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ABSTRACT

Using deep images from the Hyper Suprime-Cam (HSC) survey and taking advantage of its

unprecedented weak lensing capabilities, we reveal a remarkably tight connection between

the stellar mass distribution of massive central galaxies and their host dark matter halo mass.

Massive galaxies with more extended stellar mass distributions tend to live in more massive

dark matter haloes. We explain this connection with a phenomenological model that assumes,

(1) a tight relation between the halo mass and the total stellar content in the halo, (2) that the

fraction of in situ and ex situ mass at r <10 kpc depends on halo mass. This model provides

an excellent description of the stellar mass functions (SMFs) of total stellar mass (Mmax
⋆ ) and

stellar mass within inner 10 kpc (M10
⋆ ) and also reproduces the HSC weak lensing signals of

massive galaxies with different stellar mass distributions. The best-fitting model shows that

halo mass varies significantly at fixed total stellar mass (as much as 0.4 dex) with a clear

dependence on M10
⋆ . Our two-parameter Mmax

⋆ –M10
⋆ description provides a more accurate

picture of the galaxy–halo connection at the high-mass end than the simple stellar–halo mass

relation (SHMR) and opens a new window to connect the assembly history of haloes with

those of central galaxies. The model also predicts that the ex situ component dominates the

mass profiles of galaxies at r < 10 kpc for log M⋆ ≥ 11.7. The code used for this paper is

available online https://github.com/dr-guangtou/asap

Key words: galaxies: elliptical and lenticular, cD – galaxies: formation – galaxies: haloes –

galaxies: photometry – galaxies: structure.

1 IN T RO D U C T I O N

During the last decade, observations and hydrodynamic simulations

have significantly furthered our understanding of the formation and

assembly of massive galaxies in the nearby Universe. The observed

mass assembly (e.g. Lundgren et al. 2014; Ownsworth et al. 2014;

Vulcani et al. 2016; also see Bundy et al. 2017) and dramatic

structural evolution (e.g. van der Wel et al. 2014; Clauwens et al.

⋆ E-mail: shuang89@ucsc.edu

2017; Hill et al. 2017) support a ‘two-phase’ formation scenario of

massive galaxies (e.g. Oser et al. 2010, 2012; Rodriguez-Gomez

et al. 2016). According to this picture, intense dissipation at high-

redshift swiftly builds up the massive, compact ‘core’ of today’s

massive galaxies (e.g. van Dokkum et al. 2008; Damjanov et al.

2009; Toft et al. 2014; van Dokkum et al. 2015; Wellons et al.

2016), including most of the in situ component: stars formed in

the main progenitor of the host dark matter halo (e.g. De Lucia &

Blaizot 2007; Genel et al. 2009). Supermassive galaxies, however,

are also expected to have a large ex situ component: stars that are

accreted from other haloes. After the quenching of star formation

C© 2019 The Author(s)

Published by Oxford University Press on behalf of the Royal Astronomical Society

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/m
n
ra

s
/a

rtic
le

-a
b
s
tra

c
t/4

9
2
/3

/3
6
8
5
/5

6
5
8
7
0
6
 b

y
 U

n
iv

e
rs

ity
 o

f A
riz

o
n
a
 H

e
a
lth

 S
c
ie

n
c
e
s
 L

ib
ra

ry
 u

s
e
r o

n
 1

0
 A

p
ril 2

0
2
0

http://orcid.org/0000-0003-1385-7591
http://orcid.org/0000-0002-3677-3617
http://orcid.org/0000-0002-2517-6446
http://orcid.org/0000-0002-6100-4852
http://orcid.org/0000-0002-5065-9896
http://orcid.org/0000-0003-3933-4756
http://orcid.org/0000-0002-8149-1352
https://github.com/dr-guangtou/asap
mailto:shuang89@ucsc.edu


3686 S. Huang et al.

in massive galaxies, (e.g. Hopkins et al. 2008; Johansson, Naab &

Ostriker 2009; Conroy, van Dokkum & Kravtsov 2015), the gradual

accumulation of the ex situ component dominates the assembly

of massive galaxies and helps build-up extended stellar envelopes

(e.g. van Dokkum et al. 2008; Bezanson et al. 2009; Huang et al.

2013; Patel et al. 2013). More importantly, these two components

should show differences in their spatial distributions as a large

fraction of the ex situ component is expected to be deposited

at large radii (e.g. Hilz, Naab & Ostriker 2013; Oogi & Habe

2013). This suggests that the stellar mass distribution of massive

galaxies contains information about their assembly history. From

a cosmological perspective, to understand the assembly of massive

galaxies is to understand how they hierarchically grow with their

dark matter haloes (e.g. Wechsler & Tinker 2018 and the references

within). Recently, the basic understanding of the stellar–halo mass

relation (SHMR) has been established using various direct and

indirect methods (e.g. Hoekstra 2007; More et al. 2011; Leauthaud

et al. 2012a; Behroozi, Wechsler & Conroy 2013b; Coupon et al.

2015; Zu & Mandelbaum 2015; van Uitert et al. 2016; Shan et al.

2017; Tinker et al. 2017; Kravtsov, Vikhlinin & Meshcheryakov

2018). At low redshift, the SHMR can be characterized by a power-

law relation at low masses, a characteristic pivot halo mass, and an

exponential rise at higher masses (Behroozi, Wechsler & Conroy

2013b; Rodrı́guez-Puebla et al. 2017; Moster, Naab & White 2018).

Constraints on the SHMR have helped us gain insight into the

galaxy–halo connection, but an in-depth picture about how the

assembly of galaxies is tied to their dark matter haloes is still

lacking. At high-mass end, the situation is particularly true (e.g.

Tinker et al. 2017; Kravtsov et al. 2018). First, challenges in

measuring the total stellar mass of massive elliptical galaxies with

extremely extended light profile (e.g. Bernardi et al. 2013, 2014,

2017; Kravtsov et al. 2018; Pillepich et al. 2018b; Huang et al.

2018c) complicate constraints of the SHMR for massive galaxies.

More importantly, this simple scaling relation does not provide the

full picture; specifically, it does not describe whether or not the

internal structure (i.e. the way in which stellar mass is distributed

in massive galaxies) is tied to the assembly history of their dark

matter haloes. At high-stellar mass (M⋆) end, the scatter of halo

mass at fixed stellar mass is of order 0.3–0.4 dex (e.g. Tinker et al.

2017). In this paper, we seek to explain how similarly massive

galaxies can live in haloes with very different mass and assembly

histories, by looking for signatures of this assembly process in

the stellar mass profiles of massive galaxies. In previous work

(Huang et al. 2018a,c, Paper I and Paper II hereafter), we map

the stellar mass distributions of massive galaxies at 0.3 ≤ z < 0.5 to

>100 kpc individually using deep images from the Hyper Suprime-

Cam (HSC; Miyazaki et al. 2012) Subaru Strategic Program (SSP,

hereafter ‘HSC survey’; Aihara et al. 2017a,b). With the help of

deep images and the redMaPPer cluster catalogue (e.g. Rozo &

Rykoff 2014; Rykoff et al. 2014), we find evidence that the surface

stellar mass density profiles (μ⋆) of massive central galaxies depend

on dark matter halo mass: centrals galaxies in more massive haloes

tend to have more extended stellar mass distributions (also see:

Charlton et al. 2017; Yoon, Im & Kim 2017) and less mass in the

inner 10 kpc (M10
⋆ ).

Here, we seek to directly confirm this dependence and char-

acterize this relation using the galaxy–galaxy weak lensing (‘g–

g lensing’) method (e.g. Mandelbaum et al. 2006a, b; Leauthaud

et al. 2012a; Coupon et al. 2015; Leauthaud et al. 2017) that probes

the dark matter halo mass distribution by measuring the coherent

shape distortion of background galaxies. Instead of relying on a

cluster catalogue, the unprecedented g–g lensing capability of the

HSC survey (e.g. Mandelbaum et al. 2018; Medezinski et al. 2018;

Miyatake et al. 2018) allows us to map the halo mass trend across

a 2D plane described by the M10
⋆ and stellar mass within the largest

aperture that is allowed by the depth of the image (Mmax
⋆ ) and build

an empirical model for galaxy–halo connection at high-mass end.

This paper is organized as follows. We briefly summarize the

sample selection and data reduction processes in Section 2. Please

refer to Paper I for more technical details. Section 3 describes

the weak lensing methodology, and the measurements of aperture

M⋆ and μ⋆ profiles are discussed in Section 4. In Section 5, we

introduce an empirical model to describe the relation between

dark matter halo mass and the distribution of stellar mass within

super massive galaxies. The results from our best-fit model are

presented in Section 6 and discussed in Section 7. Our summary

and conclusions are presented in Section 8.

We use galactic extinction corrected (Schlafly & Finkbeiner

2011) AB magnitudes (Oke & Gunn 1983). For cosmology, we

assume H0 = 70 km s−1 Mpc−1, �m = 0.3, and �� = 0.7. Stellar

mass (M⋆) is derived using a Chabrier initial mass function (IMF;

Chabrier 2003). And we use the virial mass for dark matter halo

mass (Mvir) as defined in Bryan & Norman 1998.

2 DATA AND SAMPLE SELECTI ON

2.1 SSP S16A data

In this work, we use the WIDE layer of the internal data release

S16A of the HSC SSP, an ambitious imaging survey using the new

prime focus camera on the 8.2-m Subaru telescope. These data

are reduced by HSCPIPE 4.0.2, a specially tailored version of the

Large Synoptic Survey Telescope (LSST) pipeline (e.g. Axelrod

et al. 2010; Jurić et al. 2015), modified for HSC (Bosch et al.

2017). The coadd images are ∼3–4 mag deeper than SDSS (Sloan

Digital Sky Survey; e.g. Abazajian et al. 2009; Aihara et al. 2011;

Alam et al. 2015), with a pixel scale of 0.′′ 168. The seeing in the

i band has a mean full width at half maximum (FWHM) of 0.′′58.

Please refer to Aihara et al. (2017a,b) for more details about the

survey design and the data products. The general performance

of HSCPIPE is validated using a synthetic object pipeline SYNPIPE

(e.g. Huang et al. 2018b; code available on github at this link

https://github.com/lsst/synpipe). In addition to the full-colour and

full-depth cuts, regions that are affected by bright stars are also

masked out Coupon et al. (2017). The HSC collaboration compiles

the spectroscopic redshifts (spec-z hereafter) of HSC galaxies from

a series of available spectroscopic surveys, which is the main source

of spec-z in this work. We also include additional spec-z from

the most recent data release of the Galaxy And Mass Assembly

(GAMA) survey (Driver et al. 2009, 2011; Liske et al. 2015; Baldry

et al. 2018) which significantly overlaps with HSC coverage in

their G02, G09, G12, and G15 regions and greatly improve the

spec-z completeness of our massive galaxy sample. The HSC

collaboration also provides photometric redshift (photo-z hereafter)

measurements using the point spread function (PSF)-matched five-

band fluxes within 1.′′ 5 apertures and six different algorithms. Here,

we use the spec-z sample and the photo-z measurements based on

the Flexible Regression over Associated Neighbours with Kernel

dEnsity estimatioN for Redshifts (FRANKEN-Z; Speagle et al.

2019) algorithm. Please refer to Tanaka et al. (2018) for details

about photo-z catalogues.

For our weak lensing measurements, we make use of the first-year

shear catalogue described in detail by Mandelbaum et al. (2018).

