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Abstract. We show that the billiard in a regular polygon is weak mixing in

almost every invariant surface, except in the trivial cases which give rise to
lattices in the plane (triangle, square and hexagon). More generally, we study

the problem of prevalence of weak mixing for the directional flow in an arbi-

trary non-arithmetic Veech surface, and show that the Hausdorff dimension
of the set of non-weak mixing directions is not full. We also provide a nec-

essary condition, verified for instance by the Veech surface corresponding to

the billiard in the pentagon, for the set of non-weak mixing directions to have
positive Hausdorff dimension.

1. Introduction

1.1. Weak-mixing directions for billiards in regular polygons. Let n ≥ 3
be an integer and consider the billiard in an n-sided regular polygon Pn. It is
readily seen that the 3-dimensional phase space (the unit tangent bundle T 1Pn)
decomposes into a one-parameter family of invariant surfaces, as there is a clear
integral of motion. In such a setting, it is thus natural to try to understand the
dynamics restricted to each of, or at least most of, the invariant surfaces.

The cases n = 3, 4, 6 are simple to analyze, essentially because they correspond
to a lattice tiling of the plane: the dynamics is given by a linear flow on a torus,
so for a countable set of surfaces all trajectories1 are periodic, and for all others
the flow is quasiperiodic and all trajectories are equidistributed with respect to
Lebesgue measure on the surface.

For n 6= 3, 4, 6, the invariant surfaces have higher genus, and quasiperiodicity
can not take place. However, W. Veech [Ve89] showed that a dichotomy still holds:
for a countable set of surfaces all infinite trajectories are periodic, and for all others
all trajectories are equidistributed with respect to Lebesgue measure.

The most basic question that follows Veech work is whether weak mixing takes
place (absence of mixing is a general property in the more general class of translation
flows, which is known from earlier work of A. Katok [Ka80]). Recall that weak
mixing means that there is no remaining of periodicity or quasiperiodicity from the
measurable point of view (i.e., there is no factor which is periodic or quasiperiodic),
and can thus be interpreted as the complete breakdown of the nice lattice behavior
seen for n = 3, 4, 6.

While results about the prevalence of weak mixing were obtained in the more
general context of translation flows ([AF07], [AF]), the case of regular polygons

1Here we restrict consideration to orbits that do not end in a singularity (i.e., a corner of the
billiard table) in finite time.
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proved to be much more resistent. The basic reason is that the most succesful ap-
proaches so far were dependent on the presence of a suitable number of parameters
which can be used in a probabilistic exclusion argument, and as a consequence they
were not adapted to study the rigid situation of a specific billiard table. In this
paper we address directly the problem of weak mixing for exceptionally symmetric
translation flows, which include the ones arising from regular polygonal billiards.

Theorem 1. If n 6= 3, 4, 6 then the restriction of the billiard flow in Pn to almost
every invariant surface is weak mixing.

Of course, in view of Veech’s remarkably precise answer to the problem of equidis-
tribution, one could wonder whether weak mixing is not only a prevalent property,
but one that might hold outside a countable set of exceptions. It turns out that
this is not the case in general, and in fact we will show that the set of exceptions
can be relatively large and have positive Hausdorff dimension. However, we will
prove that it can never have full dimension.

1.2. Non-arithmetic Veech surfaces. We now turn to the general framework in
which the previous result fits. A translation surface is a compact surface S which
is equipped with an atlas defined on the complement of a finite and non-empty set
of “marked points” Σ, such that the coordinate changes are translations in R2 and
each marked point p has a punctured neighborhood isomorphic to a finite cover a
punctured disk in R2. The geodesic flow in any translation surface has an obvious
integral of motion, given by the angle of the direction, which decomposes it into
separate dynamical systems, the directional flows.

An affine diffeomorphism of a translation surface (S,Σ) is a homeomorphism
of S which fixes Σ pointwise and which is affine and orientation preserving in the
charts. The linear part of such diffeomorphism is well defined in SL(2,R), and
allows one to define a homomorphism from the group of affine diffeomorphisms to
SL(2,R): its image is a discrete subgroup called the Veech group of the translation
surface.

A Veech surface is an “exceptionally symmetric” translation surface, in the
sense that the Veech group is a (finite co-volume) lattice in SL(2,R) (it is easily
seen that the Veech group is never co-compact). Simple examples of Veech sur-
faces are square-tiled surfaces, obtained by gluing finitely many copies of the unit
square [0, 1]2 along their sides: in this case the Veech group is commensurable with
SL(2,Z). Veech surfaces that can be derived from square-tiled ones by an affine
diffeomorphism are called arithmetic. Arithmetic Veech surfaces are branched cov-
ers of flat tori, so their directional flows are never topologically weak mixing (they
admit a continuous almost periodic factor).

The first examples of non-arithmetic Veech surfaces were described by Veech,
and correspond precisely to billiard flows on regular polygons. It is easy to see that
the billiard flow in Pn corresponds, up to finite cover, to the geodesic flow on a
translation surface obtained by gluing the opposite sides of Pn (when n is even), or
the corresponding sides of Pn and −Pn (when n is odd). This construction yields
indeed a Veech surface Sn which is non-arithmetic precisely when n 6= 3, 4, 6. The
genus g of Sn is related to n by g = n−1

2 (n odd) and g = [n4 ] (n even).
We can now state the main result of this paper:
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Theorem 2. The geodesic flow in a non-arithmetic Veech surface is weakly mixing
in almost every direction. Indeed the Hausdorff dimension of the set of exceptional
directions is less than one.

An important algebraic object associated to the Veech group Γ of a Veech surface
is the trace field k, the extension of Q by the traces of the elements of Γ. Its degree
r = [k :Q] satisfies 1 ≤ r ≤ g, where g is the genus of S, and we have r = 1 if and
only if S is arithmetic. As an example, the trace field of Sn is Q[cos πn ] if n is odd

or Q[cos 2π
n ] if n is even.

Theorem 3. Let S be a Veech surface with a quadratic trace field (i.e., r = 2).
Then the set of directions for which the directional flow is not even topologically
weak mixing has positive Hausdorff dimension.

Notice that this covers the case of certain polygonal billiards (Q[cos πn ] is qua-
dratic if and only if n ∈ {4, 5, 6}, hence the above result holds for Sn with n ∈
{5, 8, 10, 12}), and of all non-arithmetic Veech surfaces in genus 2. We point out
that Theorem 3 is a particular case of a more general result, Theorem 31, which
does cover some non-arithmetic Veech surfaces with non-quadratic trace fields (in-
deed it applies to all non-arithmetic Sn with n ≤ 16, the degrees of their trace fields
ranging from 2 to 6) and could possibly apply to all non-arithmetic Veech surfaces.
Let us also note that the non-weak mixing directions obtained in Theorem 31 have
multiple rationally independent eigenvalues.

One crucial aspect of our analysis is a better description of the possible eigen-
values (in any minimal direction) in a Veech surface. Using the algebraic nature of
Veech surfaces, we are able to conclude several restriction on the group of eigenval-
ues. For non-arithmetic Veech surfaces, the ratio of two eigenvalues always belong
to k and the number of rationally independent eigenvalues is always at most [k :Q].
Moreover, the group of eigenvalues is finitely generated (so the Kronecker factor is
always a minimal translation of a finite dimensional torus). Whereas for the case
of arithmetic Veech surfaces, we obtain that all eigenvalues come from a ramified
cover over a torus.

We expect that, for a non-arithmetic Veech surface and along any minimal di-
rection that is not weak mixing, there are always exactly [k :Q] independent eigen-
values, and that they are either all continuous or all discontinuous. This is the
case along directions for which the corresponding forward Teichmüller geodesic is
bounded in moduli space, see Remark 7.1.

