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Weak lensing by voids in modified lensing potentials
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We study lensing by voids in Cubic Galileon and Nonlocal gravity cosmologies, which are examples of
theories of gravity that modify the lensing potential. We find voids in the dark matter and halo density fields of
N-body simulations and compute their lensing signal analytically from the void density profiles, which we show
are well fit by a simple analytical formula. In the Cubic Galileon model, the modifications to gravity inside voids
are not screened and they approximately double the size of the lensing effects compared to GR. The difference
is largely determined by the direct effects of the fifth force on lensing and less so by the modified density
profiles. For this model, we also discuss the subtle impact on the force and lensing calculations caused by the
screening effects of haloes that exist in and around voids. In the Nonlocal model, the impact of the modified
density profiles and the direct modifications to lensing are comparable, but they boost the lensing signal by only
≈ 10%, compared with that of GR. Overall, our results suggest that lensing by voids is a promising tool to test
models of gravity that modify lensing.

I. INTRODUCTION

Despite the success of General Relativy (GR) in passing all
currently available solar system tests of gravity [1], there is
growing interest in the theoretical [2, 3] and observational [4–
6] aspects of theories beyond GR. There are two main reasons
for this. Firstly, the simple fact that GR has not been tested
on scales larger than the solar system means that, in fact, one
makes a huge extrapolation of the regime of validity of the
theory when one uses it (as it is common) in cosmological
studies. The gravitational law should, therefore, be put to test
on larger scales, and modified gravity models help to identify
the types of imprints that modifications to gravity can leave
on observables. Secondly, there is currently no theoretically
appealing explanation for the nature of the dark energy that
is responsible for the accelerated expansion of the Universe.
In the standard Λ-Cold Dark Matter (ΛCDM) cosmological
model, the role of the dark energy is attributed to a simple cos-
mological constant Λ, but the smallness of its value remains a
mystery. Models of modified gravity can explain the acceler-
ation without Λ, thereby providing extra motivation for their
study.

The majority of modified gravity models predict the exis-
tence of extra degrees of freedom (often of the scalar type) that
mediate fifth forces felt by the matter fields. Consequently, a
major difficulty in building models of modified gravity comes
from making them compatible with the stringent solar system
bounds. The latter constrain the fifth force to be extremelly
small, and hence, cosmologically uninteresting. A popular
way out of this relies in building models that possess what are
commonly referred to as screening mechanisms. In short, the
idea is to construct models where the equations of the scalar
field become highly nonlinear in regions of high density (like
the solar system). The presence of the nonlinearities acts to
suppress the magnitude of the fifth force. On larger scales,
where the density is low, the fifth force effects become man-
ifest and potentially detectable. On these large scales, the

∗ Electronic address: a.m.r.barreira@durham.ac.uk

scalar field equation can be linearized to look like a Pois-
son equation. Examples of screening mechanisms include the
chameleon mechanism [7] which operates in the popular Hu-
Sawicki f(R) [8] gravity model; the Vainshtein mechanism

[9–11] which operates in the Dvali-Gabadadze-Porrati (DGP)
[12] and Galileon [13–15] models; the K-mouflage screening

[16–20] and disformal screening [21, 22].
Due to the suppression effects of the screening, it is best

to devise observational tests that focus on large scales or low-
density regions, where the screening is less efficient [23, 24].
For instance, recent studies have shown that the amplitude
of the cosmic microwave background (CMB) lensing poten-
tial [20, 25–27] and cosmic shear [28, 29] power spectra
(which are sensitive to the projected matter distribution on
large scales) are, indeed, a sensitive probe of modified grav-
ity. The cross-correlation of galaxy positions with the lensing
shear field can also help to constrain modified gravity [30, 31].
The integrated Sachs-Wolfe (ISW) effect, which probes the
time variation of large scale gravitational potentials, consti-
tutes another good example of constraining gravity away from
the regimes where the screening is at play [25, 26, 32–36]. On
the other hand, although the amplitude of the matter power
spectrum on large scales is also affected by the modifications
to gravity, the uncertainties about galaxy bias undermine the
possibility of obtaining tight constraints (see e.g. Sec. IV. D
of Ref. [37] for a discussion). On mildly nonlinear scales
(2 − 20Mpc), several recent studies have found that the pe-
culiar velocities of galaxies are also very sensitive to the pres-
ence of fifth forces [38–41]. These scales are typically associ-
ated with the infall regions of massive galaxy clusters, which
are located sufficiently far away from the cluster center for
the screening to have a smaller impact. In general, inside the
virial radius of galaxy clusters (. 1Mpc), it becomes harder
to find the effects of the fifth force (see e.g. Ref. [42]).

Here, we focus on cosmic voids, which are the regions of
the Universe where the density is the lowest, and hence, where
one expects fifth force effects to be maximal. Despite being
potentially good probes of gravity, voids have only recently
become the object of dedicated studies in modified gravity
[43–48]. In particular, Ref. [47] showed that the lensing signal
from voids in f(R) gravity is modified relative to ΛCDM, via
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the modifications induced by the fifth force to the void density
profiles. This result is particularly timely as it can be linked
to the recent work of Refs. [49, 50], who have independently
detected the lensing signal associated with cosmic voids. This
therefore opens the prospect of developing new tests of grav-
ity using the lensing signal in and around voids. In terms of
lensing, f(R) models (and scalar-tensor theories in general)
are special in the sense that they do not modify the lensing
signal directly. In these models, the amplitude of the fifth
force vanishes for relativistic particles like photons. In other
words, any modifications to lensing arise through changes in
the mass distribution, and not due to changes to the photon
geodesic equation. For this reason, one expects that lensing by
voids can serve as a stronger probe of models that also mod-
ify the photon geodesic equation. Examples of such models
include Nonlocal gravity [51–56], Galileon gravity [13–15],
massive gravity [57–63], K-mouflage gravity [16–18, 20], Ki-
netic Gravity Braiding [35, 64, 65] and several other special
cases of Horndeski’s general model [66]. One of our goals
here is to investigate the lensing signal from voids in some of
these models.

As working cases, we focus on the Cubic Galileon model
[67] and the Nonlocal gravity model of Ref. [53]. We make
use of the N-body simulations performed for these two mod-
els in Refs. [56, 68]. We find voids in the simulations using
a watershed based algorithm [94] and investigate the effects
of the fifth force on the number of voids and on their den-
sity and force profiles. We also put forward a simple fitting
formula that matches very well the void profiles found in the
simulations for different variants of the modified gravity mod-
els, for different density tracer types (dark matter and haloes)
and for a wide range of void sizes. Our formula is a simple
extension of others used previously [69, 70], and by having
more parameters it provides a better fit to our simulation re-
sults. The formula admits a closed expression (in terms of
hypergeometric functions) for the mass within a given radius,
which makes it convenient to use in force profile calculations
and lensing studies. When we assess the impact of the fifth
force on the lensing signal, we take into account its effect on
both the void density profiles and the calculation of the lens-
ing observables themselves. Our goal is to provide intuition
about the potential of lensing by voids to test gravity outside
the solar system. We do not attempt to make any observation-
ally conclusive statement, but we do comment on a number of
extra steps that need to be taken to compare our results with
observations.

This paper is organized as follows. In Sec. II, we intro-
duce the force equations in Nonlocal and Galileon gravity,
discussing some of their phenomenology. In Sec. III, we de-
scribe our N-body simulations and the void finding algorithm,
and study the effects of the fifth force on the abundance, den-
sity profiles and force profiles of the voids. In Sec. IV, we
describe the calculation of the lensing signal, and then com-
pute it for the voids found in the simulations. In the same
section, we also link our findings to recent observational re-
sults, and provide a quick guideline of the steps needed for
more elaborate comparisons to observations. We summarize
our results in Sec. V.

II. THE MODELS OF GRAVITY

In this section, we briefly introduce the models of gravity
that we consider and present the relevant force equations that
are needed to compute their lensing signal. In the equations
below we always assume spherical symmetry and work with a
perturbed Friedmann-Robertson-Walker (FRW) spacetime in
the Newtonian gauge

ds2 =
(

1 + 2Ψ/c2
)

c2dt2 − a2
(

1− 2Φ/c2
)

dx2, (1)

where a = 1/(1+ z) is the cosmological scale factor (z is the
redshift) and c is the speed of light.