Currently, we use the re-Gaussianization algorithm (Hirata & Seljak

MNRAS 492, 3685–3707 (2020)
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Halo mass and stellar mass profiles 3687

2003) to measure galaxy shapes on i-band coadd images. Please

see Mandelbaum et al. (2017, 2018) for more details about our

shape measurements and their calibration. Our shape catalogue also

excludes a small fraction of the survey area that has a problematic

PSF model. The resulting survey area is the full-depth full-colour

region for weak lensing analysis (WLFDFC) region, which covers

∼137 deg2 in all five bands (grizy) to the required imaging depth

(5σ point source detection limit of 26.0 mag). For our g–g lensing

measurements, we also use a random catalogue that contains a half

million objects and covers the WLFDFC area (e.g. Coupon et al.

2017; Singh et al. 2017).

2.2 Sample selection

Our sample selection is very similar to Huang et al. (2018a, c; Paper I

and Paper II hereafter). We select all galaxies with iCModel < =22.0

mag and useful five-band cModel photometry in the WLFDFC

area. Instead of only using galaxies with spec-z’s however, we now

assign a best redshift (zbest) to each object: We adopt the spec-z

when it is available; for others, we use the photo-z measurements

from FRANKEN-Z as zbest. We select all galaxies within 0.19 <

zbest < 0.51, where redshift evolution is not a serious concern

and the volume is large enough (1.03 × 108 Mpc3) to ensure a

large sample of massive galaxies. The performance of FRANKEN-

Z at this redshift and magnitude range is unbiased and reliable

with respect to the training sample. The typical 1σ uncertainty

is ∼7 per cent with a median bias of about −0.3 per cent and

typical outlier fraction of 11–19 per cent in this redshift range.

Compared with the spec-zonly sample, adding in the photo-z’s

greatly improves the M⋆ completeness of our sample but does

not alter any of our key results. We perform five-band spectral

energy distribution (SED) fitting using the cModel photometry to

derive the average mass-to-light ratio (M⋆/L⋆) of galaxies and initial

estimates of M⋆ (Mcmod
⋆ ). The SED fitting procedure is identical to

the one used in Paper I. In short, we use iSEDFit (Moustakas

et al. 2013) to measure M⋆/L⋆ ratios and k-corrections, assuming

the Chabrier (2003) IMF and using the Flexible Stellar Population

Synthesis models (FSPS; v2.4; Conroy & Gunn 2010a, b). Please

refer to Paper I for more details. Based on the SED fitting results,

we select galaxies with log10(M⋆, cmodel/M⊙) > 10.8 as the initial

sample of massive galaxies. Typical uncertainty of Mcmod
⋆ is around

0.05–0.1 dex. We further measure the μ⋆ profiles of these galaxies

and aperture M⋆ within different radii (see Section 4.1).

3 G A L A X Y – G A L A X Y W E A K L E N S I N G

M E T H O D O L O G Y

Galaxy–galaxy lensing measures the coherent shape distortion of

background galaxies around foreground lens galaxies. Please refer

to Mandelbaum et al. (2018) for a detailed description of the

construction of our shear catalogue. A detailed description of our

method for computing �� is presented in Speagle et al. 2019).

Our methodology is briefly summarized below. The HSC shape

catalogue includes a per-galaxy optimal weight defined as

wi =
1

e2
rms + σ 2

e,i

, (1)

where σ e, i is the shape measurement error per source galaxy and

erms is the intrinsic shape noise.

We follow the methodology outlined in Singh et al. (2017) to

measure the excess surface mass density (hereafter ��) profiles of

lens galaxies. Using this method, we measure �� as:

��LR(r) =
�LswLsγ

(ls)
t �

(Ls)
crit

�LswLs

−
�RswRsγ

(Rs)
t �

(Rs)
crit

�RswRs

, (2)

where we use L for a real-lens galaxy and R for random point. The

superscript or subscript Ls indicates measurement for lens–source

pair, while Rs means the measurement for random-source pair. γ is

the tangential shear, w is the weight, and �crit is the critical surface

density defined as:

�crit =
c2

4πG

DA(zs)

DA(zl)DA(zl, zs)(1 + zl)2
, (3)

where DA(zL), DA(zs), and DAzL, zs are the angular diameter

distances to lens (random), source, and between them, respectively.

We use 11 radial bins uniformly spaced in log-space from 200 kpc

to 10 Mpc (physical units are assumed). The redshift distribution

of random points is matched to the lens sample. The subtraction

of signal around random positions helps remove overestimated

jackknife errors (e.g. Clampitt et al. 2017; Shirasaki et al. 2017)

and accounts for non-negligible coherent additive bias of the shear

measurements (e.g. Takada & Hu 2013). This method has been

adopted by the Dark Energy Survey (DES; e.g. Prat et al. 2017)

and the Kilo-Degree Survey (KiDS; e.g. Amon et al. 2018). We

selected source galaxies based on the following criteria. First, a

set of photo-z quality cuts are applied to the sample; these are the

basic cuts that are described in Speagle et al. 2019). For each

lens, we further require zs − zL ≥ 0.1 and zs > zL + σ s, 68, where

σ s, 68 is the 1σ confidence interval of the source photo-z. Errors are

estimated via jackknife resampling. We divide the S16A WLFDFC

footprint into 41 roughly equal-area jackknife regions with regular

shapes. In practice, the effective number of jackknife regions varies,

depending on the specific subsample of lenses. Typically NJK > 30.

The diagonal errors for �� are then estimated as:

VarJk(�̂�) =
NJk − 1

NJk

NJk∑

i=1

(��i − ��)2, (4)

where NJk is the number of jackknife regions, ��i is the �� profile

in each region, and �� is the mean profile among all jackknife

regions.

We measure the stacked �� profiles of massive galaxies using

a pure Python g–g lensing pipeline designed for the HSC survey:

dsigma (available here: https://github.com/dr-guangtou/dsigma).

Please refer to Speagle et al. 2019) for more technical details of

dsigma and the g–g lensing measurements.

4 MEASUREMENTS

4.1 μ⋆ profiles and aperture stellar masses

We measure 1D surface brightness profiles on the HSC i-band

images which typically have the best imaging conditions. We use

the Ellipse task from IRAF package after fixing the shape of

the isophote and adaptively masking out all neighbouring objects

based on their brightness and distance to the target. The 1D surface

brightness profile is based on the median flux of unmasked pixels

along each isophote after 3σ -clipping the pixels twice.1 Since we

limit the sample at z > 0.2, the angular sizes of these galaxies make

1We use projected 2D stellar mass maps from hydrosimulation to show

that our profiles are robust against the impact of unmasked flux from other

objects (Ardilla et al. in preparation).

MNRAS 492, 3685–3707 (2020)
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3688 S. Huang et al.

them less affected by the oversubtraction caused by the HSCPIPE

used in S16A reduction.2 We also model the background of the cut-

out image after aggressively masked out all pixels with detections.

We use this empirical sky model to correct the background and

make sure the flux distribution of sky pixels is centred at 0.0. These

1D profiles are robust within inner 100–150 kpc against different

systematics. Using the average M⋆/L⋆ measured from SED fitting,

we then convert these profiles into surface density profiles of stellar

mass – denoted μ⋆. Integration of the μ⋆ profiles provides us with

M⋆ within an elliptical aperture. Paper I contains more technical

details about our procedure. We can reliably derive μ⋆ profiles out

to more than 100 kpc for individual massive galaxies without being

limited by the background subtraction. On small scales, our profiles

are resolved down to ∼5–6 kpc.3 In Paper I and Paper II, we use

M⋆ within 10 kpc (M10
⋆ ) and 100 kpc (M100

⋆ ) as measures of the

inner and ‘total’ M⋆ of a galaxy. We also show that M10
⋆ can be

used as a rough proxy for the mass of the in situ component. In

this work, instead of continuing to use M100
⋆ , we choose to use

the maximum 1D stellar mass (Mmax
⋆ ) to compare with the total

stellar mass predicted by our model. This choice integrates the μ⋆

profile to the radius where the median intensity is consistent with

the standard deviation of the sky background. We have shown that

Mmax
⋆ on average adds another 0.03–0.05 dex of M⋆ compared with

M100
⋆ ; hence, this approach should bring us a little closer to the

true ‘total’ M⋆. This choice is motivated by the assumption of the

empirical model but does not change the key results of this work,

which we explain in Section 5. As was the case in Paper I, we

cannot derive 1D profiles for ∼11 per cent of massive galaxies due

to strong contamination (e.g. a bright star or foreground galaxy) or

complex inner structure (e.g. on-going major merger).4 Meanwhile,

as shown in Huang et al. (2018b), HSCPIPE tends to classify some

stars as extended objects. We find that these contaminations can be

easily picked up as outliers on the M100
⋆ –M10

⋆ plane and removed

using log (M⋆, tot/M⊙)−log10(M⋆, 10 kpc/M⊙) ≤ 0.03. In this work

we ignore the M⋆/L⋆ gradients. Based on Roediger & Courteau

(2015),5 a colour difference of �(g − i) = 0.2, which is roughly the

average g − i colour difference between 10 and 100 kpc, translates

into an M⋆/L⋆ difference of �log (M⋆/Li) ∼ 0.15. Considering that

the cModel photometry measures the average colour for the main

body of massive galaxies, we believe that the systematic uncertainty

caused by ignoring the colour gradient should smaller than this

value. Assuming a negative colour gradient, we may be slightly

underestimating M10
⋆ while slightly overestimating Mmax

⋆ . We also

want to point out that the 1D Mmax
⋆ still likely to miss a fraction of M⋆

due to the limited imaging depth and background uncertainty. Using

similarly massive galaxies from the IllustrisTNG simulation,

we find that the missing M⋆ outside 100 kpc is typically smaller

than 0.1 dex and show weak but positive correlation with stellar

mass (Ardila et al. in preparation). If this is indeed the case for

real massive galaxies, the key results here will not be affected.

Meanwhile, Sérsic model fitting or stacking analysis of these

massive galaxies sometime reveal a significant amount of missing

M⋆ outside 100 kpc (e.g. Sonnenfeld, Wang & Bahcall 2019; Zhang

2The ‘superpixel’ size for sky measurement is 128 × 128 pixels whose

half-size corresponds to ∼210 kpc at z = 0.2
31.0 arcsec corresponds to 3.2 and 6.17 kpc at z = 0.19 and 0.51,

respectively; while the mean i band seeing has FWHM = 0.′′58.
4The Mcmod

⋆ distribution of these galaxies is similar to the whole sample;

hence, excluding them should not bias our model.
5log (M⋆/Li) = 0.83 × (g − i) − 0.597 for the FSPS stellar population

model.

et al. 2019) although this depends on the validity of the model

assumption and the reliability of the stacking technique. We will

further look into this issue in future works. Our sample contains

38 653 galaxies with log10(M⋆, max/M⊙)≥11.0 at 0.19 ≤ z ≤ 0.51.

57 per cent of them have spec-z’s.

