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Abstract. We describe the weak localization correction to conductivity in ultra-
thin graphene films, taking into account disorder scattering and the influence
of trigonal warping of the Fermi surface. A possible manifestation of the chiral
nature of electrons in the localization properties is hampered by trigonal warp-
ing, resulting in a suppression of the weak anti-localization effect in monolayer
graphene and of weak localization in bilayer graphene. Intervalley scattering due
to atomically sharp scatterers in a realistic graphene sheet or by edges in a narrow
wire tends to restore weak localization resulting in negative magnetoresistance in
both materials.

1 Introduction

The chiral nature of quasiparticles in ultra-thin graphitic films [1–5] recently revealed in
Shubnikov de Haas and quantum Hall effect measurements [6–9] originates from the hexagonal
lattice structure of a monolayer of graphite (graphene). The low energy behavior of monolayer
graphene is explained in terms of two valleys of Dirac-like chiral quasiparticles with ‘isospin’
linked to the momentum direction, exhibiting Berry phase π [1–4]. Remarkably, the dominant
low energy quasiparticles in a bilayer are different: massive chiral quasiparticles with a parabolic
dispersion and Berry phase 2π [5].
In existing graphene structures, scattering occurs predominantly from potential perturba-

tions which are smooth on the scale of the lattice constant a. This smooth potential arises
from charges located in the substrate at a distance d from the 2D sheet, a� d < h/pF (h/pF
being the Fermi wavelength). Such a smooth potential is unable to change the isospin of chiral
electrons so that, in a monolayer, there is a complete suppression of electron backscattering
from potential disorder [4,10]. In the theory of quantum transport in disordered systems [11]
the suppression of backscattering is known as the anti-localization (WAL) effect [12] and, in
monolayer graphene with purely potential scattering, a possible WAL behavior of conductivity
[10,13–15] has been related to the Berry phase π specific to the Dirac-like Hamiltonian. Owing
to the different degree of chirality in bilayer graphene, related to Berry phase 2π [5], purely
potential scattering would have a different effect: no suppression of backscattering leading to
conventional weak localization (WL) [14,16].
In realistic graphene, there are other considerations that appear, at first glance, to be merely

small perturbations to this picture, but they have a profound impact on the localization prop-
erties if their effect is perceptible on length scales less than the phase coherence length. This
includes influence of ripples on the graphene sheet [17] leading to a weak randomization of
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Fig. 1. (a) Typical magnetoresistance behavior expected in a phase-coherent (τϕ � τi) monolayer of
graphene for a weak intervalley scattering, τ∗ � τi (solid line) and for the case when the symmetry-
breaking intravalley scattering is slower than the intervalley one τ∗ � τi (dashed). In both cases, we
assume that the phase coherence time determines the longest relaxation time scale in the system. (b)
Magnetoresistance of bilayer graphene, τ∗ � τi (solid line) and τ∗ � τi (dashed). Note that, for the
case when τϕ � τi and τ∗ � τi,∆ρ(B) = 0 in both monolayer and bilayer graphene.

carbon π-bands, scattering off short-range defects that do not conserve isospin and valley
[10,13–15], and trigonal warping of the electronic band structure which introduces asymme-
try in the shape of the Fermi surface about each valley [4,15,16]. Both of them tend to destroy
the manifestation of chirality in the localization properties, resulting in a suppression of the
WAL effect in monolayer graphene [17] and of WL in bilayers [18]. Moreover, owing to the
inverted chirality of quasiparticles in the two valleys, intervalley scattering will wash out any
Berry phase effect and restore conventional weak localization (WL) behavior of electrons in
both monolayers and bilayers in the regime of long-lasting phase coherence [10,13–19].
Two typical magnetoresistance curves for monolayer graphene are sketched in figure 1. They

illustrate two extremes: τ∗ � τ and τ∗ � τi where τi is the intervalley scattering time and τ∗ is
the combined scattering time of intravalley and intervalley scattering and of trigonal warping
(see equations (15), (16) and (27) below). When τ∗ � τi, the magnetoresistance ρ(B) − ρ(0)
changes sign at the field Bi such that τB ∼ τi: from negative at B < Bi to positive at higher
fields. This behavior resembles the low-to-high field crossover in the quantum correction to the
conductivity of metals with strong spin-orbit coupling, though with an inverted sign of the
effect. In the case of τ∗ � τi, the magnetoresistance is typically of a WL type, with almost no
sign of anti-localization up to the highest fields, which shows that, unlike in a ballistic regime or
a quantizing magnetic field [3,5,20], the chiral nature of quasiparticles does not manifest itself
in the weak field magnetoresistance of realistic graphene structures. In bilayer, however, slight
enhancement of WL behavior is expected in the case of weak intravalley symmetry breaking
scattering, τ∗ � τi, due to different Berry phase 2π. In the case of very strong intravalley
symmetry breaking scattering, τ∗ � τi conventional WL magnetoresistance is expected.
The WL behavior in graphene is novel because, with the exception of spin-orbit coupling

[12,21], qualitative features of WL do not usually depend on the detail of the electronic band
structure and crystalline symmetry. In gapful multi-valley semiconductors only the size of WL
effect may depend on the number of valleys and the strength of intervalley scattering [22–24].
The low-field MR, ∆ρ(B) ≡ ρ(B) − ρ(0), in a two dimensional electron gas or a thin metallic
film [11,12,22,25] in the absence of spin-orbit coupling is characterized by

∆ρ(B) = −sθe
2ρ2

2πh
F

(
B

Bϕ

)
, Bϕ =

h̄c

4De
τ−1ϕ . (1)

Here F (z) = ln z + ψ(12 +
1
z
), τϕ is the coherence time, D is the diffusion coefficient, and the

integer factor sθ depends on whether or not states in nv valleys are mixed by disorder. This
factor is controlled by the ratio θ = τi/τϕ between the intervalley scattering time τi and the
coherence time τϕ. In materials such as Mg, ZnO, Si, Ge, listed in Table 1, where each of the
Fermi surface pockets is p→ −p symmetric, intervalley scattering reduces the size of the WL
MR from that described by s∞ = 2nv when θ = τi/τϕ � 1 to s0 = 2 for θ � 1.
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Table 1. Weak localization factor sθ in conductors with a multi-valley conduction band and negli-
gible spin-orbit coupling. The factor sθ is specified for two limiting cases, no inter-valley scattering
θ = τi/τϕ →∞, and for fast inter-valley scattering θ → 0.

