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Weak lensing of the CMB: A harmonic approach
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Weak lensing of CMB anisotropies and polarization for the power spectra and higher order statistics can be
handled directly in harmonic-space without recourse to real-space correlation functions. For the power spectra,
this approach not only simplifies the calculations but is also readily generalized from the usual flat-sky
approximation to the exact all-sky form by replacing Fourier harmonics with spherical harmonics. Counterin-
tuitively, because of the nonlinear nature of the effect, errors in the flat-sky approximation do not improve on
smaller scales. They remain at the 10% level through the acoustic regime and are sufficiently large to merit
adoption of the all-sky formalism. For the bispectra, a cosmic variance limited detection of the correlation with
secondary anisotropies has an order of magnitude greater signal-to-noise for combinations involving magnetic
parity polarization than those involving the temperature alone. Detection of these bispectra will, however, be
severely noise and foreground limited even with the Planck satellite, leaving room for improvement with
higher sensitivity experiments. We also provide a general study of the correspondence between flat and all sky
potentials, deflection angles, convergence and shear for the power spectra and bispectra.

PACS numbd(s): 98.70.Vc, 95.75.Pq, 98.80.Hw

[. INTRODUCTION Beyond the power spectrum, lensing induces three point
correlations in the CMB through its correlation with second-

As the cosmic microwave backgrouf@MB) photons ary anisotropie$4,5], even when the intrinsic distribution at
propagate from the last scattering surface through interverlast scattering is Gaussian. Detection of these effects in the
ing large-scale structure, they are gravitationally lensediemperature maps, however, is severely limited by cosmic
Weak lensing effects on the the temperature and polarizatiof@riance. The primary anisotropies themselves act at as
distributions of the cosmic microwave background are al-Gaussian noise for these purposes. In this case, the low level
ready a well-studied field. As in other aspects of the field @t which the CMB is polarized can be an asset not a liability.
early work treating the effects on the temperature correlatiof hree point correlations involving the polarization, where
function[1] has largely been superceded by harmonic spac@rientation plays a role, are most simply considered with
power spectrum analyses in the post Cosmic Backgrountheir harmonic space analogue, the bispectrum. We introduce
Explorer(COBE) era[2,3]' In harmonic Space’ the physica| pOlarization and polarization-temperature biSpeCtra and ShOW
processes of anisotropy formation are most directly manifesthat they can have signal-to-noise advantages over those in-
However for weak lensing in the CMB, correlation function Volving the temperature alone.
underpinnings have typically remained, forcing transforma- The outline of the paper is as follows. In Sec. Il, we treat
tions between real and Fourier space to define the effect in € basic elements of the cosmological framework, CMB
small-angle(flat-sky) approximation. Exceptions include re- temperature and polarization, and weak lensing needed to
cent work on the non-Gaussianity of the lensed temperaturdnderstand these effects. Detailed derivations are presented
field where a direct harmonic space approach has been takéh @ series of Appendixes: Appendix A covers the all-sky
[4,5]. weak lensing approach, Appendix B the evaluation of the

In this paper, we provide a complete framework for theall-sky formulas, and Appendix C the correspondence be-
study of lensing effects in the temperature and polarizatioiween the flat and all sky approaches for scalar, vector and
fields directly in harmonic space. Not only does this greatlytensor fields on the sky. The lensing effects on the power
simplify the power spectrum calculations but it also estabSPectrum are treated in the flat-sky approximation in Sec. Il
lishes a clear link between weak lensing power spectrun@nd in the exact all-sky approach in Sec. IV. In Sec. V, we
observables in wide-field galaxy surveys and CMB observstudy the effects of lensing on the bispectra of the tempera-
ables for cross-correlation studies. Furthermore, this apt.ure and pOIarization distributions. We conclude in Sec. VI.
proach is easily generalized to lensing on the full sky by
replacing Fourier harmonics with spherical harmonics.

We show that, counterintuitively, corrections from em-
ploying an exact all-sky treatment are not confined to large In this section, we review and develop the formalism nec-
angles. The second order nature of the effect brings in largessary for calculating lensing effects in the CMB. We review
scale power through mode coupling. Since the all-sky exthe relevant properties of the adiabatic cold dark matter
pressions are as simple to evaluate as their flat-sky approxfCDM) model in Sec. Il A. In Sec. II B, we discuss the power
mations, which themselves are much simpler to evaluate thaspectra and bispectra of the temperature fluctuations, polar-
the correlation function analogues, they should be employetration and temperature-polarization cross correlation. Fi-
where full accuracy is required, e.g., for the analysis of prenally in Sec. Il C, we review the properties of weak lensing
cise measurements from CMB satellite missions. relevant for the CMB calculation.

Il. FORMALISM
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A. Cosmological model For the matter dominated regime whete<(1+2)%? F is

We work in the context of the adiabatic CDM family of Independent of redshift. o o
models, where structure forms through the gravitational in- Although we maintain generality in all derivations, we
stability of the CDM in a background Friedmann-Robertson-llustrate our results with &\ CDM model. The parameters
Walker metric. In units of the critical densityFg/8=G, o this model are€);=0.30, €,=0.05, 0,=0.65, h

— — — — —5 H
whereH,=100h km s ! Mpc™ ! is the Hubble parameter to- =0.65, Y,=0.24, n=1, and 5H_4_'fx 107, This mOd?'
day, the contribution of each component is denctgd i has mass fluctuations on thé 8/pc™ " scale in accord with
=c for the CDM, b for the baryonsA for the cosmological th? ab;:ndanc_e of galaxy clus;eot:!r=0..86. AI reias_one_tble
constant. It is convenient to define the auxiliary quantitiesvaéje dere Is Important since the lensing calculation is sec-
Qmn=0.:+Q, andQ=1-3,Q;, which represent the mat- ond oraer.
ter density and the contribution of spatial curvature to the
expansion rate respectively. The expansion rate B. CMB

We decompose the CMB temperature perturbation on the
sky ®(n)=AT(n)/T into its multipole moments

then determines the comoving conformal distance to redshift

H2=HQn(1+2)%+ Qx(1+2)2+ Q] (1)

z O(n)=2, OY['(n). ®)
D(z)= f Zid z, (2)  The polarization on the sky is represented by the trace-free
0H(Z") symmetric Stokes matrix on the sky
in units of the Hubble distance todayHgl P(n)=,X(n)(m,®m_,)+_X(n)(m_®m_), (9)
=2997.9 ! Mpc. The comoving angular diameter distance
where
Da= 0y sinh Q¢D), (3

2X(nN)=Q(n)=iu(n),
plays an important role in lensing. Note that &«

—>O, DA—>D 1
The adiabatic CDM model possesses a power spectrum of m,=—(g,¥i é¢). (10
fluctuations in the gravitational potentié T2
) k3 k\n-t 5 The complex Stokes parameteX is a spin-2 object which
Ap(k2)=5—5Pe=A(2) Ho T(k), (4)  can be decomposed in the spin-spherical harmdiitk
where the the transfer function is normalizedT0)=1. XM= XmeoY™(R). (11)
We employ thecMBFAST code[6] to determineT (k) at in- - e roim=2

termediate scales and extend it to small scales using analytic

fits [7]. We have assumed that the StoRégparameter vanishes as
The cosmological Poisson equation relates the poweappropriate for cosmological perturbations; for a full set add
spectra of the potential and density perturbatiéns the termVe;; to the polarization matrix, where;; is the

Levi-Civita tensor.

