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Weak lensing of the CMB: A harmonic approach

Wayne Hu
Institute for Advanced Study, Princeton, New Jersey 08540

~Received 19 January 2000; published 25 July 2000!

Weak lensing of CMB anisotropies and polarization for the power spectra and higher order statistics can be
handled directly in harmonic-space without recourse to real-space correlation functions. For the power spectra,
this approach not only simplifies the calculations but is also readily generalized from the usual flat-sky
approximation to the exact all-sky form by replacing Fourier harmonics with spherical harmonics. Counterin-
tuitively, because of the nonlinear nature of the effect, errors in the flat-sky approximation do not improve on
smaller scales. They remain at the 10% level through the acoustic regime and are sufficiently large to merit
adoption of the all-sky formalism. For the bispectra, a cosmic variance limited detection of the correlation with
secondary anisotropies has an order of magnitude greater signal-to-noise for combinations involving magnetic
parity polarization than those involving the temperature alone. Detection of these bispectra will, however, be
severely noise and foreground limited even with the Planck satellite, leaving room for improvement with
higher sensitivity experiments. We also provide a general study of the correspondence between flat and all sky
potentials, deflection angles, convergence and shear for the power spectra and bispectra.

PACS number~s!: 98.70.Vc, 95.75.Pq, 98.80.Hw
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I. INTRODUCTION

As the cosmic microwave background~CMB! photons
propagate from the last scattering surface through interv
ing large-scale structure, they are gravitationally lens
Weak lensing effects on the the temperature and polariza
distributions of the cosmic microwave background are
ready a well-studied field. As in other aspects of the fie
early work treating the effects on the temperature correla
function @1# has largely been superceded by harmonic sp
power spectrum analyses in the post Cosmic Backgro
Explorer ~COBE! era @2,3#. In harmonic space, the physic
processes of anisotropy formation are most directly manif
However for weak lensing in the CMB, correlation functio
underpinnings have typically remained, forcing transform
tions between real and Fourier space to define the effect
small-angle~flat-sky! approximation. Exceptions include re
cent work on the non-Gaussianity of the lensed tempera
field where a direct harmonic space approach has been t
@4,5#.

In this paper, we provide a complete framework for t
study of lensing effects in the temperature and polariza
fields directly in harmonic space. Not only does this grea
simplify the power spectrum calculations but it also est
lishes a clear link between weak lensing power spectr
observables in wide-field galaxy surveys and CMB obse
ables for cross-correlation studies. Furthermore, this
proach is easily generalized to lensing on the full sky
replacing Fourier harmonics with spherical harmonics.

We show that, counterintuitively, corrections from em
ploying an exact all-sky treatment are not confined to la
angles. The second order nature of the effect brings in la
scale power through mode coupling. Since the all-sky
pressions are as simple to evaluate as their flat-sky app
mations, which themselves are much simpler to evaluate
the correlation function analogues, they should be emplo
where full accuracy is required, e.g., for the analysis of p
cise measurements from CMB satellite missions.
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Beyond the power spectrum, lensing induces three p
correlations in the CMB through its correlation with secon
ary anisotropies@4,5#, even when the intrinsic distribution a
last scattering is Gaussian. Detection of these effects in
temperature maps, however, is severely limited by cos
variance. The primary anisotropies themselves act at
Gaussian noise for these purposes. In this case, the low
at which the CMB is polarized can be an asset not a liabil
Three point correlations involving the polarization, whe
orientation plays a role, are most simply considered w
their harmonic space analogue, the bispectrum. We introd
polarization and polarization-temperature bispectra and s
that they can have signal-to-noise advantages over thos
volving the temperature alone.

The outline of the paper is as follows. In Sec. II, we tre
the basic elements of the cosmological framework, CM
temperature and polarization, and weak lensing neede
understand these effects. Detailed derivations are prese
in a series of Appendixes: Appendix A covers the all-s
weak lensing approach, Appendix B the evaluation of
all-sky formulas, and Appendix C the correspondence
tween the flat and all sky approaches for scalar, vector
tensor fields on the sky. The lensing effects on the pow
spectrum are treated in the flat-sky approximation in Sec
and in the exact all-sky approach in Sec. IV. In Sec. V,
study the effects of lensing on the bispectra of the tempe
ture and polarization distributions. We conclude in Sec. V

II. FORMALISM

In this section, we review and develop the formalism ne
essary for calculating lensing effects in the CMB. We revie
the relevant properties of the adiabatic cold dark ma
~CDM! model in Sec. II A. In Sec. II B, we discuss the pow
spectra and bispectra of the temperature fluctuations, po
ization and temperature-polarization cross correlation.
nally in Sec. II C, we review the properties of weak lensi
relevant for the CMB calculation.
©2000 The American Physical Society07-1
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A. Cosmological model

We work in the context of the adiabatic CDM family o
models, where structure forms through the gravitational
stability of the CDM in a background Friedmann-Robertso
Walker metric. In units of the critical density 3H0

2/8pG,
whereH05100h km s21 Mpc21 is the Hubble parameter to
day, the contribution of each component is denotedV i , i
5c for the CDM,b for the baryons,L for the cosmological
constant. It is convenient to define the auxiliary quantit
Vm5Vc1Vb andVK512( iV i , which represent the mat
ter density and the contribution of spatial curvature to
expansion rate respectively. The expansion rate

H25H0
2@Vm~11z!31VK~11z!21VL# ~1!

then determines the comoving conformal distance to reds
z,

D~z!5E
0

z H0

H~z8!
dz8, ~2!

in units of the Hubble distance todayH0
21

52997.9h21 Mpc. The comoving angular diameter distan

DA5VK
21/2sinh~VK

1/2D !, ~3!

plays an important role in lensing. Note that asVK
→0, DA→D.

The adiabatic CDM model possesses a power spectru
fluctuations in the gravitational potentialF

DF
2 ~k,z!5

k3

2p2 PF5A~z!S k

H0
D n21

T2~k!, ~4!

where the the transfer function is normalized toT(0)51.
We employ theCMBFAST code@6# to determineT(k) at in-
termediate scales and extend it to small scales using ana
fits @7#.

The cosmological Poisson equation relates the po
spectra of the potential and density perturbationsd

DF
2 5

9

4 S H0

k D 4S 113
H0

2

k2 VKD 22

Vm
2 ~11z!2Dd

2 , ~5!

and gives the relationship between their relative normal
tion

A~z!5
9

4S 113
H0

2

k2 VKD 22

Vm
2 F~z!dH

2 . ~6!

HeredH is the amplitude of present-day density fluctuatio
at the Hubble scale; we adopt the COBE normalization
dH @8#. F(z)/(11z) is the growth rate of linear density pe
turbationsd(z)5F(z)d(0)/(11z) @9#

F~z!}~11z!
H~z!

H0
E

z

`

dz8~11z8!S H0

H~z8!
D 3

. ~7!
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For the matter dominated regime whereH}(11z)3/2, F is
independent of redshift.

Although we maintain generality in all derivations, w
illustrate our results with aLCDM model. The parameter
for this model areVc50.30, Vb50.05, VL50.65, h
50.65, Yp50.24, n51, and dH54.231025. This model
has mass fluctuations on the 8h Mpc21 scale in accord with
the abundance of galaxy clusterss850.86. A reasonable
value here is important since the lensing calculation is s
ond order.

B. CMB

We decompose the CMB temperature perturbation on
sky Q(n̂)5DT(n̂)/T into its multipole moments

Q~ n̂!5(
lm

Q lmYl
m~ n̂!. ~8!

The polarization on the sky is represented by the trace-
symmetric Stokes matrix on the sky

P~ n̂!51X~ n̂!~m1 ^ m1!12X~ n̂!~m2 ^ m2!, ~9!

where

6X~ n̂!5Q~ n̂!6 iU ~ n̂!,

m65
1

A2
~ êu7 i êf!. ~10!

The complex Stokes parameter6X is a spin-2 object which
can be decomposed in the spin-spherical harmonics@11#

6X~ n̂!5(
lm

6Xlm62Yl
m~ n̂!. ~11!

We have assumed that the StokesV parameter vanishes a
appropriate for cosmological perturbations; for a full set a
the termVe i j to the polarization matrix, wheree i j is the
Levi-Civita tensor.