1.3. Further comments. The strategy to prove weak mixing for a directional flow
on a translation surface S is to show that the associated unitary flow has no non-
trivial eigenvalues. It is convenient to first rotate the surface so that the directional
flow goes along the vertical direction. The small scale behavior of eigenfunctions
associated to a possible eigenvalue can then be studied using renormalization. Tech-
nically, one parametrizes all possible eigenvalues by the line in H1(S;R) through the
imaginary part of the tautological one form (the Abelian differential corresponding
to the translation structure) and then apply the so-called Kontsevich-Zorich cocy-
cle over the Teichmüller flow in moduli space. According to the Veech criterion
any actual eigenvalue is parametrized by an element of the “weak-stable lamina-
tion” associated to an acceleration of the Kontsevich-Zorich cocycle acting modulo
H1(S;Z). Intuitively, eigenfunctions parametrized by an eigenvalue outside the
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weak stable lamination would exhibit so much oscillation in small scales that mea-
surability must be violated. The core of [AF07] is a probabilistic method to exclude
non-trivial intersections of an arbitrary fixed line in H1(S;R) with the weak stable
lamination, which uses basic information on the non-degeneracy of the cocycle.

The problem of weak mixing in the case of S5 was asked during a talk by the first
author on [AF07] by C. McMullen in 2004. It was realized during discussions with
P. Hubert that the probabilistic method behind [AF07] fails for Veech surfaces,
due essentially to a degeneracy (non-twisting) of the Kontsevich-Zorich cocycle.
Attempts to improve the probabilistic argument using Diophantine properties of
invariant subspaces turned out to lead to too weak estimates.

In this paper we prove that the locus of possible eigenvalues is much more con-
strained in the case of Veech surfaces: eigenvalues must be parametrized by an
element in the “strong stable lamination”, consisting of all the integer translates of
the stable space, which is a much simpler object than the weak stable lamination
(considered modulo the strong stable space, the former is countable, while the latter
is typically uncountable). Direct geometric estimates on the locus of intersection
can be then obtained using much less information on the non-degeneracy of the
cocycle.

In order to obtain this stronger constraint on the locus of possible eigenvalues
we will first carry out an analysis of the associated eigenfunctions at scales corre-
sponding to renormalizations belonging to a large compact part of the moduli space
(this refines Veech’s criterion, which handles compact sets that are small enough to
be represented in spaces of interval exchange transformations). This is followed by
a detailed analysis of the excursion to the non-compact part of the moduli space,
which is used to forbid the occurrence of an integer “jump” in cohomology along
such an excursion. In doing so, we use fundamentally the particularly simple na-
ture of the renormalization dynamics in the non-compact part of the moduli space
SL(2,R)/Γ of a Veech surface (a finite union of cusps).

We should point out that it is reasonable to expect that, in the general case
of translation flows, one can construct examples of eigenvalues which do not come
from the strong stable lamination. Indeed M. Guenais and F. Parreau construct
suspension flows over ergodic interval exchange transformations and with piecewise
constant roof function admitting infinitely many independent eigenvalues (see The-
orem 3 of [GP]), and this provides many eigenvalues that do not come from the
strong stable lamination (which can only be responsible for a subgroup of eigenval-
ues of finite rank). See also [BDM2], section 6, for a different example in a related
context.

Acknowledgements: This work was partially supported by the ERC Starting
Grant “Quasiperiodic” and by the Balzan project of Jacob Palis. We would like
to thank Pascal Hubert for several discussions and Jean-Paul Thouvenot for his
question about the number of eigenvalues and the reference [GP].

2. Preliminaries

2.1. Translation surfaces, moduli space, SL(2,R)-action. A translation sur-
face can be also defined as a triple (S,Σ, ω) of a closed surface S, a non-empty finite
set Σ ⊂ S, and an Abelian differential ω on S whose zeros are contained in Σ (ω
is holomorphic for a unique complex structure on S). Writing in local coordinates
ω = dz, we get canonical charts to C such that transition maps are translations.
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Such map exists at x ∈ S if and only if ω is non zero at x. The zeros of ω are the
singularities of the translation surface. Reciprocally, a translation surface S defined
as in the introduction (in terms of a suitable atlas on S \ Σ) allows one to recover
the Abelian differential ω by declaring that ω = dz and extending it uniquely to
the marked points. We write (S, ω) for the translation surface for which Σ is the
set of zeros of ω.

Let (S,Σ, ω) be a translation surface. The form |ω| defines a flat metric except at
the singularities. For each θ ∈ R/2πZ we define the directional flow in the direction

θ as the flow φS,θT : S → S obtained by integration of the unique vector field Xθ

such that ω(Xθ) = eiθ. In local charts z such that ω = dz we have φS,θt (z) = z+teiθ

for small t, so the directional flows are also called translation flows. The (vertical)
flow of (S, ω) is the flow φS,π/2 in the vertical direction. The flow is not defined at
the zeros of ω and hence the flow is not defined for all positive times on backward

orbits of the singularities. The flows φS,θt preserve the volume form 1
2iω∧ω and the

ergodic properties of translation flows we will discuss below refer to this measure.
Translation surfaces were introduced to study rational billiards as the example of

the regular polygons Pn in the introduction. Each rational billiard may be seen as
a translation surface by a well known construction called unfolding or Zemliakov-
Katok construction (see [MT02]).

Several results are known to holds for an arbitrary translation surface: the direc-
tional flows is minimal except for a countable set of directions [Ke75], the transla-
tion flow is uniquely ergodic except for a set of directions of Hausdorff dimension at
most 1/2 [KMS86], [Ma92], and the translation flow is not mixing in any direction
[Ka80].

The weak mixing property is more subtle. Indeed, translation flows in a genus
one translation surface are never weakly mixing. The same property holds for the
branched coverings of genus one translation surfaces, which form a dense subset
of translation surfaces. However, for almost every translation surface of genus at
least two, the translation flow is weakly mixing in almost every direction [AF07].
The implicit topological and measure-theoretical notions above refer to a natural
structure on the space of translation structure that we introduce now.

Let g, s ≥ 1 and let S be a closed surface of genus g, let Σ ⊂ S be a subset
with #S = s and let κ = (κx)x∈Σ be a family of non-negative integers such that∑
κi = 2g − 2. The set of translation structures on S with prescribed conical

angle (κx + 1)2π at x, modulo isotopy relative to Σ forms a manifold TS,Σ(κ).
The manifold structure on TS,Σ(κ) is described by the so-called period map Θ :
TS,Σ(κ) → H1(S,Σ;C) which associates to ω its cohomology class in H1(S,Σ;C).
The period map is locally bijective and provides natural charts to TS,Σ(κ) as well

as an affine structure and a canonical Lebesgue measure. We denote by TS,Σ(κ)(1)

the hypersurface of area 1 translation surfaces.
The group SL(2,R) acts (on left) on TS,Σ(κ) by postcomposition on the charts

and preserves the hypersurface TS,Σ(κ)(1). The subgroup of rotations rθ =

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)
acts by multiplication by eiθ on ω. The action of the diagonal subgroup gt =(
et 0
0 e−t

)
is called the Teichmüller flow and transforms ω = Re(ω) + i Im(ω) into
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gt · ω = et Re(ω) + ie−t Im(ω). The stable and unstable horocycle flows are the

action of the matrices h−s =

(
1 0
s 1

)
and h+

s =

(
1 s
0 1

)
.

The modular group MCG(S,Σ) of (S,Σ) is the group of diffeomorphisms of S fix-
ing Σ pointwise modulo isotopy relative to Σ. It acts discretely discontinuously (on

right) on the spaces TS,Σ(κ) and T (1)
S,Σ(κ) via (S, ω) 7→ (S, ω ◦ dφ). Their quotient,

denoted MS,Σ(κ) and M(1)
S,Σ(κ) is called a stratum of the moduli space of trans-

lation surfaces of genus g and s marked points or shortly a stratum. The space
MS,Σ(κ) inherits from TS,Σ(κ) a complex affine orbifold structure. The SL(2,R)
and MCG(S,Σ) actions on TS,Σ(κ) commutes, hence the SL(2,R) action is well
defined on the quotientMS,Σ(κ). The Lebesgue measure projects onMS,Σ(κ) (re-

spectivelyM(1)
S,Σ(κ)) into a measure ν (resp. ν(1)) called the Masur-Veech measure.

