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Theory of weak localization is developed for two-dimensional holes in the presence of in-plane
magnetic field. The Zeeman splitting even in the hole momentum results in the spin-dependent phase
changing the quantum interference. The negative correction to the conductivity is shown to decrease
by a factor of two by the in-plane magnetic field. The positive magnetoconductivity in a classically
weak perpendicular field caused by the weak localization is calculated for both quadratic and quartic
in momentum Zeeman hole splittings. Calculations show that the conductivity corrections are very
close to each other in these two cases of low and high hole density.

I. INTRODUCTION

Spin-dependent phenomena attract a great attention
due to spin-orbit interaction allowing spin manipulation
by electrical or optical means. The first important move
in this way was a discovery of the Rashba splitting of elec-
tron energy spectrum in bulk wurtzite-type semiconduc-
tors [1]. In two-dimensional (2D) systems, this splitting
is present in heterostructures made of any material pro-
vided the structure inversion asymmetry is present [2].
Generally, the spin-orbit interaction is described by the
term in the Hamiltonian which can be presented in the
form

HSO = ~σ ·Ω, (1)

where σ = (σx, σy) is a vector of Pauli matrices, and the
spin-orbit splitting equals to 2~Ω.

The spin-orbit splitting of the electron energy spec-
trum leads to many interesting optical and transport phe-
nomena [3]. In transport, it leads to a remarkable beat-
ing patterns in the Shubnikov-de Haas oscillations where
it can be easily detected. However, a good mobility is
needed for such kind of manifestation of the Rashba split-
ting which should be much larger than the level broad-
ening. Nevertheless, even in low-mobility samples the
Rashba splitting can be measured. This can be done
in classically-low magnetic fields where the magnetore-
sistance is caused by the weak localization (WL) effect,
see Ref. [4] for review. Developed theoretical expressions
for the WL correction to the conductivity valid for ar-
bitrary values of the Rashba splitting allow adequately
extracting the splitting value and other electron kinetic
and band parameters by fitting the experimental data.

2D holes in semiconductor heterostructures represent
a system which is very different from electrons. This
happens because the holes in the ground 2D subband
have spin projection ±3/2 on the structure main axis. In
particular, they have a cubic in momentum Rashba split-
ting [5]. Due to the same reason, the Zeeman splitting of
heavy-holes in the in-plane magnetic field at the bottom
of the 2D subband is cubic in the field strength in the ax-
ial approximation. A small contribution for free holes is
present due to cubic symmetry of the zinc-blende lattice
forming the heterostructure [6] which, however, increases
strongly for localized holes in quantum dots [7]. At finite

wavevectors the situation changes, and the momentum-
dependent in-plane Zeeman splitting arises. In the axial
approximation, the Hamiltonian of heavy holes in the
ground subband of a symmetrical quantum well in the
presence of an in-plane magnetic field B‖ is given by [8]

HSO = ~σ−(∆1B+k
2
+ + ∆2B−k

4
+) + h.c. (2)

Here k is the in-plane wavevector, σ± = (σx ± iσy)/2
with the operators σx,y coupling two Kramers-degenerate
hole states, B± = Bx± iBy, k± = kx± iky, and ∆1,2 are
constants. This expression coinsides with Eq. (1) where
Ω is given by

Ωx + iΩy = B‖
(
∆1k

2e2iϕ + ∆2k
4e4iϕ

)
(3)

with ϕ being an angle between k and B‖.
According to estimates given in Ref. [9], the Zeeman

splitting at B‖ = 1 T is 2~Ω ∼ 0.1 . . . 1 meV. This al-
lows considering the Zeeman splitting being much smaller
than the Fermi energy and affecting WL as an additional
phase in the electron interference. This allows us to solve
the WL problem by the method used in Refs. [4, 10] as-
suming the ratio of the splitting and level broadening
to be arbitrary but ignoring the difference in the Fermi
wavevectors in spin subbands.

We study two limits of low and high hole densities
where ∆1k

2
F prevails over ∆2k

4
F or vice versa. Here kF is

the Fermi wavevector. In both cases, the Zeeman split-
ting is isotropic in the k-space, and the WL problem can
be solved analytically. The hole Hamiltonian (1) is even
in k, therefore the WL correction to conductivity and the
anomalous magnetoresistance are negative. We consider
diffusive and ballistic regimes of WL [11] where the inter-
ference contribution to the conductivity occurs on large
and small trajectories, respectively.