Due to the parity properties of the spin-spherical harm
ics

sYl
m→~21! l

2sYl
m , ~12!

one introduces the parity eigenstates@12,13#

6Xlm5Elm6 iBlm , ~13!

such thatElm just like Q lm has parity (21)l ~‘‘electric’’
parity! whereasBlm has parity (21)l 11 ~‘‘magnetic’’ par-
ity!. Density~scalar! fluctuations in linear theory only stimu
late theE component of polarization.

The power spectra and cross correlation of these qua
ties is defined as

^Xlm* Xl 8m8
8 &5d l ,l 8dm,m8Cl

XX8 , ~14!
7-2
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WEAK LENSING OF THE CMB: A HARMONIC APPROACH PHYSICAL REVIEW D62 043007
whereX andX8 can take on the valuesQ, E, B. Note that
the cross power spectra betweenB andQ or E have odd total
parity and thus vanish assuming anisotropy formation i
parity invariant process.

The bispectrum is defined as

^XlmXl 8m8
8 Xl 9m9

9 &5S l l 8 l 9

m m8 m9
DBll 8 l 9

XX8X9 , ~15!

and vanishes if the fluctuations are Gaussian. Even in
presence of non-Gaussianity due to nonlinear but par
conserving sources, bispectra involving an even numbe
magnetic parity terms~including zero! vanish for l 1 l 81 l 9
5odd and those involving an odd number vanish forl 1 l 8
1 l 95even.

For a small section of the sky or high multipole momen
it is sufficient to treat the sky as flat. In the flat-sky appro
mation, the Fourier moments of the temperature fluctuati
are given as

Q~ n̂!5E d2l

~2p!2
Q~ l!ei l•n̂, ~16!

and the polarization as

6X~ n̂!52E d2l

~2p!26X~ l!e62i (w l2w)ei l•n̂, ~17!

where w l is azimuthal angle ofl. Again one separates th
Stokes moments as

6X~ l!5E~ l!6 iB~ l!. ~18!

As in the all-sky case, the power spectra and cross co
lations can be defined as with power spectra

^X* ~ l!X8~ l8!&5~2p!2d~ l2 l8!C( l )
XX8 , ~19!

^X* ~ l!X8~ l8!X9~ l9!&5~2p!2d~ l2 l82 l9!B( l,l8,l9)
XX8X9 .

The power spectra for the fiducial CDM model with a co
mological constant (LCDM) model are shown in Figs. 1 an
2.

In Appendix C, we establish the correspondence betw
the all-sky and flat-sky spectra. For the power spectra
bispectra

Cl
XX8'C( l )

XX8 ,

Bll 8 l 9
XX8X9'S l l 8 l 9

0 0 0D
3A~2l 11!~2l 811!~2l 911!

4p
B( l,l8,l9)

XX8X9 ,

~20!

for sufficiently highl ’s.
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For the bispectra, we have assumed that the triplet is c
posed of an even number of magnetic parity~B! objects such
that it vanishes forl 1 l 81 l 95 odd. For combinations in-
volving an odd number~e.g.,BQQ), the Wigner-3j symbol
should be replaced with its algebraic approximation~B2! but
with l 1 l 81 l 95 even terms set to zero instead. Howev

FIG. 1. Temperature and temperature-polarization cross po
spectra. Shown here are the power spectra of the unlensed
lensed fields, their difference in the all-sky and flat-sky calculatio
and the error induced by using the flat sky expressions. The o
latory nature of the difference indicates that lensing smooths
power spectrum.

FIG. 2. Polarization power spectra. The same as in Fig. 1 ex
for theE andB polarization. We have assumed that the unlenseB
spectrum vanishes as appropriate for scalar perturbations.
7-3
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WAYNE HU PHYSICAL REVIEW D 62 043007
the overall sign depends on the orientation of the triangle
the flat-sky approximation since the bispectrum is then a
symmetric to reflections about either axis.

C. Weak lensing

In the so-called Born approximation where lensing effe
are evaluated on the the null-geodesics of the unlensed
tons, all effects can be conveniently encapsulated in the
jected potential@14,15#

f~ n̂!522E dDgf~D !F@x~ n̂!,D#, ~21!

where

gf~D !5
1

DA~D !
E

D

`

dD8
DA~D82D !

DA~D8!
gs~D8!. ~22!

For the CMB, the source distributiongs is the Thomson vis-
ibility and may be replaced by a delta function at the l
scattering surfaceDs5D(z;103); for galaxy weak lensing
this is the distance distribution of the sources. We explic
relate this quantity to the more familiar convergence a
shear in Appendix A. Note that the deflection angle is giv
by the angular gradienta(n̂)5¹f(n̂).

As with the temperature perturbations, we can decomp
the lensing potential into multipole moments

f~ n̂!5(
lm

f lmYl
m~ n̂!, ~23!

or Fourier moments as

f~ n̂!5E d2l

~2p!2
f~ l!ei l•n̂, ~24!

The power spectra of the lensing potential in the all-sky a
flat-sky cases as

^f lm* f l 8m8&5d l ,l 8dm,m8Cl
ff ,

^f* ~ l!f~ l8!&5~2p!2d~ l2 l8!C( l )
ff , ~25!

where againC( l )
ff5Cl

ff . The lensing potential also develop
a bispectrum in the nonlinear density regime

^f lmf l 8m8f l 9m9&5S l l 8 l 9

m m8 m9
DBll 8 l 9

fff ,

^f~ l!f~ l8!f~ l9!&5~2p!2d~ l2 l82 l9!B( l,l8,l9)
XX8X9 , ~26!

which is responsible for skewness in convergence maps
other higher order effects. Since the lensing potential is
affected by non-linearity until very high multipoles~see Fig.
3!, we neglect these terms here.

Finally, the lensing potential can also be correlated w
secondary temperature and polarization anisotropies@4,10#,
so that one must also consider the cross power spectra
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^Xlm* f l 8m8&5d l ,l 8dm,m8Cl
Xf ,

^X* ~ l!f~ l8!&5~2p!2d~ l2 l8!C( l )
Xf , ~27!

in the all and flat sky limits.
To calculate the power spectra of the lensing potential

a given cosmology one expands the gravitational potentia
Eq. ~21! in plane waves and then the plane waves in sph
cal harmonics. The result is

Cl
ff54pE dk

k
DF

2 ~k,z!@ I l
len~k!#2, ~28!

where

I l
len~k!5E dDWlen~D ! j l S k

H0
D D ,

Wlen~D !522F~D !
DA~Ds2D !

DA~D !DA~Ds!
. ~29!

For curved universes, replace the spherical Bessel func
with the ultraspherical Bessel function. In the small sc
limit, this expression may be replaced by its equivalent Li
ber approximated integral@14#

C( l )
ff5

2p2

l 3 E dDDA@Wlen~D !#2DF
2 ~k,0!uk5 l (H0 /DA) ,

This expression also has the useful property that its nonlin
analogue can be calculated with the replacement

FIG. 3. Lensing power spectra. The power spectrum of the le
ing potential is shown in the top panel as calculated by the flat
all sky approaches for linear and nonlinear density perturbations
the lower panel, the cross correlation with the ISW effect is sho
In both cases, a non-negligible fraction of the power comes fr
scales where the flat-sky approximation is inadequate.
7-4
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WEAK LENSING OF THE CMB: A HARMONIC APPROACH PHYSICAL REVIEW D62 043007
F~D !2DF
2 ~k,0!→DF

2 ~k,D !, ~30!

where the time-dependent nonlinear power spectrum is g
by the scaling formula@16# and the Poisson equation~5!.
Since nonlinear effects generally only appear at small ang
the full nonlinear all-sky spectrum can be obtained by mat
ing these expressions in the linear regime~see Fig. 3!.

Similarly, the cross correlation may be calculated for a
secondary effect once its relation to the gravitational pot
tial is known. We shall illustrate these results with the in
grated Sachs-Wolfe effect. It contributes to temperature fl
tuations as

Q ISW~ n̂!522E dDḞ@x~ n̂!,D#. ~31!

It then follows that the all-sky cross correlation is given
@4,10#

Cl
Qf54pE dk

k
DF

2 ~k!I l
len~k!I l

ISW~k!, ~32!

where

I l
ISW~k!5E dDWISW~D ! j l S k

H0
D D ,

WISW~D !522Ḟ~D !, ~33!

again with the understanding that one replaces the sphe
Bessel function with the ultra-spherical Bessel functions
curved universes. Similarly the flat-sky expression becom

C( l )
Qf5

2p2

l 3 E dDDAWISW~D !Wlen~D !DF
2 ~k!uk5 l (H0 /DA) .