nv s∞ s0
1 Mg films [26], ZnO wells [27] 2 -
2, 6 Si MOSFETs [22,23] 2nv 2
2 Si/SiGe wells [24] 4 2
2 monolayer graphene 0 2
2 bilayer graphene 0 2

A more interesting scenario develops in a multi-valley semimetal, where the localization
properties can be influenced by the absence of p → −p symmetry of the electronic dispersion
within a single valley, and graphene is an example of such a system. Here, we demonstrate
how the asymmetry in the shape of the Fermi surface in each of its two valleys determines
the observable WL behavior sketched in figure 1. It has a tendency opposite to that known
in usual semiconductors and metals: a complete absence of WL MR for infinite τi (s∞ = 0)
and the standard WL effect in the limit of τi � τϕ (s0 = 2). In section 2 we describe the WL
effect in monolayer graphene with a description of the low energy Hamiltonian in section 2.1,
a qualitative account of interference effects in section 2.2, the model of disorder in section 2.3,
an account of our diagrammatic calculation of the weak localization correction in section 2.4
and the resulting magnetoresistance in section 2.5. Section 3 describes the weak localization
correction and magnetoresistance in bilayer graphene.

2 Weak localization magnetoresistance in disordered monolayer graphene

2.1 Low energy Hamiltonian of clean monolayer graphene

The hexagonal lattice of monolayer graphene contains two non-equivalent sites A and B in
the unit cell, as shown in figure 2. The Fermi level in a neutral graphene sheet is pinned near
the corners of the hexagonal Brillouin zone with wave vectors K± = ±( 23 ha−1, 0) where a
is the lattice constant. The Brillouin zone corners K± determine two non-equivalent valleys
in the quasiparticle spectrum described by the Hamiltonian [1,4,15,28],

Ĥ1 = vΠz (σxpx + σypy) + ĥ1w,

ĥ1w = µΠ0
[
σy (pxpy + pypx)− σx

(
p2x − p2y

)]
. (2)

This Hamiltonian operates in the space of four-component wave functions, Φ = [φK+(A), φK+
(B), φK−(B), φK−(A)] describing electronic amplitudes on A and B sites and in the valleys

K±. Here, we use a direct product of ‘isospin’ (AB lattice space) matrices σ0 ≡ 1̂, σx,y,z
and ‘pseudospin’ inter/intra-valley matrices Π0 ≡ 1̂,Πx,y,z to highlight the difference between
the form of Ĥ1 in the non-equivalent valleys. The Hamiltonian Ĥ1 takes into account nearest
neighbor A/B hopping in the plane with the first (second) term representing the first (second)
order term in an expansion with respect to momentum p measured from the center of the valley
K±.
Near the center of the valley K+, the Dirac-type part, v σ · p, of Ĥ1 determines the linear

dispersion ε = vp for the electron in the conduction band and ε = −vp for the valence band.
Electrons in the conduction and valence band also differ by the isospin projection onto the
direction of their momentum (chirality): σ ·p/p = 1 in the conduction band, σ ·p/p = −1 in the
valence band. In the valley K−, the electron chirality is mirror-reflected: it fixes σ · p/p = −1
for the conduction band and σ ·p/p = 1 for the valence band. For an electron in the conduction
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Fig. 2. (a) Schematic plan view of the monolayer lattice containing two sites in the unit cell, A (white
circles) and B (grey), arranged on an hexagonal lattice (solid lines). (b) Fermi lines (solid lines) in the
vicinity of two inequivalent valleys K+ and K− of the hexagonal Brillouin zone (dashed line). Trigonal
warping produces asymmetry of the dispersion at each valley ε(K±,p) �= ε(K±,−p), where momentum
p is determined with respect to the center of the valley, but the effects of warping in the valleys have
opposite signs, ε(K±,p) = ε(K∓,−p).

band, the plane wave state is

ΦK±,p =
eipr/h̄√
2
(±e−iϕ/2|↑〉K±,p + eiϕ/2|↓〉K±,p), (3)

ΦK±,−p =
ie−ipr/h̄√
2
(∓e−iϕ/2|↑〉K±,−p + eiϕ/2|↓〉K±,−p). (4)

Here |↑〉K+,p = [1, 0, 0, 0], |↓〉K+,p = [0, 1, 0, 0] and |↑〉K−,p = [0, 0, 1, 0], |↑〉K−,p = [0, 0, 0, 1],
and the factors e±iϕ/2 take into account the chirality, with angle ϕ defining the direction of
momentum in the plane p = (p cosϕ, p sinϕ). The angular dependence w(ϕ) ∼ cos2(ϕ/2)
of the scattering probability off a short range potential which conserves isospin is shown in
figure 3(a). It demonstrates the fact that the chiral states equations (3), (4) with isospin fixed
to the direction of momentum display an absence of back scattering [4,10,29], leading to a
transport time longer than the scattering time τtr = 2τ0.

The term ĥ1w in equation (2) can be treated as a perturbation leading to a trigonal deforma-
tion of a single-connected Fermi line and p→ −p asymmetry of the electron dispersion inside
each valley illustrated in figure 2: ε(K±,p) �= ε(K±,−p). However, due to time-reversal symme-
try [30] trigonal warping has opposite signs in the two valleys and ε(K±,p) = ε(K∓,−p). The
interplay between the two terms in Ĥ1 resulting in the asymmetry of the electronic dispersion
manifest itself in the WL behavior.

2.2 Interference of electronic waves in monolayer graphene

The WL correction to conductivity in disordered conductors is a result of the constructive
interference of electrons propagating around closed loops in opposite directions [11] as sketched
in figure 3(b). Such interference is constructive in metals and semiconductors with negligibly
weak spin-orbit coupling, since electrons acquire exactly the same phase when travelling along
two time-reversed trajectories.
WL is usually described [11] in terms of the particle–particle correlation function, Cooperon.