2 Due to the parity properties of the spin-spherical harmon-

4 HO -2
1+3FQK) QH(1+2)%A5, (B ics

Ho

k

9
2—_
A(I)_4

m | m
and gives the relationship between their relative normaliza- sYI = (=1)-sYi, (12)

tion
one introduces the parity eigenstafég,13

HZ |2 .
1+3k—2°QK) O2F(2) 6. (6) Xim=Em*iBjm, (13

9
A(Z): Z

such thatE,, just like ®, has parity 1) (“electric”
Here 6y is the amplitude of present-day denSity ﬂUCtuationSparity) WhereasBlm has panty e 1)'*1 (“magnetic” par-
at the Hubble scale; we adopt the COBE normalization folity). Density(scalajy fluctuations in linear theory only stimu-
dy [8]. F(2)/(1+2) is the growth rate of linear density per- |ate theE component of polarization.
turbationss(z) =F(z) 6(0)/(1+2) [9] The power spectra and cross correlation of these quanti-
ties is defined as

3
0
H(z’))' @) (XEX, )= 8,1 S CFF (14)

I"'m’

F(z)oc(1+z)¥fwdz’(l+z’)
0 Jz
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whereX and X’ can take on the value®, E, B. Note that 109 F B
the cross power spectra betweggand® or E have odd total F 3
parity and thus vanish assuming anisotropy formation is a  10-10 =
parity invariant process. g F lensed 3
The bispectrum is defined as %Hr“ L~~~ - unlensed =
’ ” ! I’ " XX X" 510_125_ : 3
Kim X} e X = m m m Birr (15 = F — — flat 5
10-13 ¢ E
and vanishes if the fluctuations are Gaussian. Even in the R
presence of non-Gaussianity due to nonlinear but parity- jo-11L 4
conserving sources, bispectra involving an even number o, E 3
magnetic parity termsincluding zerg vanish forl+1'+1" Q012 =
=odd and those involving an odd number vanish Ife’ 8. 7
+1"=even. %1&13;— E
For a small section of the sky or high multipole moments, & & ]
it is sufficient to treat the sky as flat. In the flat-sky approxi- ~— 107g E
mation, the Fourier moments of the temperature fluctuations v N
are given as L] FERTTN R (BD=\V A \ E
10 100 1000
n o il-n :
@(n)=f (2w)2®(l)e ’ (16) FIG. 1. Temperature and temperature-polarization cross power

and the polarization as

(2m?*

~ dl I
+X(n)=—J LX(I)e*2a—egiln,

spectra. Shown here are the power spectra of the unlensed and

lensed fields, their difference in the all-sky and flat-sky calculations

and the error induced by using the flat sky expressions. The oscil-

latory nature of the difference indicates that lensing smooths the
(17) power spectrum.

For the bispectra, we have assumed that the triplet is com-

where ¢| is azimuthal angle of. Again one separates the posed of an even number of magnetic pafBy objects such

Stokes moments as

X(h=E()=iB().

As in the all-sky case, the power spectra and cross corre-

lations can be defined as with power spectra

<X*(I)X,(I,)>:(277)25“_',)(:2(';(,’ (19 510—12 lensed
B - - -~ unlensed
(x*(|)x'(|’)x"(|")>=(277)25(|—|'—|”)B§X|,>|<,,) _ Xpn
v +

The power spectra for the fiducial CDM model with a cos- — 1p-14
mological constantA CDM) model are shown in Figs. 1 and

2.

In Appendix C, we establish the correspondence betweer
the all-sky and flat-sky spectra. For the power spectra anc  ¢-14

that it vanishes fol +1’+1"= odd. For combinations in-
volving an odd numbefe.g.,BO0), the Wigner-3 symbol
should be replaced with its algebraic approximatiBg) but
with 1+1"+1"= even terms set to zero instead. However,

(18)

10-11

Vool vl vl ol

[ T T T T T T T 1o

10-15

L

-
—t4 1111

Lol

bispectra

8 C all

’ ’ 10-15 —_ ]
X ~ciX, 2 10F dlgs E
L 1
xxxe_ (1101 g 10716 E
B“ " ~ = E =
0O 0 O C ]
10717 =

y \/(2|+1)(2|'+1)(2|"+ D xr £ L Lo
477 U(|’|r’|n) ’ Ii
(20 FIG. 2. Polarization power spectra. The same as in Fig. 1 except

for sufficiently highl’s.

for the E andB polarization. We have assumed that the unleried
spectrum vanishes as appropriate for scalar perturbations.
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the overall sign depends on the orientation of the triangle in 106 R DL B A B
the flat-sky approximation since the bispectrum is then anti-
symmetric to reflections about either axis.

T TIITIITl

Co il

C. Weak lensing

149<°¢
T
I
\
AN

In the so-called Born approximation where lensing effects
are evaluated on the the null-geodesics of the unlensed phc
tons, all effects can be conveniently encapsulated in the pro

Lol

TNT T TTTTT
\

jected potentia[14,15 108 -
10-8 E 3
¢(ﬁ>=—2f dDgy(D)®[x(n),D], (1) i ]
g 100 & =
where (S
(D)= fwdD’DA(D,_D) D). (22 e E
9o DA(D) /o D D) 0 i i
L 1 illllll 1 1 lllllll 1 1 IIIlIll 1 111 IIM
For the CMB, the source distributiay, is the Thomson vis- 1 10 100
ibility and may be replaced by a delta function at the last /

scattering surfac®,=D(z~10°); for galaxy weak lensing
this is the distance distribution of the sources. We explicitly.

;(;l::fr It:l,i qlé?]gtiiyAtoNglg trr?;:tr?h;a(;g}:::;t%%n;ir%gr;ge isg all sky approaches for linear and nonlinear density perturbations. In
PP ’ 9 9 nIhe lower panel, the cross correlation with the ISW effect is shown.

by the a}ngular gradiertt(n)quS(n).. In both cases, a non-negligible fraction of the power comes from
As with the temperature perturbations, we can decomposgcales where the flat-sky approximation is inadequate.
the lensing potential into multipole moments

FIG. 3. Lensing power spectra. The power spectrum of the lens-
ng potential is shown in the top panel as calculated by the flat and

<Xl*m¢’l ’m’> = 5I,I ' 5m,m'clx¢i

¢(N)=2 dimY{'(N), (23 .
m (X*(h (1) =(2m)28(1-1")Cy (27)
or Fourier moments as in the all and flat sky limits.
5 To calculate the power spectra of the lensing potential for
¢(ﬁ): J dl ¢(I)e”'ﬁ (24) a given cosmology one expands the gravitational potential in
(21)2 ' Eqg. (21) in plane waves and then the plane waves in spheri-

cal harmonics. The result is
The power spectra of the lensing potential in the all-sky and

flat-sky cases as Cf"’¢=47rf %A?p(k,z)[lle“(k)]z, (28)
<¢I*m¢l’m'>: 5I,I’5m,m’cl¢¢'
(*(Np(I"))=(2m)28(1-1")CY, (25)

k
lenc iy — ;
where agairC{|’=C/’?. The lensing potential also develops l (k)_f dDWIen(D)J'(H_OD)'
a bispectrum in the nonlinear density regime

where

Da(Ds—D)