4.2 Stellar mass functions

In this work, we estimate the stellar mass function (SMF) of Mmax
⋆

(
max) in seven bins between 11.6 ≤ log10(M⋆, max/M⊙) < 12.3,

while we estimate the SMF of M10
⋆ (
10) in ten bins between 10.8

≤ log10(M⋆, 10kpc/M⊙) < 11.8. We separate the current WLFDFC

area into 30 smaller regions, and derive uncertainties via jackknife

resampling. We add a 10 per cent uncertainty to represent the

potential impact of galaxies without a useful 1D profile. We take

the uncertainty of M⋆ measurements into account by integrating the

normalized posterior distribution function (PDF) of the M⋆ of each

galaxy6 to estimate its contribution in each M⋆ bin. For a given

M⋆ bin with lower and upper boundary of Ml and Mu, the effective

number of galaxies in the bin is:

Neff =
ngal∑

i=1

1

2

[
erf

(
Mu − Mi√

2σi

)
− erf

(
Ml − Mi√

2σi

)]
, (5)

where Mi is the mean M⋆ and σ i is the uncertainty for each massive

galaxy and erf() is the error function. By comparing our results

with SMFs from the PRIsm MUlti-object Survey (PRIMUS; e.g.

Moustakas et al. 2013) at a similar redshift, we find that massive

galaxies with log10(M⋆, max/M⊙) ≥ 11.6 are a mass complete sample

and are considered in the following modelling. In total, we have

6481 and 3156 galaxies at log10(M⋆, max/M⊙) ≥ 11.5 and ≥11.6;

5756 and 2944 of them have spec-z. The Mmax
⋆ –M10

⋆ distribution

of our sample is shown in Figs 1 and 4. The SMFs of Mmax
⋆ and

M10
⋆ for the log10(M⋆, max/M⊙) ≥ 11.6 sample are shown in panel

(b) of Fig. 4. The SMFs of Mmax
⋆ and M10

⋆ are highly correlated

as M10
⋆ is included in the measurement of Mmax

⋆ . We calculate the

covariance matrix of the joint Mmax
⋆ –M10

⋆ SMF using the same

jackknife samples.

4.3 Galaxy–galaxy lensing signals across the aperture mass

plane

In Paper II (see Fig. 3), we find that massive central galaxies of

redMaPPer clusters (e.g. Rozo & Rykoff 2014; Rykoff et al. 2014)

have lower M10
⋆ than those in less massive haloes at fixed M100

⋆ ,

which suggests that the stellar mass distributions in massive central

galaxies depend on their Mvir. Therefore, we expect a gradient

of Mvir across the aperture mass plane. Our goal is to map out

this gradient directly using weak lensing and without relying on

any redMaPPer cluster catalogue. Panel (a) in Fig. 1 shows the

distribution of massive galaxies over the Mmax
⋆ –M10

⋆ plane. We

group galaxies into three sub-samples based on the ranking of

their M10
⋆ at fixed Mmax

⋆ , following a similar strategy employed

in Mao, Zentner & Wechsler (2018). As illustrated in the inset

panel, the three sub-samples share almost identical distributions

of Mmax
⋆ . Therefore, they represent massive galaxies with different

stellar mass distributions at the same ‘total’ stellar mass, as proved

by their median μ⋆ profiles (panel b of Fig. 1). Galaxies with lower

M10
⋆ have lower μ⋆ on small radial scales and have larger extended

6We assume that the PDF is described by a Gaussian distribution.
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(a) (b) (c)

Figure 1. (a) Distribution of massive galaxies on the aperture mass plane. We group massive galaxies into three subsamples based on the ranking of their

M10
⋆ at fixed Mmax

⋆ . The inset plot demonstrates that the three subsamples share similar distributions of Mmax
⋆ . (b) Median surface mass density profiles of

the subsamples visualize the differences in their stellar mass distributions. The x-axis employs an R1/4 scaling. The shaded region within ∼5 kpc highlights

the region affected by seeing. Two dashed lines label the 10 kpc (short) and 100 kpc (long) radius. (c) The stacked g–g lensing signals prove that at

fixed Mmax
⋆ , massive galaxies with lower M10

⋆ tend to live in more massive dark matter haloes. The Jupyter notebook for this figure is available here:

https://github.com/dr-guangtou/asap/blob/master/note/fig1.ipynb.

outer envelopes. The median μ⋆ profiles cross each other at ∼12–

15 kpc, close to the effective radius (Re) of these galaxies. We then

measure the stacked �� profiles of these three sub-samples using

the method described in Section 3. The results are displayed in

panel (c) of Fig. 1. It is very clear from this figure that, on average,

massive galaxies with lower M10
⋆ have higher �� signals indicating

that they live in more massive dark matter haloes. This confirms the

expected trend across the aperture mass plane that was first identified

in Paper II using broad Mvir bins from cluster catalogue. Thanks to

the impressive weak lensing capabilities of the HSC survey, we

can further group massive galaxies into bins of Mmax
⋆ and M10

⋆

and investigate the variation of their stacked �� profiles and halo

masses. The Jupyter notebook for measuring these �� profiles

can be found here: https://github.com/dr-guangtou/asap/blob/maste

r/note/hsc weak lensing.ipynb. We also make a GIF animation to

visualize this variation: https://github.com/dr-guangtou/asap/blob

/master/doc/dsig over aperture plane.gif. To account for scatter in

Mvir within each Mmax
⋆ –M10

⋆ ‘box’, the impact of satellites, and the

two-halo term, we model our lensing signals using a full forward

model based on N-body simulations and a state-of-the-art semi-

empirical model. We will group our massive galaxies into 12 bins

of aperture masses while making sure that (1) there are enough

massive galaxies in each bin so that the stacked �� profile has

good S/N; and (2) the M10
⋆ bins at fixed Mmax

⋆ represent massive

galaxies with different stellar mass in the inner region. We explain

the details of the model in Section 5.

5 M O D E L L I N G TH E MV I R – M
max
⋆

– M
10
⋆

RELAT I ON

5.1 Goals of the Model

Our goal is to construct a model that connects the hierarchical

growth of dark matter haloes to the assembly and structure of

high-mass central galaxies. Ideally, we could directly compare

with predictions from cosmological hydrodynamical simulation,

such as Illustris (e.g. Genel et al. 2014; Vogelsberger et al.

2014) or EAGLE (e.g. Crain et al. 2015; Schaye et al. 2015) that

are being used to study the evolution of massive galaxies (e.g.

Rodriguez-Gomez et al. 2016; Wellons et al. 2016; Qu et al. 2017);

or with the high-resolution zoom-in hydrosimulation of galaxy

groups or clusters, such as Rhapsody-G (e.g. Hahn et al. 2017),

Hydrangea (e.g. Bahé et al. 2017), and FABLE (e.g. Henden

et al. 2018) simulations, which can better capture the impact

of important physical process like the AGN feedback. However,

current hydrosimulations typically lack of the volume or sample

size to statistically study galaxies at the high-Mvir end. In addition,

we also want a model with the flexibility (free parameters) to fit

the actual observations. An alternative approach would be to use a

semi-analytic model (SAM) based on dark matter simulations and

approximate physical recipes (e.g. White & Frenk 1991; Benson &

Bower 2010; Guo et al. 2011; Henriques et al. 2015; Somerville,

Popping & Trager 2015; Croton et al. 2016) could be another

approach. However, while recent progress has been made in this

area, fitting the large numbers of parameters that a SAM typically

uses is still non-trivial (e.g. Lu et al. 2011; Benson 2014, 2017). For

these reasons, we base our formalism on the recently developed

semi-empirical model approach (e.g. Becker 2015; Rodrı́guez-

Puebla et al. 2017; Behroozi et al. 2019; Moster et al. 2018). This

new methodology makes rather minimal a priori assumptions about

the galaxy–halo connection, and is constrained by observations at

different redshifts (stellar mass growth, star-formation history, and

clustering properties of galaxies across a wide range of halo masses

and redshifts). This results in a model that can predict the properties

of individual galaxies and how they connect with the full assembly

history of their dark matter haloes.

5.2 Simulations and UniverseMachine framework

UniverseMachine (Behroozi et al. 2019; code available here:ht

tps://bitbucket.org/pbehroozi/universemachine) is a massively par-

allel implementation of a semi-empirical modelling method. It is

capable of reproducing key observations (e.g. SMFs, star formation

MNRAS 492, 3685–3707 (2020)
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rates, and quenched fractions) over a large range of stellar masses

and redshifts. For a given halo from a cosmological simulation,

UniverseMachine parametrizes its star formation rate (SFR)

as a function of halo mass, halo accretion rate, and redshift.

UniverseMachine exploits the Markov Chain Monte Carlo

(MCMC) Bayesian method to compare results with a series of

compiled observations. The UniverseMachine model we use

here is based on the Small MultiDark Planck (SMDPL) simulation,

which is part of the MultiDark simulation series using a Planck

cosmology. It has a 400 Mpc h−1 simulation box size and uses

38403 particles. The dark matter mass resolution is 108 M⊙ h−1.

The volume of the SMDPL simulation is two times larger than

the volume from which our HSC sample at 0.19 ≤ z ≤ 0.51 is

drawn from. Dark matter subhalo properties are extracted using

the Rockstar (Behroozi, Wechsler & Wu 2013a) halo finder

with merger trees generated by the Consistent Trees code.

Halo mass is defined as the mass within the virial radius (Mvir)

using the formula from Bryan & Norman (1998). For satellite

galaxies, we will also use their peak Mvir over their accretion

history (Mpeak). Here we use the snapshot at z ∼ 0.37, which is

very close to the mean redshift of our sample (z ∼ 0.32). The

fiducial UniverseMachine model predicts a ‘galaxy mass’

and an ‘ICL’ mass. During mergers, a fraction of stars from the

incoming satellite become unbound by the gravitational well of the

galaxy and are added to the ‘ICL’ component. Although there is

evidence for an unbound diffuse stellar component around nearby

massive galaxies (e.g. Kelson et al. 2002; Bender et al. 2015;

Longobardi et al. 2015), the main motivation of this approach is

to make sure the SMF matches observational constraints at low

redshift, otherwise UniverseMachine overproduce the SMF at

the high-M⋆ end (Behroozi et al. 2019). However, as we showed

in Paper I, it is extremely difficult to photometrically separate

out a physically meaningful ‘ICL’ component. More importantly,

the ICL component is also an integrated part of the assembly

history of massive galaxies and should be taken into account when

studying their galaxy–halo connection. Therefore, instead of using

the ‘galaxy’ and ‘ICL’ separation, we use a specially tailored Uni-

verseMachinemodel that provides a more physically motivated

decomposition of stars in massive galaxies: for each galaxy, our

UniverseMachinemodel will predict the mass of the in situ and

ex situ components (M ins
⋆ and Mexs

⋆ ). As mentioned earlier, these are

stars formed inside and outside the main progenitor of the sub-halo.

For each galaxy, the stellar mass of the galaxy (M
gal
⋆ ) is simply the

sum of M ins
⋆ and Mexs

⋆ . The stellar mass of the central galaxy in a

halo is denoted as Mcen
⋆ . For each halo, we also calculate the total

stellar mass within the halo (Mall
⋆ ) meaning the sum of stellar mass

of the central and all satellites. These stellar mass definitions are

given in Table 1.

5.3 ASAP model

In this section, we explain the design and key assumptions behind

our empirical model, which we call the ASAP7 model. Constrained

by the observed SMFs of different aperture masses and �� profiles

across the aperture mass plane, the ASAP model will connect Mvir,

M ins
⋆ , and Mexs

⋆ to the observed stellar mass distributions among

massive galaxies. The ASAP model is based on the following two

key ingredients:

7An initialism for Alexie Leauthaud, Song Huang, Andrew Hearin, and

Peter Behroozi, the first names of the main contributors.