A. Nonlocal gravity

We consider the Nonlocal gravity model of Refs. [53, 54].
Its action is given by

S =
1

16πG

∫

dx4
√−g

[

R− m2

6
R�−2R−Lm

]

, (2)

which can be cast in a more familiar (local) form given by
[71–73]

A=
1

16πG

∫

dx4
√−g

[

R− m2

6
RS − ξ1 (�U +R)

−ξ2 (�S + U)− Lm] , (3)

where R is the Ricci scalar, g is the determinant of the met-
ric gµν , G is Newton’s gravitational constant, Lm is the mat-
ter Lagrangian density, ξ1 and ξ2 are Lagrange multipliers,
U = −�−1R and S = �−2R are two auxiliary scalar fields
and � = ∇µ∇µ is the d’Alembert operator, with Greek in-
dices running over 0, 1, 2, 3. Here, we do not present a de-
tailed discussion about the theoretical aspects of the above two
actions, but simply caution that their solutions are not com-
pletely equivalent and that care must be taken before matching
them (see, e.g. Refs. [52, 73–78] for a discussion).

On the scales relevant for large scale structure formation
and in the absence of anisotropic stress, the two Newtonian
potentials are the same (Ψ = Φ) and the modifed Poisson
equation can be written as [54, 56]

1

R2

(

R2Φ,R
)

,R = 4πGeff ρ̄mδ(R), (4)

where ρ̄m is the cosmological background value of the physi-
cal matter density ρm, δ = ρm/ρ̄m − 1 is the density contrast
and ,R denotes partial differentiation w.r.t. the radial coordi-
nate R. The above equation has the same form as in GR but
with an effective time-dependent gravitational strength given
by

Geff = G

[

1− m2S̄(z)

3

]−1

≥ 1, (5)
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where S̄ is the background part of the field S. The time evolu-
tion of the background quantities in the Nonlocal model have
to be obtained numerically by integrating the background dif-
ferential equations (see e.g. Refs [54, 56]). The parameter m
in Eqs. (2) and (3) is controlled by the amount of dark energy
in the Universe, i.e., in a flat Universe, its value is determined
by the energy densities of the remaining matter species. This
means that this Nonlocal gravity model has the same number
of free parameters as ΛCDM. For reference, for the model
parameters used in Ref. [56] (e.g. Ωm0 = 0.30), one has that
Geff(z = 0)/G ≈ 1.06.

The fact that this model is characterized by an enhanced
gravitational strength on all length scales leads to the ques-
tion of whether or not this model is capable of passing solar
system constraints [1]. In Ref. [56], we showed that if the
gravitational strength of Eq. (5) is used in solar system tests,
then the model predicts values for the rate of change of the
gravitational strength, Ġeff , that are incompatible with cur-
rent lunar laser ranging experiments [79]. However, the time
evolution of Geff/G is controled by the background part of
the field S. This means that if one describes the spacetime
around the Sun as perturbed Minkowskii (instead of FRW),

then ˙̄S = 0 → Ġeff = 0, rendering the model compatible
with current bounds [53, 80]. Here, we focus on void size
scales, which are sensitive to the background expansion, and
as a result, we use the gravitational strength of Eq. (5) when
computing the model predictions.

B. Cubic Galileon gravity

We focus on the Cubic sector of the covariant Galileon
gravity model [13–15, 81] whose action is given by

S =

∫

d4x
√−g

[ R
16πG

− 1

2
c2L2 −

1

2
c3L3 − Lm

]

,

(6)

where c2 and c3 are dimensionless constants, and L2 and L3

are given by

L2 = ∇µϕ∇µϕ, L3 =
2

M3
�ϕ∇µϕ∇µϕ, (7)

in which ϕ is the Galileon field, M3 = MPlH
2
0 , M2

Pl =
1/(8πG) is the reduced Planck mass squared and H0 =
100h km/s/Mpc is the present-day Hubble expansion rate. In
flat spacetime, the above action is invariant under the Galilean

shift ∂ϕ → ∂ϕ+ bµ (where bµ is a constant four-vector). Fol-
lowing the derivation of Refs. [68, 82], the force law in the
Cubic Galileon model is given by

Φ,R
R

=
GδM(< R)

R3
− c3

M3
˙̄ϕ2 δϕ,R

R
, (8)

where δϕ is the spatial perturbation of the Galileon field, ϕ̄(z)

is its backround part, and δM(< R) = 4πρ̄m
∫ R

0
δ(x)x2dx is

the mass perturbation enclosed in a sphere of radius R. Com-
pared to GR, Eq. (8) has an extra term, which is proportional
to

FIG. 1. Representative force profiles in the Cubic Galileon model.
The top panel shows three example void density profiles. The
three lowest panels, from top to bottom, show the radial profiles
of (r∗/R)3 + 1, Φ,R and ∇

2Φ, for the density profiles shown in
the top panel. The colors indicate which prediction is associated
with which density profile. In the bottom two panels, the dashed
and solid lines correspond, respectively, to the predictions of the lin-
earized (cf. Eq. (22), regime (ii)) and full (cf. Eqs. (11) and (12))
Cubic Galileon models, as labelled. The meaning of a negative am-
plitude for the force is that it points outwards. The units in the bottom
two panels are (km/s)2h2Mpc−2.

δϕ,R
R

=
4

3

MPl

β2

(

R

r∗

)3
[

√

(r∗
R

)3

+ 1− 1

]

GδM(< R)

R3
,

(9)
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with

r3∗ =
16

9

MPl

β1β2M3
GδM(< R), (10)

where β1 and β2 are two dimensionless functions of time. The
quantity r∗ is a radial scale, which is often referred to as the
Vainshtein radius. From Eqs. (8), (9), one can write

Φ,R
R

=

{

1− 4

3

c3
MPlM3

˙̄ϕ2

β2

(

R

r∗

)3
[

√

(r∗
R

)3

+ 1− 1

]}

GδM(< R)

R3
, (11)

Φ,RR = G

[

δM(< R),R
R2

− 2δM(< R)

R3

]

− 3

4

c3β1 ˙̄ϕ2

M2
Pl

[

√

(r∗
R

)3

+ 1− 1 +
3

2

(r∗/R)2
√

(r∗/R)3 + 1

(

r∗,R −r∗
R

)

]

. (12)

Contrary to the case of Nonlocal gravity, the Galileon
model admits analytical solutions for the time evolution of the
background quantities [26]. The time evolution of the Hubble
parameter, ˙̄ϕ, β1 and β2 are given, respectively, by

H2 =
H2

0

2

[

Ωm0a
−3 +

√

Ω2
m0a

−6 + 4(1− Ωm0)

]

, (13)

˙̄ϕ = ξH2
0/H, (14)

β1 =
1

6c3

[

−c2 −
4c3
M3

( ¨̄ϕ+ 2H ˙̄ϕ) +
2c23

M2
PlM6

˙̄ϕ4

]

,(15)

β2 =
2M3MPl

˙̄ϕ2
β1. (16)

As in Ref. [26], we take c2 = −1 and the other two Galileon
parameters are determined by Ωm0 as

ξ =
√

6(1− Ωm0), (17)

c3 = 1/(6ξ). (18)

We take Ωm0 = 0.28, which is the value used in the simula-
tions of Ref. [68].

From Eq. (11), it is possible to identify three regimes for
the amplitude of the total force in the Cubic Galileon model
that are relevant for our analysis:

i In the regime where r∗ > 0 and r∗/R ≫ 1, one has

(

R

r∗

)3
[

√

(r∗
R

)3

+ 1− 1

]

≈
(r∗
R

)−3/2

≪ 1, (19)

and, as a result, Eq. (11) can be approximated as

Φ,R
R

≈ GδM(< R)

R3
. (20)

That is, close to very massive objects (small R and/or
large mass perturbations, r∗ ∝ δM ), the force law in the
Galileon model becomes the same as in GR. This illus-
trates the implementation of the Vainshtein screening ef-
fect that allows this model to satisfy solar system tests of
gravity.

ii If r∗ > 0 and r∗/R ≪ 1, then

(

R

r∗

)3
[

√

(r∗
R

)3

+ 1− 1

]

≈ 1/2, (21)

and Eq. (11) becomes

Φ,R
R

= Geff(z)
δM(< R)

R3
, (22)

Geff = G

(

1− 2

3

c3
MPlM3

˙̄ϕ2

β2

)

> 1 (23)

(β2 < 0 [68]). In this linear regime, which occurs suf-
ficiently far away from massive objects, the force law
is as in GR, but with an enhanced time-dependent grav-
itational strength. This is similar to the force law of
the Nonlocal gravity model, albeit with a different time
evolution for Geff . In particular, in the Galileon model,
and for the model parameters used in Ref. [68], one has
Geff(z = 0)/G ≈ 2, which is subtantially stronger than
the ≈ 6% enhancement in the Nonlocal model.