Following the example of Cooperons for a spin 1
2 , we classify Cooperons as singlets and

triplets in terms of ‘isospin’ (AB lattice space) and ‘pseudospin’ (inter/intra-valley) indices (see
section 2.1). In fact, with regards to the isospin (sublattice) composition of Cooperons in a dis-
ordered monolayer, only singlet modes are relevant. This is because a correlator describing two
plane waves, ΦK+,p and ΦK−,−p equations (3), (4), propagating in opposite directions along a
ballistic segment of a closed trajectory as in figure 3(b) has the following form:

ΦK,pΦK′,−p ∼ | ↑〉K,p| ↓〉K′,−p − | ↓〉K,p| ↑〉K′,−p − e−iϕ| ↑〉K,p| ↑〉K′,−p + eiϕ| ↓〉K,p| ↓〉K′,−p.
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It contains only sublattice-singlet terms (the first two terms) because triplet terms (the last
two terms) disappear after averaging over the direction of momentum, p = (p cosϕ, p sinϕ), so
that 〈e±iϕ〉ϕ = 0. In fact, our diagrammatic calculation described in section 2.4 shows that the
interference correction to the conductivity of graphene is determined by the interplay of four
isospin singlet modes: one pseudospin singlet and three pseudospin triplets. Of these, two of the
pseudospin triplet modes are intravalley Cooperons while the remaining triplet and the singlet
are intervalley Cooperons.
In the WL picture for a diffusive electron in a metal, two phases ϑ1 and ϑ2 acquired while

propagating along paths “1” and “2” (see figure 3(b)) are exactly equal, so that the interference
of such paths is constructive and, as a result, enhances backscattering leading to WL [11]. In
monolayer graphene the Berry phase π characteristic for quasi-particles described by the first
term of Ĥ1, determines the phase difference δ ≡ ϑ1−ϑ2 = πN (where N is the winding number
of a trajectory) [10,15], and one would expect weak anti-localization behavior. However, the

asymmetry of the electron dispersion due to ĥ1w, leading to warping of the Fermi line around
each valley as in figure 2, deviates δ from πN . Indeed, any closed trajectory is a combination
of ballistic intervals, figure 3(b). Each interval, characterized by the momenta ±pj (for the two
directions) and by its duration tj , contributes to the phase difference δj = [ε(pj)− ε(−pj)]tj =
ĥ1w(pj)tj . Since δj are random uncorrelated, the mean square of δ =

∑
δj can be estimated as

〈δ2〉 ∼ 〈(tj ĥ1w(pj))2〉t/τtr, where t is the duration of the path and τtr is the transport mean
free time. Warping thus determines the relaxation rate,

τ−1w ∼ 〈Trĥ21w(p)〉ϕ, (5)

which suppresses the two intravalley Cooperons, and thus, weak anti-localization in the case
when electrons seldom change their valley state. The two intervalley Cooperons are not affected
by trigonal warping due to time-reversal symmetry of the system which requires ε(K±,p) =
ε(K∓,−p), figure 2. These two Cooperons cancel each other in the case of weak intervalley
scattering, thus giving δg ∼ 0. However, intervalley scattering, with a rate τ−1i larger than
the decoherence rate τ−1ϕ , breaks the exact cancellation of the two intervalley Cooperons and
partially restores weak localization.

2.3 Matrix parameterization, valley symmetry and the model of disorder

To describe the valley symmetry of monolayer graphene and parameterize all possible types of
disorder, we introduce two sets of 4×4 Hermitian matrices Σ = (Σx,Σy,Σz) with [Σs1 ,Σs2 ] =
2iεs1s2s3Σs3 , and ‘pseudospin’ Λ = (Λx,Λy,Λz) with [Λl1 ,Λl2 ] = 2iε

l1l2l3Σl3 , defined as

Σx = Πz ⊗ σx, Σy = Πz ⊗ σy, Σz = Π0 ⊗ σz, (6)

Λx = Πx ⊗ σz, Λy = Πy ⊗ σz, Λz = Πz ⊗ σ0. (7)

The operators Σ and Λ form two mutually independent algebras equivalent to the algebra of
Pauli matrices (in equations (6), (7) εs1s2s3 is the antisymmetric tensor and [Σs,Λl] = 0) thus
they determine two commuting subgroups of the group U4 of unitary transformations [31] of a
4-component Φ: an ‘isospin’ sublattice group SUΣ2 ≡ {eian·Σ} and a ‘pseudospin’ valley group
SUΛ2 ≡ {eibn·Λ}. Also, Σ and Λ change sign under the inversion of time, whereas products
ΣsΛl are invariant with respect to the t→ −t transformation and can be used as a basis for a
quantitative phenomenological description of non-magnetic static disorder [29,32]. Table 1 is a
summary of the discrete symmetries of the operators Σ and Λ and their products ΣsΛl. Time
reversal T of an operator Ŵ is described by (Πx⊗σx)Ŵ ∗(Πx⊗σx). The rotation by π/3 about
the perpendicular z axis is described by C6 = Πx ⊗ exp[(2πi/3)σz]. Reflection in the x-z plane
is Rx = Π0 ⊗ σx.
The operators Σ and Λ help us to represent the electron Hamiltonian in weakly disordered

graphene as

Ĥ1 = vΣp+ ĥ1w + Îu(r) +
∑

s,l=x,y,x

ΣsΛlus,l(r), (8)
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Fig. 3. (a) Angular dependence w(ϕ) ∼ cos2(ϕ/2) of the scattering probability off a short range
potential in monolayer graphene, (b) a pair of closed paths which contribute to weak localization,
(c) angular dependence w(ϕ) ∼ cos2(ϕ) of the scattering probability off a short range potential in
bilayer graphene.

where

ĥ1w = −µΣx(Σp)ΛzΣx(Σp)Σx.

The Dirac-type part vΣp of Ĥ1 in equation (8) and potential disorder Îu(r) (where Î is a
4×4 unit matrix and 〈u (r)u (r′)〉 = u2δ (r− r′)) do not contain valley operators Λl, thus,
they remain invariant with respect to the pseudospin transformations from valley group SUΛ2 .
Below, we assume that the isospin/pseudospin-conserving disorder due to charges lying in a
substrate at distances from the graphene sheet shorter or comparable to the electron wavelength
h/pF dominates the elastic scattering rate, τ

−1 ≈ τ−10 = πγu2/h̄, where γ = pF/(2πh̄
2v)

is the density of states of quasiparticles per spin in one valley. All other types of disorder
which originate from atomically sharp defects [29,32] and break the SUΛ2 pseudospin symmetry
of the system are included in a random matrix ΣsΛlus,l(r). In particular, uz,z(r) describes
disorder due to different on-site energies on the A and B sublattices, ux(y),z(r) plays the role
of a valley-antisymmetric vector potential of a geometrical nature, and us,x(y)(r) take into
account inter-valley scattering. For simplicity, we assume that different types of disorder are
uncorrelated, 〈us,l(r)us′,l′(r′)〉 = u2slδss′δll′δ(r−r′) and, on average, isotropic in the x−y plane,
u2xl = u2yl ≡ u2⊥l, u

2
sx = u2sy ≡ u2s⊥. We parametrize them by scattering rates τ

−1
sl = πγu2sl/h̄.

Also, the warping term, ĥ1w lifts the pseudospin symmetry SU
Λ
2 , though it remains invariant

under pseudospin rotations around the z-axis.