I . WeND)=—-2F(D) =— . (29
<¢Im¢|’m’¢l”m”>:<m m m,,)Bﬁsﬁ?, DA(D)DA(DS)
For curved universes, replace the spherical Bessel function
(d(N (1) (1) =(2m)28(1—1" =" BIX X (2¢)  With the ultraspherical Bessel function. In the small scale

LR limit, this expression may be replaced by its equivalent Lim-

which is responsible for skewness in convergence maps arRf" @Pproximated integral 4]

other higher order effects. Since the lensing potential is not

affected by non-linearity until very high multipolésee Fig. C¢¢_2_772J' dDDA[WeY(D)J2A2 (k 0)|

3), we neglect these terms here. (OREE A L Tk=1(Ho /D
Finally, the lensing potential can also be correlated with

secondary temperature and polarization anisotroples)],  This expression also has the useful property that its nonlinear

so that one must also consider the cross power spectra  analogue can be calculated with the replacement

A’
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F(D)*A%(k,0)—A%(k,D), (30 B(nN)=0(n+Ve)
where the time-dependent nonlinear power spectrum is given =0(n)+V;p(n)V'O(n)
by the scaling formuld16] and the Poisson equatidb). 1
Since nonlinear effects generally only appear at small angles, + EV‘ ¢(ﬁ)Vj H(NVVION)+---. (34

the full nonlinear all-sky spectrum can be obtained by match-

ing these expressions in the linear regifaee Fig. 3. i ) ]
Similarly, the cross correlation may be calculated for anyBecause surface brightness is conserved, lensing only

secondary effect once its relation to the gravitational poteng:hange_s the d_|str|but|on of the anisotropies and has no effect

tial is known. We shall illustrate these results with the inte-On the isotropic part of the background.

grated Sachs-Wolfe effect. It contributes to temperature fluc- 1€ Fourier coefficients of the lensed field then become

tuations as )

~ e d2l,
@(l)zf dn®(n)e "'“:@u)—J -0 (1)L (L),
ISW/ A\ : - (27)
(C] (n)——ZJ dD®[x(n),D]. (31 (35)
It then follows that the all-sky cross correlation is given by Where
[4110] 2
L |1):¢(|_|1)(|_|1)'|1+£f &d’('z)(ﬁ*('z""l_')
: 5 5
cPt=an [ EARMIONNW, (@2 zm
Xy 1) (Ip+ 13 =1)-14. (36)
where This determines the lensed power spectrum
A * @17\ — 2 _1'\~006
st(k):f dDWSW(D)J.l(HLD), (®*(HB(I)=(2m?5(1-1NTP°, (37
0 as
WSWY(D)=—2F (D), (33 2

"CP®=(1—|2R)C|®®+f d Ilzcl‘??I CEAL=11) 1412,
1 1

again with the understanding that one replaces the spherical (27)

Bessel function with the ultra-spherical Bessel functions for (38)

curved universes. Similarly the flat-sky expression become@vhere

0y 27 1 (dl
c§|’)¢=—|3—J dDDAWSY(D)W(D)AZ(K) k=it /0, - R= Ef |—|4c,¢¢. (39)

Figure 3 also shows the cross-correlation for th€ DM The second term in Ed38) represents a convolution of the
cosmology. power spectra. Sinclé%:f’s‘Zﬁ peaks at lowl's compared with

Cross lensing-CMB bispectrum terms can also be inthe peaks in the CMBsee Fig. 3, it can be considered as a
cluded but require an external measure of lensieg., a narrow window function onCP® in the acoustic regime
galaxy weak lensing surveyto be observable with three- 200<1<2000. It is useful to consider the limit th&®® is
point correlations. slowly varying. It may then be evaluated ktl,~| and

taken out of the integral
Ill. FLAT-SKY POWER SPECTRA

2
In this section, we calculate the effects of lensing on the CF’@’J d |12 CPe(1-11)2~12RCP® . (40)
CMB temperaturgSec. Il A), polarization and croséSec. (2m)

[11B) power spectra. The simplicity of the resulting expres- i o
sions have calculational and pedagogical advantages over thi9te that the two terms in E¢37) cancel in this limit
traditional flat-sky correlation function approakh3]. How- 06 66

ever we also show why one cannot expect a flat-sky ap- Cr=C. (41)

proach to be fully accurate even on small scales. o ) )
This is the well known result that lensing shifts but does not

create power on large scales. Intrinsic features with width

less than thé of the peak inl*C*® are washed out by the
Weak lensing of the CMB remaps the primary anisotropyconvolution(see Fig. 3. Note that in theA CDM model this

according to the deflection ang¥égp scale isl ~40. The implication is that for such a model, the

A. Temperature
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smoothing effect even for high multipoles arises from suchparity conserving. Unlike the case of the temperature fluc-

low multipoles that the flat-sky approach is suspect. tuations, lensing does not conserve the broadband large scale
On scales small compared with the damping lenbth power of theE and B [3], but only the total polarization

=2000, there is little intrinsic power in the CMB so that the power. For example, lensing will createBacomponent in a

first term in Eq.(38) can be ignored and the second termfield that originally had only afE component. Furthermore,

behaves instead as a smoothing;zﬁ’l‘ﬁ of width Al approxi- lensing actually destroys temperature-polarization cross cor-
mately thel of the peak iH*CP® . SinceC{? is very smooth ~ relations due to the lack of correlation with the generdied
itself, the term is approximately polarization. From Fig. 1, one can see that the largest relative
effect of lensing is on the correlation.
~ 1 d?
00 __~00 | ~12~dd 1 |2c00
Cro~Cim+51°C f 277)2|10|1 : (42) IV. ALL-SKY POWER SPECTRA

, In this section, we treat lensing effects on the temperature
where we have interchanged the roleslpaindl; —I. The (gec v A) polarization and crossSec. IV B power spectra
power generated is proportional to the lensing power at the, 4 f| all-sky formalism. Corrections to the flat-sky results
same scale and may be approximated as the lensing of a pUignain at the 10% even on small scales. Moreover, although
temperature gradief]. In this limit the flat-sky approxima- e derivation appears more complicated, the end results for
tion should be fully adequate. the power spectra are simple. They are as readily evaluated

as the flat-sky counterparts and should be used in their stead.
B. Polarization

The lensing of the polarization field may be obtained by A. Temperature

following the same steps as for the temperature field In the all-sky case, the Fourier harmonics are replaced

LX(R)= . X(R+V $) with spherical harmonics, and the lensed field becomes

~ . X(N)+V;p(n) VL. X(n) @|m~|m+f dAY™ V, 4(M) V'O ()
1. .
HEVNT ATV, @3 5[ dR BT e VO

where we have used the shorthand notatiok=Q=iU.