iii Finally, there is a third regime characterized by r∗ < 0
and |r∗/R| ∼ O(1). In this regime, which occurs when-
ever the mass perturbation becomes negative (as it does in
voids), the total force can be written as

Φ,R
R

= Gvoid(z,R)
δM(< R)

R3
, (24)

where Gvoid(z,R) is a time and scale dependent effec-
tive gravitational strength (simply the term between {} in
Eq. (11)), which is larger in magnitude than the gravita-
tional strength of regime (ii), i.e., Gvoid > Geff . This can
be checked by noting that

(

R

r∗

)3
[

√

(r∗
R

)3

+ 1− 1

]

> 1/2 (25)

in Eq. (11), when r∗ < 0 (cf. Eq. (21)). Note that in our
notation, when δM < 0, then the force becomes negative.
This means that the force points outwards.
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To help understand the behavior of the fifth force in the
Galileon model, we show in Fig. 1, the radial profiles of
(r∗/R)3 + 1, Φ,R and ∇2Φ = Φ,RR +2Φ,R /R, for each
of the density profiles depicted in the top panel. The density
profiles are computed using the formula

δ(R′ = R/Rv) = δv
1− (R′/s1)

α

1 + (R′/s2)
β
, (26)

where Rv is the void radius (whose exact value is not im-
portant for the discussion here) and δv , α, β, s1 and s2 are
fitting parameters. Figure 8 in the Appendix shows the impact
that each of the five parameters of Eq. (26) has on the density
profiles (and on the associated lensing signal, whose calcula-
tion is explained in Sec. IV A). In Sec. III C, we shall see that
this formula provides a very good fit to the void density pro-
files found in the N-body simulations. The mass perturbation,

δM(< R) = 4πρ̄m
∫ R

0
δ(x)x2dx, admits a closed formula

given by

δM(< R) = 4πρ̄m
R3

3(α+ 3)
δv

[

(α+ 3) 2F1

(

1,
3

β
,
β + 3

β
,−
(

R′

s2

)β
)

− 3

(

R′

s1

)α

2F1

(

1,
α+ 3

β
,
α+ β + 3

β
,−
(

R′

s2

)β
)]

,

(27)

where 2F1 is the Gauss hypergeometric series function. This
formula for δM(< R) facilitates straightforward calculation
of the force profiles. In the bottom two panels of Fig. 1,
the solid curves show the result obtained by using Eqs. (11)
and (12) (which we call the full solution), whereas the dashed
curves show the result associated with the regime (ii) above
(Eq. (22), which we call the linear solution). For the cases
shown, for R′ & 1.2 (r∗ > 0), the full and the linear so-
lutions for the total force, Φ,R, are roughly the same, which
is as expected since these radial scales correspond to the lin-
ear regime (ii) discussed above. A more careful inspection of
those scales shows that the solid curves underpredict slightly
the dashed ones. This is due to the Vainshtein screening mech-
anism, which acts to somewhat suppress the full solution. On
the other hand, for R′ . 1.2 (r∗ < 0), the full solution en-
ters regime (iii), and as expected, the force becomes larger in
magnitude (more negative) compared to the linear case.

There is one peculiar aspect about regime (iii) that is worth
discussing with more detail. The quantity (r∗/R)3 + 1 ap-
pears in Eqs. (11) and (12) as the argument of square-roots.
This implies that the amplitude of the force becomes a com-
plex number whenever (r∗/R)3+1 < 0, which is not a phys-
ical result. This problem has been already encountered in the
N-body simulations of Ref. [68], where the authors circunvent
the absence of real solutions by adopting the ad-hoc fix of set-
ting (r∗/R)3+1 = 0 whenever it becomes negative. Here, we
shall implement the same procedure, as we wish to compare
some of our results to those of Ref. [68]. In Fig. 1, the imple-
mentation of this "fix" is noted by the kinks in Φ,R and spikes

in ∇2Φ, for the solid green and solid red curves. The density
inside the void depicted by the blue line is not low enough for
(r∗/R)3+1 to cross zero, and hence, the problem is not seen.

It is important to try to understand the implications of
the existence of complex solutions for the fifth force in the
Galileon model. Here, we note that Eqs. (11) and (12) are ob-
tained under the approximations that the perturbed fields are
weak and quasi-static. In the weak field approximation, one
neglects terms that involve the perturbed fields and their first
spatial derivatives, over their second derivatives. The quasi-

static approximation amounts to neglecting the time varia-
tion of the perturbed quantities1, e.g., ϕ̇(a,R) = ˙̄ϕ(a) +
˙δϕ(a,R) ≈ ˙̄ϕ(a). In the very low-density regions that charac-

terize voids, one expects the weak-field approximation to still
hold, but the quasi-static one may not (see Refs. [83, 84] for
discussions about the quasi-static limit, and Refs. [85, 86] for
work beyond this in N-body simulations). One may speculate
that the terms which are neglected in the quasi-static limit are
actually responsible for keeping the fifth force real for all den-
sity values when they are present. Interestingly, however, the
recent work of Ref. [87] has shown that the problem remains
even after relaxing the quasi-static approximation. In partic-
ular, the authors find that the time derivative of the Galileon
field perturbation becomes singular when the quasi-static so-
lution becomes a complex number (see Ref. [87] for the de-
tails). This suggests that the breakdown of the quasi-static
solutions may well be associated with a true instability of
the Cubic Galileon model. Here, we shall keep these dis-
cussions in mind but proceed by retaining the ad hoc fix of
Ref. [68]. Our treatment of the equations of Cubic Galileon
can be viewed as a toy model that we use to illustrate the ef-
fects of modified gravity in the properties of voids.

III. VOIDS IN THE SIMULATIONS

A. Outline of the simulations and void finder

We make use of the N-body simulations of the Cubic
Galileon and Nonlocal gravity models presented in Refs. [56,
68]. For the case of the Nonlocal model, the simulations
were run with a modified version of the Adaptive Mesh Re-
finement (AMR) and publicly-available RAMSES code [88].

1 These approximations are also used in the Nonlocal gravity model to obtain
Eq. (4), but in this model the problem of complex solutions does not arise.
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TABLE I. Summary of the model variants of the Cubic Galileon and
Nonlocal models studied in this paper.

Model Expansion history Force law

Full Galileon Galileon Eqs. (11) and (12)
Linear Galileon Galileon Eq. (22)
QCDM

Galileon
Galileon GR

Full Nonlocal Nonlocal Eq. (4)
QCDM

Nonlocal
Nonlocal GR

The modifications involved (i) changing the code to interpo-
late the expansion rate in the Nonlocal model using a table;
(ii) rescaling the gravitational force computed in the default
code by the value of Geff/G in Eq. (5), which is also inter-
polated from tabulated values. For the Cubic Galileon model,
the simulations were performed with the ECOSMOG code [89],
which is also based on RAMSES. The ECOSMOG code con-
tains additional subroutines that solve the equation of motion
of the Galileon scalar field via Newton-Gauss-Seidel itera-
tive relaxations on the AMR grid. Once the values of the
Galileon field are found on the grid, its spatial gradient is
obtained by finite differencing to determine the fifth force.
The modified background expansion history is also consis-
tently taken into account by the ECOSMOG code. We refer the
reader to Refs. [89, 90] for more details about how to solve
Galileon-like equations in adaptively refined grids (see also
Refs. [91, 92]).

Hereonin, we shall analyse the results from three variants
of the Cubic Galileon model and two variants of the Nonlocal
model, as listed in Table I. For the Galileon, we call these the
full, linear and QCDM variants. The QCDM model is char-
acterized by having the background expansion of the Galileon
model, but the gravitational law of GR. The linear model is the
same as QCDM, but with the effective gravitational strength
Geff of Eq. (22). Finally, the full model is, as the name sug-
gests, the Galileon model with its modified background and
scale-dependent (with screening) fifth force. Comparing the
results of the full and linear variants allows one to measure
the impact of the scale dependence of the fifth force, while
the QCDM model serves as the reference against which one
can measure the effects of the modified gravitational law 2.
Similarly, for the Nonlocal model, we also have the equiva-
lent QCDM and full model variants. For the Nonlocal model,
as there is no screening, there is no distinction between the
linear and the full models.