To characterize Cooperons in monolayer graphene, we use a Cooperon matrix Cξµξ
′µ′

αβα′β′ where

subscripts describe the isospin state of incoming αβ and outgoing α′β′ pairs of electrons and
superscripts describe the pseudospin state of incoming ξµ and outgoing ξ′µ′ pairs. Following
the example of Cooperons for a spin 12 , we classify Cooperons as singlets and triplets in terms

of isospin and pseudospin indices CM1M2S1S2
. For example, M = 0 is a ‘pseudospin-singlet’, M =

x, y, z are three ‘pseudospin-triplet’ components; S = 0 is a ‘isospin-singlet’ and S = x, y, z are
‘pseudospin-triplet’ components. It is convenient to use pseudospin as a quantum number to
classify the Cooperons in graphene because of the hidden SUΛ2 symmetry of the dominant part
of the free-electron and disorder Hamiltonian.

2.4 Diagrammatic calculation of the weak localization correction in monolayer graphene

To describe the quantum transport of 2D electrons in graphene we evaluate the disorder-
averaged one-particle Green’s functions, vertex corrections, calculate the Drude conductivity
and transport time, classify Cooperon modes and derive equations for those which are gapless
in the limit of purely potential disorder. In section 2.5 we analyse ‘Hikami boxes’ [11,12] for
the weak localization diagrams paying attention to a peculiar form of the current operator
for Dirac electrons and evalute the interference correction to conductivity leading to the WL
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Table 2. Matrices Σs and Λl provide us with representations of the crystalline symmetry group,
which is constructed of 3 generators, π

3
-rotation, C6, mirror reflection with respect to Ox axis, Rx, and

translation along Ox by lattice constant, a. Operation T stands for the time reversal, t→ −t. Here, Σs
and Λl are grouped into bases forming irreducible representations which can be 1, 2 and 4 dimensional.

ΣsΛl T C6 Rx a

Î +1 +1 +1 +1
Σz −1 +1 −1 +1
Λz −1 −1 +1 +1
ΣzΛz +1 −1 −1 +1[
Σx
Σy

]
−1

(
1
2

√
3
2

−
√
3
2

1
2

) (
1 0
0 −1
) (

1 0
0 1

)
[
Λx
Λy

]
−1

(
1 0
0 −1
) (

−1 0
0 −1

) (
− 1
2

√
3
2

−
√
3
2
− 1
2

)
[
ΛzΣx
ΛzΣy

]
+1

(
− 1
2
−
√
3
2√

3
2
− 1
2

) (
1 0
0 −1
) (

1 0
0 1

)
[
ΛxΣz
ΛyΣz

]
+1

(
1 0
0 −1
) (

1 0
0 1

) (
− 1
2

√
3
2

−
√
3
2
− 1
2

)
ΛxΣxΛxΣy
ΛyΣx
ΛyΣy

 +1


1
2

√
3
2
0 0

−
√
3
2

1
2
0 0

0 0 − 1
2
−
√
3
2

0 0
√
3
2
− 1
2


1 0 0 00 −1 0 0
0 0 1 0
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magnetoresistance. In these calculations, we treat trigonal warping ĥ1w in the free-electron
Hamiltonian equations (2), (8) perturbatively, assume that potential disorder Îu(r) dominates
in the elastic scattering rate, τ−1 ≈ τ−10 = πγu2/h̄, and take into account all other types of
disorder when we determine the relaxation spectra of low-gap Cooperons.
Using the standard methods of the diagrammatic technique for disordered systems [11,12]

and assuming that pFvτ � h̄, we obtain the disorder averaged single particle Green’s function,

ĜR/A (p, ε) =
εR/A + vΣp

ε2
R/A
− v2p2 , εR/A = ε± 1

2
ih̄τ−10 . (9)

Note that, for the Dirac-type particles described in equation (2), the current operator is a
momentum-independent matrix vector, v̂ = vΣ. As a result, the current vertex ṽj (j = x, y),
which appears as a block in figure 4(a) describing the Drude conductivity,

gjj =
e2

πh̄

∫
d2p

(2π)
2Tr
{
ṽjĜ

R (p, ε) v̂jĜ
A (p, ε)

}
= 4e2γD; D = v2τ0 ≡ 1

2
v2τtr, (10)

is renormalised by vertex corrections [29] in figure 4(b): ṽ = 2v̂ = 2vΣ. Here ‘Tr’ stands for
the trace over the AB and valley indices. Using the Einstein relation in equation (10), we see
that due to the anisotropy of scattering [i.e., lack of backscattering from an individual Coulomb
centre as in figure 3(a)] the transport time in graphene is twice the scattering time, τtr = 2τ0.
Note that in equation (10) spin degeneracy has been taken into account.

The Cooperon Cξµ,ξ
′µ′

αβ,α′β′ obeys the Bethe-Salpeter equation represented diagrammatically in

figure 4(c). The shaded blocks in figure 4(c) are infinite series of ladder diagrams, while the
dashed lines represent the correlator of the disorder in equation (8). We classify Cooperons in
graphene as iso- and pseudospin singlets and triplets, as was mentioned above, with the help
of the following relation,

Cl1l2s1s2 =
1

4

∑
α,β,α′,β′

∑
ξ,µ,ξ′,µ′

(ΣyΣs1ΛyΛl1)
ξµ
αβ C

ξµ,ξ′µ′
αβ,α′β′ (Σs2ΣyΛl2Λy)

µ′ξ′

β′α′ . (11)
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Fig. 4. (a) Diagram for the Drude conductivity with (b) the vertex correction. (c) Bethe-Salpeter
equation for the Cooperon propagator with valley indices ξµξ′µ′ and AB lattice indices αβα′β′.
(d) Bare ‘Hikami box’ relating the conductivity correction to the Cooperon propagator with (e) and (f)
dressed ‘Hikami boxes’. Solid lines represent disorder averaged GR/A, dashed lines represent disorder.

Such a classification of modes is permitted by the commutation of the iso- and pseudospin
operators Σ and Λ in equations (6), (7), (11), [Σs,Λl] = 0. To select the isospin singlet (s = 0)
and triplet (s = x, y, z) Cooperon components (scalar and vector representation of the sublattice
group SUΣ2 ≡ {eian·Σ}), we project the incoming and outgoing Cooperon indices onto matrices
ΣyΣs1and Σs2Σy, respectively. The pseudospin singlet (l = 0) and triplet (l = x, y, z) Cooperons
(scalar and vector representation of the valley group SUΛ2 ≡ {eibn·Λ}) are determined by the
projection of Cξµ,ξ

′µ′
αβ,α′β′ onto matrices ΛyΛl1(Λl2Λy) and are accounted for by superscript indices

in Cl1l2s1s2 .