The Fourier coefficients of the lensed field are then =®,m+l2 lE D1m,O1m,
1My f2mz
X(1)= xu)—Jﬂ X(1y)e=2i e =L (1,1,) mimymy, 12 x  qmmmpmg
- - (2m)%~ Y x |”1'2 +§|3m3 ¢'3m3‘]“1|2'3 ' (46)
(44)

with the geometrical factors expressed as integrals over the

wherel was defined in Eq(36). spherical harmonics

Recalling that.-X()=E(l) =iB(l), we obtain the power
spectra directly R _
i = f dnY™ (VY™ (VY]2),
2
I )
_ (2
71_)2[(| 1) -1 ]°Ci%y,

= 17 d
C,EE=(1—I2R)C,EE+EJ >
EE, ~BB EE_ ~BB ‘]Inlqj];lrzzmng dﬁYlm*(Vinzl)(VjY{zg*)ViVjYEZ.
X[(Cr~+Cy ) +cod4e )(Cr ™= Ci )], (47

~ BB sp 1 d?l; The lensed power spectrum then becomes
CBB=(1-1?R)C! +§J 2m? )2[(|—|1)-|1]2c|‘{’if’,1|
o
C,=C/+ >, Cc’?cPs +cP> ct’s,, (49
X[(CEF+CPP) —cod4¢ )(CEF-CPP)], ! %2 b T T 121 L2

42 with
EF’E:(l—lZR)cf*’E+f :
(2m)? mmmy, 2
Sl:mzm (|||1|2 ) '
X[(1=1)-111°C{t?, |CPFcos2¢ ),  (45) o
where recall thaR was defined in Eq(39). The cross cor- 32:1 2 Jm}lmm“rc.c., (49)
relations betwee and® or E still vanish since lensing is 2 i
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where c.c. denotes the complex conjugate and we have supe that
pressed thé indices.
These formidable looking expressions simplify consider- 1(1+1)
ably. The second term may be rewritten through integration vyr= T[lYlmm+_ SAuSE (56)
by parts and the identityf 2Y"= — I (I +1)Y{" [4],
As an aside, we note that E¢h4) can alternately be derived
from this relation and the integrébl) with s==*1.
Further, we note that spin spherical harmonics also obey a
sum rule[17]

—|(|+1)]f dﬁY{”*Y[‘IlY[ZZ. (50) T
2 Y)Y =\ Y, (0. (57

The remaining integral may be expressed in terms of the m
Wigner-3j symbol through the general relation

1
=T+ 1)+ 151+ 1)

For the spin-1 harmonics

dn(s. Y™ ) s Y26 Y ) B 21+1
J' Sy 7S2 70, 3830, ,1Y|l(0)=1Y| 1(0):— ?, (58)
mas (2l 1)(20,+1)(215+1)
=(=1m™ 4 and the others involving;,s,= *1 vanish. These results
imply that
ST P T PR
s sl ; (51) S | 21+1
S; —S; —Sg/\l-mg mp mg > ViY'Y,Y] =511+ 1) ——(m.)i(m_),
m a
where note thatY"=Y|". It is therefore convenient to de-
fine +(m_)i(my);]. (59
1 To evaluate the second derivative term in &), we again
F|1|2|3=§[I2(I2+ D+13(l3+1)—11(1;+1)] apply Eq.(55) to show that
\/(2|1+1)(2|2+1)(2|3+1)(ll l2 |3) [(m)i(mo)j+(mo)i(my )1V VYT
X .
47 lo 0o o =—[1(1+1)—s?] Y. (60)
(52 Putting these expressions together we obtain
Finally the Wigner-3 symbol obeys 1 21,41
Lo, I\l 1, 1 Sz=—§I(I+1)I1(I1+1) e (61
%l il m, m g
2l5+1
mme \ My Mz Mg/ My Mz Mg 3 Finally combining expressions Eq&l8), (54), and (61), we
Putting these relations together, we find that have the following simple result:
1 5 ~06 00 3 oo (Fip,)?
S1= 57 (Fugy) (54 CPO=[L-11+DRICT?+ 3 CACl, 77
. . o (62)
An algebraic expression for the relevant Wigngrsymbol
is given in Appendix B. where
The second term in Eq48) can be simplified by re-
expressing the gradients of the spherical harmonics with 1 21;+1 b0
spin-1 spherical harmonics. As shown in Appendix A, the R= 2 % (I +1) A CI1 ' (63

spin-1 harmonics are the eigenmodes of vector fields on the

sky and naturally appear in expressions for deflection anglesthis expression is computationally no more involved than
Note that there is a general relation for raising and |0Wer|nqhe ﬂat_sky expression Eqss) and has the benefit of being

the spin of a spherical harmonit1] exact. Since the lensing effect even at higim the CMB
originates from the low order multipoles @f, corrections
VY= (I=s)(+s+1) ym due to the curvature of the sky are not confined to lowWe
m_ sl s+1 1| » . . ! o . .
2 show in Fig. 1 that the correction causes a 10% difference in

the effect. The change @P° itself is even smallefof order
YT [(I+s)(I=s+1) ym (55 1%). Nonetheless it is larger than the cosmic variance of
Bt 2 s=1tie these high multipoles and thus should be included in calcu-
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lations for full accuracy. Corrections can be even larger in

models with a red tilh<1 in the initial spectrum. 0251= E (12, | .Tmlmz) (70)

11415

B. Polarization Just as in the case for the temperature field, these expressions

The derivation of the all-sky generalization for polariza- SIMPplify considerably. The spin-2 harmonics are eigenfunc-
tion is superficially more involved but follows the same stepstions of the angular Laplacian of a tensor
as in the temperature case and results in expressions that are

m_r_
no more difficult to evaluate. The lensed polarization multi- V2 oY =[]

(1+1)+4].,Y", (71)

poles are given by

tXIm:tXIm+2 2 d’llmlixlzmz

I1my 1omy
1
mmmp , = * mm mams
x :2|||1|2 2I32m3 ¢I3m3:2~]”1'2|3 . (64

with the geometrical factors expressed now as integrals over

the spin-spherical harmonics

t2|ﬂ11r:2m2:J' dﬁthlm*(Vinlll)(ViizYEZ)'
72‘]:132;.22”]3_‘[ dn+2Y (V|Y|r:l)(VIY|r23*)(V|VJi2Y|n;2)

(65
Noting that

ol o= (= Dbl ™, (66)

whereL=1+1,+1, and recalling that.X,,=E;,*iBn,
the power spectra then become

CFE=CFF —2 CP(CEF+CPR) + (- 1)

X(CEF=CP®)1aS1+ 5 CFEEC Y25+ 2S),

(67)
where
2051 = 2 (2||T1T;m2)2,
mpmy
1 mmymqm
i252:§ ;1 t2J||1|1| +C.C. (68)

The expression foﬁ,BB follows by interchanginge E and
BB. The cross power spectrum is

— i 1 9
CPE=Cle 532, CR/CL+ (-1 oS,
1'2

1
+ 70752 ClaSot 0%+28,),  (69)

with

which follows from contracting indices in Eq60). It then
follows that

|,TT1’“2— [11(13+ 1) +15(1,+1)

—I( +1)]f dﬁ(izY{“*)erjl(ing;z).
(72)

Comparison with Eq(51) implies that it is convenient then
to define the quantity

2Fi,,= ['2(|2+1)+|3(|3+1)_|1(|1+1)]
\/(2|1+1) 2|2+1)(2|3+1)/ PR
l2 0o -2/
(73
so that
1 2
2231:m(2|:||1|2) ,
1
0251~ 577 (Fing) GF ) (74)