(i) There is a tight log–log linear relation between halo mass and

the total stellar mass within the halo (TSHMR) at the high-Mvir end

(Bradshaw et al. 2019).

(ii) The UniverseMachine model provides in situ and ex

situ components – we add a prescription to describe the spatial

distributions of these components.

5.3.1 Total stellar–halo mass relation (TSHMR)

The SHMR is the relation between halo mass and central galaxy

mass. Whereas the slope of the SHMR varies with Mvir and the

scatter of Mvir at fixed M⋆ is large at the high-M⋆ end, recent

hydrosimulations (e.g. Pillepich et al. 2018a) and semi-empirical

models (e.g. Behroozi et al. 2019; Bradshaw et al. 2019) suggest

that the TSHMR follows the simple tight, log–linear correlation with

Mvir (at least at the high-Mvir end).8 Motivated by this, we place the

TSHMR at the core of our approach. The SHMR then emerges

as a consequence of the TSHMR and the assembly histories of

haloes (e.g. Bradshaw et al. 2019). We assume a log–linear relation

between the mass of the host dark matter halo (Mvir) and the total

stellar mass within the halo (including the central galaxy, satellites

from all sub-haloes, and the ICL component; Mall
⋆ ). The TSHMR

used in the ASAP model is described as:

logMall
⋆ = a × (log Mvir − 13.5) + b. (6)

The slope (a) and intercept (b) are free parameters in our model. We

adopt a pivot Mvir of log10(Mvir/M⊙)=13.5 in all log –linear scaling

relations involving halo mass to reduce the degeneracy between the

slope and intercept. The exact value of this pivot mass does not

impact our results. The scatter in this relation is also modelled as a

simple log–linear relation:

σlogMall
⋆

= c × (log Mvir − 13.5) + d, (7)

where c and d are two additional parameters. Here d is the σlogMall
⋆

at

log Mvir = 13.5. We also choose a hard-coded lower limit of scatter

at σlogMall
⋆

= 0.01 to avoid the non-physical negative scatter value

made possible by the priors of c and d. We will discuss this choice

further in the following section. The above relations determine the

total amount of M⋆ in each ‘parent’ halo in the ASAP model. We

should point out that, when comparing to observations, the scatter

should be a combination of the intrinsic scatter of the TSHMR

and the measurement errors of observed stellar mass and weak

lensing profiles. We will discuss the scatter of TSHMR further in

Section 6.3.1. So far, our model has simply ‘pasted’ Mall
⋆ values on

haloes in our simulations. The information that we adopt from the

UniverseMachine is the following. The UniverseMachine

model tells us, for a given Mall
⋆ , how mass is divided up among

galaxies. For every galaxy, we compute δgal≡M
gal
⋆ /Mall

⋆ . At this

stage, we also forward model uncertainties associated with stellar

mass measurements Thus, each galaxy in our mock catalogue is

assigned a mass following:

logM⋆,gal ∼ N (log(Mall
⋆ × δgal), σlogMall

⋆
), (8)

where N (μ, σ ) is a normal distribution with mean value of

μ and standard deviation of σ . We apply this model to both

8In observations, the total Ks-band luminosity or stellar mass in galaxy

groups and clusters also show tight, log–linear relation with halo mass (e.g.

Lin & Mohr 2004; Leauthaud et al. 2012b; Budzynski et al. 2014; van der

Burg et al. 2014; Patel et al. 2015; Ziparo et al. 2016; Kravtsov et al. 2018).
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Table 1. Definitions of halo masses and stellar masses used in this work. Rows with different colours are used to separate the masses defined in observations

(blue), in (SMDPL) dark matter simulation (orange), in the UniverseMachine model predictions (green), and in the Accelerated SAP (ASAP) model

developed in this work (red). Notation with calligraphic letters is used to denote the ASAP model predictions.

centrals and satellite galaxies. Massive satellites are included in

our forward modelling process because we do not attempt to

distinguish centrals and satellites in our HSC sample.9 The reason

we choose this approach instead of directly comparing with the

UniverseMachine model predictions (e.g. Mall
⋆ or Mcen

⋆ ) is

that the currentUniverseMachinemodel does not reproduce the

HSC SMFs for massive galaxies well. The UniverseMachine

‘galaxy’ underestimates the SMF at high-M⋆ end when compared

to HSC since it is tuned to match the SMFs from Muzzin et al.

(2013) that contain larger numbers of massive galaxies but do not

capture the light in the outskirt of low-z massive galaxies (see

Behroozi et al. 2019). However, if we combine the ‘galaxy’ and

the ‘intrahalo light’ (IHL) components, the total mass significantly

overpredicts the HSC SMFs instead. Therefore, we assume that the

halo and stellar mass assembly in the UniverseMachine model

can still correctly capture the relative mass contribution of each

galaxy in the halo. In the near future, we will try to incorporate

9Uncertainties of photometric redshifts make it difficult to accurately

separate centrals and satellites. Meanwhile, the satellite fraction at

log10(M⋆, max/M⊙) ≥ 11.5 is less than <10 per cent; see Sallaberry et al.

(in preparation).

the HSC SMFs into the observational constraints of Universe

Machine.

5.3.2 Spatial distributions of in situ and ex situ stars

For every galaxy, the second ingredient that we inherit from

the UniverseMachine is the fraction of in situ and ex situ

component (δins and δexs). We now model the observed aperture

masses, M10
⋆ and Mmax

⋆ , via a prescription that describes the spatial

distributions of in situ and ex situ stars. First, we assume the

observed Mmax
⋆ is a good proxy for the ‘total’ stellar mass of the

galaxy:

Mmax
⋆ = Mins

⋆ + Mexs
⋆ . (9)

Next, we predict M10
⋆ using two assumptions. First, we assume that

a fixed fraction of the in situ component is within the inner 10 kpc

of the galaxy:

Min, 10
⋆ = fins × Mins

⋆ . (10)

Secondly, we assume that the fraction of ex situ stars within 10 kpc

depends on halo mass:

Mex, 10
⋆ = fexs × Mexs

⋆ , (11)

MNRAS 492, 3685–3707 (2020)
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where the relation between the fraction and halo mass is described

by:

fexs = Aexs × (log Mvir − 13.5) + Bexs. (12)

Given these two assumptions, the predicted 10 kpc aperture mass

is then: M10
⋆ =Min,10

⋆ + Mex,10
⋆ . To model M10

⋆ therefore requires

three extra free parameters: fins, Aexs, and Bexs. These assumptions

are made to ensure a simple model with a small number of free

parameters. Meanwhile, they are also partially motivated by the

relationships for massive galaxies in the IllustrisTNG simulation

(Chowdhury et al. in preparation).

For satellite galaxies, we use Mpeak instead of Mvir. However,

because the fraction of satellite galaxies that are massive enough

to be included in our sample is very low at the high-stellar mass

end (Bradshaw et al. in preparation), this choice has no impact on

our results. As the scatter of the TSHMR is designed to carry both

intrinsic scatter and measurement uncertainties of stellar mass, the

predicted M10
⋆ and MMax

⋆ will be described by normal distributions

with the same scatter.

In total, our model has seven free parameters: two for the

TSHMR; two for the scatter of the TSHMR; and three for the

fraction of in situ and ex situ stars within 10 kpc. Fig. 2 is a

visualization of our model.

5.3.3 Predictions for the SMFs and �� profiles

We predict the SMFs of M10
⋆ and MMax

⋆ using the same method

and in the same stellar mass bins for the observed SMFs. Uncer-

tainty in stellar mass measurements is accounted for according to

equation (7). When comparing the predicted and observed SMFs,

we jointly constrain the 
max and 
10 (referred to as 
obs) by

taking the measured covariance matrix (Cobs) into account. The

log-likelihood for SMF is:

lnLSMF = −
1

2
[
mod − 
obs]

T C−1
obs[
mod − 
obs] + K, (13)

where 
mod is the predicted SMFs for M10
⋆ and MMax

⋆ aligned in

the same order with the observed SMFs. K is a constant described

by − 1
2
[ln(2π )N + ln(det(Cobs))] and N = 17, which is the total

number of mass bins.

The lensing observable, ��, is computed directly from the

simulation using 50 million randomly selected dark matter particles

and the mock observables.delta sigma function in the

halotools (Hearin et al. 2017). We predict the weighted-

mean �� profiles in the same 12 aperture mass bins used for

observation for comparison after considering the uncertainties of

the predicted M10
⋆ and MMax

⋆ into the weight. Our method accounts

for the effects of scatter, the finite width of our bins, satellite

galaxies, and the two-halo term. We ignore the contribution of M⋆

to �� because it is negligible on the scales that we consider

(r > 200 kpc).

The log-likelihood for comparing �� profiles is described as:

lnL��j
= −

1

2

n∑

i

(��mod,i − ��obs,i)
2

σ 2
i

+
n∑

i

ln(2πσ 2
i ), (14)

where the sum over i is for n = 11 radius bins of each �� profile

and σ i is the associated observational uncertainty derived using a

jackknife resampling method.

6 R ESULTS

6.1 Fitting our model to the data

Finally, we combine the likelihood for SMF and �� profiles for

the model:

lnLtot = lnLSMF +
m∑

j

lnL��j
. (15)

The sum over j is for the m = 12 aperture mass bins. To sample

the posterior distributions of model parameters, we choose to use

the affine invariant MCMC ensemble sampler EMCEE (Foreman-

Mackey et al. 2013). We use an ensemble of 256 walkers.

Following the strategy of the SED fitting code prospector

(Leja et al. 2017; Johnson et al. in preparation), we separate the

burn-in stage into three separated rounds, each with 150 steps.

We reinitialize the walkers at the end of each round using the

current best position of the ensemble and the covariance matrix

measured using positions of 50 per cent walkers. This method

can effectively remove stalled walkers and helps the chains to

converge. It also help us start the sampling chains from regions

close to the highest probability position. We sample 9000 steps

in this final run and use the Kullback–Leibler divergence (K–

L divergence) to empirically check the convergence of sampling

chains every 100 steps. Following a similar procedure used in SED

fitting tool prospector, we set the K–L divergence threshold

at 0.018. We exclude the first 1000 steps and use the rest samples

to form the final posterior distributions. According to the EMCEE

document on the convergence and autocorrelation time (τ ), one

needs to sample at least 50 × τ steps to secure a fully converged

chain. We should note that the current chains of our model

have not met this strict standard yet.10 However, we exam the

results from sampling runs with 3000 and 5000 steps, and find

they are fully consistent with the one reported here. We also

experiment with different ‘moves’ for the walker other than the

default ‘stretch’ move provided by the updated version of EMCEE

and also find consistent results. Therefore, we have reasons to

believe that the model result presented here is stable and robust. The

convergence analysis of our model can be found here: https://gith

ub.com/dr-guangtou/asap/blob/master/note/convergence.ipynb and

the trace plot of the final model is available here: https://gith

ub.com/dr-guangtou/asap/blob/master/note/fig3 default.ipynb. We

choose weakly informative priors for the seven parameters in our

model. For the slopes of all the log–linear scaling relations in our

model (a, c, and Aexs), we adopt the Student-t distribution with

one degree of freedom as the priors to ensure the distribution

of angle between the linear relation and the x-axis is sampled

uniformly (e.g. Dose 2003; Sharma 2017). For other parameters

(b, d, fins, and Bexs), we choose simple top-hat distributions with

reasonable boundaries. For instance, the upper limit for in situ

stars within inner 10 kpc is naturally 1.0. We summarize the

prior distributions of all seven parameters in the upper-right table

of Fig. 3. Different choices of prior distributions (e.g. top-hat

distributions for all parameters) does not alter key conclusions of

this work.