Figure 3 also shows the cross-correlation for theLCDM
cosmology.

Cross lensing-CMB bispectrum terms can also be
cluded but require an external measure of lensing~e.g., a
galaxy weak lensing survey! to be observable with three
point correlations.

III. FLAT-SKY POWER SPECTRA

In this section, we calculate the effects of lensing on
CMB temperature~Sec. III A!, polarization and cross~Sec.
III B ! power spectra. The simplicity of the resulting expre
sions have calculational and pedagogical advantages ove
traditional flat-sky correlation function approach@2,3#. How-
ever we also show why one cannot expect a flat-sky
proach to be fully accurate even on small scales.

A. Temperature

Weak lensing of the CMB remaps the primary anisotro
according to the deflection angle¹f
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Q̃~ n̂!5Q~ n̂1¹f!

5Q~ n̂!1¹ if~ n̂!¹ iQ~ n̂!

1
1

2
¹ if~ n̂!¹ jf~ n̂!¹ i¹ jQ~ n̂!1•••. ~34!

Because surface brightness is conserved, lensing
changes the distribution of the anisotropies and has no e
on the isotropic part of the background.

The Fourier coefficients of the lensed field then becom

Q̃~ l!5E dn̂Q̃~ n̂!e2 i l•n̂5Q~ l!2E d2l1

~2p!2
Q~ l1!L~ l,l1!,

~35!

where

L~ l,l1!5f~ l2 l1!~ l2 l1!• l11
1

2E d2l2

~2p!2
f~ l2!f* ~ l21 l12 l!

3~ l2• l1!~ l21 l12 l!• l1 . ~36!

This determines the lensed power spectrum

^Q̃* ~ l!Q̃~ l8!&5~2p!2d~ l2 l8!C̃l
QQ , ~37!

as

C̃l
QQ5~12 l 2R!Cl

QQ1E d2l1

~2p!2
Cu l2 l1u

QQ Cl 1
ff@~ l2 l1!• l1#2,

~38!

where

R5
1

4pE dl

l
l 4Cl

ff . ~39!

The second term in Eq.~38! represents a convolution of th
power spectra. Sincel 4Cl

ff peaks at lowl ’s compared with
the peaks in the CMB~see Fig. 3!, it can be considered as
narrow window function onCl

QQ in the acoustic regime
200& l &2000. It is useful to consider the limit thatCl

QQ is
slowly varying. It may then be evaluated atl2 l1' l and
taken out of the integral

Cl
QQE d2l1

~2p!2
Cl

ff~ l• l1!2' l 2RCl
QQ . ~40!

Note that the two terms in Eq.~37! cancel in this limit

C̃l
QQ'Cl

QQ . ~41!

This is the well known result that lensing shifts but does n
create power on large scales. Intrinsic features with widthD l
less than thel of the peak inl 4Cl

ff are washed out by the
convolution~see Fig. 3!. Note that in theLCDM model this
scale isl;40. The implication is that for such a model, th
7-5
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smoothing effect even for high multipoles arises from su
low multipoles that the flat-sky approach is suspect.

On scales small compared with the damping lengtl
*2000, there is little intrinsic power in the CMB so that th
first term in Eq.~38! can be ignored and the second te
behaves instead as a smoothing ofCl

ff of width D l approxi-
mately thel of the peak inl 4Cl

QQ . SinceCl
ff is very smooth

itself, the term is approximately

C̃l
QQ'Cl

QQ1
1

2
l 2Cl

ffE d2l1

~2p!2
l 1
2Cl 1

QQ , ~42!

where we have interchanged the roles ofl1 and l12 l. The
power generated is proportional to the lensing power at
same scale and may be approximated as the lensing of a
temperature gradient@5#. In this limit the flat-sky approxima-
tion should be fully adequate.

B. Polarization

The lensing of the polarization field may be obtained
following the same steps as for the temperature field

6X̃~ n̂!56X~ n̂1¹f!

'6X~ n̂!1¹ if~ n̂!¹6
i X~ n̂!

1
1

2
¹ if~ n̂!¹ jf~ n̂!¹ i¹6

j X~ n̂!, ~43!

where we have used the shorthand notation6X5Q6 iU .
The Fourier coefficients of the lensed field are then

6X̃~ l!56X~ l!2E d2l1

~2p!26X~ l1!e62i (w l 1
2w l )L~ l,l1!,

~44!

whereL was defined in Eq.~36!.
Recalling that6X( l)5E( l)6 iB( l), we obtain the power

spectra directly

C̃l
EE5~12 l 2R!Cl

EE1
1

2E d2l1

~2p!2
@~ l2 l1!• l1#2Cu l2 l1u

ff

3@~Cl 1
EE1Cl 1

BB!1cos~4w l 1
!~Cl 1

EE2Cl 1
BB!#,

C̃l
BB5~12 l 2R!Cl

BB1
1

2E d2l1

~2p!2
@~ l2 l1!• l1#2Cu l2 l1u

ff

3@~Cl 1
EE1Cl 1

BB!2cos~4w l 1
!~Cl 1

EE2Cl 1
BB!#,

C̃l
QE5~12 l 2R!Cl

QE1E d2l1

~2p!2

3@~ l2 l1!• l1#2Cu l2 l1u
ff Cl 1

QE cos~2w l 1
!, ~45!

where recall thatR was defined in Eq.~39!. The cross cor-
relations betweenB andQ or E still vanish since lensing is
04300
h
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parity conserving. Unlike the case of the temperature fl
tuations, lensing does not conserve the broadband large s
power of theE and B @3#, but only the total polarization
power. For example, lensing will create aB component in a
field that originally had only anE component. Furthermore
lensing actually destroys temperature-polarization cross
relations due to the lack of correlation with the generatedB
polarization. From Fig. 1, one can see that the largest rela
effect of lensing is on the correlation.

IV. ALL-SKY POWER SPECTRA

In this section, we treat lensing effects on the temperat
~Sec. IV A!, polarization and cross~Sec. IV B! power spectra
in a full all-sky formalism. Corrections to the flat-sky resul
remain at the 10% even on small scales. Moreover, altho
the derivation appears more complicated, the end results
the power spectra are simple. They are as readily evalu
as the flat-sky counterparts and should be used in their st

A. Temperature

In the all-sky case, the Fourier harmonics are repla
with spherical harmonics, and the lensed field becomes

Q̃ lm'Q lm1E dn̂Yl
m* ¹ if~ n̂!¹ iQ~ n̂!

1
1

2E dn̂Yl
m* ¹ if~ n̂!¹ jf~ n̂!¹ i¹ jQ~ n̂!

5Q lm1 (
l 1m1

(
l 2m2

f l 1m1
Q l 2m2

3F I l l 1l 2

mm1m21
1

2(
l 3m3

f l 3m3
* Jll 1l 2l 3

mm1m2m3G , ~46!

with the geometrical factors expressed as integrals over
spherical harmonics

I l l 1l 2

mm1m25E dn̂Yl
m* ~¹ iYl 1

m1!~¹ iYl 2

m2!,

Jll 1l 2l 3

mm1m2m35E dn̂Yl
m* ~¹ iYl 1

m1!~¹ jYl 3

m3* !¹ i¹ jYl 2

m2.

~47!

The lensed power spectrum then becomes

C̃l5Cl1(
l 1l 2

Cl 1
ffCl 2

QQS11Cl
QQ(

l 1
Cl 1

ffS2 , ~48!

with

S15 (
m1m2

~ I l l 1l 2

mm1m2!2,

S25
1

2 (
m1

Jll 1l l 1

mm1mm11c.c., ~49!
7-6
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where c.c. denotes the complex conjugate and we have
pressed thel indices.

These formidable looking expressions simplify consid
ably. The second term may be rewritten through integrat
by parts and the identity¹2Yl

m52 l ( l 11)Yl
m @4#,

I l l 1l 2

mm1m25
1

2
@ l 1~ l 111!1 l 2~ l 211!

2 l ~ l 11!#E dn̂Yl
m* Yl 1

m1Yl 2

m2 . ~50!

The remaining integral may be expressed in terms of
Wigner-3j symbol through the general relation

E dn̂~s1
Yl 1

m1* !s2
Yl 2

m2~s3
Yl 2

m3!

5~21!m11s1A~2l 111!~2l 211!~2l 311!