The third term in Eq(68) can be simplified by following
the same steps for the analogous temperature term except for
the replacement =0 with s= +2 in Eq. (55). The result
is

1 21,
+25=— S [+ D=4l (I, +1) — (79

Putting these relations together, we obtain the result for the
power spectra

) )2
CrE=[1-(1*+1-4)RIC[+5 E ci? 22|”+1|§
X[CEE+CPP+(—1)H(CEF-CPP)],

2o 2F11)°
o[- (7 H-RIC S ot
X[CEE+CPP—(—1)H(CFE-CP?)],
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CPE=[1-(1?+1-2)R]CPE 000_ 3 ER PR F < 0. 0.)
(F” |2F” I) Iﬂzb__mlmzma m_ m, ms Iim & lomy ™~ lama/
pp_ 127 112 ~0E (80)
+|§2 Cll— G (76)

For the small effects due to the correlation of secondary

Recall thatL=1+1,+1, and R was defined in Eq(63. anisotropies with lensing, the covariance of the bispectrum

These expressions are plotted for th€DM model in Fig.  estimators is dominated by the Gaussian noise from the
2 power spectruni18]

00 ~00~00

V. FLAT- AND ALL-SKY BISPECTRA Cov=Ci7Ci,"Ciy 001,105, +5 perm, - (81)

In this section, we consider the lensing contributions towhere the permutations are in the indices of thdriplet.
CMB bispectra through the correlation with secondaryThe overall signal-to-noise becomes
anisotropies. We begin by reviewing the calculations for the
temperature bispectrum as previously treated by Réf§].
We then introduce the polarization and cross bispectra which
in principle have signal-to-noise advantages over the tem-
perature bispectra. We illustrate the formalism with a con-

crete calculation of the effect due to the ISW secondary an] N€ covariance is in general diagonal in the @ blocks of
isotropy. permutations of I(;,l,,13) and for this simple case of the

temperature bispectrum, the blocks are proportional to the

trivial matrix of all ones. The result is one can take a simple

sum over all distinct triplets or equivalently divide the full
Contributions to the temperature bispectra from the crossum by a factor of 6,

power spectrunCP‘f’ discussed in Sec. Il C follow immedi-

S\?2
—) -2 > BYPP[Cov lIB) . (82

N 1|2|3 Pyt Il|2|3 lilélé
I1'2'3

A. Temperature

ately from the first order lensing term, i.e., E46) for the ( s>2 2 (Bﬁgg)z @3
all-sky bispectruni4], N 000000 83
y bisp ni4] N/ TS, GCﬂOCEOCf;O
Bf“ifzfz: ,llzlacf‘;¢cf;®+5 perm, (77)

for a cosmic variance limited experiment. For a realistic ex-
and Eq.(35) for the flat sky bispectrurf5] periment with noise from the detectors and residual fore-
grounds, one simply replaces

BO®®  \=—(l,-13C2¢CP®+5 perm (78
(I7.15,15) 2-13)4, 4 , , ' noi
1723 2 3 Clxx Clxx +C|XX (n0|se), (84)
One can show that these relations satisfy the general expres-

sion for the correspondence between flat and all sky bispe ere an(_d below._Note that_one can also construct the Fisher
tra Eq.(20) by noting that information matrix of the bispectrum along these lih&8].

Correspondingly, in the flat-sky approximation one con-
structs the optimal inverse-variance weighted statifhiE

1 .
|2-|3:—§(|§+|§—|§), (79  (see also Appendix C
- : - - S\2 fy, 1 [BGOD )12
since the angles of a triangle is fully defined by the length of e f d2|1J d2I2 17273 (85)
its sides. N T (27)? 60'@16086026'

Note that there can be strong cancellation between the
terms in the permutation in both cases. As we have seen, thﬁherefsky is the fraction of the sky covered. We show that
spectrum of¢ is generally peaked to low multipoles imply- these expressions are equivalent in the Highy,=1 limit
ing a corresponding weighting &’? to low multipoles for  in Appendix C. Thus the extra factor 6f,, can be included
secondary anisotropies that correlate strongly withn this  in the all-sky expression to approximate the effects incom-

case the triangled {,1,,3) that contribute most strongly are plete sky coverage due to exclusion of regions contaminated
highly flattened such that two sides nearly coincide in lengthpy galactic foregrounds.

l,~13>1,. In this case, contributiong and|3 in Eq. (79) The weighting of the modes is such that the quantity of
are cancelled off the permutatidf— |, leaving only a term interest in the lensing-temperature correlation I#¢
of orderlg. where the extra factor dfover the straight bispectrum con-

These considerations also signal problems for the flat-skyribution comes from the square root of the volume factor in
expressions. It is important to know what on scales most of space. This quantity is plotted in Fig. 3 for the cross corre-
the detectable signal is coming from. In the all-sky formal-lation with the ISW effect. The implication is that for this
ism, the signals from then modes are added together with effect, full accuracy requires an all-sky approach and we
weights given by the Wignerij3symbol shall hereafter use this to evaluate the signal-to-noise.
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N B L where
0 (a) Cosmic Variance

PAB= @1, Pl (87)

The general correspondence between the flat and all sky
expressions in Eq20) is established by the use of EF9)
the approximation discussed in Appendix B.

(Il 2 13

PP
2 0 —2)%052‘”31(0 0 o)’ (88)

/“Boe EEQ, 7
—_7

for L=even. The cancellation for flattened triangles dis-
cussed in Sec. VA still applies and is easiest to see in the
flat-sky limit: the flatness of the triangles implies cas?
~1.

For theS/N calculation, note that the covariance is given
by

Cov=CEECPOCP9s, 16,16,
1 2 3 1'7 '2'2 '3'3

+CPEC)OCE 1,118,101,

FIG. 4. Cumulative signal-to-noise in the bispectra as a function
of maximuml for a cosmic variance limited experiment and for the
Planck satellite. Note that for the cosmic variance limited dase
bispectra involving thé3 polarization have a substantial signal-to- SO that a full calculation requires inverting this matrix for
noise advantage over the other bispectra. For the Planck satelligach distinct triplet. Since we are interested mainly in the
(b), we assume that the additional variance comes only from detearder of magnitude o8/N, we can set the lower bound as
tor noise. In practice, residual foreground contamination and sky

+CPECPECP? 81,1181, 0.+ (1313), (89

cuts to avoid them will lower the signal-to-noise further. S\ 2 (BE?Z%)Z
= = — o oo 90
. . . (N) 153, 6CEEC®0 00 (90)
The overall signal-to-noise as a function of the lardest 112ls Oy oy, g

included in the sum is shown in Fig. 4 for a cosmic variance

limited experiment and the Planck satellisee Ref[19] for ~ which amounts to ignoring duplicate triplets and replacing
the specification of the noiseNote that the Planck satellite the remaining triplet with the averag®&N of the set. This

is effectively cosmic variance limited o~ 1000 and even so limit is plotted for the ISW effect in Fig. 4 as a function of
the S/N is only of order a few4]. the maximall; included in the sum. As expected, it is com-
parable to the signal-to-noise in the temperature bispectrum.
Of course, it is experimentally more difficult to achieve the
cosmic variance limit in the polarization with a realistic ex-