II. WL CONDUCTIVITY CORRECTION IN
DIFFUSIVE REGIME

In the low-density limit, the Hamiltonian (1) with
Ω from Eq. (3) has the same form as that of exciton-
polaritons in microcavities with Ω = ∆1k

2
FB‖ instead of

the longitudinal-transverse splitting, see Ref. [12] for de-
tails. Therefore the WL correction to conductivity σ < 0
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in the diffusion approximation is given by the expression
following from Ref. [12]:

∆σ(0) = − e2

4π2~

[
2 ln

(
T1
τ

)
− ln

(
T0
τ

)
+ ln

(τφ
τ

)]
.

(4)
Here τ is the transport scattering time, τφ is the dephas-
ing time, and the spin relaxation rates are given by [13]

1

T1
=

1

τs
+

1

τφ
,

1

T0
=

2

τs
+

1

τφ
,

1

τs
= 2Ω2τ. (5)

The first two terms in Eq. (4) is due to interference
in the triplet channel while the last one is caused by
the singlet channel. It is worth mentioning that the
classification on triplet and singlet here is by the differ-
ence of angular momenta of two interfering particle waves
rather than by their sum. Furthermore, the sign of the
Ω-independent singlet contribution is positive while one
of triplet terms is negative. This difference with a tra-
ditional results for spin-orbit coupled systems is due to
even in k spin-orbit splitting, cf. Ref. [12].

In the presence of a small perpendicular magnetic field
B ‖ z, we are interested in the magnetoconductivity
δσ = σ(Bz) − σ(Bz = 0). In the diffusion approxima-
tion Bz � Btr where the transport field is defined as

Btr =
~

2|e|l2 (6)

with l being the mean free path, we have

δσ =
e2

4π2~

[
2f2

(
Bz
B1

)
− f2

(
Bz
B0

)
+ f2

(
Bz
Bφ

)]
. (7)

Here f2(x) = ψ(1/2 + 1/x) + lnx with ψ being the
digamma-function, Bφ = Btrτ/τφ and B1,0 = Bφτφ/T1,0.

At Ωτ = 0, the correction is δσ0(Bz) =
e2

2π2~f2 (Bz/Bφ). At large Ωτ . 1, the first two terms
are much smaller than the last one. As a result, the
correction is twice smaller than at Ω = 0: δσ∞(Bz) =
e2

4π2~f2 (Bz/Bφ).
At high density the results for both zero-field correc-

tion and the magnetoconductivity are the same, the only
difference is that Ω = ∆2k

4
FB‖. Differences in the func-

tional forms of the WL contribution to the conductivity
at low and high densities appear in stronger perpendicu-
lar fields Bz ∼ Btr. In this case the ballistic trajectories
with a few, three or more, impurities contribute to the
conductivity, therefore this is called ballistic regime of
WL.

III. BALLISTIC REGIME

Here we also take into account non-logarithmic cor-
rections to the conductivity as well as the non-
backscattering contribution. We search for the the
Cooperon – the interference correction to the probability

density for an electron to reach the point r′ starting from
the point r. The Cooperon satisfies the integral equation
which can be presented in the following form [14]:

C(r, r′) = P(r, r′) +

∫
dr′′P(r, r′′)C(r′′, r′). (8)

Here the kernel is given by

P(r, r′) = P0(R) exp[2iϕ(r, r′)] exp[−2iτL · ω(R)],
(9)

where R = r − r′, P0(R) = exp
(
−R/l̃

)
/(2πRl) with

l being the mean-free path, l̃ = l/(1 + τ/τφ), the
magnetic phase ϕ(r, r′) = (x + x′)(y′ − y)/(2l2B) with

lB =
√
~c/|eBz| being the magnetic length of the uni-

tary charge, and L is an operator of a difference of spins
of two interfering particles.

A. k2-splitting

First we consider the k2-term in the spin-splitting with
Ω+ = Ω exp(2iϕ), Ω = ∆1k

2
FB‖. In this case, the vector

ω is given by

ω± = ωn2∓, ω = Ω
R

l
, n = R/R. (10)

The operator exp[−2iτL · ω(R)] implies that it is block-
diagonal in the double-charge Landau-level basis where
the levels N , N − 2 and N − 4 are mixed. In this basis
the triplet part of the operator P can be presented in the
following form:

AN =



PN − S(0)

N −iR(2)
N S

(4)
N

−iR(2)
N PN−2 − 2S

(0)
N−2 −iR(2)

N−2
S
(4)
N −iR(2)

N−2 PN−4 − S(0)
N−4


 .