Masur ([Ma82]) and Veech ([Ve82]) proved independently that the measure ν(1) has
finite total mass, the action of SL(2,R) on eachMS,Σ(κ) preserves it and moreover

that the Teichmüller flow gt is ergodic on each connected component of M(1)
S,Σ(κ)

with respect to that measure.
We will also sometimes use the notation Mg(κ) to denote MS,Σ(κ), where the

(κj)1 ≤ j ≤ s is obtained by reordering the (κx)x∈S in non-increasing order. As
an example, for n even, the surface Sn built from a regular n-gon belongs to the
stratumMbn/4c((n−4)/2) if n ≡ 0 mod 4 orMbn/4c((n−6)/4, (n−6)/4) if n ≡ 2
mod 4.

Over the Teichmüller space, let us consider the trivial cocycle gt×id on TS,Σ(κ)×
H1(S;R). The modular group MCG(S,Σ) acts on TS,Σ(κ) × H1(S;R) and the
quotient bundle is a flat orbifold vector bundle over MS,Σ(κ) called the Hodge
bundle. The Kontsevich-Zorich cocycle is the projection of gt × id to the Hodge
bundle. We will also need a slightly different form of the Kontsevich-Zorich cocycle,
namely the projection of gt× id on TS,Σ(κ)×H1(S\Σ;R) that we call the extended
Kontsevich-Zorich cocycle (on the extended Hodge bundle). The moduli space, the
Teichmüller flow and the Kontsevich-Zorich cocycle are of main importance in the
results we mentioned above about the ergodic properties of translation flows.

Let µ be a gt invariant ergodic probability measure on MS,Σ(κ). Because the
modular group acts by symplectic (with respect to the intersection form) trans-
formations on H1(S;R), the 2g Lyapunov exponents λµ1 ≥ λµ2 ≥ . . . ≥ λµ2g of the
Kontsevich-Zorich cocycle satisfy

∀1 ≤ k ≤ g, λµk = −λ2g−k−1 ≥ 0.

Because of the natural injection H1(S;R)→ H1(S\Σ;R), the Lyapunov spectrum
of the extended Kontsevich-Zorich cocycle contains the one of the Kontsevich-Zorich
cocycle. It may be proved that the remaining exponents are s− 1 zeros where s is
the cardinality of Σ.

The tautological bundle is the subbundle of the Hodge bundle whose fiber over
(S,Σ, ω) is V = RReω ⊕ R Imω. The Kontsevich-Zorich cocycle preserves the
tautological bundle and one sees directly from the definition that the Lyapunov
exponents on the tautological bundle are 1 and −1. For the remaining exponents
we have the following inequality.
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Theorem 4 (Forni [Fo02]). Let µ be an ergodic invariant probability measure of the
Teichmüller flow on some stratum MS,Σ(κ). Then the second Lyapunov exponent
λµ2 of the Kontsevich-Zorich cocycle satisfies 1 > λµ2 .

Remark 2.1. Forni’s proof indeed shows that there exists a natural Hodge norm
on the Hodge bundle such that for any x ∈MS,Σ(κ), the Kontsevich-Zorich cocycle
starting from x has norm strictly less than et at any time t > 0, when restricted to
the symplectic orthogonal to the tautological space.

2.2. Veech surfaces. Our goal in this article is to study the weak-mixing property
for the directional flows in a translation surfaces with closed SL(2,R)-orbits in
MS,Σ(κ), which are called Veech surfaces.

Let us recall that an affine homeomorphism of a translation surface (S,Σ, ω)
is a homeomorphism of S which preserves Σ pointwise and is affine in the charts
of S compatible with the translation structure. An affine homeomorphism φ has
a well defined linear part, denoted by, dφ ∈ SL(2,R), which is the derivative of
the action of φ in charts. The set of linear parts of affine diffeomorphisms forms
a discrete subgroup Γ(S,Σ, ω) of SL(2,R) called the Veech group of (S,Σ, ω). A
translation surface is called a Veech surface if its Veech group is a lattice. The
SL(2,R) orbit of a Veech surface is closed inMS,Σ(κ) and naturally identifies with
the quotient C = SL(2,R)/Γ(S,Σ, ω). The SL(2,R) action on C preserves the
natural Haar measure and the Teichmüller flow gt is the geodesic flow on the unit
tangent bundle of the hyperbolic surface H/Γ(S,Σ, ω).

Veech proved that the Veech group of a Veech surface is never co-compact.
Moreover, the cusp excursion may be measured in terms of systoles as in the well
known case of lattices with SL(2,Z). A saddle connection in a translation surface
(S,Σ, ω) is a geodesic segment for the metric |ω| that start and ends in Σ and whose
interior is disjoint from Σ. For the square torus, C/(Z1 + Zi) with the 1-form dz
the set of saddle connections identifies with primitive vectors (ie vector of the form
pi + q with p and q relatively prime integers). For a translation surface (S, ω) the
systole sys(S, ω) of (S, ω) is the length of the shortest saddle connection in (S, ω).
Assume that (S, ω) is a Veech surface and denote C its SL(2,R)-orbit in MS,Σ(κ).
Then the set Cε = {(S, ω) ∈ C; sys(S, ω) ≥ ε} forms an exhaustion of C by compact
sets.

Beyond arithmetic surfaces (cover of the torus ramified over one point) the first
examples of Veech surfaces are the translations surfaces Sn associated to the billiard
in the regular polygon with n sides Pn ⊂ R2 which is built from Pn (n even) or
from the disjoint union of Pn and −Pn (n odd) [Ve89]. In either case, Sn is defined
by identifying every side of Pn with the unique other side (of either Pn or −Pn
according to the parity of n) parallel to it, via translations. For them, the Veech
group as well as the trace field was computed by Veech.

Theorem 5 ([Ve89]). Let Sn be the Veech surface associated to the billiard in the
regular polygon with n sides:

(1) if n is odd, the Veech group of Sn is the triangle group ∆(2, n,∞) with trace
field Q[cos(π/n)],

(2) if n is even, the Veech group of Sn is the triangle group ∆(n/2,∞,∞) with
trace field Q[cos(2π/n))].

Notice that for n even, ∆(n/2,∞,∞) is a subgroup of index 2 of ∆(2, n,∞).
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Calta [Ca04] and McMullen [McM03] made a classification of Veech surfaces in
genus 2. In the stratum M2(1, 1) there is only one non arithmetic Veech surface
which may be built from the decagon (the surface S10). In the stratumM2(2), there
is a countable family of Veech surfaces that have quadratic trace fields (the family
includes S5 and S8). They are all obtained from billiards in a rectangular L-shape
table. But for those examples, the structure of the Veech group is rather mysterious.
Other surfaces with quadratic trace field were discovered by McMullen [McM06] in
the strata M3(4) and M4(6) and further studied by Lanneau and Nguyen [LN].
More recently, Bouw and Möller [BM10], generalizing Veech examples, introduce
a family of Veech surfaces Sm,n for which the Veech group is the triangle group
∆(m,n,∞). They prove that some of them may be obtained as unfolding billiards.
An explicit construction of those surfaces using polygons is given in [Ho12] (see
also [Wr]).

2.3. Translation flow of Veech surfaces. Let (S,Σ, ω) be a translation surface
and assume that there exists an affine diffeomorphism φ whose image under the
Veech group g is parabolic. The direction determined by the eigenvector of g in R2

is a completely periodic direction in S: the surface (S,Σ, ω) decomposes into a finite
union of cylinders whose waist curves are parallel to it. Morever, φ preserves each
cylinder and acts as a power of a Dehn-twist in each of them. We may assume that

the eigendirection is vertical, and hence g = h−s =

(
1 0
s 1

)
for some real number

s. Let h1, h2, . . . , hk and w1, w2, . . . , wk be the widths and the heights of the
cylinders C1, . . . , Ck in the vertical direction. For each cylinder Ci, let φi be the

Dehn twist in Ci. Then its linear part is gi =

(
1 0

µ(Ci)
−1 1

)
where µ(Ci) = wi/hi

is the modulus of Ci. The real number s is such s/µ(Ci) are integers. Reciprocally, a
completely periodic direction admits a non trivial stabilizer in SL(2,R) if and only
if the moduli µ(Ci) of the cylinders are commensurable (their ratio are rational
numbers). Such a direction is called parabolic.