For ‘diagonal’ disorder Îu(r), the Bethe-Salpeter equation, figure 4(c) takes the form

Cl1l2s1s2 (q) = τ0 δ
l1l2δs1s2

+
1

4πγτ0h̄

∑
s,l

Cll2ss2 (q)

∫
d2p

(2π)
2Tr
{
ΣsΣyΛlΛy

[
ĜRp,h̄ω+ε

]t
ΛyΛl1ΣyΣs1Ĝ

A
h̄q−p,ε

}
.

(12)

It leads to a series of coupled equations for the Cooperon modes Cllss ≡ Cls. It turn out that

for potential disorder Îu(r) isospin-singlet modes Cl0 are gapless in all (singlet and triplet)
pseudospin channels, whereas triplet modes Clx and C

l
y have relaxation gaps Γ

l
x = Γ

l
y =

1
2τ
−1
0

and Clz have gaps Γ
l
z = τ

−1
0 . When obtaining the diffusion equations for the Cooperons using the

gradient expansion of the Bethe–Salpeter equation we take into account its matrix structure.
We find that isospin-singlets Cl0 are coupled to the triplets C

l
x and C

l
y in linear order in the small

wavevector q, so that the derivation of the diffusion operator for the isospin-singlet components
would be incorrect if coupling to the gapful modes were neglected. The matrix equation for each
set of four Cooperons

Cl ≡


Cl00 C

l
0x C

l
0y C

l
0z

Clx0 C
l
xx C

l
xy C

l
xz

Cly0 C
l
yx C

l
yy C

l
yz

Clz0 C
l
zx C

l
zy C

l
zz

 ,
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has the form 
1
2v
2τ0q

2 + Γl0 − iω −i
2 vqx

−i
2 vqy 0−i

2 vqx
1
2τ
−1
0 0 0

−i
2 vqy 0 1

2τ
−1
0 0

0 0 0 τ−10

Cl = 1. (13)

After the isospin-triplet modes are eliminated, the diffusion operator for each of the four
gapless/low-gap modes Cl0 becomes Dq

2 − iω + Γl0, where D = 1
2v
2τtr = v

2τ0.

Symmetry-breaking perturbations lead to relaxation gaps Γ l0 in the otherwise gapless
pseudo-spin-triplet components of the isospin-singlet Cooperon Cl0. All scattering mechanisms
described in equation (8) should be included in the corresponding disorder correlator (dashed
line) on the r.h.s. of the Bethe–Salpeter equation and in the scattering rate in the disorder-
averaged GR/A, as τ−10 → τ−1 = τ−10 +

∑
sl τ

−1
sl . This opens relaxation gaps in all pseudospin-

triplet modes, Cx0 , C
y
0 , C

z
0 , though does not generate a relaxation of the pseudospin-singlet C

0
0

which is protected by particle conservation.

The trigonal warping term ĥ1w in the free electron Hamiltonian equaton (2) breaks the
p → −p symmetry of the Fermi lines within each valley [33]. It has been noticed [34] that
the deformation of a Fermi line of 2D electrons in GaAs/AlGaAs heterostructures in a strong
in-plane magnetic field suppresses Cooperons as soon as the deformation violates p → −p
symmetry. As ĥ1w has a similar effect, it enhances the relaxation rate of the pseudospin-triplet
intravalley components Cx0 and C

y
0 by

τ−1w = 2τ0
(
ε2µ/h̄v2

)2
. (14)

The estimated warping-induced relaxation time is rather short for all electron densities in the
samples studied in [17], τw/τtr ∼ 5 − 30, τw < τϕ, which excludes any WAL determined by
intravalley Cooperon components. However, since warping has an opposite effect on different
valleys, it does not lead to relaxation of the pseudospin-singlet C00 or the intervalley component
of the pseudospin triplet, Cz0 .
Altogether, the relaxation of modes Cl0 can be described by the following combinations of

rates:
Γ00 = 0, Γz0 = 2τ

−1
i , Γx0 = Γ

y
0 = τ

−1
∗ ≡ τ−1w + 2τ−1z + τ−1i , (15)

where τ−1i is the intervalley scattering rate (here we use the x − y plane isotropy of disorder,
τ−1sx = τ−1sy ≡ τ−1s⊥ and τ−1xl = τ−1yl ≡ τ−1⊥l ),

τ−1i = 4τ−1⊥⊥ + 2τ
−1
z⊥ , and τ−1z = 2τ−1⊥z + τ

−1
zz . (16)

After we include dephasing due to an external magnetic field, B = rotA and inelastic decoher-
ence, τ−1ϕ , the equations for Cl0 read[

D

(
i∇+ 2e

ch̄
A

)2
+ Γl0 + τ

−1
ϕ − iω

]
Cl0 (r, r

′) = δ (r− r′) . (17)

2.5 Weak localization magnetoresistance in monolayer graphene

Due to the momentum-independent form of the current operator ṽ = 2vΣ, the WL correction
to conductivity δg includes two additional diagrams, figure 4(e) and (f) besides the standard
diagram shown in figure 4(d). Each of the diagrams in figure 4(e) and (f) produces a contribution
equal to (− 14 ) of that in figure 4(d). This partial cancellation, together with a factor of four
from the vertex corrections and a factor of two from spin degeneracy leads to

δg =
2e2D

πh̄

∫
d2q

(2π)
2

(
Cx0 + C

y
0 + C

z
0 − C00

)
. (18)
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Using expression equation (18), we find the B = 0 temperature dependent correction, δρ/ρ =
−δg/g, to the graphene sheet resistance. Taking into account the double spin degeneracy of
carriers we present

δρ (0)

ρ2
= − e

2

πh

[
ln

(
1 + 2

τϕ

τi

)
− 2 ln τϕ/τtr

1 +
τϕ
τ∗

]
, (19)

and evaluate magnetoresistance, ρ(B)− ρ(0) ≡ ∆ρ(B),

∆ρ(B) =
e2ρ2

πh

[
F

(
B

Bϕ

)
− F
(

B

Bϕ + 2Bi

)
−2F

(
B

Bϕ +B∗

)]
, (20)

F (z) = ln z + ψ

(
1

2
+
1

z

)
, Bϕ,i,∗ =

h̄c

4De
τ−1ϕ,i,∗.