We show results from simulation boxes of side 400Mpc/h
for the Galileon, and 200Mpc/h for the Nonlocal model,
both with 5123 dark matter tracer particles (these were the
boxes used in Refs. [56, 68]). Each of the model variants

2 We do not use standard ΛCDM as the reference model since the latter dif-
fers from the Galileon model also in the time evolution of the cosmological
background. Here, we are interested on the effects of the fifth forces alone,
which is why we use the QCDM variant.

was simulated five times using different realizations of the
initial density field. We use the variance across the realiza-
tions to compute errorbars. When finding voids in the sim-
ulations, we shall also make use of DM haloes found in the
simulations. Our halo catalogues were obtained with the pub-
licly available Rockstar code [93], which is a phase space
friends-of-friends based halo finder. The number density of
the haloes we consider is nhalo = 5 × 10−4h3/Mpc3 and
nhalo = 5 × 10−3h3/Mpc3 for the Galileon and Nonlocal
gravity simulations, respectively. This is roughly the num-
ber density of haloes after retaining only those haloes whose
mass is at least 100 times the particle mass. The latter is,
Mp ≈ 4 × 1010M⊙/h and Mp ≈ 5 × 109M⊙/h, for the
simulations of the Cubic Galileon and Nonlocal models, re-
spectively 3. We refer the reader to Refs. [37, 56, 68] for fur-
ther details about the properties of dark matter haloes in these
models.

We find voids using the Watershed Void Finder (WVF)
method of Ref. [94]. Our code takes as input the dis-
crete tracer distribution, which in our case are DM particles
and/or DM haloes, to construct a continuous volume-weighted
density field using a Delaunay Tessellation Field Estimator
(DTFE) method [95, 96]. For computational convenience, the
DTFE field is sampled onto a regular grid, whose cell size is of
the order of the mean distance between tracers. The grid den-
sity field is smoothed with a Gaussian filter of size 2 Mpc/h
to reduce small scale features due to Poisson shot noise, which
could lead to spurious voids [94]. In the language of the water-
shed technique, the resulting density field is viewed as a land-
scape that will be flooded by a rising level of water. The re-
gions around every local minima of the density field are called
catchment basins (where water collects) and will be identified
as the voids. As the water level rises, the basins grow and,
eventually, neighbouring basins meet at the higher-density
ridges that separate them. These ridges mark the boundary
of each basin/void, and are associated with the filaments and
walls of the cosmic web [97, 98]. The process stops when
the water level reaches the global maximum of the density
field, by the end of which all basin/void boundaries have been
identified. To overcome watershed over-segmentation4, ridges
whose density constrast is δ < −0.8 are not classified as void
boundaries, as such low density boundaries are indicative of
subvoids that have merged [94, 99]. An appealing aspect of
the watershed method is that it makes no a priori assump-
tions on the size, shape or mean underdensity of the voids (see
Ref. [100] for a comparison study of different void finders).

As is customary in void studies, we define the effective void
radius Rv as the radius of a sphere whose volume is the same
as the volume of the watershed void. We take the center of
the void to be the location of the barycenter which we define

3 Note that due to the different growth of structure, the halo mass function
differs between the different variants of the models. The halo catalogues of
the different variants were cut at slightly different mass values to yield the
same number density of haloes.

4 This refers to avoid finding too many small voids inside a large underdense
region, where in fact the whole underdense region should be classified as a
single void that resulted from the merging of smaller ones.



7

as ~rbarycenter =
∑

i ~ri/Ncell, where ~ri is the position of each
grid cell identified as part of the void and Ncell is the total
number of grid cells associated with void. We evaluate the
density profiles of the voids using the DM density field (for
voids found in both the DM and halo density fields) since this
is the mass distribution that determines the lensing signal. In
what follows we limit ourselves to analysing the simulation
results at z = 0.

B. Void size function

Figure 2 shows the cumulative size function of the voids
found in the simulations of the Cubic Galileon (left panels)
and Nonlocal (right panels) gravity models. For both models,
the void population depends on the tracer type used. In partic-
ular, DM density field voids (circles) are smaller and, in total,
are found in greater number than voids in the halo density
field (squares). This follows straightforwardly from the fact
that the distribution of collapsed haloes is sparser than that of
the DM particles. It is also noteworthy that, for the same type
of tracer, we find larger voids in the Cubic Galileon than in the
Nonlocal gravity model. Part of this result is due to the fact
that the box size used in the simulations of the Galileon model
(400Mpc/h) is larger than that used in the simulations of the
Nonlocal model (200Mpc/h). One should therefore bear this
difference in the box size in mind when comparing the results
between the two gravity models.

In terms of the relative difference to QCDM, the full and
linear variants of the Galileon model predict an enhance-
ment of the order 10% − 20% for the larger DM field voids
(15Mpc/h . Rv . 20Mpc/h). This is due to the enhanced
gravity of these models which boosts the evacuation of matter
from inside the voids and the formation of large scale struc-
tures. In other words, voids expand faster in the full and linear
variants, which is why large voids are more abundant. By the
same reasoning, one should also expect the number of smaller
voids to be suppressed in the linear and full variants, com-
pared to QCDM. This is because the faster expansion of the
voids makes it more likely for small neighbouring voids to
merge into larger ones. In Fig. 2, this suppresion can be seen
for Rv . 10Mpc/h, although to a lesser extent than the en-
hancement seen for larger DM field voids. Another interest-
ing aspect that is seen in the void abundances of the Galileon
model is that the results of the full and linear variants are
rather similar. This is very different from what is seen in the
abundances of collapsed haloes, for which, due to the sup-
pression effects of the screening mechanism, the full model
has considerably fewer massive haloes than the linear variant
(see e.g. Fig. 5 of Ref. [68].) This illustrates that the effects
of the screening mechanism are much weaker around under-
dense regions, as expected.

In the case of Nonlocal gravity, the number density of DM
field voids is, within the errorbars, the same in the full and
QCDM variants. Here, recall that the largest voids found
in the Nonlocal simulations are smaller than those in the
Galileon simulations due to the smaller box size used. For
instance, the largest DM field void found in the simulations of

the Nonlocal model has Rv ≈ 17Mpc/h. This, together with
the fact that in the Galileon model the enhancement is most
noticeable for Rv & 15Mpc/h, suggests that the simulation
box of the Nonlocal gravity model is not big enough to capture
the impact of the fifth force on larger voids. Indeed, for large
voids, there seems to be a trend for the full Nonlocal model
to overpredict the number of voids with Rv & 15Mpc/h rel-
ative to QCDM, although this is not significant due to the size
of the errorbars. Nevertheless, for Rv ∼ 15Mpc/h, the en-
hancement in the full and linear variants of the Galileon model
is already around ∼ 10%, whereas in the Nonlocal model it
is still consistent with zero. This shows that the effects of the
modifications to gravity in the Nonlocal model are, in gen-
eral, weaker than those in the Cubic Galileon, which is also
expected.

The results become noisier for voids found in the halo field
due to the smaller number of tracers. For both the Galileon
and Nonlocal gravity models, within the errorbars, the number
density of voids is essentially the same in all model variants.
However, as an exercise, if one ignores the size of the error-
bars for a moment, then one notes that, at least qualitatively,
the halo field voids show a similar behaviour to their DM field
counterparts. In the case of the Galileon, for instance, the
largest halo field voids, Rv & 40Mpc/h, are ∼ 10 − 20%
more abundant in the full and linear variants, compared to
QCDM. This qualitative trend, backed up by the expectation
based on physical intuition, suggests that with improved halo
field void statistics one should recover, at least to a certain de-
gree, the same physical behavior seen for the DM field voids.

In the results that follow, we analyse our void catalogues by
splitting them into two bins of radial size. We split the voids
in the Galileon model according to

DM field :: bin 1 [5− 12.5]Mpc/h, R̄v ≈ 8.20Mpc/h,

DM field :: bin 2 [12.5− 20]Mpc/h, R̄v ≈ 14.2Mpc/h,

Halo field :: bin 1 [10− 30]Mpc/h, R̄v ≈ 20.0Mpc/h,

Halo field :: bin 2 [30− 50]Mpc/h, R̄v ≈ 36.5Mpc/h,

(28)

and in the Nonlocal model as

DM field :: bin 1 [4− 10]Mpc/h, R̄v ≈ 7.30Mpc/h,

DM field :: bin 2 [10− 16]Mpc/h, R̄v ≈ 11.4Mpc/h,

Halo field :: bin 1 [10− 20]Mpc/h, R̄v ≈ 14.5Mpc/h,

Halo field :: bin 2 [20− 30]Mpc/h, R̄v ≈ 23.2Mpc/h,

(29)

where R̄v =
∑

i Rv,i/Nbin is the mean void size in each bin,
where Rv,i is the radius of the i-th void in the bin and Nbin

is the number of voids in each bin. The exact value of R̄v

fluctuates only slightly (< 1%) in between the different model
variants. We have found that this binning choice constitutes a
good compromise between having enough voids in each bin,
whilst making sure that the void properties do not vary too
much within a bin.
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FIG. 2. Cumulative void size function (number density of voids with radii above Rv) for the Cubic Galileon (left panels) and Nonlocal gravity
(right panels) models. The upper panels show the number density of voids found in the DM (circles) and halo (squares) density fields for the
full (blue), linear (green) and QCDM (red) variants of each model, as labelled. The lower panels show the difference relative to QCDM. The
errorbars depict the variance across the five realizations of each variant.