Keane and Kerckhoff-Masur-Smillie theorems about minimality and unique er-
godicity of translation flows (see Section 2.1) have the following refinement.

Theorem 6 (Veech alternative, [Ve89]). Let (S,Σ, ω) be a Veech surface. Then

(1) either there exists a vertical saddle connection and (S,Σ, ω) is parabolic,
(2) or the vertical flow is uniquely ergodic.

The SL(2,R) orbit of a Veech surface is never compact (any fixed saddle connec-
tion can be shrinked arbitrarily by means of the SL(2,R) action, thus escaping any
compact subset of the moduli space). Nevertheless, the geometry of flat surfaces in
the cusps is well understood and will be crucial in the study of eigenvalues (see Sec-
tion 4). If ζ and ζ ′ are two saddle connections in a flat surface (S, ω) we denote by
ζ ∧ω ζ ′ the number in C that corresponds to the (signed) area of the parallelogram
determined by ω(ζ) and ω(ζ ′).

Theorem 7 (No small triangles). Let (S, ω) be a Veech surface. Then there exists
κ > 0 such that for any pair of saddle connections ζ and ζ ′

• either |ζ ∧ω ζ ′| > κ,
• or ζ and ζ ′ are parallel (i.e. ζ ∧ω ζ ′ = 0).
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The above theorem is actually the easy part of a characterization of Veech sur-
faces proved in [SW10]. Note that the quantity ζ ∧ω ζ ′ is invariant under the
Teichmüller flow (i.e. ζ ∧g·ω ζ ′ = ζ ∧ ζ ′ for any g ∈ SL(2,R)) and corresponds to
twice the area of a (virtual) triangle delimited by ζ and ζ ′. We deduce in particular,
that if there exists a small saddle connection in a Veech surface, then any other
short saddle connection would be parallel to it and that the smallness is uniform
for the whole SL(2,R)-orbit. More precisely,

Corollary 8. Let C be a closed SL(2,R)-orbit in some stratum. Then there exists
ε > 0 such that for any ω 6∈ Cε the saddle connections in (S,Σ, ω) shorter than 1
are parallel to the direction of the shortest saddle connection in (S,Σ, ω).

2.4. Holonomy field and conjugates of Veech group. Let (S,Σ, ω) be a trans-
lation surface and let Λ = ω(H1(S;Z)) ⊂ C ' R2 be the free-module of periods. In
what follows, periods will be sometimes called holonomies. Let e1 and e2 be two
non-parallel elements in Λ. The holonomy field of (S,Σ, ω) is the smallest field k
of R such that any element in Λ may be written as k-linear combination of e1 and
e2. Let Γ ⊂ SL(2,R) be a group, the trace field of Γ is the group generated by the
traces of the element of Γ.

Theorem 9 (Gutkin-Judge [GJ00], Kenyon-Smillie [KS00]). Let (S,Σ, ω) be a
Veech surface. Then its holonomy field k coincides with the trace field of its Veech
group. The degree of k over Q is at most the genus of S and the rank of Λ =
ω(H1(S;Z)) is twice the degree of k over Q.

We will need two important facts about the holonomy field of a Veech surface.

Theorem 10 (Gutkin-Judge [GJ00]). A Veech surface (S,Σ, ω) is arithmetic (ie
a ramified cover of a torus over one point) if and only if its holonomy field is Q.

Theorem 11 ([LH06]). The holonomy field of a Veech surface is totally real.2

The later result uses the fact that the Veech group of a Veech surfaces contains
parabolic elements.

Now, we define the Galois conjugate of the Veech group. Let (S,Σ, ω) be a
Veech surface, let Γ be its Veech group and let k be its holonomy field. Let e1

and e2 be two non-parallel elements in the set of holonomies Λ = ω(H1(S;Z)).
For each element v ∈ H1(S;Z) there exist unique elements α and β of k such that
ω(v) = αe1+βe2. The maps α and β are linear with values in k, in other words they
belong to H1(S; k), and moreover, the tautological space V = RRe(ω) ⊕ R Im(ω)
can be rewritten as V = Rα⊕Rβ in H1(S;R). Note that an alternative definition
of the trace field would be the field of definition of the plane RRe(ω) + R Im(ω) in
H1(S;R). For any embedding σ : k → R, we may define new linear forms σ ◦ α
and σ ◦ β. Those linear forms generate a 2 dimensional subspace in H1(S;R). The
subspace does not depend on the choice of α and β and we call it the conjugate by σ
of the tautological subspace V . This subspace (which is indeed defined in H1(S; k))
will be denoted by V σ. Because the action of the affine group on homology is defined
over Z and preserves V , it preserves as well the conjugates V σ.

Theorem 12. Let (S,Σ, ω) be a Veech surface, k its holonomy field and V =
RReω⊕R Imω be the tautological subspace. Then for any embedding σ : k → R the

2Recall that a subfield k ⊂ R is called totally real if its image under any embedding k → C is
contained in R.
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subspace V σ is invariant under the action of the affine group of (S,Σ, ω). Moreover,
the space generated by the [k :Q] subspaces V σ ⊂ H1(S;R) is the smallest rational
subspace of H1(S;R) containing V and is the direct sum of the V σ.

The fact that the sum is direct follows from the presence of hyperbolic elements in
the Veech group (see Theorem 28 of [KS00]). The subspaces V σ are well defined over
the whole Teichmüller curve: they form subbundles of the Hodge bundle invariant
for the Kontsevich-Zorich cocycle. In other words, we may restrict the Kontsevich-
Zorich cocycle to any of the V σ and consider the associated pair (λσ,−λσ) of
Lyapunov exponents.

The Veech group Γ is canonically identified to the action of the affine group on
the tautological subspace V = RReω ⊕ R Imω. The choice of two elements of
H1(S;Z) with non parallel holonomy provides an identification of Γ as a subgroup
of SL(2, k). Given an embedding of k in R we may conjugate the coefficients of the
matrices in SL(2, k) and get a new embedding of Γ into SL(2,R). This embedding
is canonically identified to the action of the affine group on the conjugate of the
tautological bundle V σ. We denote by Γσ this group and call it the conjugate of
the Veech group by σ.

3. Markov model

3.1. Locally constant cocycles. Let ∆ be a measurable space, and let µ be a
finite probability (reference) measure on ∆. Let ∆(l), l ∈ Z be a partition µ-mod
0 of ∆ into sets of positive µ-measure. Let T : ∆ → ∆ be a measurable map such
that T |∆(l) : ∆(l) → ∆ is a bimeasurable map.

Let Ω be the space of all finite sequences of integers. The length of l ∈ Ω will be
denoted by |l|.

For l = (l1, ..., ln) ∈ Ω, we let ∆l be the set of all x ∈ ∆ such that T j−1(x) ∈ ∆lj

for 1 ≤ j ≤ n. We say that T has bounded distortion if there exists C0 > 0 such that

every ∆l has positive µ-measure and µl = 1
µ(∆l)

T
|l|
∗ (µ|∆l) satisfies 1

C0
µ ≤ µl ≤ C0µ.

In particular, for every n ≥ 1, µn = 1
n

∑n−1
k=0 T

k
∗ µ satisfies 1

C0
µ ≤ µn ≤ C0µ.

Taking a weak limit, one sees that there exists an invariant measure ν satisfying
1
C0
µ ≤ ν ≤ C0µ. It is easy to see that this invariant measure is ergodic provided

the σ-algebra of µ-measurable sets is generated (mod 0) by the ∆l.
Let H be a finite dimensional (real or complex) vector space, and let SL(H)

denote the space of linear automorphisms of H with determinant 1. Given such a
T , we can define a locally constant SL(H)-cocycle over T by specifying a sequence
A(l) ∈ SL(H), l ∈ Z: Take A(x) = A(l) for x ∈ ∆(l) and (T,A) : (x,w) 7→
(T (x), A(x)). Then the cocycle iterates are given by (T,A)n = (Tn, An) where
An(x) = A(Tn−1(x)) · · ·A(x). Notice that if l = (l1, ..., ln) then An(x) = Al for
x ∈ ∆l with Al = A(ln) · · ·A(l1).