Here, ψ is the digamma function and the decoherence (taken into account by the rate τ−1ϕ )
determines the curvature of the magnetoresistance at B < Bϕ ≡ h̄c/4Deτϕ.
The last term in equation (18), C00 is the only true gapless Cooperon mode which determines

the dominance of the WL sign in the quantum correction to the conductivity in graphene
with a long phase coherence time, τϕ > τi. The two curves sketched in figure 1 illustrate the
corresponding MR in two limits: B∗ � Bi (τ∗ � τi) and B∗ � Bi (τ∗ � τi). In both cases,
the low-field MR (B � Bi) is negative. If B∗ � Bi, the MR changes sign: ∆ρ(B) < 0 at
B < Bi ≡ h̄c/4Deτi and ∆ρ(B) > 0 at higher fields. For B∗ � Bi, the MR is distinctly
of a WL type, with almost no sign of WAL. Such behavior is expected in graphene tightly
coupled to the insulating substrate (which generates atomically sharp scatterers). In a sheet
loosely attached to a substrate (or suspended), the intervalley scattering time may be longer
than the decoherence time, τi > τϕ > τw (Bi < Bϕ < B∗). Hence Cz0 is effectively gapless,
whereas trigonal warping suppresses the modes Cx0 and C

y
0 . In this case the contribution from

Cz0 cancels C
0
0 , and the MR would display neither WL nor WAL behavior: ∆ρ(B) = 0.

3 Weak localisation magnetoresistance in disordered bilayer graphene

3.1 Low energy Hamiltonian of bilayer graphene

Bilayer graphene consists of two coupled monolayers. Its unit cell contains four inequivalent
sites, A,B, Ã and B̃ (A,B and Ã, B̃ lie in the bottom and top layer, respectively) arranged
according to Bernal stacking [5,35]: sites B of the honeycomb lattice in the bottom layer lie

exactly below Ã of the top layer, figure 5. The Brillouin zone of the bilayer, similarly to the
one in monolayer, has two inequivalent degeneracy points K+ and K− which determine two
valleys centered around ε = 0 in the electron spectrum [33]. Near the center of each valley
the electron spectrum consists of four branches. Two branches describing states on sublattices
Ã and B are split from energy ε = 0 by about ±γ1, the interlayer coupling, whereas two
low-energy branches are formed by states based upon sublattices A and B̃. The latter can be
described [5] using the Hamiltonian, which acts in the space of four-component wave functions
Φ = [φK+,A, φK+,B̃ , φK−,B̃ , φK−,A], where φξ,α is an electron amplitude on the sublattice α =

A, B̃ and in the valley ξ = K+,K−.

Ĥ2L = − 1
2m

[(
p2x − p2y

)
σx + 2pxpyσy

]
+ ĥ2w + V̂disorder,

ĥ2w = v3Πz (pxσx − pyσy) . (21)

Here, σx,y,z and Πx,y,z are Pauli matrices acting in sublattice and valley space, respectively.
The first term in equation (21) is the leading contribution in the nearest neighbors approx-

imation of the tight binding model [5]. This approximation takes into account both intralayer

hopping A ↔ B and Ã ↔ B̃ (that leads to the Dirac-type dispersion ε = ±pv near the Fermi
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Fig. 5. Schematic of the bilayer lattice (bonds in the bottom layer A,B are indicated by solid lines
and in the top layer Ã, B̃ by dashed lines) containing four sites in the unit cell: A (white circles), B̃
(grey), ÃB dimer (black).

point K± in a monolayer) and the interlayer Ã ↔ B hopping. This term yields the parabolic
spectrum ε = ±p2/2m with m = γ1/2v

2 which dominates in the intermediate energy range
1
4γ1(v3/v)

2 < εF <
1
4γ1. In this regime we can truncate the expansion of Ĥ(p) in powers of the

momentum p neglecting terms of the order higher than quadratic. Electron waves characteristic
for the first, quadratic, term of Ĥ2L have the form

ΦK,±p = ±e
±ipx/h̄
√
2

(
e−iϕ| ↑〉K,±p − eiϕ| ↓〉K,±p

)
, (22)

where | ↑〉K+,±p = [1, 0, 0, 0], | ↓〉K+,±p = [0, 1, 0, 0] and | ↑〉K−,±p = [0, 0, 1, 0], | ↑〉K−,±p =
[0, 0, 0, 1]. These are eigenstates of an operator σn2 with σn2 = −1 for electrons in the conduc-
tion band and σn2 = 1 for electrons in the valence band, where n2(p) = (cos(2ϕ), sin(2ϕ)) for
p = (pcosϕ, psinϕ), which means that they are chiral, but with the degree of chirality different
from the one found in monolayer (see section 2.1). Such electron waves are characterized by
the Berry phase 2π, and the dependence w(θ) ∼ cos2 θ of the scattering probability off a short-
range potential on the scattering angle θ = p̂p′ is such that transport and scattering times in
the bilayer coincide, although w(θ) is anisotropic (see figure 3(c)), and the Drude conductivity
of a bilayer is g = 4e2nτ0/m (in contrast to monolayer graphene, see section 2.1).

The second term in equation (21), ĥ2w, originates from a weak direct A ↔ B̃ interlayer
coupling. It leads to a Lifshitz transition in the shape of the Fermi line of the 2D electron gas
which takes place when εF ∼ εL ≡ 1

4γ1(v3/v)
2. In a bilayer with εF < εL, the interplay between

the two terms in Ĥ2L determines the Fermi line in the form of four pockets [5] in each valley. In

a bilayer with εF > εL, ĥ2w can be treated as a perturbation leading to a trigonal deformation of
a single-connected Fermi line, thus manifesting the asymmetry of the electron dispersion inside
each valley: ε(K±,p) �= ε(K±,−p). This asymmetry leads to the dephasing effect of electron
trajectories similar to the one discussed in the case of monolayer, and is characterized by the
scattering rate τ−1w equation (5).

The term V̂disorder in the equation (21) describes time-reversal-symmetric disorder. It is
parameterized using t → −t symmetric 4 × 4 matrices acting in the sublattice/valley space,
which are listed in Table 3,

V̂disorder =
∑

s,l=0,x,y

Πlσsusl(r) + Πzσzuzz(r). (23)

The sum in equation (23) contains valley and isospin conserving disorder potential Îu(r), with
〈u(r)u(r′)〉 = u2δ(r− r′) and τ−10 = πγu2/h̄, γ = m

2π , which originates from charged impurities
in the SiO2 substrate and is assumed to be the dominant mechanism of scattering in the system.
All other types of disorder which breaks valley and sublattice symmetries are assumed to be
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Table 3. Transformations of matrices of the form Πlσs, s, l = 0, x, y, z, under crystalline symmetry
group generators and time reversal operation. In bilayer graphene rotations and reflection symmetry
operators are multiplied by the operation of reflection with respect to the z = 0 plane, which is
equidistant with respect to two honeycomb lattice layers. Therefore symmetry group generators are
π
3
-rotation, C6Rz, mirror reflection with respect to Ox axis, RxRz, and translation along Ox by lattice
constant, a. Operation T stands for the time reversal, t → −t. Here matrices are grouped into bases
forming irreducible representations of the symmetry group which can be 1, 2 and 4 dimensional.

