)

We explain the above equations as below. Eq (3) ≈c
Eq (4) is because E is private key ciphertext-indistinguishable:
Given information (S, hash(F ), s, hs(F )⊕ τ) about F , the
unknown file F still has at least Ω(λ) entropy, hence its en-
cryption CF is computationally indistinguishable from an
encryption CF ′ of a random file F ′ ∈ {0, 1}|F | under a ran-
dom encryption key τ ′, where F ′ is sampled following the
same distribution from which F is sampled.

Eq (4) ≈c Eq (5) is followed directly from the leftover
hash lemma [5] which applies to the universal hash {hk}.

Note that CF ′ is independent on other terms in these two
equations.

Eq (5) ≈c Eq (6) is again implied by the ciphertext-
indistinguishability property of the encryption scheme E.
Note that s1, s2 are independent on the other terms in these
two equations.

Therefore, Claim 1 is proved.

Claim 2. There exists some PPT extractor A∗CSD, such that
Pr[bSimACSD = bSim] ≤ Pr[bSimA∗CSD

= bSim] + negl(λ).

Proof. In Learning-II phase of GSim, the challengerAE does
not make any new queries to OF , and all responses that AE

provided to ACSD are computed from randomly sampled
values and information that ACSD has already known be-
fore Learning-II (i.e. the hash value hash(F )), except the
ciphertext CF .

It is straightforward that

Pr[AO
F

E (CF , |F |) = α] = Pr[bSimACSD = bSim].

Since the underlying encryption scheme E is semantic
secure (See the definition in Exercise 18 of Chapter 5 in
Goldreich [18]), there exists a PPT algorithm B, such that

Pr[AO
F

E (CF , |F |) = α] ≤ Pr[BO
F

(|F |) = α] + negl(λ).

We construct the extractor A∗CSD based on algorithm B:
Let αB be the output of B. If αB = αb̂ ∈ {α0, α1} for some
b̂ ∈ {0, 1}, thenA∗CSD outputs bSimA∗CSD := b̂; otherwiseA∗CSD
outputs a random bit bSimA∗CSD

$←− {0, 1}. We have

Pr[bSimACSD = bSim] =Pr[AO
F

E (CF , |F |) = α]

≤Pr[BO
F

(|F |) = α] + negl(λ)

≤Pr[bSimA∗CSD = bSim] + negl(λ). (7)

Therefore, there exists some PPT extractor A∗CSD, such
that Pr[bSimACSD = bSim] ≤ Pr[bSimA∗CSD

= bSim] + negl(λ).
Furthermore, Claim 1 implies that

|Pr[bSimACSD = bSim]− Pr[bRealACSD = bReal]| ≤ negl(λ) (8)

|Pr[bSimA∗CSD = bSim]− Pr[bRealA∗CSD
= bReal]| ≤ negl(λ). (9)

Combine Eq (7), Eq (8) and Eq (9), we have

Pr[bRealACSD = bReal] ≤ Pr[bRealA∗CSD
= bReal] + negl(λ).

Therefore, the client-side deduplication scheme UH-CSD
is (ξ0, ξ1)-secure according to Definition 2.
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