For a matrix A we note, ‖A‖+ = max(‖A‖, ‖A−1‖). We say that T is fast
decaying if there exists C1 > 0, α1 > 0 such that∑

µ(∆(l))≤ε

µ(∆(l)) ≤ C1ε
α1 , for 0 < ε < 1,

and we say that A is fast decaying if there exists C2 > 0, α2 > 0 such that∑
‖A(l)‖+≥n

µ(∆(l)) ≤ C2n
−α2 .
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Note that fast decay implies that (T,A) is an integrable cocycle with respect to
the invariant measure ν, i.e.,

∫
ln ‖A‖+dν <∞.

In our applications, ∆ will be a simplex in PRp, i.e., the image of PRp+ by a

projective transformation, µ is the Lebesgue measure, and T |∆(l) is a projective
transformation for every l ∈ Z. In fact, we will be mostly interested in the case
p = 2, and we will use freely the identification of PR2 with R = R ∪ {∞}.

We note that if there exists a simplex ∆ b ∆′ such that the projective extension
of (T |∆(l))−1 maps ∆′ into itself for every l ∈ Z, then the bounded distortion
property holds, see section 2 of [AF07]. In this case we will say that T is a projective
expanding map. For such maps, the invariant measure ν is ergodic.

3.2. The Markov model for the geodesic flow on SL(2,R)/Γ. We will need
the following nice Markov model for the geodesic flow on C = SL(2,R)/Γ where Γ
has finite covolume. Let us fix any point x ∈ C. Then we can find a small smooth
rectangle Q through x, which is transverse to the geodesic flow and provides us
with a nice Poincaré section, in the sense that the first return map to Q under the
geodesic flow has a particularly simple structure.

More precisely, let p : R2 → C be given by p(u, s) = h−s (h+
u (x)). Then for any

ε > 0, we can find u− < 0 < u+ and s− < 0 < s+ with u+−u− < ε and s+−s− < ε

such that, letting ∆ = (u−, u+) ⊂ R and ∆̂ = {(u, s) ∈ ∆ × R; s− <
s

1+su < s+},
then we can take Q = p(∆̂). It is clear that Q is transverse to the geodesic flow.
Let F denote the first return map to Q. Then

(1) There exist countably many disjoint open intervals ∆(l) ⊂ ∆, such that the

domain of F is the union of the p(∆̂(l)), where ∆̂(l) = ∆̂ ∩ (∆(l) × R).
(2) There exists a function r :

⋃
∆(l) → R+ such that if (u, s) belongs to some

∆̂(l) then the return time of p(u, s) to Q is r(u). Moreover, r is globally
bounded away from zero, and its restriction to each ∆(l) is given by the
logarithm of the restriction of a projective map R→ R.

(3) There exist functions T :
⋃

∆(l) → ∆ and S :
⋃

∆(l) → R such that if (u, s)

belongs to some ∆̂(l) then F (p(u, s)) = p(T (u), S(u)−e−2r(u)s). Moreover,
the restriction of T to each ∆(l) coincides with the restriction of a projective
map Tl : R → R, and the restriction of S to each ∆(l) coincides with the
restriction of an affine map Sl : R→ R.

(4) There exists a bounded open interval ∆′ containing ∆ such that T−1
l (∆′) ⊂

∆′ for every l ∈ Z.

The basic idea of the construction is to guarantee that the forward orbit of the

“unstable” frame δu(Q) = p{(u, s) ∈ ∂∆̂; u = u±} and the backward orbit of the

“stable” frame δs(Q) = p{(u, s) ∈ ∂∆̂; s
1+su = s±} never come back to Q.3 This

easily yields the Markovian structure and the remaining properties follow from
direct computation (or, for the last property, by shrinking ε).

Remark 3.1. Given u0 ∈ ∆(l), knowledge of T (u0), S(u0) and r(u0) allows one to
easily compute T , S, and r restricted to ∆(l). Indeed, for u ∈ ∆(l), gr(u0)(p(u, 0)) =

h+
e2r(u0)(u−u0)

F (p(u0, 0)). To move it to Q, we must apply g−t where t is bounded

3This is easy enough to do when x is not a periodic orbit of small period: In this case we can
use the uniform hyperbolicity of gt to select u± and s± so that gth

+
u± (x) and g−th

−
s± (x) remain

away from the Cε-neighborhood of x for every t ≥ 1 for some fixed large C. (If x is a periodic
orbits of small period, one needs to be slightly more careful as one can not choose C large.)
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(indeed at most of order ε). Using that F (p(u0, 0)) = p(T (u0), S(u0)) one gets
et = 1 + e2r(u0)(u− u0)S(u0) and then the formulas

er(u) =
er(u0)

1 + e2r(u0)(u− u0)S(u0)
,

T (u) = T (u0) +
e2r(u0)(u− u0)

1 + e2r(u0)(u− u0)S(u0)

S(u) = S(u0)(1 + e2r(u0)(u− u0)S(u0)).

Note that

(1) DT (u) = e2r(u),

and that for every l ∈ Z, r ◦ T−1
l : ∆→ R has uniformly bounded derivative.

Note that T is a projective expanding map with bounded distortion, so it admits
an ergodic invariant measure ν equivalent to Lebesgue measure. In order to obtain
an upper bound on the Hausdorff dimension of the set of non-weak mixing direc-
tions, we will also need to use that T is fast decaying. Using (1), we see that fast
decay is implied by the following well known exponential tail estimate on return
times: there exists δ > 0 (depending on Q) such that∫ u+

u−

e−δr(u)du <∞.

Remark 3.2. The exponential tail estimate is usually proved using a finite Markov
model for the full geodesic flow (as opposed to the infinite Markov model for a
Poincaré return map that we consider here). However, it can also be proved using
some more general information about the geodesic flow. Namely, one can show that
fixing a small ε0 > 0, there exists C0, C1, δ0 > 0 such that:

(1) If x ∈ Cε0 then the Lebesgue measure of the set of all u ∈ (0, 1) such that
gt(h

+
u (x)) /∈ Cε0 for 1 ≤ t ≤ T is at most C0e

−δ0T ,
(2) If x ∈ Cε0 then gt(h

+
u (x)) ∈ Q for some 0 < u < 1 and 0 < t < C1.

One can use those two estimates to show that if x ∈ Cε0 then the Lebesgue measure
of the set of all u ∈ (0, 1) such that gt(h

+
u (x)) /∈ Q for 1 ≤ t ≤ T is at most C2e

−δ1T

for appropriate constants C2, δ1 > 0.
Details of this approach are carried out in [AD], where it is used to obtain expo-

nential tails for the return time for a Markov model of an arbitrary affine SL(2,R)-
invariant measure in moduli space.

Remark 3.3. As remarked before, r ◦ T−1
l : ∆ → R has uniformly bounded de-

rivative. Since T is expanding, this estimate can be iterated as follows. Denote
by rn(u) =

∑n−1
k=0 r(T

k(u)) be the n-th return time of p(u, 0) to Q, and write

Tl = Tln ◦ · · · ◦ Tl1 : ∆l → ∆ for any l = (l1, ..., ln). Then rn ◦ T−1
l : ∆ → R

also has uniformly bounded derivative (independent of n).

Let now C = SL(2,R)/Γ be the SL(2,R)-orbit in of some Veech surface. Then
the Kontsevich-Zorich cocycle over C gives rise to a locally constant cocycle over T
as follows.