C. Void density profiles

Figure 3 shows the spherically averaged DM density field
and halo density field void density profiles found in the sim-
ulations of the three variants of the Galileon model5, with the
void sample split to the size bins according to Eq. (28). Figure
4 is the same as Fig. 3, but for the Nonlocal model. The void
density profiles are characterized by a density increase from
R′ = 0 towards R′ ≈ 1; an overdense ridge at R′ ∼ [1−1.5],
which is associated with the filaments and walls that surround
the void (the ridge is less pronounced for larger voids); and
a steady decrease towards the cosmic mean, δ = 0, at larger
radii. In these figures, the curves show the best-fitting profiles
obtained using the five-parameter formula of Eq. (26), which
fits the simulation results very well.

The functional form of Eq. (26) is inspired by the expres-
sions proposed by earlier works [69, 70] in the context of
ΛCDM. In particular, the formula proposed by Ref. [69] dif-
fers from ours by fixing s2 = 1. This was used to fit to the
density profiles of voids found from subsampled (i.e. diluted)
DM tracer particle fields in ΛCDM (see Ref. [69] for the de-
tails). The authors of Ref. [69] further found that there are

5 The average density profile of all the voids in each bin should be spherical
to a good approximation, even though each individual void is not.

relations between the four free parameters of their formula,
which can be used to effectively fix two of them. On the other
hand, the formula proposed by Ref. [70] has s2 = s1, and
was used to fit the density profiles of voids constructed from
mock and observed galaxy catalogues. In both of these works,
the voids were found using watershed-based void finders, as
in this paper. Recently, Ref. [101] explored the connection
between the properties of voids found using watershed meth-
ods and the predictions of theoretical models based on excur-
sion set theory [99]. In Ref. [101], the authors also pointed
out that the performance of the fitting formulae proposed by
Refs. [69, 70] may depend on some aspects of the analysis
such as the tracer type, tracer density, definition of void cen-
ter, etc. (see Ref. [101] for the details). Compared to these
other formulae, our void profile of Eq. (26) may appear less
appealing due to the fact that it has the extra free parameter
s2. However, the flexibility that comes with s2 is what allows
our formula to be a very good fit to the simulation results, both
for the voids found in the DM and halo fields, and for all the
variants of the models of gravity we consider. Moreover, the
differences relative to QCDM computed using the best-fitting
formulae also match very well the relative differences mea-
sured in the simulations (lower panels of Figs. 3 and 4). We
note that it is not the goal of this paper to determine if the
voids found in our simulations are self-similar (i.e., indepen-
dent of the void size) or universal (i.e., independent of tracer
type and/or redshift). For our analysis, what is important is
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FIG. 3. Void density profiles, ρm/ρ̄m = 1 + δ, for the DM density field (circles, left panels) and halo density field (squares, right panels)
voids found in the simulations of the three Galileon model variants (distinguished by the different colors, as labelled), plotted as function of
the scaled radius R′ = R/Rv . The solid (dashed) lines show the best-fitting density profiles, using the formula of Eq. (26), for the bin of
smaller (larger) void sizes, as labelled. The bottom panels show the relative difference to QCDM. The errorbars depict the variance accross the
five realizations of each variant.

FIG. 4. Same as Fig. 3 but for the Nonlocal gravity model.
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that the void density profiles in the simulations are well de-
scribed by Eq. (26)6, which can therefore be used to calculate
the force profiles and lensing signal.

The impact of the fifth force is better seen when comparing
the difference relative to QCDM. In the case of the Galileon
model (Fig. 3), compared to QCDM, the voids in the full and
linear variants are ≈ 2− 3% emptier in the inner regions, i.e.
R′ . 0.5, for both the DM and halo voids (although the re-
sult is noisier for halo voids due to poorer statistics, specially
for the smaller radius bin). Physically, this is because the en-
hanced gravity favours the piling up of matter in the outer re-
gions, leaving less matter inside the void. The fact that the pre-
diction from the linear and full variants are so close illustrates,
once again, that the effects of the screening mechanism are
weak around voids. In Ref. [47], similar results were found
in the context of f(R) gravity, using a spherical underdensity
based void finder [102]. In particular, the authors of Ref. [47]
found that the voids in f(R) models can be up to ≈ 5% emp-
tier than in ΛCDM. In Fig. 3, it is also worth noting that for
the smaller radius bin of DM field voids, at R′ ∼ 0.5 − 1,
the voids are more underdense in the linear variant than in the
full model. We shall present an explanation for this in the next
subsection, when we look at the force profiles in the Galileon
model.

The effects of the fifth force on the void profiles of the Non-
local model (Fig. 4) are weaker than those seen in the Galileon
case. In particular, for the DM field voids, the smaller void
size bin in the full variant shows a decrement of only ≈ 1%,
relative to QCDM; the difference becomes consistent with
zero for the larger size bin. In the case of the halo field voids,
there is a systematic trend for the voids in the full Nonlocal
model to be ≈ 2 − 3% emptier than in QCDM for R′ . 0.5,
but the poorer statistics make it hard to draw any decisive con-
clusions. Nevertheless, the result of Fig. 4 shows that, overall,
the fifth force effects on the void density profiles in the Non-
local model are weaker than in the Galileon model, which is
expected.

D. Force profiles in the Galileon model

Figure 5 shows the force profiles of the voids in the vari-
ants of the Galileon model. The circles, linked by the dotted
lines, show the simulation results. These were obtained by
spherically averaging the radial force field in the simulations,
which was constructed by using the force information at the
N-body particle positions. The solid curves show the analyti-
cal result computed using the best-fitting void density profiles
of Eq. (26) (cf. Fig. 3). Figure 5 shows that, for the linear
and QCDM variants, the analytical calculation is in very good
agreement with the simulation results. However, the same is
not true for the case of the full variant of the Galileon model.
In this case, the analytical result differs from that of the sim-
ulations for R′ . 1.25, for DM field voids, and for R′ . 1.0

6 Even if one needs to fit the free parameters for different void sizes and for
different density tracers.

for halo field voids. More specifically, for all cases shown, the
analytical result of the full variant always predicts a stronger
force (more negative) than the linear variant, inside the void.
This result was already seen in Sec. II B, when we analysed
the behaviour of the regime (iii) discussed there (cf. Fig. 1).
On the other hand, in the simulations, the force inside the
smaller voids (left panels) of the full variant is weaker than in
the linear case (R′ ∼ 0.5− 1). For larger voids (right panel),
the full and linear variant simulations exhibit nearly the same
force profiles.

The reason why the forces in the simulations of the full
model are weaker (less negative) than those computed analyt-
ically using the spherically averaged density profiles can be
linked to the effects of screening. The smooth void density
profiles depicted in Fig. 3 correspond only to an average den-
sity field, which does not fully capture the detailed distribution
of matter around the voids. A more realistic picture is that, in-
side the voids and at their edges, there are higher density peaks
associated with dark matter haloes and their respective infall
regions. Close to these higher density regions, the fifth force
in the Galileon model is suppressed by the screening mecha-
nism (cf. regime (i) discussed in Sec. II B), which results in
a weakening of the total force7. Herein lies the explanation
for the mismatch between the analytical result and the simula-
tion force profiles. By averaging first the matter field, despite
of the presence of higher density peaks, on average, one ends
up with a smoother and lower density void profile. This pro-
file, when used in the analytical calculation, gives a fifth force
which is stronger in magnitude than the corresponding linear
solution (cf. regime (iii) in Sec. II B). On the other hand, by
averaging directly the forces at the particle positions, one is
averaging a force field which is already affected by the sup-
pression effects of the screening due to the existing higher
density peaks. This is why the force profiles measured in the
simulations are weaker (less negative) than the analytical re-
sult, as seen in Fig. 5. In other words, since the force equation
in the full model is nonlinear (cf. Eqs. (11)), it makes a dif-
ference whether one computes the force analytically from the
averaged density field, or one computes the force by averaging
directly the force field. In the case of the QCDM and linear
variants, the force equation is linear, and as a result, the oper-
ations of averaging the density and the force field commute,
which is why there is almost perfect agreement between the
analytical and simulation results in these cases.