Πlσs T C6Rz RxRz a

Î +1 +1 +1 +1
Π0σz −1 +1 −1 +1
Πzσ0 −1 −1 +1 +1
Πzσz +1 −1 −1 +1[
Π0σx
Π0σy

]
+1

(
− 1
2

√
3
2

−
√
3
2
− 1
2

) (
1 0
0 −1

) (
1 0
0 1

)
[
Πzσx
Πzσy

]
−1

(
1
2
−
√
3
2√

3
2

1
2

) (
1 0
0 −1

) (
1 0
0 1

)
[
Πxσ0
Πyσ0

]
+1

(
1 0
0 −1

) (
1 0
0 1

) (
− 1
2

√
3
2

−
√
3
2
− 1
2

)
[
Πxσz
Πyσz

]
−1

(
1 0
0 −1

) (
1 0
0 1

) (
− 1
2

√
3
2

−
√
3
2
− 1
2

)
ΠxσxΠxσy
Πyσx
Πyσy

 +1


− 1
2

√
3
2
0 0

−
√
3
2
− 1
2
0 0

0 0 1
2
−
√
3
2

0 0
√
3
2

1
2


 1 0 0 00 −1 0 0
0 0 1 0
0 0 0 −1



− 1
2

0
√
3
2
0

0 − 1
2
0

√
3
2

−
√
3
2

0 − 1
2
0

0 −
√
3
2
0 − 1

2



uncorrelated, 〈us l(r)us′ l′(r′)〉 = u2s lδss′δll′δ(r−r′). We characterize them using scattering rates
τ−1s l = πγu2s l/h̄. Furthermore, the scattering is assumed to be isotropic in the x − y plane, so
that u2xl = u

2
yl ≡ u2⊥l, u2s x = u2sy ≡ u2s⊥.

3.2 Interference of electronic waves in bilayer graphene

To analyze the WL effect we introduce Cooperon matrix Cξµξ
′µ′

αβα′β′ where subscripts describe the

sublattice state of incoming αβ and outgoing α′β′ pairs of electrons and superscripts describe
the valley state of incoming ξµ and outgoing ξ′µ′ pairs. Note that in contrast to monolayer we do
not rewrite the bilayer Hamiltonian in terms of Σ and Λ matrices. We parametrize Cooperons
as CM1M2S1S2

by M1,M2 “valley” and S1, S2 “sublattice” singlet and triplet states in a similar
way to monolayer isospin and pseudospin states. The sublattice composition of Cooperons is
determined by the correlator of plane waves propagating ballistically in opposite directions,

ΦK,pΦK′,−p∼| ↑〉K,p| ↓〉K′,−p+| ↓〉K,p| ↑〉K′,−p− e2iϕ| ↑〉K,p| ↑〉K′,−p− e−2iϕ| ↓〉K,p| ↓〉K′,−p.

It is seen from the above expression that after averaging over the momentum direction the
terms corresponding to CMx,y ∝ (| ↑〉K,p| ↑〉K′,−p ± | ↓〉K,p| ↓〉K′,−p) disappear, since p =
(p cosϕ, p sinϕ) so that 〈e±2iϕ〉ϕ = 0, whereas terms correponding to the sublattice symmetric
Cooperons, CMz ∝ (| ↑〉K,p| ↓〉K′,−p + | ↓〉K,p| ↑〉K′,−p) remain non-zero.
The dephasing effect of trigonal warping in bilayer is similar to monolayer, although it

is caused by a different mechanism, its magnitude is estimated by equation (5). Dephas-
ing due to warping suppresses the intravalley Cooperons Cx,yz leading to the absence of WL
magnetoresistance in the case of weak intervalley scattering, τi � τϕ. In the case of strong
intervalley scattering, τi � τϕ, WL is partially restored, thus, we predict the WL behavior of
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bilayer graphene with strong trigonal warping of Fermi line in each valley to be described by
equation (1).

3.3 Diagrammatic calculation of the weak localization correction in bilayer graphene

We derive the disorder averaged Green function for the bilayer Hamiltonian equation (21):

GR/A (p, ε) =
εR/A − εp σn2(p)

ε2
R/A
− ε2p

, (24)

where εR/A = ε± 12 ih̄τ−1 and τ−1 = τ−10 + τ−1i + τ−1z ≈ τ−10 . Here we introduced the following
notations for the scattering rates τ−1sl = πγu

2
sl/h̄, where τ

−1
sx = τ

−1
sy ≡ τ−1s⊥ and τ−1xl = τ−1yl ≡ τ−1⊥l

can be combined into the intervalley scattering rate τ−1i = 4τ−1⊥⊥+2τ
−1
z⊥ and the intravalley rate

τ−1z = 2τ−1zz both of which lead to an additional suppression of intravalley modes. Intervalley
scattering also leads to the relaxation of C0z although it does not affect the valley-symmetric
mode Czz . Together, all the scattering mechanisms limit the transport time τ

−1 = τ−10 +
∑
sl τ

−1
sl .

Due to quadratic spectrum of quasiparticles in bilayer graphene the velocity operator, v̂x =
−(pxσx + pyσy)/m, v̂y = (pyσx − pxσy)/m, is momentum dependent, and thus the current
vertices in the conductivity diagram figure 4(c) are not renormalized by impurity scattering
accounted for by the diagram series figure 4(b). As a result, the Drude conductivity is described
by g = 4e2νD, where D = 1

2v
2
F τ0 and τtr = τ0.

We parametrize the Cooperons utilizing the expression,

CM1M2S1S2
=
1

4

∑
α,β,α′,β′

∑
ξ,µ,ξ′,µ′

(σyσS1)αβ (ΠyΠκ1)
ξµ
C ξµ,ξ

′µ
αβ,α′β′ (σS2σy)β′α′ (Πκ2Πy)

µ′ξ′
.