10As we will show later, the current UniverseMachine output and

model assumption present us from meaningfully constraining the parameters

regarding the scatter of the TSHMR (c and d). This may affect the

convergence of the final sampling chain.
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Figure 2. Flowchart for the basic design of the ASAP model. The UniverseMachine predictions adopted in this model are highlighted on the right. These

correspond to: Mpeak – the peak halo mass; δgal – the ratio between the stellar mass of a galaxy (M
gal
⋆ ), and the total stellar mass within the halo (Mall

⋆ ); also

the fraction of in situ (δins) and ex situ (δexs) components in the M⋆ of each galaxy. The seven free model parameters are labelled on the bottom: a and b

describe a log–log linear relation between Mpeak and Mall
⋆ ; c and d describe a linear relation between the scatter of Mall

⋆ and Mpeak. These four parameters,

along with the δgal fraction predicted by UniverseMachine, provide predictions of the stellar mass of each galaxy (M
gal
⋆ ) that will be compared with

the observed Mmax
⋆ . The stellar mass of in situ and ex situ components (Mexs

⋆ and Mexs
⋆ ) are estimated using M

gal
⋆ , δins, and δexs. The predicted stellar

mass in 10 kpc (M10
⋆ ) requires another three free parameters; fins describes the fraction of in situ stars located within the inner 10 kpc, and the fraction of

ex situ stars in 10 kpc follows a linear relation with log10Mpeak that is characterized by Ains and Bexs. A keynote version of this flowchart is available here:

https://github.com/dr-guangtou/asap/blob/master/doc/flowchart.key.

6.2 Performance of the best-fitting model

Here, we summarize the key results from our best-fitting model.

Fig. 3 presents the best-fitting parameters along with their

68 per cent confidence intervals. We show the two-dimensional

marginalized probability densities of these parameters and the

histograms of their marginalized posterior distributions using corner

plots.11 The parameters are well-constrained. The correlations

between a and b, also between Aexs and Bexs, are expected. As

shown in Fig. 4, the best-fitting model is capable of reproducing

the observations, including the SMFs for both MMax
⋆ and M10

⋆ ,

and the �� profiles in different aperture mass bins. The predicted

SMFs of M10
⋆ and MMax

⋆ are consistent with the observed galaxies

at log10(M⋆, max/M⊙) > 11.6 within uncertainties. And the predicted

SMF of MMax
⋆ is also consistent with the SMF from the PRIMUS

survey at similar redshift range (Moustakas et al. 2013) down to

log10(M⋆, max/M⊙)∼11.2 where no observations are included. As for

the �� profiles, the overall goodness-of-fit is excellent, although

small mismatches can be found at >1 Mpc in a few aperture mass

bins (e.g. bin 1, 2, and 12).

11Made by corner.py: https://corner.readthedocs.io/en/latest/.

6.3 Best-fitting TSMR and SHMR

6.3.1 TSHMR

From the best-fitting model, we have the TSHMR:

logMall
⋆ = 0.589+0.002

−0.002 × (log Mvir − 13.5) + 11.844+0.002
−0.001. (16)

We show the distribution of central galaxies on the Mvir–M
all
⋆ plane

and the median TSHMR in panel (a) of Fig. 5. Fig. 5 also compares

the best-fitting TSHMR with other observational constraints of

groups and clusters at similar redshifts. Leauthaud et al. (2012b)

constrain the TSHMR of groups in the COSMOS field at 0.22 < z

< 0.48. Budzynski et al. (2014) derive the TSHMR for a large

sample of low-redshift SDSS groups and clusters using optical

richness. Patel et al. (2015) estimate the TSHMR for X-ray groups

(M200c < 1013.5 M⊙) in the Chandra Deep Field South (CDF-S)

field. The slope of our TSHMR (0.602 ± 0.005) is shallower than

some previous estimates (e.g. 0.89 ± 0.14 in Budzynski et al.

2014; 0.84 ± 0.10 in Patel et al. 2015; also see Giodini et al.

2009; Lin et al. 2012; van der Burg et al. 2014), but once we

convert different TSHMRs into h = 0.7 with the Chabrier IMF, the

overall agreement is good. And Kravtsov et al. (2018) measure the

TSHMR for 21 massive z ∼ 0 clusters using X-ray observations and

MNRAS 492, 3685–3707 (2020)
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Figure 3. Corner plot for the posterior probability distributions of parameters in the model. The contour levels describe 16 per cent, 50 per cent, and 84 per cent,

enclosed probability regions. On each histogram, the three dash lines highlight the mean value and the 1σ range of the distribution. The explanations, ranges of

uniform priors, and the best-fitting values along with their uncertainties are highlighted in the upper-right table. The colours separate parameters into three groups

as indicated in the flowchart. TheJupyter notebook for this figure is available here: https://github.com/dr-guangtou/asap/blob/master/note/fig3 default.ipynb.

improved photometric models of massive brightest cluster galaxies

(BCGs). The slope of the TSHMR using M500c (0.59 ± 0.08) is

in good agreement with the result presented here. Our TSHMR

is constrained by the deepest imaging data set for a large sample

of massive galaxies and high signal-to-noise g–g lensing measure-

ments. The best-fitting relation is consistent with other observational

constraint down to log10Mvir ≥ 12.5, which extends below the halo

mass range probed by the observed massive galaxies. Meanwhile,

we notice that the best-fitting d suggests that there is no scatter of

TSHMR at log10Mvir ≥ 13.5. This is clearly unphysical. It indicates

that our current model cannot constrain the scatter of TSHMR. In

this work, we assume the TSHMR is a more fundamental relation

and should have smaller scatter than the SHMR for central galaxies.

Several previous works support this assumption and report a very

tight TSHMR (scatter <0.1 dex; e.g. van der Burg et al. 2014;

Patel et al. 2015; Kravtsov et al. 2018). Meanwhile, we do not

directly constrain the scatter of TSHMR but rely on the dark matter

simulation and the UniverseMachinemodel to recover it based

on the scatter of the observationally constrained SHMR. In this

framework, the scatter of the observed SHMR should contain two

parts: (1) the scatter of TSHMR (scatter of Mall
⋆ at fixed Mvir) and

(2) the scatter of Mcen
⋆ at fixed Mall

⋆ . However, the current version of

UniverseMachine displayed a very large scatter for the second

part at z∼ 0.4 (please see Appendix A for details). Such scatter alone

is already comparable or even larger than the observed scatter of

SHMR, leaving no space to constrain the scatter of TSHMR. There

are two possible explanations: (1) we underestimate the scatter of

SMHR or (2) the UniverseMachine model overpredicts the

MNRAS 492, 3685–3707 (2020)
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(a)

(c)

(b)

Figure 4. Performance of the best-fitting model. (a) Comparison between the distributions of observed HSC galaxies (open red contour) and modelled

galaxies (solid blue contour) over the Mmax
⋆ –M10

⋆ plane. Both observed and modelled galaxies with log10(M⋆, max/M⊙) ≥ 11.6 are grouped into the same 12

bins using Mmax
⋆ and M10

⋆ values to compare the g–g lensing signals within each bin. (b) Comparisons of observed (dots and shaded regions) and modelled

SMFs (solid lines) for Mmax
⋆ (blue) and M10

⋆ (red). We also overplot the SMF from the PRIMUS survey at similar redshift to show the shape of SMF at

lower M⋆. (c) Comparisons of g–g lensing signals in each Mmax
⋆ –M10

⋆ bin. The bin number and the mass range of Mmax
⋆ and M10

⋆ of each bin is given in

the lower-left corner of each subplot. The observed g–g lensing signals are shown as red points, while the blue lines show the modelled lensing signal. The

weak lensing signal from Bin = 1 (bottom-left plot) is shown in each subplot as a green dashed line to highlight the evolution of �� amplitudes across

various bins. The median Mvir in each bin is shown in the upper-right corner of each subplot. The Jupyter notebook for this figure is available here:

https://github.com/dr-guangtou/asap/blob/master/note/fig4.ipynb.
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(a) (b)

Figure 5. (a) Comparison between the TSHMR from our model and other work. The background density plots show the distributions of modelled galaxies

where the colour indicates the number density of galaxies. TSHMR from literature includes Leauthaud et al. 2012b (dashed grey line), Budzynski et al. 2014

(dashed purple line), Patel et al. 2015 (solid green line), and Kravtsov et al. 2018 (dashed teal line). Our median TSHMR is highlighted by grey circles. (b)

Comparison between the SHMR of central galaxies from our best-fitting model and recently published SHMRs at similar redshifts, including Rodrı́guez-Puebla

et al. (2017) (dot-dashed green line), Tinker et al. (2017) (dot-dashed brown line), Moster et al. (2018) (dashed purple line), and Kravtsov et al. (2018) (solid

pink line). For the median SHMR: the grey circles show the median Mmax
⋆ at different Mmax

⋆ bins while the grey triangles show the median Mvir at fixed Mmax
⋆ .

Error bars indicate the scatter of Mmax
⋆ or Mvir within the bin. All comparisons are under the same fiducial assumptions of h-factor h = 0.7, Chabrier IMF, and

FSPS stellar population models. The Jupyter notebook for this figure is available here: https://github.com/dr-guangtou/asap/blob/master/note/fig5.ipynb.

scatter of Mcen
⋆ at fixed Mall

⋆ . The first explanation is possible since

we only have a handful of galaxy–galaxy lensing profiles at the

high-Mcen
⋆ end to constrain the SHMR. But this is unlikely. As

we will show in the next section, the scatter of the ‘best-fitting’

SHMR is comparable to many recent constraints based on very

different data or modelling approaches. We see no evidence that we

underestimate the scatter of SHMR at the high-Mvir end. Therefore,

we think the fact we failed to constrain the scatter of TSHMR hints

an issue with the current UniverseMachine model. Fig. A1

shows that the scatter of δCen (or Mcen
⋆ ) significantly increase with

decreasing Mall
⋆ (or Mvir). Such scatter is clearly large enough

to fully account for the scatter of SHMR. At the same time, it

suggests that the UniverseMachine output now contains a

population of massive central galaxies (log10(M⋆/M⊙) > 11.5) living

in relative less massive dark matter haloes (e.g. log10Mvir ∼ 13.0)

that completely dominate the M⋆ budget of the halo (δCen > 0.8).

We think this is not likely to be real and reflect a limitation of the

current UniverseMachine model. It may relate to the artificial

disruption of small haloes in N-body simulations due to limited

resolution (e.g. van den Bosch et al. 2018; van den Bosch & Ogiya

2018) and how does UniverseMachine handles the disruption

of satellite galaxies in massive haloes, but such discussion is beyond

the scope of this work. We will investigate this further and iterate

with future versions of the UniverseMachine model.