Bispectra involving theE and B parity polarization will  periment containing detector and foreground noise.
also receive contributions from the correlation induced by There is also a qualitatively new effect from the

|enSing. Although these Signals are smaller than the temper |arization_|ensing Corre|atioﬁ::§¢ i However, since sec-
ture bispectrum in an absolute sense, we have seen that tBdary polarization only arises from Thomson scattering ef-
main obstacle in detecting the temperature bispectrum is Cogacts, we expect this contribution to be smalli€DM mod-

mic variance from the Gaussian contributions. els where the optical depth during reionization 7s:0.3
We begin by analyzing terms that do not involve the[lg]_

B-parity polarization. For these all-sky bispectra, only terms  The EE® bispectrum term is
with L=1,+1,+[3=even are nonvanishing, and we will im-

B. Polarization and cross correlation

plicitly assume that only even terms are considered. With the  BEE® —( F | CcE4CPE4 F | CEECP?)
help of Egs.(44) and(65), we can immediately write the all 128 vzs otz s rezt2 s
and flat sky results as + F'alllzci¢cgE+(ll‘_’l2)'
BF D =2F11,,COYCPE+F,  (CEPCP?+CPFC?) ]
1'2'3 12'37 12 Tl3 2113t Tl T3 1 '3 B(EllE,(?z,l3):_(IZ'IS)(COSZ‘PSICIEjCE
+(l2=13), :
+¢08 20 CECI %) — (11-1,) CFYCPF
B8 1y =~z 01008 200 Cy CEE (111 gt -
E¢~OO | ~OE~OH
X(CLC T+ GG F (), 86 \yith covariance
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Cov=CFFCEFC®61,1161,1101,; 5\2 BP0 )2
1 2 3 11 '2'2 '3'3 (_) _ 1'2'3 (100)
+CEECEOCE 118,81 NI i ZC'E;BC'%@C'(H;@.
1 Tl g Tl Tl Clely

+C,?ECFZEC,(";E&1|55|2|15|3|é+(Ii<—>|§), (92 In a cosmic variance limited experimefgee Fig. 4, the
BO®O bispectrum has signal-to-noise advantages over its

with which we can bound th&/N temperature an@ polarization counterparts due to the fact
EE6 2 that for scalar perturbatiorﬁfiB is dominated by the lensing
S\? (B|1|2|3) contributions themselves. Moreover, even if the tensor con-
N 17 6CEECEECO® 93 tibutions are near their current limits 0f/S=<0.3, the
1 2 3

signal-to-noise is not much affected for=100 due to the
strong damping of gravity wave contributions under the ho-
rizon scale at last scattering. However, for the Planck experi-
ment, the detection is severely limited by detector noise and
CECl E+5 perm, may also suffer further degradation from incomplete fore-
5 .
ground subtractioh20].

Again, the ISW example is shown in Fig. 4.
Finally the EEE bispectrum is given by

Bl =

1'2'3 2 I12'3

Next, theBE® bispectrum is given by

B, 1= —(l213)c0S 203,C|*CFF+5 perm, (99
. . BP, =1 (2F1,1,1,Cr Cl+2F 1 ,CF C®¢)
with covariance 123 r2s 2 s 321
Cov= CEECIEZECEEé'1'15'2'55'3'§+5 perm, (95 Bﬁfih):—(l I3)(sin 2(p31C| C E+sin 2(,021(;:52EC|(2¢),
(101
and signal-to-noise
- with a covariance
E 2— E % (96) C _CBBCEEC®®5 5 5
N/ I1l2l3 6CEECEEC ov= I~y Zlg Il';IL |2|é |3|é
- . . +CPBCPECYE0) 11811011, (102
This bispectrum signal vanishes for the ISW effect. e
Bispectra involving thé3-parity polarization have distinct leading to a sianal-to-noise
properties. For terms involving one B-parity polarization 9 9
term, onlyl,+1,+13=0dd contributes to the all-sky spec- 5 (BBE®)
trum and we implicitly assume below that even terms vanish. § - EIPIE (103
For theBO® bispectrum, N/ T, 2CPeCEFCP®

BPD =1 (2F1,1,1,)CYCIE+ (1o 1), _ : :
'1'2'3 (2 '1l2 3) '2 *lz=l3) The signal-to-noise of this term can be greater than that of
BOO 04 BOO due to the fact that the temperature ahgolarization
B(iy 119 =~ (I2-12)5In 205,C) CI  CEE 97 are only partially correlated in the unlensed sky.
Finally,
Again the correspondence between the flat and all sky Y
expressions in Eq.20) is established by the approximation BEFE =i(LF) )CE¢C + (1 13), (104)
discussed in Appendix B 12ls 123
Il |2 |3 o Il |2 |3 B(l Py 3) (IZ )S|n2§031C| ¢C| _(|2(_>|3)
2 0 —2 ~*isin2¢s3 0 o o (99

with a covariance

for L=o0dd. The sign ambiguity comes from the fact that a

reflection of the trianglel(,l,,l5) across one of the axes Cov= CﬁBCEECFSEd1|i5|2|é5|3|é+(|§<—>|é), (109
corresponds to remappings— 7m— ¢ or ¢— — ¢ and hence

a reversal in sign of the flat-sky bispectrum in E§7). In  leading to a signal-to-noise

this case the cancellation for flattened triangles discussed in

Sec. VA doesnot apply. However since sing;~2¢3; (S 2 BEE )2

<1 ion still exist 123
<1, a suppression still exists. =>
The covariance of th80®® bispectrum is llals 2C "CC

N (106

Cov=CPPCOCP78,,118,18 .+ (1313), (99 This signal vanishes for the ISW effect. Terms involving
more than ond term have no contributions to first order in
leading to a signal-to-noise the correlation power spectrum.
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VI. DISCUSSION or equivalently its multipole moments,,, in the all-sky for-

We have shown that a harmonic approach to weak Iensingigm i;)rthzoll:a r:]esznzoggi'g;ggg’&thﬁgga" from Eq.(22)
¢ .

in the CMB provides a simple and exact means of calculat- The deflection angle that a photon suffers while traveling

ing its effects on the temperature and polarization powe o .
spectra, given the power spectrum of the lensing potential Oﬁrom the source &, is given by the angular gradient of the

convergence, and on the analogous bispectra given theotentiala(n)=V ¢(n). Applying Eq.(56) to the the spheri-
power spectrum of the cross correlation with secondanf@l harmonic expansion, we obtain

anisotropies. Corrections to the flat-sky approximations ap- TS

pear even at high multipoles because even there, lensing ef- _ mo m

fects arises from the large-scale fluctuations in the deflection a_% 7 PmlaYrm, = aYrm_ ] (A2)
angles. These corrections correspond to a change in the pre-

dictions at theuK level. While this is a negligible change This implies that the quantity;*ia, is a spin+1 object
given observations today, it is above the cosmic-variance

limit and should be included when interpreting the high-

- ~ . . m ~
precision results expected from Planck. [a1i|a2](n)=% (CEiQ)im=1Y7(N)
Unlike the temperature bispectrum, bispectra involving
both the temperature and polarization multipoles of the CMB _ —_— m A
have the potential of producing a high signal-to-noise _i% 1+ 1) im=1Yi(N), (A3)

(~10) detection of secondary anisotropies such as the ISW
effects even with relatively modest angular resolutidns which states that the curl term,, vanishes and the gradient
<1000. Other secondary anisotropies such as the Sunyaepsrm
Zel'dovich effect are expected to contribute even stronger
signals, although their exact amplitude is far more uncertain Oim=—IVI(1+1) . (A4)
presently{4].