4p

3S l 1 l 2 l 3

s1 2s2 2s3
D S l 1 l 2 l 3

2m1 m2 m3
D , ~51!

where note that0Yl
m5Yl

m . It is therefore convenient to de
fine

Fl 1l 2l 3
5

1

2
@ l 2~ l 211!1 l 3~ l 311!2 l 1~ l 111!#

3A~2l 111!~2l 211!~2l 311!

4p S l 1 l 2 l 3

0 0 0D .

~52!

Finally the Wigner-3j symbol obeys

(
m1m2

S l 1 l 2 l 3

m1 m2 m3
D S l 1 l 2 l 3

m1 m2 m3
D 5

1

2l 311
. ~53!

Putting these relations together, we find that

S15
1

2l 11
~Fll 1l 2

!2. ~54!

An algebraic expression for the relevant Wigner-3j symbol
is given in Appendix B.

The second term in Eq.~48! can be simplified by re-
expressing the gradients of the spherical harmonics w
spin-1 spherical harmonics. As shown in Appendix A, t
spin-1 harmonics are the eigenmodes of vector fields on
sky and naturally appear in expressions for deflection ang
Note that there is a general relation for raising and lower
the spin of a spherical harmonic@11#

m2•“sYl
m5A~ l 2s!~ l 1s11!

2 s11Yl
m ,

m1•“sYl
m52A~ l 1s!~ l 2s11!

2 s21Yl
m , ~55!
04300
p-

-
n

e

th

e
s.
g

so that

¹Yl
m5Al ~ l 11!

2
@1Yl

mm1221Yl
mm2#. ~56!

As an aside, we note that Eq.~54! can alternately be derived
from this relation and the integral~51! with s561.

Further, we note that spin spherical harmonics also obe
sum rule@17#

(
m

s1
Yl

m* ~ n̂!s2
Yl

m~ n̂!5A2l 11

4p s2
Yl

2s1~0!. ~57!

For the spin-1 harmonics

21Yl
1~0!51Yl

21~0!52A2l 11

4p
, ~58!

and the others involvings1 ,s2561 vanish. These result
imply that

(
m

¹ iYl
m¹ jYl

m* 5
1

2
l ~ l 11!

2l 11

4p
@~m1! i~m2! j

1~m2! i~m1! j #. ~59!

To evaluate the second derivative term in Eq.~47!, we again
apply Eq.~55! to show that

@~m1! i~m2! j1~m2! i~m1! j #¹
i¹ j

sYl
m

52@ l ~ l 11!2s2#sYl
m . ~60!

Putting these expressions together we obtain

S252
1

2
l ~ l 11!l 1~ l 111!

2l 111

4p
. ~61!

Finally combining expressions Eqs.~48!, ~54!, and~61!, we
have the following simple result:

C̃l
QQ5@12 l ~ l 11!R#Cl

QQ1 (
l 1 ,l 2

Cl 1
ffCl 2

~Fll 1l 2
!2

2l 11
,

~62!

where

R5
1

2 (
l 1

l 1~ l 111!
2l 111

4p
Cl 1

ff . ~63!

This expression is computationally no more involved th
the flat-sky expression Eq.~38! and has the benefit of bein
exact. Since the lensing effect even at highl in the CMB
originates from the low order multipoles off, corrections
due to the curvature of the sky are not confined to lowl. We
show in Fig. 1 that the correction causes a 10% differenc
the effect. The change inC̃l

QQ itself is even smaller~of order
1%!. Nonetheless it is larger than the cosmic variance
these high multipoles and thus should be included in ca
7-7
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lations for full accuracy. Corrections can be even larger
models with a red tiltn,1 in the initial spectrum.

B. Polarization

The derivation of the all-sky generalization for polariz
tion is superficially more involved but follows the same ste
as in the temperature case and results in expressions tha
no more difficult to evaluate. The lensed polarization mu
poles are given by

6Xlm56Xlm1 (
l 1m1

(
l 2m2

f l 1m1 6Xl 2m2

3F62I l l 1l 2

mm1m21
1

2(
l 3m3

f l 3m3
* 62Jll 1l 2l 3

mm1m2m3G , ~64!

with the geometrical factors expressed now as integrals o
the spin-spherical harmonics

62I l l 1l 2

mm1m25E dn̂62Yl
m* ~¹ iYl 1

m1!~¹ i
62Yl 2

m2!,

62Jll 1l 2l 3

mm1m2m35E dn̂62Yl
m* ~¹ iYl 1

m1!~¹ iYl 3

m3* !~¹ i¹ j
62Yl 2

m2!.

~65!

Noting that

62I l l 1l 2

mm1m25~21!L
72I l l 1l 2

mm1m2, ~66!

where L5 l 1 l 11 l 2 and recalling that6Xlm5Elm6 iBlm ,
the power spectra then become

C̃l
EE5Cl

EE1
1

2(l 1l 2
Cl 1

ff@~Cl 2
EE1Cl 2

BB!1~21!L

3~Cl 2
EE2Cl 2

BB!#22S11
1

2
Cl

EE(
l 1

Cl 1
ff~2S2122S2!,

~67!

where

22S15 (
m1m2

~2I l l 1l 2

mm1m2!2,

62S25
1

2 (
m1

62Jll 1l 1l
mm1m1m

1c.c. ~68!

The expression forC̃l
BB follows by interchangingEE and

BB. The cross power spectrum is

C̃l
QE5Cl

QE1
1

2(l 1l 2
Cl 1

ffCl 2
QE@11~21!L#02S1

1
1

4
Cl

QE(
l 1

Cl 1
ff~2S2122S212S2!, ~69!

with
04300
n

s
are
-

er

02S15 (
m1m2

~ I l l 1l 2

mm1m2
2I l l 1l 2

mm1m2!. ~70!

Just as in the case for the temperature field, these expres
simplify considerably. The spin-2 harmonics are eigenfu
tions of the angular Laplacian of a tensor

¹2
62Yl

m5@2 l ~ l 11!14#62Yl
m , ~71!

which follows from contracting indices in Eq.~60!. It then
follows that

62I l l 1l 2

mm1m25
1

2
@ l 1~ l 111!1 l 2~ l 211!

2 l ~ l 11!#E dn̂~62Yl
m* !Yl 1

m1~62Yl 2

m2!.

~72!

Comparison with Eq.~51! implies that it is convenient then
to define the quantity

2Fl 1l 2l 3
5

1

2
@ l 2~ l 211!1 l 3~ l 311!2 l 1~ l 111!#

3A~2l 111!~2l 211!~2l 311!

4p S l 1 l 2 l 3

2 0 22D ,

~73!

so that

22S15
1

2l 11
~2Fll 1l 2

!2,

02S15
1

2l 11
~Fll 1l 2

!~2Fll 1l 2
!. ~74!

The third term in Eq.~68! can be simplified by following
the same steps for the analogous temperature term excep
the replacement ofs50 with s562 in Eq. ~55!. The result
is

62S252
1

2
@ l ~ l 11!24# l 1~ l 111!

2l 111

4p
. ~75!

Putting these relations together, we obtain the result for
power spectra

C̃l
EE5@12~ l 21 l 24!R#Cl

EE1
1

2 (
l 1 ,l 2

Cl 1
ff

~2Fll 1l 2
!2

2l 11

3@Cl 2
EE1Cl 2

BB1~21!L~Cl 2
EE2Cl 2

BB!#,

C̃l
BB5@12~ l 21 l 24!R#Cl

BB1
1

2 (
l 1 ,l 2

Cl 1
ff

~2Fll 1l 2
!2

2l 11

3@Cl 2
EE1Cl 2

BB2~21!L~Cl 2
EE2Cl 2

BB!#,
7-8
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C̃l
QE5@12~ l 21 l 22!R#Cl

QE

1 (
l 1 ,l 2

Cl 1
ff

~Fll 1l 22Fll 1l 2
!

2l 11
Cl 2

QE . ~76!

Recall thatL5 l 1 l 11 l 2 and R was defined in Eq.~63!.
These expressions are plotted for theLCDM model in Fig.
2.

V. FLAT- AND ALL-SKY BISPECTRA

In this section, we consider the lensing contributions
CMB bispectra through the correlation with seconda
anisotropies. We begin by reviewing the calculations for
temperature bispectrum as previously treated by Refs.@4,5#.
We then introduce the polarization and cross bispectra wh
in principle have signal-to-noise advantages over the t
perature bispectra. We illustrate the formalism with a co
crete calculation of the effect due to the ISW secondary
isotropy.