6.3.2 SHMR

Fig. 5(b) displays the number density distribution of model galaxies

(indicated by colour) over the Mvir–Mmax
⋆ plane. As discussed in

Tinker et al. (2017) and Rodrı́guez-Puebla et al. (2017), the relations

of 〈M⋆〉Mvir
(SHMR described by the mean Mmax

⋆ at fixed Mvir; grey

circles) and 〈Mvir〉M⋆
(SHMR using the mean Mvir in bins of Mmax

⋆ ;

grey triangles) have different slopes and scatters. Therefore we

show these two relations separately. A log-linear fit for 〈M⋆〉Mvir
at

log Mvir ≥ 13.0 yields:

log Mmax
⋆ = 0.36 ± 0.01 × (log Mvir − 13.27) + 11.38 ± 0.02

(17)

with a scatter of σlog Mvir
= 0.23 ± 0.01. The best-fitting log–linear

relation for 〈Mvir〉M⋆
at log Mmax

⋆ ≥ 11.5 is:

log Mvir = 2.49 ± 0.02 × (log Mmax
⋆ − 11.6) + 13.39 ± 0.02

(18)

with a scatter of σlog Mmax
⋆

= 0.22 ± 0.01. We compare our results

with recent constraints of SHMR in the form of 〈M⋆〉Mvir
.12 Tinker

et al. (2017) estimate the SHMR for massive (log M⋆ ≥ 11.4)

CMASS galaxies (e.g, Dawson et al. 2013) at 0.4 < z < 0.7 using

clustering measurements. The SHMR from Kravtsov et al. (2018)

shown here is from an abundance matching method based on the

SMFs from Bernardi et al. (2013). It is worth noting that the M⋆

used in above works are based on different images and photometric

methods. For instance, M⋆ in Kravtsov et al. (2018) are based on

extrapolating profiles of massive galaxies to infinity, therefore they

are expected to be larger than the equivalent Mmax
⋆ measurements.

The impact of different choices of photometry on the slope and

scatter of SHMR will be investigated more carefully in the near

12All SHMR have also been converted to h = 0.7, Virial halo mass and the

Chabrier IMF.
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future (Huang et al. in preparation). The SHMRs of Rodrı́guez-

Puebla et al. (2017) and Moster et al. (2018) are from two new

semi-empirical models that are similar to the UniverseMachine

in methodology. Recent empirical models (e.g. Rodrı́guez-Puebla

et al. 2017; Moster et al. 2018; Behroozi et al. 2019 have adopted

the improved z ∼ 0 SMF from Bernardi et al. 2013) which uses a

better background subtraction. This approach could lead to better

agreement with our result using deep HSC images than earlier

models that are constrained by local SMFs that underestimate the

masses of massive galaxies (e.g. Behroozi et al. 2013b). Scatter

in the SHMR includes an intrinsic component and uncertainties

of stellar mass measurements. Our results agree well with recent

constraints when described by σlog M⋆
at fixed Mvir. Tinker et al.

(2017) find σlog M⋆
= 0.18+0.01

−0.02 at log M⋆ ≥ 11.4. The Emerge

model by Moster et al. (2018) shows a scatter of σlog M⋆
= 0.16

at high masses. In Kravtsov et al. (2018), the authors explicitly

measured a scatter of 0.17 ± 0.03 dex for M⋆, BCG at fixed M500c

using 21 clusters. Along with other recent work (e.g. Reddick et al.

2013; Zu & Mandelbaum 2016), these estimates leave little room

for intrinsic scatter in the high-mass SHMR (σ intr
log M⋆

< 0.16). In

Gu, Conroy & Behroozi (2016), the authors used a simple toy

model based on N-body simulation to show that a similar amount of

scatter (∼0.2 dex) can naturally emerge from the complex merging

history of massive haloes thanks to the central limit theorem.

Under our model assumptions, the scatter of SHMR consists of

both the scatter of the TSHMR and the scatter of δCen at fixed

Mall
⋆ . Both of these components should reflect certain aspects of the

halo and stellar mass assembly history. Unfortunately, the current

UniverseMachine model and HSC observations do not enable

us to look into the scatter of TSHMR and the scatter of δCen at fixed

Mall
⋆ (or Mvir) completely dominates the scatter of SHMR. We will

further look into the issues about scatters of TSHMR and SHMR

using alternative models and new observations.

6.4 Variations of Mvir across the M
max
⋆

–M
10
⋆

plane

The main goal of our model is to evaluate the Mmax
⋆ –M10

⋆ –Mvir

relation. Fig. 6 displays variations in Mvir across the aperture mass

plane (A 3D interactive visualization is here: https://plot.ly/∼shuan

g89/1/). This trend is strongly constrained by the �� profiles in

different aperture mass bins. The variation is also consistent with

the intuition we initially gained from Fig. 4. The amplitude of ��

increases with Mmax
⋆ but also decreases with M10

⋆ at fixed Mmax
⋆ . This

indicates higher Mvir for massive galaxies with more extended stellar

envelopes. The median Mvir in each Mmax
⋆ –M10

⋆ bin is shown on the

upper-right corner of each subplot of panel (c) in Fig. 4. Typically,

the range of Mvir across the three bins with similar Mmax
⋆ is about

0.15–0.20 dex. But, as shown in panel (a) of Fig. 4, this is caused

by the choices of M10
⋆ bins at fixed Mmax

⋆ : although they cover very

different ranges of M10
⋆ , the mean M10

⋆ values for the three bins are

not very different due to the distribution of massive galaxies. Right

now the choice of mass bins is limited by the required number of

galaxies to ensure sufficient S/N of the �� profile and uncertainties

of stellar mass measurements (∼0.1 dex). This is not ideal for direct

measurement of ‘local’ Mvir across the aperture mass plane and is

precisely why we choose to use the forward modelling approach by

simultaneously considering twelve �� profiles and two SMFs so

that we can still use the best-fitting model to explore the Mvir trend

in more detail. The iso-Mvir curves on Fig. 6 run almost parallel to

the Mmax
⋆ –M10

⋆ relation, resulting in a considerable range of Mvir

(>0.7 dex) in the vertical direction at fixed Mmax
⋆ . This range is not

surprising, however, given the range of Mvir seen on the SHMR at

fixed Mmax
⋆ (e.g. see Fig. 5; also see fig. 9 in Tinker et al. 2017).

One of the main results of this work is that the structural details of

the surface density profiles of massive galaxies contain significant

additional information about their dark matter haloes. Combining

the Mmax
⋆ with other structural information (e.g. M10

⋆ ), we can obtain

a better proxy of Mvir. In other terms, the scatter in Mvir in greatly

reduced in the aperture mass plane compared to the SHMR. Fig. 7

displays the scatter of Mvir (σlog Mvir
) across the aperture mass plane.

Among regions occupied by most massive galaxies (indicated by

the contours), the typical scatter is only of order 0.15 dex.

Fig. 7 suggests that the combination of Mmax
⋆ –M10

⋆ predicts

Mvir better than Mmax
⋆ alone. For instance, a simple random forest

regressor13 can provide an accurate description of the Mmax
⋆ –M10

⋆ –

Mvir 3D space and can be used to predict Mvir (see Appendix B).

However, with random forest there is a risk of overfitting, and

the results are not intuitive. We therefore also fit the Mmax
⋆ –M10

⋆ –

Mvir plane using the robust linear regression algorithm LtsFit

(Cappellari 2014). The best-fitting relation is:

log Mvir = 3.26 ± 0.02 × (log Mmax
⋆ − 11.72)

− 2.46 ± 0.03 × (log M10
⋆ − 11.34) + 13.69 ± 0.01

(19)

with a scatter of σ log Mvir = 0.16 ± 0.01. As shown in Appendix B,

this simple relation is also capable of predicting Mvir with reasonable

precision and a smaller scatter than the SHMR. We further discuss

predictive capabilities in Section 7.2.

6.5 In situ and ex situ fractions

Since the version of UniverseMachine used here predicts the

M⋆ of the in situ and ex situ components, our model can be used

to shed light on the statistical behaviours of these two components.

The best-fittin model suggests that 67 ± 1 per cent of in situ stars

can be found within 10 kpc, while the fraction of ex situ stars within

10 kpc slowly decreases with Mvir due to the increasingly extended

distribution of the ex situ component. At Mvir= 1013 M⊙, about half

of the ex situ stars lie inside 10 kpc according to the best-fitting

model. This fraction decreases to ∼30 per cent for a Mvir= 1014 M⊙
halo. Focusing on the ex situ component, we show how the fraction

of ex situ stars changes with Mmax
⋆ and Mvir in Fig. 8. In agreement

with results from recent hydrosimulations (e.g. Rodriguez-Gomez

et al. 2016; Qu et al. 2017; Pillepich et al. 2018b), the ex situ

fraction increases with both stellar and halo mass, and it remains

the dominant stellar component in massive galaxies. Remarkably,

this is not just the case for the galaxy as a whole, but it is even true

on 10 kpc scale for these massive galaxies. For central galaxies with

log10(M⋆, max/M⊙) > 11.5 and in haloes with log10Mvir > 13.5, the

average ex situ fraction at r < 10 kpc is >50 per cent. In Fig. 8,

we also compare the trends of the ex situ fraction with halo mass

with results from the IllustrisTNG simulation (Pillepich et al.

2018b; TNG hereafter). We find reasonable qualitative agreement

between our model and the TNG simulation; differences in detail

are to be expected, given the different methods used for measuring

M⋆ (Ardilla et al. in preparation), e.g. for the ex situ fraction within

10 kpc, Pillepich et al. (2018b) use a 3D sphere while we use a 2D

elliptical aperture. The dominant role of ex situ stars at the centres of

13E.g. The RandomForestRegressor from scikit-learn pack-

age. Random forest is a flexible machine-learning algorithm that uses a

combinations of multiple decision trees to make predictions based on the

data.
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Figure 6. Variation of halo mass across the aperture mass plane based on the best-fitting ASAPmodel for massive central galaxies. Contours outlined using red-

dashed lines show the distribution of HSC galaxies. The underlying colour-gradient visualize the trend of Mvir from the ‘best-fitting’ model. Solid-black lines with

labels show the ‘iso-Mvir’ curves over the aperture mass plane . A dot-dashed line highlights the Mmax
⋆ limit used in our model. And we also show a histogram of

predicted Mvir for our massive galaxy sample. The Jupyter notebook for this figure is available here: https://github.com/dr-guangtou/asap/blob/master/note/f

ig6.ipynb. And an interactive 3D plot of the Mvir–Mmax
⋆ –M10

⋆ plane can be found here on-line: https://github.com/dr-guangtou/asap/blob/master/note/fig6.ipynb.

Figure 7. (a) Scatter of log10Mvir across the aperture mass plane. The distribution of HSC galaxies is outlined using contours (grey dashed line). (b) Scatter

of log10Mvir at different Mmax
⋆ . Red points correspond to the scatter in different Mmax

⋆ bins. Blue points show the mean scatter when information from the

aperture mass plane is considered. The errors bars are estimated by randomly drawing from the posterior distributions of model parameters. Scatter here

includes both an intrinsic component as well as the uncertainty of stellar mass measurements. The Jupyter notebook for this figure is available here:

https://github.com/dr-guangtou/asap/blob/master/note/fig7.ipynb.
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Figure 8. (a) The relation between the fraction of ex situ stars and stellar mass (Mmax
⋆ ) using the best-fitting ASAP model. (b) The same relation between

halo mass (Mvir). Solid black lines and the corresponding shaded regions are for the ex situ fraction in the total stellar mass, while the dashed-red lines and

the associated shaded regions indicate the ex situ fraction within 10 kpc. The shaded regions describe the 1σ uncertainties. In massive galaxies, ex situ stars

dominate the total stellar mass budget and the central stellar mass when log10(M⋆, max/M⊙) > 11.5 or when log10Mvir > 13.5. In (b) we also compare our

results with similar relations from the TNG300 simulation (see Pillepich et al. 2018b for details). The Jupyter notebook for this figure is available here:

https://github.com/dr-guangtou/asap/blob/master/note/fig8.ipynb.

massive galaxies has been discussed by Cooper et al. (2013) using

a particle-tagging method and by Rodriguez-Gomez et al. (2016)

using the Illustris simulation. It is likely that these ex situ

stars originate from major mergers that happened at high-z. This is

directly related to the current definition of the in situ and ex situ

components. We discuss this further in Section 7.3.