Achieving a cosmic-variance limited detection of the The power spectrum of the angular deflection is then
magnetic-parity polarization is a daunting challenge. Even
signal-to-noise near unity requires detectors which are a fac- <g|*,m,g|m>z 8111 0mm C9= 8, 1 S| (1 4 1)C|‘f"/’,
tor of 3 more sensitive to polarization than those planned for (A5)
the Planck satellite. Also of concern are the residual fore-
ground contamination remaining in the maps after multifre-with the curl power vanishing. This accounts for the factors
quency subtraction. Our current best models of the foreof (I + 1) in equations involving the angular deflectieng.,
grounds indicate that with the Planck channels and=q. (63)].
sensitivities, foregrounds and detector noise may enter into The corresponding flat-sky quantity is given by the de-
the polarization maps with comparable amplitud@g]. composition[see Eq(C8)]
Thus improving the actual sensitivity to the cosmic signal
beyond the specifications of the Planck experiment will not . - . d?l ) o) il
only require better detectors but also a better understanding [alilaz](n)zi|f (zw)z[Ci'g](De*'(‘P' ol
of the foregrounds, perhaps with increased frequency cover- (AB)
age and sampling. Nonetheless, the polarization of the CMB
offers the potential to open a new window on physical pro-with ¢(l)=0 and
cesses at low redshifts and the opportunity to learn more
from the CMB than can be achieved with the next generation g(h=—il¢(l),
of CMB satellites.

cis=1%cfy. (A7)
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lensing maps and the CMB. An equivalent all-sky lensing
All weak lensing observables may be defined in terms ofreatment is given by Ref21].
the projected potentiab These quantities are given by the second derivatives

APPENDIX A: ALL-SKY WEAK LENSING OBSERVABLES

ViVig=«gij+(y1+iy2)(Mme@m,);

#(h)=-2 [ dDgyD)@[xDL  (AD iy (m_em Y, (A8)
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convergence wherg;; is the metric on the sphere. For the 1 [(1,+2) (1I,+2)! (I3+2)! s
. PP . . €€e  _ T B
all-sky harmonics, it is useful to note that E§5) implies W25 =8 N {1,—2)1 (1,—2)1 (I,—2)! lilals’
Al4)
[(1+1) (1+2)! (
V.V, Y= ———Y" + Y'(m,®m
I 2 10 (- 2)‘[2 H(m, em.) with a similar relation for the flat-sky bispectra.
+ Y (m_omo)];;, (A9) )
APPENDIX B: WIGNER-3 j EVALUATION
and hence 1. Exact expressions
- oA The expressions for the power spectrum of the lensed
K(n)=—% S+ dimYi(n), temperature and polarization distributions involve specific
sets of Wigner-3 symbols that can be efficiently evaluated.
1 (I F2)1 The expression for the temperature involves a set which has
71(” +|y2(n) 2 E‘ /A Y — m+2ylm(ﬁ)_ a closed algebraic form
Im

(A10) (Il L g (L/2)!

:(_ 1)L/2
Consequently, the power spectra are related as 0 0 O) (Li2=1)H(L2= 1) (L12=13)!

— _ _ 1/2
12(14+1)2 oo o (L=2l)(L=2I,)!(L-2lI3)!
e G (L+1)! :
(B1)
e L0+
|:Z(|_2)!CI ) for evenL=1,+1,+15 and zero for odd..

The required set for the polarization does not have an

1 exact closed form expression. However it may be equally

Clx"z——l(l+1)C,X¢’, efficiently evaluated for our purposes with the realization
2 that in the sums, we require

1 /(1+2)!

R PR
b2 N (=2 (AL1) (ml m, mg (B2)

where thee shear power spectra is defined in the same way, fixed l,,15,m;,m,,ms and all allowed ;. The recursion
as that of thek polarization andX=©,E,B. The 8 shear  q|ations for the Wigner-8 symbol
power is the analogue of th& polarization power and van-

ishes for weak lensing. 1A LW +B,w, +(l.+1D)A w, _,=0 B3
In the flat-sky limit, these expressions become iyt B+l DAL, =0, (B3

17 d? A where
n=—= 12¢(1)e'" ™, A12
«(m) 2](277)2 #(le (A12) A== (11921 13+ 1)2 =15V —mi,
(n)=iyy(n) (ZW)Z|2¢(|)et2i(¢|f¢)ei|'ﬁ, B, =— (2l +D[lx(l2+1)my—I5(l3+1)my

—11(I1+1)(mg—my) ], (B4)

allow us to generate the whole set at ofi2g]. For a stable

1, b0 recursion, one begins at the minimum and maximynaal-

Ciy=Ci=7"Cly - ues
1 | 1min=max(|1,—I3]),|my]),

C(|) Cm I C(|) (A13)
l1ma= 2+ 13, (B5)
These relations also give the bispectrum of the shear and ) o )
convergence in terms of the bispectrum of the lensing potenith wi, . =w; =1 and carries the recursion in both di-
tial rections to the midpoint, 4 in the range(or any non-
vanishing entry in the vicinity One then renormalizes either
the left or right recursion to make thna:,lmid agree. The re-

1
KKK + + 4 (X2
B glla(lat Dlallo+ Dls(la+ DB, maining overall normalization is fixed by requiring

I11ol3
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|2 (2l + Hw =1 (B6)
and

sgnw;, _)=(—1)'2"'a"m, (B7)

Putting these relations together, we obtain the full set of
symbols as required.

104

2. Approximations

We can use the general relation between the all and fla
sky bispectra of Eq(20) compared with the explicit calcu-
lation of the flat sky bispectrum in Sec. VB to develop an
highd approximation for the specific symbol in the polariza-

102

103
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Wigner-3;j

Lol

120

| 1
140

tion calculations. The comparison implies that

2 0

ER P F
s ~COS 2p3

FRN PN E
0 0 0

for L=I1,+1,+1;=even. By the law of cosines,

cos 2(p31=§ T —1. (Bg)
13
Then
(P P P o )lel(lg—li—lg)z_
2 0 -2 2 143

X

1 (15-15-1%)?

(L/2)!

(LI2= 1) (LI2—= 1)1 (L/2—15)!

X[(L—le)!(L—ZIZ)!(L—2I3)!

(L+1)!

12

for L=even. For odd values df, we use the relation

ER PR
2 0 -2

and fix the overall sign ambiguity by an explicit evaluation.

i1 15
0 0 O

>%i| Sin 2(,031

By the triangle relations

1
Sin 2p5,= 1§[L(L—2I1)(L—2I2)(L—2I3)]1’2

X

Putting this together with EB1) and fixing the sign ambi-

guity, we obtain

2 0 -2

12—12—12
2 1 3
-

1'3

2

(Il 2 1s )%(_1)&1)/2 E(Ig_li_lg)

212
|l|3

(L/2)!