For y ∈ C, let us denote by Hy the fiber of the Hodge bundle over y and let
Vy ⊂ Hy be the tautological bundle. Since Q is simply connected, there is a unique
continuous identification between Hx and Hy for y ∈ Q which preserves the integer
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lattice H1(S;Z) and the tautological bundle V = RReω ⊕ R Imω. If y ∈ p(∆̂(l))
for some j (i.e., y belongs to the domain of the first return map F to Q), then the
Kontsevich-Zorich cocycle provides a symplectic linear map Hy → HF (y) preserving
the integer lattices and the tautological bundle. Using the identification, we get an
element A(y) of the discrete group Gx of sympletic automorphisms of Hx preserving
the integer lattice such that A(y) · Vx = Vx. Note that A(y) depends continuously

on y ∈ p(∆̂j), so it must be in fact a constant, denoted by A(l).
If l = (l1, ..., ln) with n ≥ 1 then Fn has a unique fixed point (S,Σ, ω) = p(ul, sl)

with (ul, sl) ∈ ∆̂l = (∆l × R) ∩ ∆̂, and Al|Vx is hyperbolic with unstable direction

Imω, stable direction Reω, and Lyapunov exponent rn(ul). In particular, ‖Al|V ‖
is of order ern(ul) (up to uniformly bounded multiplicative constants), since the
angle between Reω and Imω is uniformly bounded over Q.

Note that that ‖Al‖ is also of order ern(ul) (this follows for instance from Remark
2.1). In particular (n = 1), the exponential tail estimate implies that A is fast
decaying.

Since the geodesic flow on C is ergodic, the Lyapunov exponents of the Kontsevich-
Zorich cocycle on C (with respect to the Haar measure) are the same as the Lya-
punov exponents of the locally constant cocycle (T,A), with respect to the invariant
measure ν, up to the normalization factor r =

∫
r(u)dν(u).

3.3. Some simple applications. The following is due to [BM10].

Lemma 13. Let (S,Σ, ω) be a Veech surface, k its holonomy field and V be the
tautological subbundle of the Hodge bundle of its SL(2,R) orbit. Then for any
non identity embedding σ : k → R, the non-negative Lyapunov exponent λσ of the
Kontsevich-Zorich cocycle restricted to V σ satisfies 1 > λσ > 0.

Proof. The upper is a bound is Theorem 4.
For the lower bound, we use the Markov model (T,A) associated to an appropri-

ate small Poincaré section Q. Let V = Vx be the tautological space, let G ⊂ SL(V )
denote the group generated by the restriction of the A(l) to V , and let Gσ be its
Galois conjugate. If the Lyapunov exponents of (T,A|V σ) are non-zero then Gσ

is “degenerate”: it is either contained in a compact subgroup of SL(V σ), or all
elements leave invariant a direction in PV σ, or all elements leave invariant a pair
of directions in PV σ (though not necessarily leaving invariant each individual di-
rection). This is a version of Furstenberg’s criterion for positivity of the Lyapunov
exponent for i.i.d. matrix products in SL(2,R), which can be obtained in our set-
ting (where T has bounded distortion) by applying the criterion for the simplicity
of the Lyapunov spectrum of [AV07] (which is stated in terms of “pinching” and
“twisting” properties that are easily derived in case of non-degeneracy). Note that
if Gσ is degenerate then it must be solvable, which implies that G is not solvable
either.

To check that G is not solvable, we construct a copy of a free group on two
generators contained in it. For any l ∈ Z, the restriction of A(l) to the tautological
bundle V = Vx gives an element gl ∈ SL(V ). As remarked before gl is always
hyperbolic, with unstable direction given by Reω and stable direction given by

Imω, where (S,Σ, ω) is the unique fixed point of F in p(∆̂(l)). It follows (using
that Q is small) that for distinct l1, l2 ∈ Z, the unstable and stable directions of
gl1 , gl2 are all different. Thus for sufficiently large p ∈ N, gpl1 and gpl2 generate a free

subgroup of SL(V ). �
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We can also deduce non-discreteness of conjugates of the Veech group. We will
need the following general result:

Lemma 14. Let Γ be a lattice in SL(2,R) and ρ : Γ → SL(2,R) an injective
homomorphism. Let E be the flat bundle over SL(2,R)/Γ associated to ρ and let λ
be the non-negative exponent of the parallel transport in E along the geodesic flow
on SL(2,R)/Γ. Then λ < 1 implies that ρ is non discrete.

Before proceeding to the proof, we recall the construction of the flat bundle
associated to ρ. As in the construction of the moduli space, we consider the trivial
bundle SL(2,R) × R2 over SL(2,R). It has an action of Γ given by g · (z, v) :=
(g · z, ρ(g)−1 · v). The quotient (SL(2,R) × R2)/Γ is by definition the flat bundle
associated to ρ.

Proof. If Γ is a discrete subgroup of SL(2,R) we denote

NΓ(R) = {g ∈ Γ; log ‖g‖ ≤ R}.

We have

lim sup
R→∞

logNΓ(R)

R
≤ 2.

Our strategy is to notice that if Γ is of finite covolume, then the limit of the
quotient exists and is 2. This statement will be contained in our proof and follows
from the fact that we have a stable and unstable foliation with uniform contraction
and dilatation properties. (As seen by G. Margulis in his thesis, a more precise
asymptotic may be obtained using the mixing property of the geodesic flow, but
this will play no role here.) By definition of the Lyapunov exponent, for most
elements g ∈ Γ, the ratio log ‖ρ(g)‖/ log ‖g‖ is nearby λ. This implies that if ρ was
injective, the group Γ′ would contain at least eR elements of norm less than λR
which contradicts the above asymptotic if Γ′ was discrete.

For the formal argument, let us consider the n-th iterate of (T,A) for large
n. Then with probability close to 1 we have 1

n ln ‖An|V ‖ close to r =
∫
rdν and

1
n ln ‖An|V σ‖ close to λr. Since the length of ∆l is comparable with ‖Al|V ‖−2, we

see that the number of distinct l with |l| = n and such that 1
n ln ‖Al|V σ‖ is close to

λ
∫
rdν is at least e−2n(r−ε). Since the Al|V are all distinct (as they are hyperbolic

elements with distinct unstable and stable directions), the result follows. �

Corollary 15. Let (S,Σ, ω) be a Veech surface, k its holonomy field and Γ its
Veech group. Then, for any non identity embedding σ : k → R the group Γσ is non
discrete.

3.4. Reduction to the Markov model. An eigenfunction f : S → C with eigen-
value ν ∈ R of a translation flow φt : S → S is a measurable function such that
f ◦φt = e2πiνtf . Note that if f is a measurable or continuous eigenfunction for the
vertical flow on a translation surface z = (S,Σ, ω) ∈ MS,Σ(κ), then f is also an
eigenfunction for g · z for any g ∈ SL(2,R) which fixes the vertical direction, and in
particular for any g of the form h−s gt, s, t ∈ R.

Lemma 16. Let C be a closed SL(2,R) orbit in some MS,Σ(κ). Let I be a non-
empty open subset of am SO(2,R) orbit and let J be a non-empty open subset of
an unstable horocycle. Then:



WEAK MIXING DIRECTIONS IN NON-ARITHMETIC VEECH SURFACES 15

(1) For every z0 ∈ I, there exists a diffeomorphism z 7→ x from an open neigh-
borhood I ′ ⊂ I to a subinterval of J , such that the stable horocycle through
z intersects the geodesic through x,

(2) For every x0 ∈ I, there exists a diffeomorphism x 7→ z from an open
neighborhood J ′ ⊂ J to a subinterval of I, such that the stable horocycle
through z intersects the geodesic through x.

In particular, if Λ is any subset of C which is invariant by the stable horocycle and
geodesic flows (such as the set of translation surfaces for which the vertical flow ad-
mits a continuous eigenfunction, or a measurable but discontinuous eigenfunction),
HD(I ∩ Λ) = HD(J ∩ Λ).

Proof. We prove the first statement. Fix z ∈ I and some compact segment J0 ⊂ J .
Then we can choose t0 large such that there exists y ∈ J0 with gt0(y) close to z
(indeed as t → ∞, gt · I0 is becoming dense in C). Thus for every θ ∈ R close to
0 we can write rθz = h−s h

+
u gt0+ty in a unique way with s, t, u small, and moreover

θ 7→ u is a diffeomorphism.
The second statement is analogous. �

4. Eigenfunctions in Veech surfaces

Let (S,Σ, ω) be a translation surface and φt : S → S the vertical flow. We say
that ν ∈ R is an eigenvalue of ω if there exists a non-zero measurable function
f : S → C such that for almost every x ∈ S,we have f(φT (x)) = exp(2πiνT )f(x)
for all T . The eigenvalue is continuous if the map f may be chosen continuous.
The flow is weak-mixing if it admits no eigenvalue except 0 with multiplicity one.