6.6 Relation between Mvir and galaxy size

Fig. 9 shows variations in the mean Mvir across the mass–size

relation. Here we use Mmax
⋆ and a non-circularized half-light radius

measured using a 1D stellar mass curve of growth. For each massive

galaxy, we assign a Mvir using the best-fitting Mmax
⋆ –M10

⋆ –Mvir

relation derived above. We do not attempt to remove satellite

galaxies. In Paper I, we showed that massive central galaxies

in haloes of different mass exhibit a distinct mass–size relation.

Panel (b) of Fig. 9 presents more sophisticated constraints on

this ‘environmental’ dependence of mass–size relation: Mvir varies

systematically across this plane, and the iso-Mvir curves here are

almost perpendicular to the mass–size relation. At fixed Mmax
⋆ ,

galaxies with larger size tend to live in more massive haloes. This

suggests that the sizes of massive galaxies also carry clues about

their dark matter halo mass. For instance, as suggested by Kravtsov

(2013), there is a log–linear relation between the virial radius of the

halo and the half-light radius of the galaxy (For this relation for our

sample, please see the notebook here: https://github.com/dr-guan

gtou/asap/blob/master/note/assign halo mass.ipynb). However, as

discussed in Paper I, the measurement of ‘galaxy size’ often

depends on the assumed photometric model and data quality.

Therefore, we prefer to build our empirical model based on a

more straightforward aperture mass plane instead of the mass–size

relation.

7 D ISCUSSION

7.1 Comparison with hydrodynamic simulations

From HSC g–g lensing measurement and our best-fitting model, we

find that the halo masses of massive galaxies vary systematically

across the aperture mass plane. This reveals a clear connection

between the distribution of stars within massive galaxies, and halo

mass. We now investigate if such correlations are also predicted by

hydrodynamic simulations of galaxy evolution. We compare the ob-

served Mmax
⋆ –M10

⋆ –Mvir relation with the relations of massive galax-

ies from the MassiveBlackII simulation (e.g. Khandai et al.

2015; Tenneti et al. 2015).MassiveBlackII is a state-of-the-art,

large-volume (100 h−1 Mpc box size; 17923 gas particles), high-

resolution cosmological simulation using p-Gadget (Springel

2005). It includes a sophisticated treatment of complex baryonic

physics (e.g. star formation in a multiphase interstellar medium,

black hole accretion and feedback, and radiative cooling and heating

processes). For additional information about the physical details and

general performance of the MassiveBlackII simulation, please

refer to Khandai et al. (2015). We select 291 massive galaxies with

log (M⋆/M⊙) ≥ 11.4 from the MassiveBlackII simulation and

generate randomly projected 2D stellar mass maps with a 2 kpc

pixel resolution and 350 kpc image size. Then we treat them as real

data and measure their aperture masses using the same method for

HSC massive galaxies (Ardila et al. in preparation). We choose to

use 10 and 100 kpc elliptical apertures here. In Fig. 10, we show

the trend of halo mass across this aperture mass plane recovered

by the locally weighted regression (LOESS) method (Cleveland &

Devlin 1988; Cappellari et al. 2013).14 While the slope of the iso-

14We use the PYTHON implementation of 2D LOESS by Michelle Cappellari.
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Figure 9. Stellar mass (Mmax
⋆ )–galaxy size (R50 measured using the observed 1D profile) relation colour coded by the predicted halo mass (Mvir) from the

best-fitting model (a) and the stellar mass within 10 kpc (b). For each HSC galaxy, we assign a Mvir using the best-fitting Mmax
⋆ –M10

⋆ –Mvir relation. The

Jupyter notebook for this figure is available here: https://github.com/dr-guangtou/asap/blob/master/note/fig9.ipynb.

Figure 10. The M100
⋆ and M10

⋆ of massive galaxies from the Mas-

siveBlackII simulation using randomly projected 2D stellar mass

distributions. The plot shows their distributions over the aperture mass

plane colour coded by halo mass. The density plot shows the halo mass

trend recovered by the LOESS smoothing method. The Jupyter notebook

for this figure is available here: https://github.com/dr-guangtou/asap/blob

/master/note/fig10.ipynb.

Mvir curves appears to be steeper than those of our best-fitting model

(weaker correlation between M10
⋆ and Mvir), we see a general trend

that is similar to our result: at fixed M100
⋆ , the ones with lower M10

⋆

on average live in more massive dark matter haloes.

Currently, comparison with simulation is limited by the volume of

high-resolution hydrosimulations and their capabilities to reproduce

realistic massive galaxies. The SMF of massive galaxies using

M100
⋆ and the stellar mass density profiles of massive galaxies

MassiveBlackII do show differences compared with the HSC

observations (see Ardilla et al. in preparation). None the less, we

consider this to be a valuable test and we will further investigate

the robustness of this trend using other hydrosimulations in future

work.

7.2 Prediction of halo mass

Our ASAP model suggests that, by including information about

the stellar mass distribution (e.g. two-aperture stellar masses), one

can build better proxies of halo mass. We test this potential by

predicting the halo masses of massive clusters from the Cluster

Lensing And Supernova survey with Hubble (CLASH) clusters

(e.g. Postman et al. 2012) using only the photometry of their BCGs.

DeMaio et al. (2018) conducted a careful study of the BCG+ICL

of 23 CLASH clusters (0.3 < z < 0.9; 3 × 1013 < M500c/M⊙
< 9 × 1014) using multiband, high-resolution HST Wide Field

Camera 3 (WFC3) images. These authors derive surface brightness

and colour profiles of these BCG+ICL to r > 100 kpc, along with

stellar mass within 10 and 100 circular apertures using SED fitting.

We ignore the differences caused by circular and elliptical apertures

here and increase their 100 kpc aperture mass by +0.05 dex to

simulate our Mmax
⋆ measurement (see Paper I). After converting

their aperture masses to the same cosmology and stellar population

model15 used here, we predict the Mvir of these BCGs using our best-

fitting model. The CLASH sample includes mostly very massive

clusters that host BCGs that are on average more massive than the

HSC sample (panel a of Fig. 11).

Fig. 11 shows halo masses predicted both by the average Mmax
⋆ –

Mvir relation shown in Fig. 5 (green dots) and by the best-fitting

15DeMaio et al. (2018) uses the BC03 stellar population model. Based on

tests from Paper I, we add a +0.1-dex empirical correction to the Flexible

Stellar Population Synthesis (FSPS) mode used in this work.
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Figure 11. (a) Distribution of CLASH BCGs in the aperture mass plane. The stellar masses are based on Hubble Space Telescope (HST) observations

(DeMaio et al. 2018; red points), where the symbol size indicates halo mass (M200c) estimated from X-ray observations. (b) Comparison between our predicted

M200c values to those based on X-ray observations. Green points are predictions based on the Mmax
⋆ –Mvir relation, whereas red points are based on the

best-fitting aperture mass plane. The dashed line shows the one-to-one relation. The prediction using the aperture mass plane shows a tighter relation compared

to X-ray masses. The outlier system, MACS1149, is highlighted using a blue box. We also show the coloured HST image of the BCG of MACS1149.

The blue hexagon shows the value of M200c as measured via dynamics (Golovich et al. 2016). The Jupyter notebook for this figure is available here:

https://github.com/dr-guangtou/asap/blob/master/note/fig11.ipynb.

Mmax
⋆ –M10

⋆ –Mvir relation (red circle). In DeMaio et al. (2018),

halo mass is measured using X-ray observations (e.g. Vikhlinin

et al. 2009) and is defined as M500c. Using empirical relations from

Diemer, More & Kravtsov (2013), Diemer & Kravtsov (2015), and

the Colossus python package (Diemer 2017; code available here:

https://bitbucket.org/bdiemer/colossus), we convert both the M500c

in DeMaio et al. (2018) and the Mvir from our model to M200c.

It is encouraging to see that the predicted halo mass values show

good consistency with those based on X-rays. The values predicted

using Mmax
⋆ alone show larger scatter compared to the X-ray mass

estimates. This provides further evidence for one of the key findings

of the present work: two-aperture stellar masses can be used to build

better proxies of halo mass relative to models using Mmax
⋆ alone.

There is one BCG that shows a large offset (highlighted in both

panels of Fig. 11) from the mean relations. The BCG belongs to the

famous cluster MACS 1149 + 22 at z = 0.544 (see the inset picture)

that gifted us multiple images of a highly magnified supernova (e.g.

Kelly et al. 2015) and a z ∼ 9.1 galaxy (e.g. Hashimoto et al. 2018).

The region around the BCG is complex and partially overlaps with

an image of a background star-forming galaxy. We suspect that the

accuracy of photometry and M⋆/L⋆ estimation are affected by the

complexity of extracting photometry for this system. Meanwhile,

Golovich et al. (2016) estimate the halo mass of MACS 1149+22

using dynamics of cluster members. The dynamics-based M200c

is higher than the X-ray value and is closer to our prediction.

Although X-ray observation is often considered a good approach to

measure cluster mass, hydrosimulations suggest that the hydrostatic

equilibrium assumption used in the measurement can bias the cluster

mass low by 10–30 per cent along with the projection effect (Evrard

1990; Nagai, Kravtsov & Vikhlinin 2007; Mahdavi et al. 2008;

Battaglia et al. 2012; Nelson, Lau & Nagai 2014). Weak lensing

measurements of cluster mass provide a way to constrain such bias.

But previous works still show different results on this topic, from

almost no bias (<10 per cent level; e.g. Gruen et al. 2014; Israel

et al. 2014; von der Linden et al. 2014; Applegate et al. 2016), to

moderate level of bias (10–20 per cent level; e.g. Donahue et al.

2014), and to bias larger than 20 per cent (e.g. Okabe & Smith

2016; Simet et al. 2017). And in Umetsu et al. (2014), the authors

measure weak lensing halo mass for some of the same massive

CLASH clusters used in DeMaio et al. (2018) and find noticeably

more massive values than the X-ray ones. However, weak lensing

cluster mass also suffers from systematics like the sub-structures in

the halo and the projection effect. (e.g. Becker & Kravtsov 2011;

Meneghetti et al. 2011; van Uitert et al. 2012). Further discussion

on this issue is beyond the scope of this paper, but it is worth

investigating in the future to further improve our predictions of halo

mass using aperture stellar masses.