Figure 5 shows also that the suppression of the total force
in the simulations of the full variant relative to the linear
one is more pronounced in smaller voids. This is because
smaller voids are denser, and therefore contain more higher
density peaks per volume inside them and in their surround-
ings, which enhances the suppresion effect of the screening.
In particular, it is interesting to link this result with the dif-
ferences between the linear and full model density profiles for
the smaller size bin of the DM field haloes at R′ ∼ 0.5 − 1

7 We note also that, in the simulations, the ad-hoc fix to keep the fifth force a
real number is applied on a cell-by-cell basis on the adaptive mesh, which
means that close to these density peaks the fix is not employed.
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FIG. 5. Radial force profiles around the DM field (upper panels) and halo field (lower panels) voids in the variants of the Galileon model
(distinguished by the different colors, as labelled). The circles with errorbars (which are in most cases smaller than the circles), linked by the
dotted lines, correspond to the spherically averaged radial force field in the simulations. The solid lines correspond to the analytical prediction
computed using the corresponding best-fitting void density profiles of Eq. (26), shown in Fig. 3. The different panels show the result for the
different void size bins, as labelled. What is actually plotted is the radial force scaled by the mean void size in each bin, Φ,R /R̄v (cf. Eqs. (28)).
A negative sign for the force means that it points outwards.

in Fig. 3. As we noted in the previous section, on these ra-
dial scales the voids in the linear model are slightly emptier.
This can be explained by the fact that, in the simulations, the
force in the linear model is stronger (more negative), which
favours the evacuation of matter from inside the void8. In
principle, the same result should also be noticeable in the case
of the smaller size bin of the halo field voids, for which the
force in the full model is also weaker than in the linear one
at R′ ∼ 0.5 − 1 (lower left panel of Fig. 5). This is not visi-
ble in Fig. 3 (lower left panel), possibly because of the noisier
measurements.

For the Nonlocal gravity model, the force equations are lin-
ear, as in the QCDM and linear variants of the Cubic Galileon
model. As a result, there is good agreement between force
profiles computed from simulations and the analytical results.

8 It is worth noting that the relative differences in Fig. 3 correspond to dif-
ferent void populations, and as a result, some of the observed differences
could arise from this. As a test, we have measured the density and force
profiles in the full, linear and QCDM simulations, but at the spatial lo-
cations of the voids in the QCDM model. This increases the chances of
comparing voids that evolved from the same initial underdense regions.
From this test we found only small quantitative changes with no impact on
our conclusions.

IV. WEAK LENSING BY VOIDS IN MODIFIED GRAVITY

In this section, we analyse the gravitational lensing signal
from the voids in the Cubic Galileon and Nonlocal gravity
models. We start by describing how to calculate the relevant
lensing quantities in these theories of gravity, and then focus
on the predictions using the voids found in the simulations of
the two models.

A. Lensing shear calculation

1. Lensing shear in GR

The observable quantity in weak lensing studies [103, 104]
is the reduced shear, g = γt/(1 − κ), where γt and κ are
called, respectively, the lensing tangential shear and conver-
gence. The reduced shear is directly related to the elliptici-
ties of the background galaxies whose light is distorted by in-
tervening gravitational sources, which are voids in our case.
In the weak-lensing regime, which is the regime for voids
[105, 106], γt and κ are both much smaller than unity, and
consequently, one has g ≈ γt.

The lensing convergence is obtained by integrating the
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Laplacian of the lensing potential Φlen = (Φ +Ψ) /2 as

κ =
1

4πGΣc

∫

∇2Φlendl, (30)

where l is the line of sight coordinate. Here, Σc =
Dsc

2/(4πGDdsDd) is called the critical surface mass density
for lensing, where Dd, Ds and Dds, are respectively, the angu-
lar diameter distances between the observer and the void, the
observer and the source galaxies, and the void and the source
galaxies. We note, however, that given the way we choose to
present our results below, the exact values of Σc are not im-
portant (we comment further on this below). In GR, the two
Newtonian potentials are the same Φ = Ψ ≡ Φlen (in the
absence of anisotropic stress). As a result, using the Poisson
equation ∇2Φ = 4πGρ̄mδ, the convergence is given by

κ =
ρ̄m
Σc

Rv

∫

δ(r′, l′)dl′ ≡ Rv
Σ(r′)

Σc
, (31)

where r′ = r/Rv , l′ = l/Rv , and r is a two-dimensional
radial coordinate defined on the void plane (l = 0) with origin
at the void center (i.e. R2 = r2+l2). From the above equation,
one sees that in GR the lensing convergence is simply given by
the projected density profile of the void, Σ(r) = RvΣ(r

′). We
perform the integral of Eq. (31) numerically, using the density
contrast formula of Eq. (26).

The tangential shear is defined as

γt = κ− κ, (32)

where

κ =
1

r2

∫ r

0

yκ(y)dy ≡ Rv
1

r′2

∫ r′

0

yκ(y)dy (33)

is the mean convergence inside radius r. The mean projected
mass inside radius r is given by Σ(< r) = κΣc. Here, we fol-
low Refs. [49, 50] and quote the lensing predictions in terms
of the differential surface mass density ∆Σ(r), which is given
by

∆Σ(r) = Σ(< r)− Σ(r) = Σcγt. (34)

By quoting the results in terms of ∆Σ(r) we avoid having to
compute the values of Σc. In Eqs. (31) and (33), we have also
factored out the void radius, Rv , to make it explicit that the
lensing quantities depend linearly on it, e.g. ∆Σ ∝ Rv .

2. Lensing in linear models of gravity with Geff(z)

As we have seen in Secs. II A and II B, in Nonlocal grav-
ity and in the linear variant of the Cubic Galileon model,
the gravitational law is the same as in GR, but with a scale-
independent effective gravitational strength, Geff . Moreover,
in these two models, the two Newtonian potentials are also
the same and equal to the lensing potential, Φlen = Φ = Ψ
(in the absence of anisotropic stress). Consequently, the dif-
ferential surface mass density in these models is obtained in
the same way as in GR, but taking the factor Geff/G properly
into account. Explicitly, one has

∆Σ(r) =
Geff

G
∆ΣGR(r). (35)

3. Lensing in the full Cubic Galileon model

As in GR, in the full variant of the Galileon model one also
has that Φlen = Φ = Ψ, and therefore, the lensing conver-
gence is also given by integrating ∇2Φ along the line of sight

κ =
1

4πGΣc
Rv

∫
(

Φ,RR (r′, l′) + 2
Φ,R
R

(r′, l′)

)

dl′,

(36)

where Φ,R /R and Φ,RR are given, respectively, by Eqs. (11)
and (12), and recall that in spherical coordinates, ∇2Φ =
Φ,RR +2Φ,R /R. Given κ, then the values of κ and γt are
obtained as in Eqs. (33) and (32), respectively. Here, we shall
also quote the results for the full Galileon model in terms of
the differential surface mass density, ∆Σ = Σcγt. However,
one should bear in mind that the meaning of ∆Σ is different
from the previous cases. In the full Galileon model, in ad-
dition to the contribution from the projected mass, ∆Σ also
depends on the projected distribution of the Galileon field
(cf. Eqs. (11) and (12)).

B. Lensing by the voids in the simulations

Figure 6 shows the lensing signal associated with the halo
field voids found in the simulations of the Galileon (left panel)
and Nonlocal (right panel) gravity models. The curves were
computed as described in the previous subsection using the
best-fitting density profiles of Eq. (26) shown in the right pan-
els of Figs. 3 and 4. For brevity, we show only the result
for halo field voids. These are the ones that are more closely
related to observations, where one first identifies voids using
galaxy catalogues and then looks at the lensing signal at the
void locations [49, 50]. Note also that the values of ∆Σ are
scaled by R̄−1

v , which means that the voids in the larger size
bin (dashed curves) have lensing effects of larger magnitude
(i.e. one needs to multiply the result by R̄v).