(11)
Here

PN =
lB
l

∞∫

0

dx exp

(
−xlB

l̃
− x2

2

)
LN (x2), (12)

R
(m)
N =

lB

l
√

2

√
(N −m)!

N !
(13)

×
∞∫

0

dx exp

(
−xlB

l
− x2

2

)
xmL

(m)
N−m(x2) sin

(
2Ωτ

lB
l
x

)
,

S
(m)
N =

lB
l

√
(N −m)!

N !
(14)

×
∞∫

0

dx exp

(
−xlB

l
− x2

2

)
xmL

(m)
N−m(x2) sin2

(
Ωτ

lB
l
x

)
,
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and we assume PN with N < 0 and R
(m)
N , S

(m)
N with

N < m equal to zero.
The backscattering contribution to the conductivity is

given by

σbs = − e2

2π2~

(
l

lB

)2 ∞∑

N=0

[
Tr
(
ΠA2

NCN
)

+
P 3
N

1− PN

]
,

(15)
where Π = diag(1,−1, 1), and the Cooperon matrix CN
reads

CN = AN (I −AN )−1 (16)

with I being the 3× 3 unit matrix.
The non-backscattering contribution reads [14]

σnbs = − e2

4π2~

(
l

lB

)2

Tr

[
Π

(
J +CJ− + J−CJ +

)]
,

(17)
where J± = n±P are the vertex operators. Calculation
yields

σnbs =
e2

4π2~

(
l

lB

)2 ∞∑

N=0

{(
Q2
N+1 +Q2

N

) PN
1− PN

+ Tr
[
Π(KT

N+1KN+1 +KNK
T
N )CN

]}
. (18)

Here

QN =
lB
l

Θ(N)√
N

∞∫

0

dx exp

(
−xlB

l
− x2

2

)
xL

(1)
N−1(x2),

(19)
and

KN =



QN − S(1)

N −iR(3)
N S

(5)
N

iR
(1)
N−1 QN−2 − 2S

(1)
N−2 −iR(3)

N−2
−S(3)

N−1 iR
(1)
N−3 QN−4 − S(1)

N−4


 .

(20)

B. Zero perpendicular field

The limit Bz → 0 is evaluated in a standard way. In
the absense of spin-orbit splitting, Ω = 0, we have a well-
known result

∆σ(0) = − e2

2π2~
ln
( τφ

2τ

)
. (21)

Here the two contributions are given by σbs(0) =

− e2

2π2~ ln(τφ/τ) and σnbs(0) = e2

2π2~ ln 2, cf. Eq. (4).
At arbitrary values of the product Ωτ , the zero-Bz

correction is obtained by passing in Eqs. (15), (18) from
summation to integration [15]:

(
l

lB

)2 ∞∑

N=0

→ 1

4

∞∫

0

dx, x = 4N

(
l

lB

)2

. (22)

The values PN , QN , R
(m)
N and S

(m)
N are changed to P (x),

Q(x), Rm(x) and Sm(x), and matrices AN and KN are
changed to Ax and Kx accordingly. Using the asymp-
totics of Laguerre polynomials at N →∞ we obtain

P =
1√

(l/l̃)2 + x
, Q = P

√
1− P
1 + P

, (23)

Rm =
ImTm√

2
, Sm =

1

2

[
P

(
1− P
1 + P

)m/2
− ReTm

]
,

where

T0 =
P√

1− 4Ωτ(Ωτ + i)P 2
, (24)

Tm = T0

[√
1− 4Ωτ(Ωτ + i)P 2 + (2iΩτ − 1)P√

1− P 2

]m
.

It is convenient then to change the integration variable
to P :

σbs(0) = − e2

4π2~



l̃/l∫

0

dP
Tr
(
ΠA2

xCx
)

P 3
+ ln

(τφ
τ

)

 , (25)

σnbs(0) =
e2

8π2~

1∫

0

dP
Tr
[
Π(KT

xKx +KxK
T
x )Cx

]

P 3

+
e2

4π2~
ln 2. (26)

Here Cx = Ax(I−Ax)−1. We keep the difference between

l̃ and l only in (25) because it is important for cutting
the pole in the integrand.

In the limit Ωτ →∞ we have Rm(x) = 0. This means
the interference in one channel is totally suppressed by
spin-orbit interaction. Numerical integration with the
2-rank matrices Ax, Kx yields in this limit

σ∞bs (0) = − e2

4π2~

(
ln
τφ
τ

+ 0.4514
)
, σ∞nbs(0) = 0.209

e2

π2~
.