The Veech criterion that appeared in [Ve84] was of main importance in [AF07] to
prove the genericity of weak-mixing among translation flows. This criterion depends
on the consideration of appropriate compact transversal to the Teichmüller flow
which is “small enough” to fit inside “zippered rectangles” charts and also satisfy
some additional boundedness properties.

Theorem 17 (Veech criterion). Let Mg(κ) be a stratum of translation surfaces.
For all (S,Σ, ω) in Mg(κ) there exists a small compact transversal of the Te-
ichmüller flow containing (S,Σ, ω) such that for all (S,Σ, τ) in that transversal
that is recurrent and admits an eigenvalue ν, the values of the Kontsevich-Zorich
cocycle An(τ) for that transversal satisfy

lim
n→∞

dist(An · (ν Im τ), H1(S\Σ,Z)) = 0.

The above theorem holds in great generality as soon as the dynamical system is
described by Rokhlin towers (see [BDM1]).

Veech’s criterion tells us that we can prove that the vertical flow is weak mixing
if we can show that the line R Imω intersects the “weak stable lamination”, the set
of all w ∈ H1(S\Σ;R) such that

lim
n→∞

dist(An · w,H1(S\Σ,Z)) = 0,

only at the origin. Unfortunately, the nature of the weak stable lamination is rather
complicated. It is of course a union of translates of the stable space, the set of all
w ∈ H1(S\Σ;R) such that

lim
n→∞

dist(An · w, 0) = 0,
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and it contains the “strong stable space” consisting of the integer translates of the
stable space. However, in general it is much larger, being transversely uncountable.

The main objective of this section is to show that for Veech surfaces, any eigen-
value ν must be such that ν Imω belongs must belong to the smaller (and much
simpler) strong stable space.

Theorem 18. Let (S,Σ, ω) be a Veech surface with no vertical saddle connec-
tion and whose linear flow admits an eigenvalue ν. Consider a compact transver-
sal for the Teichmüller flow and denote by An ∈ Sp(H1(S\Σ,Z)) the associated
Kontsevich-Zorich cocycle. Then there exists v ∈ H1(S\Σ;Z) such that

lim
n→∞

An · (ν Im(ω)− v) = 0.

In order to prove Theorem 18, we will need to control all the renormalizations
of eigenfunctions, and not only those corresponding to returns to a small compact
transversal. It will be crucial for our strategy that for a Veech surface, there exists
a fixed compact set Cε = {ω; sys(S,Σ, ω) ≥ ε} such that the set of “moments of
compactness” {t > 0; gt ·ω ∈ Cε} for the forward Teichmüller geodesic is unbounded
if and only if there are no vertical saddle connections, and (most importantly) any
orbit segment away from the moments of compactness (the cusp excursions) can be
easily described geometrically.

4.1. Tunneling curves and a dual Veech criterion. In this section (which is
not restricted to Veech surfaces) we show that the existence of eigenfunctions yields
information about all times of the Teichmüller flow and not only return times to a
(small or large) compact transversal. This is based on a refinement of the Veech
criterion which is formulated in terms of homology cycles called tunneling curves
(which are designed to follow closely the vertical flow in a suitable sense), which are
shown to always see the expected property of approximation to integers. In a second
time we prove that in any compact part of the moduli space, the tunneling curves
generate H1(S\Σ;Z). Those two results together allow us to remove the smallness
condition on the transversal in the formulation of the Veech criterion, hence allowing
us to consider the large compact set Cε when analysing Veech surfaces later.

Before defining tunneling curves we need the notion of cycle of rectangles. A
rectangle for (S,Σ, ω) is an isometric immersion of an euclidean rectangle with
horizontal and vertical sides. In other words, a rectangle is a map R : [0, w] ×
[0, h] → S \ Σ such that R∗(Re(ω)) = ±dx and R∗(Im(ω)) = ±dy. The number
w is called the width of the rectangle and the number h its height. Note that
with our convention we may not identify a rectangle with its image in S, we care
about the direction: a rectangle is determined by its image in S and an element of
{+1,−1} × {+1,−1}.

Definition 19. A (k, δ, h)-cycle of rectangles for ω is a set of 2k rectangles denoted
Hj and Vj for j ∈ Z/kZ such that

• the height of Hj is δ and its width is wj ≥ δ,
• the width of Vj is δ and its height is δ ≤ hj ≤ h,
• H∗j (Re(ω)) = ±dx and H∗j (Im(ω)) = dy
• V ∗j (Re(ω)) = dx and V ∗j (Im(ω)) = ±dy
• each rectangle Hj is embedded in the surface,
• for each j, Hj([0, δ]× [0, δ]) = Vj−1([0, δ]× [hj−δ, hj ]) and Hj([wj−δ, wj ]×

[0, δ]) = Vj([0, δ]× [0, δ]).
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In other words, a (k, δ, h)-cycle of rectangles is a thin tube of width δ in (S,Σ, ω)
made of k horizontal and k vertical pieces and that forms a cycle in the surface.
We will sometimes drop the condition on the heights and write (k, δ) for (k, δ,∞).

A tunneling curve is a curve which belongs in a cycle of rectangles. More pre-
cisely, let R = (Hj , Vj)j∈Z/kZ be a (k, δ, h)-cycle of rectangles for ω. We may build a
curve ζ as follows: for j ∈ Z/kZ, we define vertical segments ζvj : [0, hj − δ]→ S\Σ
by ζjv(t) = Vj(

δ
2 , t + δ

2 ) and horizontal segments ζhj : [0, wj − δ] → S\Σ by

ζhj (t) = Hj(t + δ
2 ,

δ
2 ). The curve ζ is the concatenation of ζh1 , ζv1 ,..., ζhk , ζvk and

forms a loop in the surface S\Σ. The homology class of ζ in H1(S\Σ;Z) is the
homology class of the cycle of rectangles R.

A homology class ζ ∈ H1(S\Σ;Z) is said to be (k, δ, h)-tunneling if there exists
a set of (ki, δ, h)-cycles of rectangles for i = 1, . . . , n such that k1 + . . . + kn ≤ k
and whose homology classes ζi satisfy

∑
ζi = ζ.

Note that if ζ is a tunneling curve in a (k, δ, h)-cycle of rectangles, then

|Re(ω)(ζ)| ≤
∫
ζ

|Re(ω)| ≤ k

δ
Area(ω) and | Im(ω)(ζ)| ≤

∫
ζ

| Im(ω)| ≤ kh.

In particular, in a fixed translation surface (S,Σ, ω) there is only a finite num-
ber of (k, δ, h)-tunneling curves. The set of (k, δ, h)-tunneling homology classes in
H1(S\Σ;Z) for ω is noted TCk,δ,h(ω). The set TCk,δ(ω) = TCk,δ,∞(ω) denotes the
set of (k, δ)-tunneling homology classes. Note that, if k′ ≤ k, δ′ ≤ δ and h′ ≥ h
then a (k′, δ′, h′)-tunneling curve is also (k, δ, h)-tunneling.

We will now adapt Veech’s original proof of his criterion in Veech [Ve84] to obtain
a dual version with respect to the tunneling curves in TCk,δ.

Theorem 20 (dual Veech criterion). Let (S,Σ, ω) be a translation surface without
vertical saddle connections and that admits an eigenvalue ν. Then, for any positive
integer k and positive real number δ we have

lim
t→∞

sup
ζ∈TCk,δ(gt·ω)

dist(ν Im(ω)(ζ),Z) = 0.

Proof. Fix k and δ. We fix a small number α and we prove that for t big enough, all
(k, δ)-tunneling curves for ωt are such that dist(ν Im(ω)(ζ),Z) < kα. It is enough
to prove the theorem for a curve that belongs to a cycle of rectangles (recall that a
tunneling curve may be a sum of curves associated to cycle of rectangles).