A. Temperature

Contributions to the temperature bispectra from the cr
power spectrumCl

Qf discussed in Sec. II C follow immedi
ately from the first order lensing term, i.e., Eq.~46! for the
all-sky bispectrum@4#,

Bl 1l 2l 3
QQQ5Fl 1l 2l 3

Cl 2
QfCl 3

QQ15 perm, ~77!

and Eq.~35! for the flat sky bispectrum@5#

B( l1 ,l2 ,l3)
QQQ 52~ l2• l3!Cl 2

QfCl 3
QQ15 perm ~78!

One can show that these relations satisfy the general exp
sion for the correspondence between flat and all sky bisp
tra Eq.~20! by noting that

l2• l352
1

2
~ l 2

21 l 3
22 l 1

2!, ~79!

since the angles of a triangle is fully defined by the length
its sides.

Note that there can be strong cancellation between
terms in the permutation in both cases. As we have seen
spectrum off is generally peaked to low multipoles imply
ing a corresponding weighting ofCl

Qf to low multipoles for
secondary anisotropies that correlate strongly withf. In this
case the triangles (l 1 ,l 2 ,l 3) that contribute most strongly ar
highly flattened such that two sides nearly coincide in len
l 1' l 3@ l 2. In this case, contributionsl 1

2 and l 3
2 in Eq. ~79!

are cancelled off the permutationl3↔ l1 leaving only a term
of order l 2

2.
These considerations also signal problems for the flat-

expressions. It is important to know what on scales mos
the detectable signal is coming from. In the all-sky form
ism, the signals from them modes are added together wi
weights given by the Wigner-3j symbol
04300
o

e

h
-

-
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s

es-
c-
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e
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y
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-

Bl 1l 2l 3
QQQ5 (

m1m2m3
S l 1 l 2 l 3

m1 m2 m3
D ^Q l 1m1

Q l 2m2
Q l 3m3

&.

~80!

For the small effects due to the correlation of second
anisotropies with lensing, the covariance of the bispectr
estimators is dominated by the Gaussian noise from
power spectrum@18#

Cov5Cl 1
QQCl 2

QQCl 3
QQd l 1l

18
d l 2l

28
d l 3l

38
15 perm , ~81!

where the permutations are in the indices of thel 8 triplet.
The overall signal-to-noise becomes

S S

ND 2

5 (
l 1l 2l 3

(
l 18 l 28 l 38

Bl 1l 2l 3
QQQ@Cov21#Bl

18 l
28 l

38
QQQ

. ~82!

The covariance is in general diagonal in the 636 blocks of
permutations of (l 1 ,l 2 ,l 3) and for this simple case of th
temperature bispectrum, the blocks are proportional to
trivial matrix of all ones. The result is one can take a simp
sum over all distinct triplets or equivalently divide the fu
sum by a factor of 6,

S S

ND 2

5 (
l 1l 2l 3

~Bl 1l 2l 3
QQQ!2

6Cl 1
QQCl 2

QQCl 3
QQ

, ~83!

for a cosmic variance limited experiment. For a realistic e
periment with noise from the detectors and residual fo
grounds, one simply replaces

Cl
XX8→Cl

XX81Cl
XX8(noise), ~84!

here and below. Note that one can also construct the Fi
information matrix of the bispectrum along these lines@19#.

Correspondingly, in the flat-sky approximation one co
structs the optimal inverse-variance weighted statistic@5#
~see also Appendix C!

S S

ND 2

5
f sky

p

1

~2p!2E d2l 1E d2l 2

@B( l 1 ,l 2 ,l 3)
QQQ #2

6Cl 1
QQCl 2

QQCl 3
QQ

, ~85!

where f sky is the fraction of the sky covered. We show th
these expressions are equivalent in the highl , f sky51 limit
in Appendix C. Thus the extra factor off sky can be included
in the all-sky expression to approximate the effects inco
plete sky coverage due to exclusion of regions contamina
by galactic foregrounds.

The weighting of the modes is such that the quantity
interest in the lensing-temperature correlation isl 3Cl

Qf

where the extra factor ofl over the straight bispectrum con
tribution comes from the square root of the volume factor
l space. This quantity is plotted in Fig. 3 for the cross cor
lation with the ISW effect. The implication is that for thi
effect, full accuracy requires an all-sky approach and
shall hereafter use this to evaluate the signal-to-noise.
7-9
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The overall signal-to-noise as a function of the largesl
included in the sum is shown in Fig. 4 for a cosmic varian
limited experiment and the Planck satellite~see Ref.@19# for
the specification of the noise!. Note that the Planck satellit
is effectively cosmic variance limited tol;1000 and even so
the S/N is only of order a few@4#.

B. Polarization and cross correlation

Bispectra involving theE and B parity polarization will
also receive contributions from the correlation induced
lensing. Although these signals are smaller than the temp
ture bispectrum in an absolute sense, we have seen tha
main obstacle in detecting the temperature bispectrum is
mic variance from the Gaussian contributions.

We begin by analyzing terms that do not involve t
B-parity polarization. For these all-sky bispectra, only ter
with L[ l 11 l 21 l 35even are nonvanishing, and we will im
plicitly assume that only even terms are considered. With
help of Eqs.~44! and~65!, we can immediately write the al
and flat sky results as

Bl 1l 2l 3
EQQ 52Fl 1l 2l 3

Cl 2
QfCl 3

QE1Fl 2l 1l 3
~Cl 1

EfCl 3
QQ1Cl 1

QECl 3
Qf!

1~ l 2↔ l 3!,

B( l1 ,l2 ,l3)
EQQ 52~ l2• l3!cos 2w31Cl 2

QfCl 3
QE2~ l1• l3!

3~Cl 1
EfCl 3

QQ1Cl 1
QECl 3

Qf!1~ l2↔ l3!, ~86!

FIG. 4. Cumulative signal-to-noise in the bispectra as a func
of maximuml for a cosmic variance limited experiment and for t
Planck satellite. Note that for the cosmic variance limited case~a!,
bispectra involving theB polarization have a substantial signal-t
noise advantage over the other bispectra. For the Planck sat
~b!, we assume that the additional variance comes only from de
tor noise. In practice, residual foreground contamination and
cuts to avoid them will lower the signal-to-noise further.
04300
e

y
ra-
the
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s

e

where

wAB5w l A
2w l B

. ~87!

The general correspondence between the flat and all
expressions in Eq.~20! is established by the use of Eq.~79!
the approximation discussed in Appendix B.

S l 1 l 2 l 3

2 0 22D'cos 2w31S l 1 l 2 l 3

0 0 0D , ~88!

for L5even. The cancellation for flattened triangles d
cussed in Sec. V A still applies and is easiest to see in
flat-sky limit: the flatness of the triangles implies cos 2w31
;1.

For theS/N calculation, note that the covariance is give
by

Cov5Cl 1
EECl 2

QQCl 3
QQd l 1l

18
d l 2l

28
d l 3l

38

1Cl 1
QECl 2

QQCl 3
QEd l 1l

28
d l 2l

38
d l 3l

18

1Cl 1
QECl 2

QECl 3
QQd l 1l

38
d l 2l

18
d l 3l

28
1~ l 28↔ l 38!, ~89!

so that a full calculation requires inverting this matrix f
each distinct triplet. Since we are interested mainly in
order of magnitude ofS/N, we can set the lower bound as

S S

ND 2

> (
l 1l 2l 3

~Bl 1l 2l 3
EQQ !2

6Cl 1
EECl 2

QQCl 3
QQ

, ~90!

which amounts to ignoring duplicate triplets and replaci
the remaining triplet with the averageS/N of the set. This
limit is plotted for the ISW effect in Fig. 4 as a function o
the maximall 1 included in the sum. As expected, it is com
parable to the signal-to-noise in the temperature bispectr
Of course, it is experimentally more difficult to achieve th
cosmic variance limit in the polarization with a realistic e
periment containing detector and foreground noise.

There is also a qualitatively new effect from th
polarization-lensing correlationCl

Ef . However, since sec
ondary polarization only arises from Thomson scattering
fects, we expect this contribution to be small inLCDM mod-
els where the optical depth during reionization ist,0.3
@19#.

The EEQ bispectrum term is

Bl 1l 2l 3
EEQ 5~2Fl 1l 2l 3

Cl 2
EfCl 3

QE12Fl 1l 3l 2
Cl 2

EECl 3
Qf!