7.3 The fraction of ex situ stars in massive galaxies

Fig. 8 shows that the ex situ fraction predicted by our model and

its relation with both stellar and halo mass are reasonable and are

qualitatively consistent with hydrosimulation (e.g. TNG300). We

now discuss two points in Fig. 8 of noteworthy interest. First, the

large scatter in ex situ fractions at fixed stellar or halo mass suggests

a small population of massive galaxies with low-ex situ fractions

(<25 per cent). This special population could experience fewer

mergers (especially major mergers) and is an interesting sample to

study in greater detail. On panel (a) in Fig. 12, we colour code the

Mvir–fexs relation for massive galaxies (log10(M⋆, max/M⊙) ≥ 11.5)

in our best-fitting model using the redshift of the last major halo

merger (halo mass ratio larger than 1:3) extracted from the merger

MNRAS 492, 3685–3707 (2020)
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Figure 12. (a) Relation between the halo mass (Mvir) and the fraction of ex situ stars for massive galaxies (log10(M⋆, max/M⊙) ≥ 11.5) colour coded by

the redshift of last major-merger (zLMM; halo mass ratio larger than 1:3) in the UniverseMachine model. The grey contours outline the number density

distribution of model galaxies. A horizontal dashed line highlights the 25 per cent limit that is used to define massive galaxies with low ex situ fraction.

(b) The aperture mass plane for massive galaxies from the best-fitting model colour coded by zLMM. Grey contours here indicate the iso-Mvir lines. The

small population of massive model galaxies with fexs < 0.25 is highlighted with light-blue dots. The Jupyter notebook for this figure is available here:

https://github.com/dr-guangtou/asap/blob/master/note/fig12.ipynb.

trees of SMDPL haloes. We find that massive galaxies with low-ex

situ fraction tend to live in relatively low-mass haloes and have not

experienced major-mergers in the last 10 Gyrs, putting them among

the oldest massive haloes in the U

niverse. This small (∼9 per cent of massive galaxies with 11.5

< log 10 ( M ⋆, max /M ⊙ ) ≥ 11.7) population locates exclusively on

the upper edge of the aperture mass plane (panel b of Fig. 12).

Such a special location suggests that they are much more compact

than the similarly massive ones with a richer merging history. If

haloes with such a unique assembly history are not artefacts of

the UniverseMachine model, they could be very useful for

studying galaxy assembly bias (e.g. Cooper et al. 2010; Wang et al.

2013; Zentner, Hearin & van den Bosch 2014; Lin et al. 2016)

or for providing a template of the distribution of in situ stars in

massive haloes. The galaxies discussed here would be somewhat

different in nature than ‘relic’ galaxies 16 (e.g. Trujillo et al. 2014;

Peralta de Arriba et al. 2016; Ferré-Mateu et al. 2017; Yıldırım et al.

2017): the galaxies discussed here are more massive than typical

relic galaxies, are larger in size, and are unaffected by stripping

as this sample is predominantly centrals. Secondly, both the ASAP

model and hydrosimulations predict a high ex situ fraction in the

inner regions of massive galaxies. This is easy to understand given

the current definition of ex situ stars. This is commonly defined as

all the stars that are formed outside the halo of the main progenitor

. The ex situ component therefore includes stars that were accreted

from major mergers at very high redshift (e.g. z > 2). Although this

is a straightforward definition, it may not be the best choice to relate

to observational studies of the stellar assembly history of massive

galaxies for two reasons. First, it makes the ex situ component

16Typically defined as nearby compact quiescent galaxies with stellar mass

and effective radius similar to the quiescent galaxies at high redshift. They

often have steep inner stellar mass density profile and high central stellar

velocity dispersion.

heterogeneous since ex situ stars can be formed at very different

epochs and in haloes with a wide range of M vir . Secondly, it is

hard to separate the in situ and ex situ stars in the inner regions of

massive galaxies because stars in both components are assembled at

a very early time and share similar stellar population and kinematic

properties. Although it is beyond the scope of this work, we argue

that it may be worth considering alternative and potentially more

instructive decompositions for massive galaxies.

8 SU M M A RY A N D C O N C L U S I O N S

Using data from the HSC survey, we perform careful aperture

mass and weak lensing measurements for a sample of ∼3200

log10(M⋆, max/M⊙) > 11.6 massive galaxies. Using weak lensing,

we reveal a tight connection between the stellar mass distribution

of massive central galaxies and their total dark matter halo mass.

At fixed ‘total’ stellar mass (Mmax
⋆ ), massive galaxies with more

extended mass distributions tend to live in more massive dark matter

haloes. This provides a new independent confirmation, backed by

direct weak lensing measurements, of the results from Paper II

that Mvir varies systematically over the aperture M⋆ plane. To

model both the weak lensing and the aperture SMFs, we build

a full forward model based on a special version of the semi-

empirical model UniverseMachine and the SMDPL simula-

tion. UniverseMachine leverages the ability of high-resolution

simulations to identify and track the full merger history of dark

matter haloes; using UniverseMachine as the bedrock of our

model allows us to study the co-evolution of massive galaxies and

their haloes. We augment the baseline UniverseMachinemodel

with two prescriptions that allow us to fit HSC data and predict

aperture masses. Our model makes the two following assumptions.

We assume (1) a tight correlation between halo mass and the mass

of its entire stellar content (TSHMR) and (2) a certain fraction

of the in situ and ex situ stars locate within the inner 10 kpc of

MNRAS 492, 3685–3707 (2020)
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massive galaxies. In our model, the well-studied SHMR and its

scatter emerge from the TSHMR. We show that this model provides

an excellent description of the observed SMFs for Mmax
⋆ and M10

⋆ ,

as well as the �� profiles in a series of Mmax
⋆ –M10

⋆ bins. The

main conclusions from the current best-fitting model include the

following:

(i) Mvir varies systematically over the aperture mass plane. The

iso-M200b curves run almost parallel with the direction of the Mmax
⋆ –

M10
⋆ relation. The model confirms that at fixed Mmax

⋆ , galaxies with

more extended stellar mass distributions (lower M10
⋆ or larger size)

live in more massive dark matter haloes. It also shows that scatter

in Mvir at either fixed Mmax
⋆ or M10

⋆ is quite large.

(ii) The above trends can be summarized into a simple Mmax
⋆ –

M10
⋆ –Mvir relation that provides a tighter connection with halo mass

than Mmax
⋆ alone.

(iii) The usage of two aperture masses can help reduce the scatter

in halo mass at fixed total stellar mass. While the standard SHMR in

the form of 〈Mvir〉M⋆
typically shows scatter in halo mass of ∼0.25

dex at 11.5 < log Mmax
⋆ , this scatter can be reduced to the ∼0.15

dex level by utilizing our results based on Mmax
⋆ –M10

⋆ –Mvir scaling

relation.

(iv) Our model predicts that the ex situ fraction increases with

both the stellar and halo mass; and it shows that the ex situ com-

ponent even dominates the inner 10 kpc of massive galaxies. These

predictions are consistent with results from the TNG simulations.

Our results strongly suggest that information about the assembly

history of massive dark matter haloes is encoded in the stellar mass

distributions of their massive central galaxies. This opens a new

window for studying the assembly histories of group- and cluster-

mass haloes by using carefully derived proxies based on massive

galaxy profiles.
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APPENDI X A : MV I R T R E N D S O F K E Y

PREDI CTI ONS I N THE UniverseMachine

M O D E L

As explained in Section 5.3, besides Mvir,ASAPmodel also relies on

three key predictions from the special version of UniverseMa-

chine model used in this work:

(i) δcen: the ratio between the stellar mass of central galaxy

and the total stellar mass within the halo. This parameter reflects

the ‘dominance’ of central galaxy in the halo. It is determined

by the complex merger history of both the halo and the central

galaxy.

(ii) δins and δexs: the fractions of stellar mass in the in situ and

ex situ components for each galaxy. They are determined by both

the star formation and mass-assembly history of each galaxy in the

halo.

On the left side of Fig A1, we show the relationship between Mall
⋆

and δcen. On average, central galaxy becomes less dominating in

more massive haloes given the tight relation between Mvir and Mall
⋆ .

Meanwhile, UniverseMachine model predicts a significant

scatter of δcen at fixed Mall
⋆ , especially for less massive haloes.

The scatter of δcen at fixed Mall
⋆ dominates the scatter of the SHMR

predicted by the ASAP model. Given the resolution of the N-body

simulation used in UniverseMachine model and the adopted

assumptions to handle galaxy mergers, it is possible that such large

scatter of δcen is not very reliable. On the right side of Fig A1, we

demonstrate that the in situ (ex situ) mass fraction rapidly decreases

(increases) with Mvir, which is consistent with results from recent

hydrodynamic simulations.
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Figure A1. Distributions of M⋆ fraction of central galaxy (Mcen
⋆ /Mall

⋆ ) and its dependence on Mvir. Colour shows the number density of galaxies in log-scale. The

median central mass fractions in a series of Mvir bins are highlighted using grey circles along with the 1σ scatter in each bin. The shaded region on the left side is for

the Mvir range ignored in this work. TheJupyter notebook for this figure is available here: https://github.com/dr-guangtou/asap/blob/master/note/figA1.ipynb.

A P P E N D I X B: PE R F O R M A N C E O F MV I R

ESTIMATORS

As mentioned in Section 6.4, we attempt to assign Mvir to massive

galaxies in HSC surveys by comparing the observed aperture stellar

masses to the ones predicted by the best-fittng ASAP model. Here,

we briefly demonstrate the performances of two Mvir estimators

here: the random forest regressor and the 2D Mmax
⋆ –M10

⋆ –Mvir

scaling relation. The Jupyter notebook used for Mvir predictions

is available here: https://github.com/dr-guangtou/asap/blob/master/

note/assign halo mass.ipynb. For the random forest regressor, we

use the RandomForestRegressor from the sciki-learn

PYTHON package. We choose to use 20 estimators and mean

absolute error criteria. We train the random forest regressor using

the predicted MMax
⋆ and M10

⋆ of central galaxies from the best-

fitting ASAP model, then validate it using a realization of the

ASAP model with parameters slightly deviated from the best-fitting

values. On the left side of Fig B1, we visualize the performance

of this estimator across the aperture stellar mass plane. We choose

to use (log Mpredict
vir − log M true

vir )/σlog M true
vir

to test the accuracy of the

Figure B1. Evaluation of two different Mvir predictors based on the halo mass trend over the aperture mass plane. The left-hand panel is for the random forest

regressor and the right side is for the Mmax
⋆ –M10

⋆ –Mvir scaling relation. On both figures, the colour indicates the relative differences between the predicted

Mvir and the true values from the UniverseMachine model. Regions occupied by most observed HSC galaxies are highlighted using grey contours. The

Jupyter notebook for this figure is available here: https://github.com/dr-guangtou/asap/blob/master/note/figB1.ipynb.
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prediction where σlog M true
vir

is the scatter of Mvir in each 2D bin

of aperture masses. As expected, the random forest regressor can

easily capture the detailed trend of Mvir over the 2D aperture stellar

mass plane. Meanwhile, we have shown the best-fitting 2D Mmax
⋆ –

M10
⋆ –Mvir scaling relation in Section 6.4. We visualize its accuracy

on the right side of Fig B1. As one can see, this simple scaling

relation can still capture the main Mvir trend over the regions that

are occupied by most HSC galaxies (highlighted by contours).

Although the Mvir predicted by this 2D scaling relation starts to

show deviations compared to true values at the edges of the aperture

stellar mass relation, the systematic differences are still comparable

to the scatters of Mvir in these bins. In the next paper of this series,

we will be looking for more reliable way to predict Mvir based on the

stellar mass distributions of massive galaxies and improved version

of ASAP model. We will also directly test these predictions using

HSC weak lensing calibrations.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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