L2 (LI2— T (LI2—T5)!

), (B8)

), (B10)

FIG. 5. Wigner-3 function and approximation. An example of
the Wigner-3 symbol relevant to the polarization calculation with
I,=100,m,=0, |;=50, mg=—2 is shown as calculated from the
recursion relations(solid uppey and analytic approximation
(dashed The difference is shown beloygolid lowes.

X L(L—=217)(L—2l,)(L—2l5)

(L=21)1(L—=2l,)!(L—2l5)!]¥?
x L

(B11)

for L=odd. The half integer factorials are defined by the
gamma functionx! =I"(1+x). By explicit calculation we
find that these expressions are valid to better than 3% of the
rms amplitude of the symbol when averaged over neighbor-
ing | for all I;—|l,—13/=25 andl,+1;—1,=25, i.e., for
triangles that are sufficiently far from being flat. Near zero
crossings, thdractional error can be large but the absolute
error remains a small fraction of the rms. A typical case is
shown in Fig. 5.

These relations may be useful in cases where only a single
symbol is needed. However, for the lensing calculation
where the whole set is required, the recursion relations are as
efficient as the approximation and are exact.

APPENDIX C: FLAT AND ALL SKY CORRESPONDENCE
1. Harmonics

We establish here the correspondence between the all and
flat sky harmonic coefficients of spin zefscalay, spin one
(vecton, and spin twdtensoj quantities on the sky. Follow-
ing Ref. [23], let us begin by introducing the following
weighted sum over the multipole moments of the fild
=0, E, B, or ¢ for a givenl and its inverse relation:

XY= \| TS j-my gime
21+1% Im=

2|+1_m d§0| —im
Xim= ?I fze fxX(l). (Cy
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The goal is then to show that this quantity is the Fourier

coefficient of the flat-sky expansion.

PHYSICAL REVIEW D62 043007

Finally, spin-2 quantities such as the polarization are de-
composed as

Spin-0 quantities, such as the temperature flucutations and

the lensing potential, are decomposed as

X(n)= % XimY(). (o%)

For small angles around the pole, the spherical harmonics

may be approximated &s

[
Y~ 3n(16)\/5€™,

and the expansion of the plane wave

eiln= ime(Iﬁ)e‘m(‘P*‘Pl)wwzl—ﬂz imymeimer,
m m

(C3

(C4
Thus
X() =2 XY
NE j X(')Z Jn(16)imeime=en)
_d2| iln
- [ aexver s

which is the desired correspondence.

Spin-1 quantities such as the deflection angles are decom-

posed as
iX(r‘u:% Kime YT (Co)
Here one notes that
m 1 Fi H m
1Y~ =TT (g Y, (C7)

1 -
X(I)e*'“"l—(&xti(?y)e"'”

2 . -
~iif d )ti(I)et'(“P"‘P)e"‘“. (C9

!Note that our definition ofy[" differs from the usual one by

(—=1)™ to conform with the spin spherical harmonic convention

[22].

,X<ﬁ>:§ K=Y (C9
Here one notes that
m 1 F2i H 2yvM
iZYI ~|_2e (P(&Xi|&y) Y| ) (ClO)

and thus
X(n)= E +Xim=2 Y]

1 -
Nng +X(|)e+2'¢|—2(axiiay)ze"-“
|
d2

(2m)

— X()e=2e9giln (C11)
as desired.

2. Power spectra

The correspondence between power spectra then follows
from the relationship between the harmonics

(XX (1)~ 'm_m—C(l) fd¢|e'm¢'
xfdc,owe’im/“"’é(l—l’). (C12

We then expand the delta function in plane waves

5(|_|!):f(dw)2 I(| I)n

> imemy ! ymeime —im' e

%jif@w) =

(C13

Integrating over the azimuthal angles, ¢, collapses the
sum to

<X|* ’ > 5I I’ m’CI
(|) fdnYI m*Y,,
=811 Omm CLY (C14)
which proves the desired relation in E&O)
cr¥~c§y . (C15

043007-15



WAYNE HU PHYSICAL REVIEW D 62 043007

3. Bispectra with optimal weights given byV(l)= (,)/Var from which

The correspondence between bispectra is established fifte calculates the signal-to- no'@é)Z/(Pz) as
exactly the same way as with the power spectra. The only [CXX xx)z
difference is that the expansion é{I’' —1) in Eq. (C14) is = Sky 2 (l) -~

) ) d9l—,—=~2fgy IdI
replaced with that oB(l;+1,+13) leading to ar

(C20

[ A yon
KXimX/, X, )= BXX X where we have used the fact th&(t0) ~V/(272) = f /.
ImX | m’M7m 1 | Pl . . L. . 4
m m m These expressions agree in the higlimit and imply the

, , familiar result thaff ,, should multiply the signal-to-noise of
z(l)fxl)J dny, ™y, " Yl,,m angular power spectrum measurements given incomplete sky
coverage.
" ( R ( [ A K ) The bispectrum signal-to-noise similarly is
=B
(11r1m ' " BXXX )2
0O 0 O/\m m m (E)Z_ (B lI2|3) (|1 l, |3)
(2| + 1)(2' ! + 1)(2'”'{' 1) N |1|2| Val’ mlmzm3 ml m2 m3
4 ' BXXX )2
C16 > Bz c21
(C16 = ~Var (C21

11505
This establishes the relation

for the all sky bispectrum and
P R
XX' X ~< 2 ¢

S\?_fs [B{L1, 19"
(N 2 ] [ g (22
\/(2|+1 (21’ +1)(2|"+1) XXX

Biiriny - for the flat sky bispectruni5]. The extra factor of ()2
compared with the power spectrum is from the extra delta
(C17  function in the noise term. One can show that these expres-
sions agree in the highdimit by restoring the integration
moverla, expanding the delta function into spherical harmon-
ics as in Eq(C13), and integrating over azimuthal angles

e = 0 0 0

Note that we have implicitly assumed that the bispectru
only depends on the the magnitudéd (I"”) so that it may
be removed from the azimuthal integrals. This is not true for
terms not involving the magnetic parity. In this case, the sign
of the flat-sky bispectrum depends on orientation but we find j dzllf dz'zf d?l38(11+ 15+ 13)
empirically that a similar relationship holds up to a sign am-

biguity as discussed in Sec. 11 B. 2m° [ .
guy ~f|ld|1f|2d|2f|3d|3\/%f dnY? YR Y,
112'3

4. Signal-to-noise

, l, 13\
Here we establish the correspondence between the all and ~8a f 1d|1f 2d|2f 3dl3< 2 3)
flat sky signal-to-noise statistics for the case of diagonal con- 0 0 O
tributions to the covariance matrpCov=diag(Var)], (C23
S|12 o (Cf)? (C xX)2 With the general correspondence of bispectra from Eq.
N _% Var _2 (2l+1) (€18 (c17), this becomes
. . . 2 (BXXX )2
For the flat sky case, one defines a weighted sum of Fourier S l1l5l5
harmoniCS - wfsky dll d|2 d|3—, (C24)
— [ qawmxmx(=n, (C19 which prcE/es the equivalence of the signal-to-noise for high
l'andfg,=1
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