1Fl 3l 1l 2
Cl 1

EfCl 2
QE1~ l 1↔ l 2!,

B( l1 ,l2 ,l3)
EEQ 52~ l2• l3!~cos 2w31Cl 2

EfCl 3
QE

1cos 2w21Cl 2
EECl 3

Qf!2~ l1• l2!Cl 1
EfCl 2

QE

1~ l1↔ l2!, ~91!

with covariance

n

lite
c-
y
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Cov5Cl 1
EECl 2

EECl 3
QQd l 1l

18
d l 2l

28
d l 3l

38

1Cl 1
EECl 2

EQCl 3
QEd l 1l

28
d l 2l

38
d l 3l

18

1Cl 1
QECl 2

EECl 3
QEd l 1l

38
d l 2l

18
d l 3l

28
1~ l 18↔ l 28!, ~92!

with which we can bound theS/N

S S

ND 2

. (
l 1l 2l 3

~Bl 1l 2l 3
EEQ !2

6Cl 1
EECl 2

EECl 3
QQ

. ~93!

Again, the ISW example is shown in Fig. 4.
Finally theEEE bispectrum is given by

Bl 1l 2l 3
EEE 52Fl 1l 2l 3

Cl 2
EfCl 3

EE15 perm,

B( l1 ,l2 ,l3)
EEE 52~ l2• l3!cos 2w31Cl 2

EfCl 3
EE15 perm, ~94!

with covariance

Cov5Cl 1
EECl 2

EECl 3
EEd l 1l

18
d l 2l

28
d l 3l

38
15 perm, ~95!

and signal-to-noise

S S

ND 2

5 (
l 1l 2l 3

~Bl 1l 2l 3
EEE !2

6Cl 1
EECl 2

EECl 3
EE

. ~96!

This bispectrum signal vanishes for the ISW effect.
Bispectra involving theB-parity polarization have distinc

properties. For terms involving one B-parity polarizatio
term, only l 11 l 21 l 35odd contributes to the all-sky spec
trum and we implicitly assume below that even terms van

For theBQQ bispectrum,

Bl 1l 2l 3
BQQ 5 i ~2Fl 1l 2l 3

!Cl 2
QfCl 3

QE1~ l 2↔ l 3!,

B( l1 ,l2 ,l3)
BQQ 52~ l2• l3!sin 2w31Cl 2

QfCl 3
QE2~ l2↔ l3!. ~97!

Again the correspondence between the flat and all
expressions in Eq.~20! is established by the approximatio
discussed in Appendix B

S l 1 l 2 l 3

2 0 22D'6 i sin 2w31S l 1 l 2 l 3

0 0 0D , ~98!

for L5odd. The sign ambiguity comes from the fact tha
reflection of the triangle (l1 ,l2 ,l3) across one of the axe
corresponds to remappingsw→p2w or w→2w and hence
a reversal in sign of the flat-sky bispectrum in Eq.~97!. In
this case the cancellation for flattened triangles discusse
Sec. V A doesnot apply. However since sin 2w31'2w31
!1, a suppression still exists.

The covariance of theBQQ bispectrum is

Cov5Cl 1
BBCl 2

QQCl 3
QQd l 1l

18
d l 2l

28
d l 3l

38
1~ l 28↔ l 38!, ~99!

leading to a signal-to-noise
04300
.

y

in

S S

ND 2

5 (
l 1l 2l 3

~Bl 1l 2l 3
BQQ !2

2Cl 1
BBCl 2

QQCl 3
QQ

. ~100!

In a cosmic variance limited experiment~see Fig. 4!, the
BQQ bispectrum has signal-to-noise advantages over
temperature andE polarization counterparts due to the fa
that for scalar perturbationsCl 1

BB is dominated by the lensing

contributions themselves. Moreover, even if the tensor c
tributions are near their current limits ofT/S&0.3, the
signal-to-noise is not much affected forl *100 due to the
strong damping of gravity wave contributions under the h
rizon scale at last scattering. However, for the Planck exp
ment, the detection is severely limited by detector noise
may also suffer further degradation from incomplete fo
ground subtraction@20#.

Next, theBEQ bispectrum is given by

Bl 1l 2l 3
BEQ 5 i ~2Fl 1l 2l 3

Cl 2
EfCl 3

QE12Fl 1l 3l 2
Cl 2

EECl 3
Qf!,

B( l1 ,l2 ,l3)
BEQ 52~ l2• l3!~sin 2w31Cl 2

EfCl 3
QE1sin 2w21Cl 2

EECl 3
Qf!,

~101!

with a covariance

Cov5Cl 1
BBCl 2

EECl 3
QQd l 1l

18
d l 2l

28
d l 3l

38

1Cl 1
BBCl 2

QECl 3
QEd l 1l

18
d l 2l

38
d l 3l

28
, ~102!

leading to a signal-to-noise

S S

ND 2

> (
l 1l 2l 3

~Bl 1l 2l 3
BEQ !2

2Cl 1
BBCl 2

EECl 3
QQ

. ~103!

The signal-to-noise of this term can be greater than tha
BQQ due to the fact that the temperature andE polarization
are only partially correlated in the unlensed sky.

Finally,

Bl 1l 2l 3
BEE 5 i ~2Fl 1l 2l 3

!Cl 2
EfCl 3

EE1~ l 2↔ l 3!, ~104!

B( l1 ,l2 ,l3)
BEE 52~ l2• l3!sin 2w31Cl 2

EfCl 3
EE2~ l2↔ l3!,

with a covariance

Cov5Cl 1
BBCl 2

EECl 3
EEd l 1l

18
d l 2l

28
d l 3l

38
1~ l 28↔ l 38!, ~105!

leading to a signal-to-noise

S S

ND 2

5 (
l 1l 2l 3

~Bl 1l 2l 3
BEE !2

2Cl 1
BBCl 2

EECl 3
EE

. ~106!

This signal vanishes for the ISW effect. Terms involvin
more than oneB term have no contributions to first order i
the correlation power spectrum.
7-11
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VI. DISCUSSION

We have shown that a harmonic approach to weak len
in the CMB provides a simple and exact means of calcu
ing its effects on the temperature and polarization pow
spectra, given the power spectrum of the lensing potentia
convergence, and on the analogous bispectra given
power spectrum of the cross correlation with second
anisotropies. Corrections to the flat-sky approximations
pear even at high multipoles because even there, lensin
fects arises from the large-scale fluctuations in the deflec
angles. These corrections correspond to a change in the
dictions at themK level. While this is a negligible chang
given observations today, it is above the cosmic-varia
limit and should be included when interpreting the hig
precision results expected from Planck.

Unlike the temperature bispectrum, bispectra involvi
both the temperature and polarization multipoles of the CM
have the potential of producing a high signal-to-no
(;10) detection of secondary anisotropies such as the I
effects even with relatively modest angular resolutionsl
,1000. Other secondary anisotropies such as the Suny
Zel’dovich effect are expected to contribute even stron
signals, although their exact amplitude is far more uncer
presently@4#.

Achieving a cosmic-variance limited detection of th
magnetic-parity polarization is a daunting challenge. Ev
signal-to-noise near unity requires detectors which are a
tor of 3 more sensitive to polarization than those planned
the Planck satellite. Also of concern are the residual fo
ground contamination remaining in the maps after multif
quency subtraction. Our current best models of the fo
grounds indicate that with the Planck channels a
sensitivities, foregrounds and detector noise may enter
the polarization maps with comparable amplitudes@20#.
Thus improving the actual sensitivity to the cosmic sign
beyond the specifications of the Planck experiment will
only require better detectors but also a better understan
of the foregrounds, perhaps with increased frequency co
age and sampling. Nonetheless, the polarization of the C
offers the potential to open a new window on physical p
cesses at low redshifts and the opportunity to learn m
from the CMB than can be achieved with the next genera
of CMB satellites.
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APPENDIX A: ALL-SKY WEAK LENSING OBSERVABLES

All weak lensing observables may be defined in terms
the projected potentialf

f~ n̂!522E dDgf~D !F@x~ n̂!,D#, ~A1!
04300
g
t-
r

or
eir
y
-

ef-
n
re-

e
-

W

ev-
r

in

n
c-
r
-
-
-

d
to

l
t
ng
r-
B
-
re
n

k.
n

f

or equivalently its multipole momentsf lm in the all-sky for-
malism or Fourier coefficientsf( l). Recall from Eq.~22!
that gf is the lensing efficiency function.