(27)

C. k4-splitting

At high hole density, when the B‖k
4-term dominates

in the Zeeman splitting, the vector ω(R) introduced in
Eq. (10) changes to

ω± = ωn4∓, Ω = ∆2k
4
FB‖. (28)

This results in the following matrix AN instead of
Eq. (11)

AN =



PN − S(0)

N −iR(4)
N S

(8)
N

−iR(4)
N PN−4 − 2S

(0)
N−4 −iR(4)

N−4
S
(8)
N −iR(4)

N−4 PN−8 − S(0)
N−8


 .

(29)
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The backscattering contribution to the conductivity is
given by Eq. (15).

The nonbackscattering correction σnbs is given by the
general Eq. (17). In the case of splitting ∝ k4, we again
obtain Eq. (18) with the matrix KN given by

KN =



QN − S(1)

N −iR(5)
N S

(9)
N

iR
(3)
N−1 QN−4 − 2S

(1)
N−4 −iR(5)

N−4
−S(7)

N−1 iR
(3)
N−5 QN−8 − S(1)

N−8


 .

(30)
At Bz = 0, the conductivity corrections are also given

by Eqs. (25), (26) where the matrices Ax and Kx are
obtained from the above given matrices AN , KN by the
substitutions (23).

In the limit Ωτ →∞ we have

σ∞bs (0) = − e2

4π2~

(
ln
τφ
τ

+ 0.3964
)
, σ∞nbs(0) = 0.2059

e2

π2~
.

(31)

IV. RESULTS AND DISCUSSION

For numerical calculations of the conductivity correc-
tions, we extend the approach used in Ref. [16]. For the
computation of the sums (15), (18) we use the follow-
ing procedure: we choose a value of a high Landau level
Nmax. Next, the infinite sums (15), (18) are split in two
parts: for N ≤ Nmax we directly sum the terms, and for
N > Nmax we replace the sums with the integral of the
matrix function obtained from Eqs. (15), (18) by using
the large-N limit (23). In fact, this part of the correc-
tion is given by Eqs. (25), (26) with the dependence on
magnetic field in the upper integral limit. For the results
below we find Nmax = 300 sufficient for converging up
to fourth digit in the whole range of magnetic fields. For
small and large values of Bz, one may use smaller Nmax
as in the former case the correction is defined by large
Landau levels and in the latter case the correction is de-
fined by small number of Landau levels close to zero. For
small magnetic fields, the evaluation of integrals in (12)
is impractical as the function in the integral is oscillating
for large N . In this case, we use the reccurence relations
given in Appendix A. Recurrence relations are used for

P(0)
N and P(1)

N , but for 2 ≤ m ≤ 4 (large Bz and/or Ωτ)
and m ≥ 5 one has to use the direct calculation of the
integrals (12). As a result, the calculation of the conduc-
tivity correction for k4-splitting is more time consuming
but still feasible.

In Fig. 1, the conductivity correction is shown as a
function of the Bz for various values of the spin-orbit
splitting Ω ∝ B‖k

2. The zero-Bz value at large Ωτ is
twice smaller than at Ω = 0. At large Bz � Btr all
curves tend to the same dependence because of absence
of spin rotations at characteristic trajectories with the
size ∼ lB � l.

The conductivity at k4-splitting is very close to these
dependencies. Difference in the magnetoconductivity at

10−4 10−3 10−2 10−1 100 101 102 103 104

Magnetic field Bz (Btr)

−3.0

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

C
or

re
ct

io
n
( e2 /

π
2 h̄
)

Ωτ = 0
Ωτ = 0.1
Ωτ = 0.2
Ωτ = 0.5
Ωτ = 1
Ωτ = 5

FIG. 1. Conductivity correction at k2-splitting as a function
of Bz/Btr for various Ωτ ∝ B‖. The dephasing time τφ/τ =

103. Diffusion approximation results (7) are shown by dashed
lines.

k2- and k4-splittings is demonstrated in Fig. 2. Not only
singlet contributions independent of the splitting but also
triplet contributions are very close to each over at two
types of splittings. Therefore the results of Fig. 1 are
valid for the k4-type of splitting as well.