In the case of the Galileon model, the maximum of the lens-
ing signal, which occurs at R′ ∼ 0.75 − 1, is approximately
twice as strong in the full and linear variants, compared to
QCDM. At R′ . 1, the signal is slighlty stronger in the full
than in the linear variant 9. This follows from the stronger
fifth force (more negative) in the full model associated with
the regime (iii) discussed in Sec. II B. However, in Fig. 5, we
have seen that, due to the screening mechanism, the force pre-
dictions of the full and linear variants measured in the simu-
lations are actually closer than what is predicted by the ana-
lytical calculation using the best-fitting density profiles. For
this reason, it is reasonable to assume that the lensing signal
of the full model is actually closer to the prediction of the

9 The "spiky" features seen in the blue curves are caused by the discontinuity
in the force law due to our ad hoc fix to the problem of complex fifth force
solutions (cf. Sec. II B).
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FIG. 6. Lensing differential surface mass density, ∆Σ, for the best-fitting density profiles of the two void size bins (distinguished by the line
styles, as labelled) for the halo density field voids found in the simulations of the different variants (distinguished by the colors, as labelled) of
the Cubic Galileon (left panel) and Nonlocal (right panel) gravity models. The result is scaled by the inverse of the mean void radius in each
size bin, R̄−1

v .

linear variant, compared to what is observed in Fig. 6. Never-
theless, given that the differences between the full and linear
variants are smaller than their differences relative to QCDM,
it remains safe to conclude, as we have seen in previous sec-
tions, that the effects of the fifth force in the Galileon model
are quite pronounced in voids, where the screening is not very
efficient.

In the case of the Nonlocal model, the effects of the fifth
force are considerably weaker than in the Galileon model. In
particular, for the cases shown in Fig. 5, the maximum ampli-
tude in the value of |∆Σ| (at R′ ∼ 0.75− 1) is ≈ 10% larger
in the full Nonlocal model, compared to its QCDM variant.
This illustrates that the effect of the modifications to gravity
in the Nonlocal model are more challenging to detect using
the lensing signal from voids.

The modifications to gravity affect the lensing in voids in
two main ways: (i) through the modifications to the average
density profiles of voids; and (ii) directly through the modifi-
cations to the lensing potential. Figure 7 measures the relative
impact of these two effects in the Galileon (upper panel) and
Nonlocal gravity (lower panel). In the figure, the red and blue
curves are the same as in Fig. 6. The black curves are com-
puted using the lensing equations of the full variants of the
Galileon and Nonlocal models, but using the density profile
of the voids in the QCDM variants. As a result, comparing
the red and black curves shows the effect of modifying the
force law, whereas the difference between the black and blue
lines shows the impact of the modified density profiles. In the
case of the Galileon model, Fig. 7 shows that the dominant
effect comes from the fifth force. This is seen by the large
difference between the red and black curves. Figure 7 shows
the result for the larger size bin of the halo field voids, which
are slightly emptier in the full variant of the Galileon model,
compared to QCDM (cf. bottom right panel in Fig. 3). This
helps to further increase the amplitude of |∆Σ|, but by a much
smaller amount. On the other hand, for Nonlocal gravity, the
direct effect of the fifth force on lensing is comparable to the

effect of having slightly emptier voids (cf. Fig. 4).

C. Connecting to observations

References [49] and [50] have recently detected the lens-
ing signal associated with voids in the galaxy distribution
(see also Refs. [105–107] for earlier forecast studies). In
Ref. [49], the authors stacked the voids of the catalogue of
Ref. [108], which were found using a watershed algorithm in
the three-dimensional main galaxy and luminous red galaxy
(LRG) samples of the Sloan Digital Sky Survey-Data Release
7 [109] (SDSS-DR7). On the other hand, in Ref. [50], the au-
thors used also the SDSS LRG catalogues, but the voids were
found using a method that is specifically designed for lens-
ing. In this method, emptier regions are found in projected
two-dimensional slices of the survey volume, which seems to
increase the significance of the lensing detection.

As we discuss below, a robust comparison between these
observations and the results of Fig. 6 requires more detailed
modelling of the theoretical predictions. Nevertheless, one
can still compare some of our results to try to get a feeling
about what these measurements imply for modified gravity.
For instance, in Fig. 5 of Ref. [50], it is shown that for voids
with size Rv ∈ [15, 30] Mpc/h, the values of the differen-
tial surface mass density at its minimum are, approximately,
within ∆Σ ∈ [−0.4,−0.7] 1012M⊙h/Mpc2 (this estimate is
based on the size of the errorbars there). From Fig. 6, for the
case of the smaller size bin of the full Galileon model we have
min (∆Σ) ≈ −0.065R̄v = −1.3 × 1012M⊙h/Mpc2. For
the full Nonlocal model, we have min (∆Σ) ≈ −0.032R̄v =
−0.46 × 1012M⊙h/Mpc2 and min (∆Σ) ≈ −0.039R̄v =
−0.9× 1012M⊙h/Mpc2, for the smaller and larger size bins,
respectively. Hence, for both the Galileon and Nonlocal mod-
els of gravity, we get the same typical order of magnitude as
in the observations. One notes that in the case of the Galileon
model, the size of the effect is larger than the results presented
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FIG. 7. Relative impact of the fifth force and modified density pro-
files on the lensing signal of halo field voids in the Cubic Galileon
(upper panel) and Nonlocal (lower panel) gravity models. For both
models, the red and blue lines have the same meaning as those in
Fig. 6. The black curves are obtained by calculating the lensing sig-
nal with the full Galileon and full Nonlocal model force equations,
but using the best-fitting void density profile of the QCDM voids.
The comparison between the red and black measures the effects of
the fifth force alone; whereas comparing the black and blue curves
shows the impact of the modified void density profiles.

in Ref. [50]. This suggests that, indeed, lensing by voids may
have the potential to constrain models like the Galileon.

Before summarizing our results in the next section, we find
it instructive to briefly comment on a number of aspects that
should to be taken into account before properly confronting
these (and other) models to lensing observations. These as-
pects include:

1. Impact of Σc In Fig. 6, we quote our results in terms of ∆Σ,
but in reality, what one measures directly from galaxy el-
lipticities is the shear, g ≈ γt = ∆Σ/Σc. The calcula-
tion of Σc depends on the cosmological background, which
can be different between the Galileon, Nonlocal, and the
standard ΛCDM models. Consequently, if in observational
studies, one measures γt, but quotes the results in terms of
∆Σ by assuming a background cosmology to compute Σc,

then this may introduce some bias that should be carefully
addressed. Furthermore, Σc depends also on the redshift
distribution of the source galaxy population, although this
can always be set accordingly using the properties of the
observed galaxies.

2. Void redshift distribution The lensing signal in Fig. 6 was
obtained analytically using the density profiles of the voids
in the simulations at z = 0. In the observations, however,
the lensing signal is detected by stacking voids that span a
given redshift distribution z > 0. In the particular case of
the Galileon and Nonlocal gravity models, the fifth force
is weaker at earlier times (see e.g. Fig. 3 of Ref. [68] and
Fig. 2 fo Ref. [56]), which reduces the amplitude of the
signal depicted in Fig. 6.

3. Void stacking The lensing signal associated with individ-
ual voids is too weak to be detected in current observa-
tions, which is why Refs. [49, 50] used stacked voids in
their analyses. When interpreting such results in modified
gravity, for a given stack, voids at different redshifts have
different weights in the observed lensing signal because of
the redshift dependence of the fifth force, Σc and also of
the screening efficiency. Such effects should be taken into
account if one, for instance, tries to use the lensing obser-
vations to reconstruct a mean density profile for the stack.
Here, an interesting analysis would involve stacks of voids
binned not only by size, but also by redshift.

4. Systematic biases The lensing calculations performed here
assume that the density distribution in voids is perfectly
smooth. In reality, however, voids contain substructure and
its amount is expected to be different in models with differ-
ent growth rates of structure. Given that the lensing signal
from voids is relatively weak (compared to that induced by
DM haloes) it may be interesting to investigate the extent
to which void substructure can impact on the overall lens-
ing signal. This can be studied by looking at the lensing
signal using ray-tracing methods in the simulations, with-
out modelling their profiles as a smooth distribution. Our
lensing calculations also assume that the void is the only
source of lensing. A ray-tracing analysis would also help
to better quantify the contamination of the lensing signal
coming from intervening matter along the line of sight. It
could also be of interest to assess any impact that baryonic
physics (e.g. galaxy type used as density tracer) may have
on the lensing by voids.