The deflection angle that a photon suffers while travel
from the source atDs is given by the angular gradient of th
potentiala(n̂)5¹f(n̂). Applying Eq.~56! to the the spheri-
cal harmonic expansion, we obtain

a5(
lm
Al ~ l 11!

2
f lm@1Yl

mm1221Yl
mm2#. ~A2!

This implies that the quantitya16 ia2 is a spin61 object

@a16 ia2#~ n̂![(
lm

~c6 ig ! lm61Yl
m~ n̂!

56(
lm

Al ~ l 11!f lm61Yl
m~ n̂!, ~A3!

which states that the curl termclm vanishes and the gradien
term

glm52 iAl ~ l 11!f lm . ~A4!

The power spectrum of the angular deflection is then

^gl 8m8
* glm&[d l ,l 8dm,m8Cl

gg5d l ,l 8dm,m8l ~ l 11!Cl
ff ,

~A5!

with the curl power vanishing. This accounts for the facto
of l ( l 11) in equations involving the angular deflection@e.g.,
Eq. ~63!#.

The corresponding flat-sky quantity is given by the d
composition@see Eq.~C8!#

@a16 ia2#~ n̂![6 i E d2l

~2p!2@c6 ig#~ l!e6 i (w l2w)ei l•n̂,

~A6!

with c( l)50 and

g~ l!52 i l f~ l!,

C( l )
gg5 l 2C( l )

ff . ~A7!

These relations also give the bispectrum of the deflec
angle in terms of bispectrum of the lensing potential in t
obvious manner.

The convergence (k) and shear (g1 ,g2) are familiar
weak lensing observables from galaxy weak lensing stud
@15#. Although they are not directly needed for CMB studie
they are of interest for cross-correlation of galaxy wea
lensing maps and the CMB. An equivalent all-sky lensi
treatment is given by Ref.@21#.

These quantities are given by the second derivatives

¹ i¹ jf[kgi j 1~g11 ig2!~m1 ^ m1! i j

1~g12 ig2!~m2 ^ m2! i j , ~A8!
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convergence wheregi j is the metric on the sphere. For th
all-sky harmonics, it is useful to note that Eq.~55! implies

¹ i¹ jYl
m52

l ~ l 11!

2
Yl

mgi j 1
1

2
A~ l 12!!

~ l 22!!
@2Yl

m~m1 ^ m1!

122Yl
m~m2 ^ m2!# i j , ~A9!

and hence

k~ n̂!52(
lm

1

2
l ~ l 11!f lmYl

m~ n̂!,

g1~ n̂!6 ig2~ n̂!5(
lm

1

2
A~ l 12!!

~ l 22!!
f lm62Yl

m~ n̂!.

~A10!

Consequently, the power spectra are related as

Cl
kk5

l 2~ l 11!2

4
Cl

ff ,

Cl
ee5

1

4

~ l 12!!

~ l 22!!
Cl

ff ,

Cl
Xk52

1

2
l ~ l 11!Cl

Xf ,

Cl
Xe5

1

2
A~ l 12!!

~ l 22!!
Cl

Xf , ~A11!

where thee shear power spectra is defined in the same w
as that of theE polarization andX5Q,E,B. The b shear
power is the analogue of theB polarization power and van
ishes for weak lensing.

In the flat-sky limit, these expressions become

k~ n̂!52
1

2E d2l

~2p!2
l 2f~ l!ei l•n̂, ~A12!

g1~ n̂!6 ig2~ n̂!52
1

2E d2l

~2p!2
l 2f~ l!e62i (w l2w)ei l•n̂,

so that

C( l )
kk5C( l )

ee 5
1

4
l 4C( l )

ff ,

C( l )
Xk52C( l )

Xe52
1

2
l 2C( l )

Xf . ~A13!

These relations also give the bispectrum of the shear
convergence in terms of the bispectrum of the lensing po
tial

Bl 1l 2l 3
kkk 5

1

8
@ l 1~ l 111!l 2~ l 211!l 3~ l 311!#Bl 1l 2l 3

fff ,
04300
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Bl 1l 2l 3
eee 5

1

8
A~ l 112!!

~ l 122!!

~ l 212!!

~ l 222!!

~ l 312!!

~ l 322!!
Bl 1l 2l 3

fff ,

~A14!

with a similar relation for the flat-sky bispectra.

APPENDIX B: WIGNER-3 j EVALUATION

1. Exact expressions

The expressions for the power spectrum of the len
temperature and polarization distributions involve spec
sets of Wigner-3j symbols that can be efficiently evaluate
The expression for the temperature involves a set which
a closed algebraic form

S l 1 l 2 l 3

0 0 0D 5~21!L/2
~L/2!!

~L/22 l 1!! ~L/22 l 2!! ~L/22 l 3!!

3F ~L22l 1!! ~L22l 2!! ~L22l 3!!

~L11!! G1/2

,

~B1!

for evenL5 l 11 l 21 l 3 and zero for oddL.
The required set for the polarization does not have

exact closed form expression. However it may be equa
efficiently evaluated for our purposes with the realizati
that in the sums, we require

S l 1 l 2 l 3

m1 m2 m3
D[wl 1

~B2!

for fixed l 2 ,l 3 ,m1 ,m2 ,m3 and all allowedl 1. The recursion
relations for the Wigner-3j symbol

l 1Al 111wl 1111Bl 1
wl 1

1~ l 111!Al 1
wl 12150, ~B3!

where

Al 1
5Al 1

22~ l 22 l 3!2A~ l 21 l 311!22 l 1
2Al 1

22m1
2,

Bl 1
52~2l 111!@ l 2~ l 211!m12 l 3~ l 311!m1

2 l 1~ l 111!~m32m2!#, ~B4!

allow us to generate the whole set at once@22#. For a stable
recursion, one begins at the minimum and maximuml 1 val-
ues

l 1min5max~ u l 22 l 3u!,um1u),

l 1max5 l 21 l 3 , ~B5!

with wl 1min
5wl 1max

51 and carries the recursion in both d

rections to the midpointl 1mid in the range~or any non-
vanishing entry in the vicinity!. One then renormalizes eithe
the left or right recursion to make thewl 1mid

agree. The re-
maining overall normalization is fixed by requiring
7-13
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(
l 1

~2l 111!wl 1
2 51 ~B6!

and

sgn~wl 1max
!5~21! l 22 l 32m1. ~B7!

Putting these relations together, we obtain the full set
symbols as required.

2. Approximations

We can use the general relation between the all and
sky bispectra of Eq.~20! compared with the explicit calcu
lation of the flat sky bispectrum in Sec. V B to develop
high-l approximation for the specific symbol in the polariz
tion calculations. The comparison implies that

S l 1 l 2 l 3

2 0 22D'cos 2w31S l 1 l 2 l 3

0 0 0D , ~B8!

for L5 l 11 l 21 l 35even. By the law of cosines,

cos 2w315
1

2

~ l 2
22 l 1

22 l 3
2!2

l 1
2l 3

2 21. ~B9!

Then

S l 1 l 2 l 3

2 0 22D'~21!L/2F1

2

~ l 2
22 l 1

22 l 3
2!2

l 1
2l 3

2 21G
3

~L/2!!

~L/22 l 1!! ~L/22 l 2!! ~L/22 l 3!!

3F ~L22l 1!! ~L22l 2!! ~L22l 3!!

~L11!! G1/2

,

for L5even. For odd values ofL, we use the relation

S l 1 l 2 l 3

2 0 22D'6 i sin 2w31S l 1 l 2 l 3

0 0 0D , ~B10!

and fix the overall sign ambiguity by an explicit evaluatio
By the triangle relations

sin 2w3157
1

2
@L~L22l 1!~L22l 2!~L22l 3!#1/2

3S l 2
22 l 1

22 l 3
2

l 1
2l 3

2 D .

Putting this together with Eq.~B1! and fixing the sign ambi-
guity, we obtain

S l 1 l 2 l 3

2 0 22D'~21!~L21!/2
1

2S l 2
22 l 1

22 l 3
2

l 1
2l 3

2 D
3

~L/2!!

~L/22 l 1!! ~L/22 l 2!! ~L/22 l 3!!
04300
f

at

.

3FL~L22l 1!~L22l 2!~L22l 3!

3
~L22l 1!! ~L22l 2!! ~L22l 3!!