The WL correction to conductivity at Bz = 0 is ana-
lyzed in Fig. 3. According to Eqs. (21), (27) the non-
backscattering correction at k2-splitting changes from
(1/2) ln 2 = 0.3466 to 0.209 (in units e2/π2~) when Ωτ
raises from zero to infinity. The backscattering correc-
tion changes from (−1/2) ln (τφ/τ) to (−1/4) ln (τφ/τ)−
0.113. At k4-splitting the backscattering correction tends
at Ωτ → ∞ to (−1/4) ln (τφ/τ) − 0.0991, and the
nonbackscattering one to 0.2059 (in units e2/π2~), cf.
Eq. (31). We see that the size of the WL correction is a

10−3 10−2 10−1 100 101 102 103 104

Magnetic field Bz (Btr)

−0.4

−0.3

−0.2

−0.1

0.0

0.1

C
or

re
ct

io
n
( e2 /

π
2 h̄
)

Ωτ = 1

FIG. 2. Partial contribution to the WL conductivity correc-
tion at Ωτ = 1 and τφ/τ = 103. The backscattering and non-
backscattering contributions for singlet, triplet at k2-splitting
and triplet at k4-splitting are shown by dotted, solid and
dashed lines, respectively.
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10−1 101 10310−2 100 102

Ωτ

−3.0

−2.5

−2.0

−1.5

Ω ∝ k2B||
Ω ∝ k4B||

0.20

0.25

0.30

0.35

10−2 10−1 100 101 102 103

Ωτ

−3.5

−3.0

−2.5

−2.0

backscattering

non-backscattering
C

or
re

ct
io

n
( e2 /

π
2 h̄
)

FIG. 3. Conductivity correction at Bz = 0 as a function
of Ωτ ∝ B‖ at τφ/τ = 103. The total conductivity correc-
tion, backscattering and non-backscattering contributions are
shown in the left, upper right and lower right panels, respec-
tively. Solid and dashed cureves correspond to the k2- and
k4-splittings.

little bit larger in the case of k2-splitting. However, the
difference is very small.

V. SUMMARY

To summarize, the theory of WL of 2D holes in the
presence of an in-plane magnetic field is developed. The
momentum-dependent Zeeman splitting is taken into ac-
count which can be squared or quartic in k. The WL
conductivity correction, which is negative, is derived for
both cases. Calculations show that the results are very
close to each other. The k-dependent Zeeman split-
ting suppresses the WL correction up to factor of two
at large splitting. The positive magnetoconductivity in
classically-weak perpendicular magnetic fields is calcu-
lated for arbitrary values of the Zeeman splitting. The
developed is valid for arbitrary values of the product Ωτ
but the spin splitting 2~Ω assumed much smaller than the
Fermi energy. For higher spin splittings, when they are
comparable, one should take into account the difference
of the Fermi wavevectors in two spin-splitted subbands as
it has been done for large Rashba splittings in Ref. [18].
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Appendix A: Recurrence relations

We define for N ≥ m

P(m)
N =

∞∫

0

dx exp

(
−ax− x2

2

)
xmL

(m)
N−m(x2). (A1)

At N = 0 we have P(0)
0 =

√
π/2 exp

(
a2/2

)
Erfc(a/

√
2),

for P(0)
N with N ≥ 1 we use the following reccurence

relations [16, 17]

NP(0)
N = aδN1 + (N − 2)P(0)

N−3

+ (N − 1 + a2)
(
P(0)
N−2 − P

(0)
N−1

)
(A2)

and the numerical procedure explained in details in
Ref. [16]. For m ≥ 1, using the recurrence relations for
the Laguerre polynomials, we obtain [19]

P(1)
N − P

(1)
N−2 = δN1 − a(P(0)

N−1 − P
(0)
N−2), (A3a)

P(m≥2)
N − P(m≥2)

N−2 = (m− 1)P(m−2)
N−2

− a
(
P(m−1)
N−1 − P(m−1)

N−2

)
. (A3b)

The WL conductivity correction is determined by PN ,

QN , R
(m)
N and S

(m)
N . They are expressed via P(m)

N as
follows:

PN =
lB
l
P(0)
N

(
a = lB/l̃

)
, (A4)

QN =
lB
l

1√
N
P(1)
N (a = lB/l), (A5)

R
(m)
N =

lB

l
√

2

√
(N −m)!

N !
ImP̃

(m)
N , (A6)

S
(m)
N =

lB
l

√
(N −m)!

N !

P(m)
N (a = lB/l)− ReP̃

(m)
N

2
,

(A7)
where

P̃
(m)
N = P(m)

N [a = (1− 2iΩτ)lB/l]. (A8)
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