5. Screening effects Related to the above point, a ray-tracing
analysis is also able to capture more accurately the effects
of the nonlinear screening mechanism. In Sec. III D, we
saw that, in the full variant of the Galileon model, it makes
a difference whether one computes the force profiles analyt-
ically from the spherically averaged density profiles, or by
spherically averaging the force field directly. Moreover, the
efficiency of the Vainshtein mechanism depends also on the
geometry of the mass distribution as investigated recently
in Refs. [23, 24]. This means that calculations based on the
mean spherical profile of a stack of voids may not fully cap-
ture the fifth force effects from each individual nonspheri-
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cal void. These issues can be circunvented by directly in-
tegrating ∇2Φ along the line of sight for each void using
ray-tracing and stacking the resulting signal. In this way,
one probes directly the lensing potential distribution with-
out introducing any bias that arises when one averages first
the density field.

6. Combining different void finders The way voids are found
in simulations and/or in real galaxy catalogues can also
affect the resulting lensing signal. For instance, as we
mentioned above, the authors of Ref. [50] optimize their
analysis for lensing by finding the voids in projected two-
dimensional slices of a spectroscopic galaxy survey. This
may partly explain why the significance of their detection
is higher than that found in Ref. [49], in which the voids
are found in three dimensions. It would therefore be of
great interest to find voids in the way of Ref. [50] in the
N-body simulations as well. It is also well known that
different void finding techniques yield different void pro-
files [100], and hence, different lensing predictions. For in-
stance, voids found with spherical underdensity (SU) meth-
ods have sharper transitions from the inside of the void to
the surrounding ridge. This boosts the lensing effect, as can
be checked in the α panel of Fig. 8 in the Appendix, where
α is the parameter of the formula of Eq. (26) that controls
the slope of this transition. Moreover, the recent work of
Ref. [111] has shown that it may be more natural to char-
acterize the void profiles with respect to their boundaries
(which is where most of the mass is), instead of with re-
spect to the void center (which is devoid of tracers). This
also results in steeper density profiles close to the void edge
(see Fig. 7 of Ref. [111]). The differences in void profiles
obtained with different void finding methods is generally
portrayed as a source of uncertainty in void related work,
but we note that some advantages may arise from it. For in-
stance, since the fifth force acts to make voids emptier and
the ridges denser, then methods like SU or that of Ref. [111]
may be particularly suitable for modified gravity studies,
as they may amplify the size of the fifth force effects (see
e.g. Ref. [47], where the authors use SU methods to study
voids in f(R) gravity). Hence, we believe that the com-
bination of the results from different void finding methods
(provided they are consistently used in simulated and real
data) is something to be explored with more detail when
designing observational tests. These investigations are the
subject of ongoing work [112].

V. SUMMARY & CONCLUSIONS

We have studied the lensing signal associated with voids in
Cubic Galileon and Nonlocal gravity cosmologies, which are
examples of models that modify the gravitational lensing po-
tential. The gravitational law in the Nonlocal model can be
parametrized by an enhanced effective gravitational strength
(Geff ≈ 1.06G, at z = 0), which is independent of the length
scale. In the Galileon model, the modifications to gravity are
scale-dependent and in Sec.II B we discussed three relevant

regimes: (i) a regime which occurs close to massive bodies, in
which the fifth force is suppressed via the Vainshtein screen-
ing mechanism; (ii) a regime which occurs in regions of small
density constrast, |δ| ≪ 1, where the equations become linear
and the total force can be parametrized by an effective grav-
itational strength, (Geff ≈ 2G, at z = 0); and finally, (iii) a
regime which occurs in regions where the density contrast be-
comes sufficiently negative, where the amplitude of the fifth
force is the largest (more negative).

The fifth force in the Galileon and Nonlocal gravity mod-
els has an impact on the lensing signal in and around voids
through two main effects. First, the fifth force changes the
density profiles of the voids, and second, it also modifies the
lensing potential directly. This means that even for fixed mass
distribution, the lensing signal in these theories of gravity is
still modified w.r.t. GR. This is different from other popular
models like f(R) and/or DGP gravity, which practically do
not directly modify the lensing potential. Hence, models that
directly modify lensing are more amenable to being tested by
lensing observations than those that do not.

We have used results from N-body simulations to study the
effect of the fifth force in these two theories. We analysed
the abundances and profiles of the density, force and lensing
shear of the voids found in the DM and halo density fields of
the simulations using a watershed algorithm. When assessing
the impact of the modifications to gravity in these two mod-
els, we always compared their predictions to models called
QCDM, which have the same background expansion as the
respective Galileon and Nonlocal models, but have GR as the
theory of gravity. In the case of the Galileon model, we have
also analysed the results of a model variant with a linearized
scale-independent force law (cf. Table I). Our main results can
be summarized as follows:

• In the Galileon model, the fifth force boosts the abun-
dance of the larger radius DM field voids (Rv & 15Mpc/h)
by ≈ 10% − 30% (cf. Fig. 2). This is because the enhanced
gravity causes voids to expand faster and also favours the
merging of smaller voids into larger ones. For the voids found
in the halo density field, the same qualitative trend is also seen
but is less pronounced due to poorer statistics. In the case
of the Nonlocal model, the modifications to gravity are not
strong enough to leave a clear signal on the abundances of the
voids found in our simulations (cf. Fig. 2).

• Our five-parameter formula of Eq. (26) fits very well
the DM and halo field void density profiles in the simulations
for all the model variants and for a wide range of void sizes
(cf. Figs. 3 and 4). Our formula contains an extra parame-
ter compared to others used recently in the literature [69, 70],
which gives it the flexibility required to provide good fits. We
used our best-fitting formula to compute analytically the lens-
ing signal associated with the voids in the simulations. In-
vestigations about the self-similar or universal nature of the
profiles in our simulations are left for future work.

• The fifth force in the Galileon model makes the voids
slightly emptier (≈ 2% − 3%) in their inner parts, R′ .
0.5 (cf. Fig. 3). This is because the enhanced gravitational
strength favours the evacuation of matter from the inside of the
void into the surrounding filament and wall structures. This
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result is seen for both DM and halo field voids, although the
signal is more significant for the smaller DM field voids. In
the case of the Nonlocal model, the gravitational strength is
also enhanced, and so one expects the same qualitative be-
havior. Quantitatively though, the weaker fifth force in this
model, together with the size of the errorbars allowed by our
simulations, makes it more difficult to see the effects of the
modifications to gravity (cf. Fig. 4).

• Inside the voids of the full Galileon model, the force
measured directly from the simulations is weaker (less nega-
tive) than the force computed analytically from the best-fitting
void density profile (cf. Fig. 5). We have attributed this to the
screening by high density peaks that exist inside the voids and
in their surroundings, whose effect gets diluted if one averages
the density field first to compute the force analytically. On the
other hand, for the linear and QCDM variants, the analytical
result is in very good agreement with the force measured di-
rectly from the simulations.

• The effects of the fifth force in the Galileon model
can make the lensing signal in voids approximately twice as
strong as in GR (cf. Fig. 6). This large difference comes pre-
dominantly from the modifications of the lensing potential per

se, with the different void density profiles being of secondary
importance (cf. Fig. 7). In the case of the Nonlocal gravity
model, the fifth force also enhances the expected suppression
of the lensing signal, but only by ≈ 10% (cf. Fig. 6). In this
model, the modifications to the density profiles and direct ef-
fects of the fifth force on lensing contribute equally to the dif-
ference relative to GR (cf. Fig. 7).

• For all our Galileon model results, the predictions from
the full and linear variants are of comparable size. This is dif-
ferent from the case of predictions associated with dark matter
haloes (like their abundances or concentration), for which the
effects of the full variant are typically much smaller than those
of the linear variant because of the screening [37]. This illus-
trates that the suppression effects of the screening mechanism
are not very strong around voids, which is why the latter can
be regarded as potentially powerful probes of gravity on cos-
mological scales.

Overall, the results in this paper show that observations of
the lensing signal associated with voids can prove very valu-

able in constraining the gravitational law on large scales. In
the future, we plan to use some of the results presented here to
help to develop more robust observational tests, by following
the steps outlined in Sec. IV C. We believe that such investi-
gations would be timely, specially when interpreted in light
of future observational missions such as DESI [113], LSST
[114] and Euclid [115].
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Appendix A: Parameter impact in the void fitting formula

Figure 8 shows the effect that each of the five parameters
(δv, α, β, s1, s2) that enter Eq. (26) have on the void density
and void lensing differential mass density profiles. The cal-
culation of the lensing signal was performed with GR as the
theory of gravity.
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