The Bethe–Salpeter equation for Cooperons in bilayer reads,

CM1M2S1S2
(q) = τ0 δM1,M2δS1,S2 +

1

4πγτ0h̄

∑
S,M

CMM2SS2
(q)

×
∫

d2p

(2π)
2Tr
{
ΠMσSΠyσy

[
GRp,h̄ω+ε

]t
ΠyσyΠM1σS1G

A
h̄q−p,ε

}
. (25)

We find that CMM
′

SS′ = δMM
′
δSS′C

M
S and that sublattice-singlet CM0 has a relaxation gap

ΓM0 = τ−10 , sublattice-triplets C
M
x , C

M
y have gaps Γ

M
x = Γ

M
y =

1
2τ
−1
0 , whereas symmetric

sublattice-triplet Cooperon CMz is gapless. Due to warping of the Fermi line induced by ĥ2w in
the free-electron Hamiltonian (21), the intravalley Cooperons Cxz , C

y
z are suppressed, even in

a bilayer with purely potential disorder. Warping opens a gap, τ−1w in the relaxation spectrum
of these ‘valley-triplet’ Cooperon components:

τ−1w =

{ 1
2h̄2

τ〈Trĥ2w(p)〉ϕ = πnLl2τ−1, πnLl
2 < 1

τ−1, πnLl
2 > 1

, (26)

where nL is the density of electrons at which Lifshitz transition occurs, l and τ are mean free
path and transport time in the system respectively. We estimate that for the recently studied
bilayers [9] with ne = 2.5 × 1012 cm−2, τw ∼ τ and the mean free path l ∼ 0.1µm. A similar
situation occurs in bilayer structures studied by R. Gorbachev et al. [18]. Also, a short-range
symmetry-breaking disorder uij generating intervalley scattering leads to the relaxation of C

0
z ,

although it does not affect the valley-symmetric mode Czz . Thus we find that the low-gap modes
CMz obey the diffusion equation,[

Γ + τ−1ϕ +D
(
i∇+ 2e

ch̄
A

)2
− iω

]
C (r, r′) = δ (r− r′) ,

Γzz = 0, Γ0z = 2τ
−1
i , Γx(y)z = τ−1∗ ≡ τ−1w + 2τ−1z + τ−1i , (27)
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where we included dephasing due to an external magnetic field, B = rotA, temperature-
dependent inelastic decoherence, τ−1ϕ (T ), and all of the above mentioned relaxation
mechanisms.

3.4 Weak localization magnetoresistance in bilayer graphene

The interference correction to the conductivity in a bilayer can be expressed in terms of C (r, r),
the solutions of the above Cooperon equations taken at coinciding coordinates:

δg =
2e2D

πh̄

[−Czz + C0z − Cxz − Cyz ] . (28)

For completeness, in equation (28) we have retained the intravalley Cooperons Cx,yz , though they
are strongly suppressed by trigonal warping. Following their suppression, the WL correction is
determined by the intervalley modes C0z and C

z
z but, in the absence of intervalley scattering, the

contributions of C0z and C
z
z are equal in magnitude, so that they cancel. Intervalley scattering

due to atomically sharp scatterers breaks this exact cancellation and partially restores the
WL effect. Equations (27), (28) yield the zero field WL correction to the resistivity and the
WL MR,

δρ (0)

ρ
=
e2ρ

πh
ln

(
1 + 2

τϕ

τi

)
+ δ0, (29)

∆ρ(B)

ρ
= −e

2ρ

πh

[
F

(
B

Bϕ

)
− F
(

B

Bϕ + 2Bi

)]
+ δ(B),

where Bϕ,i = h̄c/(4Deτϕ,i). Equation (29) gives a complete description of the crossover
between two extreme regimes mentioned at the beginning [25]. It also includes small con-
tributions of the suppressed intravalley Cooperons, δ0 = [2e

2ρ/(πh)] ln (τϕτ∗/[τ(τ∗ + τϕ)]) and
δ(B) = −[2e2ρ/(πh)]F [B/(Bϕ+B∗)], where τ−1∗ = τ−1w +τ−1z +τ

−1
i and B∗ = h̄c/(4Deτ∗). This

permits us to account for a possible difference between the warping time τw and the transport
time τ . According to equation (29) WL MR in bilayer graphene sheet disappears as soon as
τi exceeds τϕ, whereas in structures with τϕ > τi, the result equation (29) predicts the WL
behaviour, as observed in [18]. Such WL MR is saturated at a magnetic field determined by the
intervalley scattering time, instead of the transport time as in usual conductors, which provides
the possibility to measure τi directly.

4 Conclusions and the effect of edges in a disordered nanoribbon

We have shown that p→ −p asymmetry of the electron dispersion in each valley of graphene
leads to unusual (for conventional disordered conductors) behavior of interference effects in
electronic transport. Without intervalley scattering, trigonal warping of the electron disper-
sion near the center of each valley destroys the manifestation of chirality in the localization
properties, resulting in a suppression of weak anti-localization in monolayer graphene and of
weak localization in a bilayer. Intervalley scattering tends to restores weak localization, and
this behavior is universal for monolayer and bilayer graphene, despite the fact that electrons in
these two materials have different chiralities and can be attributed different Berry phases: π in
monolayers, 2π in bilayers [3,5]. This suggests that a suppressed weak localization magnetore-
sistance and its sensitivity to intervalley scattering are specific to all ultrathin graphitic films
independently of their morphology [19] and are determined by the lower (trigonal) symmetry
group of the wavevector K in the corner of the hexagonal Brillouin zone of a honeycomb lattice
crystal.
The influence of intervalley scattering on the WL behavior determines a typically negative

(WL) MR in graphene nanoribbons. Indeed, in a narrow ribbon of graphene, monolayer or
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bilayer, with the transverse diffusion time L2⊥/D � τi, τ∗, τϕ, the sample edges determine
strong intervalley scattering rate [36]. Thus, when solving Cooperon equations in a wire, we
estimate Γl0 ∼ π2D/L2⊥ for the pseudospin triplet, whereas the singlet C00 remains gapless. This
yields negative MR persistent over the field range B < 2πB⊥, where B⊥ ≡ h̄c/eL2⊥:

∆ρwire (B)

ρ2
=
2e2Lϕ
h

 1√
1 + 13B

2/BϕB⊥
− 1
 . (30)

The results of equations (19), (20), (28), (29), and (30) give a complete description of the WL
effect in graphene and describe how the WL magnetoresistance reflects the degree of valley
symmetry breaking in it.

This project has been funded by Lancaster-EPSRC Portfolio Partnership grant EP/C511743 and was
completed during the MPI PKS Seminar “Dynamics and Relaxation in Complex Quantum and Classical
Systems and Nanostructures.”
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