~L11!! G1/2

~B11!

for L5odd. The half integer factorials are defined by t
gamma functionx! 5G(11x). By explicit calculation we
find that these expressions are valid to better than 3% of
rms amplitude of the symbol when averaged over neighb
ing l for all l 12u l 22 l 3u*25 and l 21 l 32 l 1*25, i.e., for
triangles that are sufficiently far from being flat. Near ze
crossings, thefractional error can be large but the absolu
error remains a small fraction of the rms. A typical case
shown in Fig. 5.

These relations may be useful in cases where only a si
symbol is needed. However, for the lensing calculat
where the whole set is required, the recursion relations ar
efficient as the approximation and are exact.

APPENDIX C: FLAT AND ALL SKY CORRESPONDENCE

1. Harmonics

We establish here the correspondence between the al
flat sky harmonic coefficients of spin zero~scalar!, spin one
~vector!, and spin two~tensor! quantities on the sky. Follow-
ing Ref. @23#, let us begin by introducing the following
weighted sum over the multipole moments of the fieldX
5Q, E, B, or f for a givenl and its inverse relation:

X~ l!5A 4p

2l 11(m i 2mXlmeimw l,

Xlm5A2l 11

4p
i mE dw l

2p
e2 imw lX~ l!. ~C1!

FIG. 5. Wigner-3j function and approximation. An example o
the Wigner-3j symbol relevant to the polarization calculation wi
l 25100,m250, l 3550, m3522 is shown as calculated from th
recursion relations~solid upper! and analytic approximation
~dashed!. The difference is shown below~solid lower!.
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The goal is then to show that this quantity is the Four
coefficient of the flat-sky expansion.

Spin-0 quantities, such as the temperature flucutations
the lensing potential, are decomposed as

X~ n̂!5(
lm

XlmYl
m~ n̂!. ~C2!

For small angles around the pole, the spherical harmo
may be approximated as1

Yl
m'Jm~ lu!A l

2p
eimw, ~C3!

and the expansion of the plane wave

ei l•n̂5(
m

i mJm~ lu!eim(w2w l )'A2p

l (
m

i mYl
meimw l.

~C4!

Thus

X~ n̂!5(
lm

XlmYl
m

'(
l

l

2pE dw l

2p
X~ l!(

m
Jm~ lu!i meim(w2w l )

'E d2l

~2p!2 X~ l!ei l•n̂, ~C5!

which is the desired correspondence.
Spin-1 quantities such as the deflection angles are dec

posed as

6X~ n̂!5(
lm

6Xlm61Yl
m . ~C6!

Here one notes that

61Yl
m'6

1

l
e7 iw~]x6 i ]y!Yl

m , ~C7!

and thus

6X~ n̂!5(
lm

6Xlm61Yl
m

'6(
l

l

2pE dw l

2p 6X~ l!e7 iw
1

l
~]x6 i ]y!ei l•n̂

'6 i E d2l

~2p!26X~ l!e6 i (w l2w)ei l•n̂. ~C8!

1Note that our definition ofYl
m differs from the usual one by

(21)m to conform with the spin spherical harmonic conventi
@22#.
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Finally, spin-2 quantities such as the polarization are
composed as

6X~ n̂!5(
lm

6Xlm62Yl
m . ~C9!

Here one notes that

62Yl
m'

1

l 2 e72iw~]x6 i ]y!2Yl
m , ~C10!

and thus

6X~ n̂!5(
lm

6Xlm62Yl
m

'(
l

l

2pE dw l

2p 6X~ l!e72iw
1

l 2 ~]x6 i ]y!2ei l•n̂

'2E d2l

~2p!26X~ l!e62i (w l2w)ei l•n̂, ~C11!

as desired.

2. Power spectra

The correspondence between power spectra then foll
from the relationship between the harmonics

^Xlm* Xl 8m8
8 &' i m82m

Al l 8

2p
C( l )

XX8E dw le
imw l

3E dw l 8e
2 im8w l 8d~ l2 l8!. ~C12!

We then expand the delta function in plane waves

d~ l2 l8!5E dn̂

~2p!2
ei ( l2 l8)•n̂

'
2p

Al l 8
E dn̂

~2p!2 (
mm8

i m2m8Yl 8
m8* Yl

meimw l2 im8w l 8.

~C13!

Integrating over the azimuthal anglesw l ,w l 8 collapses the
sum to

^Xlm* Xl 8m8
8 &[d l ,l 8dm,m8Cl

XX8

'C( l )
XX8E dn̂Yl

2m* Yl 8
2m8

5d l ,l 8dm,m8C( l )
XX8 ~C14!

which proves the desired relation in Eq.~20!

Cl
XX8'C( l )

XX8 . ~C15!
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3. Bispectra

The correspondence between bispectra is establishe
exactly the same way as with the power spectra. The o
difference is that the expansion ofd( l82 l) in Eq. ~C14! is
replaced with that ofd( l11 l21 l3) leading to

^XlmXl 8m8
8 Xl 9m9

9 &[S l l 8 l 9

m m8 m9
DBll 8 l 9

XX8X9

'B( l ,l 8,l 9)
XX8X9 E dn̂Yl

2mYl 8
2m8Yl 9

2m9

5B( l ,l 8,l 9)
XX8X9 S l l 8 l 9

0 0 0D S l l 8 l 9

m m8 m9
D

3A~2l 11!~2l 811!~2l 911!

4p
.

~C16!

This establishes the relation

Bll 8 l 9
XX8X9'S l l 8 l 9

0 0 0D
3A~2l 11!~2l 811!~2l 911!

4p
B( l ,l 8,l 9)

XX8X9 .

~C17!

Note that we have implicitly assumed that the bispectr
only depends on the the magnitudes (l ,l 8,l 9) so that it may
be removed from the azimuthal integrals. This is not true
terms not involving the magnetic parity. In this case, the s
of the flat-sky bispectrum depends on orientation but we fi
empirically that a similar relationship holds up to a sign a
biguity as discussed in Sec. II B.

4. Signal-to-noise

Here we establish the correspondence between the al
flat sky signal-to-noise statistics for the case of diagonal c
tributions to the covariance matrix@Cov5diag(Var)#,

S S

ND 2

5(
lm

~Cl
XX!2

Var
5(

l
~2l 11!

~Cl
XX!2

Var
. ~C18!

For the flat sky case, one defines a weighted sum of Fou
harmonics

P5E d2lW~ l !X~ l!X~2 l!, ~C19!
,
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with optimal weights given byW( l )5C( l )
XX/Var from which

one calculates the signal-to-noise^P&2/^P2& as

S S

ND 2

5
f sky

p E d2l
@C( l )

XX#2

Var
'2 f skyE ldl

~Cl
XX!2

Var
,

~C20!

where we have used the fact thatd(0)'V/(2p2)5 f sky/p.
These expressions agree in the highl limit and imply the
familiar result thatf sky should multiply the signal-to-noise o
angular power spectrum measurements given incomplete
coverage.

The bispectrum signal-to-noise similarly is

S S

ND 2

5 (
l 1l 2l 3

~Bl 1l 2l 3
XXX !2

Var (
m1m2m3

S l 1 l 2 l 3

m1 m2 m3
D 2

5 (
l 1l 2l 3

~Bl 1l 2l 3
XXX !2

Var
, ~C21!

for the all sky bispectrum and

S S

ND 2

5
f sky

p

1

~2p!2E d2l 1E d2l 2

@B( l 1 ,l 2 ,l 3)
XXX #2

Var
, ~C22!

for the flat sky bispectrum@5#. The extra factor of (2p)2

compared with the power spectrum is from the extra de
function in the noise term. One can show that these exp
sions agree in the high-l limit by restoring the integration
over l 3, expanding the delta function into spherical harmo
ics as in Eq.~C13!, and integrating over azimuthal angles

E d2l 1E d2l 2E d2l 3d~ l11 l21 l3!

'E l 1dl1E l 2dl2E l 3dl3A~2p!5

l 1l 2l 3
E dn̂Yl 1

0 Yl 2
0 Yl 3

0

'8p2E l 1dl1E l 2dl2E l 3dl3S l 1 l 2 l 3

0 0 0D 2

.

~C23!

With the general correspondence of bispectra from
~C17!, this becomes

S S

ND 2

' f skyE dl1E dl2E dl3
~Bl 1l 2l 3

XXX !2

Var
, ~C24!

which proves the equivalence of the signal-to-noise for h
l and f sky51.
.
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