Let (Hj , Vj)j∈Z/kZ be a (k, δ)-cycle of rectangles for ωt and let ζ be its homology

class. We define the signed height of the vertical rectangle Vj by h̃j = hj − δ if

(Vj)
∗(Im(ω)) = dy and h̃j = δ−hj otherwise (it is precisely the value of the integral

of Im(ω) along the component ζvj of a curve ζ). In particular, the integral of Imω

over ζ is h̃1 + . . . + h̃k. For each j, we define Ij = Hj([0, wj ] × {δ/2}) the middle
interval of the rectangle Hj . The segment Ij is an horizontal interval of length
e−twj for ω.

We assume that the surface S admits a non trivial eigenvalue ν 6∈ Z and note f
an associated eigenfunction f : S → C with |f | = 1. Up to modifying f on a zero
measure set, we may assume that there exists a measurable subset Ω ⊂ S of full
area, consisting of points for which the vertical flow is defined for all times, such that
f(φt(x)) = e2πiνf(x) for every x ∈ Ω. Note that Ω intersects any horizontal segment
in a subset of full linear measure. Define measurable functions fj : [0, wj ] → C by
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fj(t) = f(Hj(t, δ/2)). In particular, for each j and almost every x ∈ [0, δ] we have

fj(wj − δ + x) = e−2πiνh̃jfj+1(x) if H∗j (Re(ω)) = dx and H∗j+1(Re(ω)) = dx

fj(wj − x) = e−2πiνh̃jfj+1(x) if H∗j (Re(ω)) = −dx and H∗j+1(Re(ω)) = dx

fj(w − δ + x) = e−2πiνh̃jfj+1(δ − x) if H∗j (Re(ω)) = dx and H∗j+1(Re(ω)) = −dx
fj(wj − x) = e−2πiνh̃jfj+1(δ − x) if H∗j (Re(ω)) = −dx and H∗j+1(Re(ω)) = −dx

Those formulas can be rewritten as follows. Let sj : [0, δ] → [0, δ] be given by
sj(x) = δ − x if H∗j (Reω)) = dx and by sj(x) = x if H∗j (Reω) = −dx. Then

fj(wj − sj(x)) = e−2πiνh̃jfj+1(δ − sj+1(x)) in all cases.
The strategy of the proof, consists in proving that if t is big enough, indepen-

dently of the choice of the (k, δ)-cycle of rectangles, we may find points xj ∈ [0, δ],
j ∈ Z/kZ such that for each j we have |fj(δ− sj(xj−1))− fj(wj − sj(xj))| < α. In

particular, we can write
fj(δ−sj(xj−1))
fj(wj−sj(xj)) = e2πiλj where λj ∈ (−α, α).

Assuming that such points do exist, we prove how to derive our theorem. Using
the points xj we may write

1 =
∏
j∈Z/kZ

fj(wj−sj(xj))
fj−1(wj−1−sj−1(xj−1)) =

∏
j∈Z/kZ e

2πiνh̃j−1 fj(wj−sj(xj))
fj(δ−sj(xj−1))

=
∏
j∈Z/kZ e

2πiνh̃j−1e−2πiλj

so that Im(ω)(ζ) =
∑
λj mod Z, implying the result.

Now, we show how to find points xj using a measure theoretic argument. More
precisely, we prove that the measure of the set of points (x, y) ∈ [0, δ]× [wj − δ, wj ]
such that |fj(x) − fj(y)| < α becomes arbitrarily close to δ2 as t goes to infinity
independently of the choice of the cycle of rectangles. Since δ ≤ wj ≤ δ−1, it is
enough to show that there exists a compact subset Kj ⊂ Ij with probability close
to 1 such that |f(x)− f(y)| < α for every x, y ∈ Kj .

Fix some small constant χ > 0. By Lusin’s Theorem, there exists a compact
subset K ⊂ S of measure 1 − χ such that f |K is continuous. In particular, there
exists ε > 0 such that if x, y ∈ K are ε-close then |f(x)− f(y)| < α.

Notice that the rectangle Hj has width e−twj and height etδ in (S,Σ, ω). Recall
that δ ≤ wj ≤ 1

δ , and in particular the area of Hj is at least δ2, so K must intersect

it in a subset of probability at least 1− δ−2κ. It follows that some (full) horizontal
segment I ′j = Hj([0, wj ] × {T}) in this rectangle intersects K into a subset K ′j
of probability at least 1 − δ−2χ as well. Take t so large that e−tδ−1 < ε. Then
|f(x) − f(y)| < α for every x, y ∈ K ′j . Note that I ′j = φ±et(T−δ/2)(Ij) (the same
sign as when writing H∗j (Imω) = ±dy) so by the functional equation we have
|f(x)− f(y)| < α for every x, y ∈ Kj = φ∓et(T−δ/2)(K

′
j), as desired. �

We now prove that any translation surface admits tunneling basis and the con-
stant may be taken uniform in compact sets.

Lemma 21. Let M(1)
S,Σ(κ) be a stratum in moduli space and let ε > 0. Let Kε ⊂

MS,Σ(κ) be the set of translation surfaces whose systole is at least ε. Then there
exists (k, δ, h) such that for any translation surface ω ∈ Kε, the (k, δ, h)-tunneling
curves for ω generate H1(S\Σ;Z).

Proof. The set Ak,δ,h of surfaces inMS,Σ(κ) that admits a (k, δ′, h′)-tunneling basis
with δ′ > δ and h′ < h is an open set. From compactness of Kε it is hence enough
to prove that for any translation surface in MS,Σ(κ), every closed curve in S \ Σ
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is homotopic to a (k, δ, h)-tunneling curve, for some k, δ and h. Indeed, up to
homotopy we may assume that a closed curve is built by concatenating small (and
hence embedded) horizontal and vertical segments (in alternation). Those segments
can then be slightly thickened to build the desired cycle of rectangles. �

4.2. Excursions in cusps. In this section we prove Theorem 18.
We first give another formulation of Theorem 18 in terms of tunneling basis (in

order to use Theorem 20). Let C ⊂ MS,Σ(κ) be the SL(2,R) orbit of a Veech
surface, let ε > 0 be small, and let Cε be the set of surfaces in C whose systole is
at least ε. From Lemma 21, we get k, δ and h such that each translation structure
ω ∈ Cε has a (k, δ, h)-tunneling basis in H1(S\Σ;Z). Using compactness and the
finiteness of (k, δ, h)-tunneling curves, there exists a constant M > 1 such that for
any translation structure ω in Cε any (k, δ, h)-tunneling basis {ζj} and any (k, δ, h)-
tunneling curve ζ for ω, the coefficients of ζ =

∑
cjζj with respect to the basis

satisfy
∑
|cj | < M .

Let ω ∈ C be a translation surface that admits an eigenvalue ν. From Theo-
rem 20, there exists t0 such that for any t larger than t0, to each (k, δ, h)-tunneling
curve ζ for ωt, we may associate a unique nt(ζ) ∈ Z such that |ν Imω(ζ)− nt(ζ)| <
1/(2M). Let t ≥ t0 be such that ωt ∈ Cε. If {ζj} is a (k, δ, h)-tunneling basis and
ζ =

∑
cjζj is a (k, δ, h)-tunneling curve, then

|ν Imω(ζ)−
∑

cjnt(ζj)| = |
∑

cj(ν Imω(ζj)− nt(ζj))| <
1

2M

∑
|cj | <

1

2
,

so that nt(ζ) =
∑
cjnt(ζj). Thus the mapping nt : TCk,δ,h(ωt) → Z extends in a

unique way to a linear map nt : H1(S\Σ;Z) → Z. The convergence to an integer
element in Theorem 18 is then equivalent to the following statement.

Lemma 22. Let ω be a Veech surface in C without vertical saddle connections for
which the translation flow admits an eigenvalue ν and let ωt = gt ·ω. Let ε > 0 and
let t0 and nt ∈ H1(S\Σ;Z) be as above. Then the family (nt)t≥t0,ωt∈Cε is eventually
constant.

The proof of Lemma 22 follows by analyzing parts of Teichmüller geodesics that
go off Cε because, by construction, nt is locally constant.

Until the end of this section, fix ε > 0 such that the cusps of C are isolated in
the complement of Cε and that the conclusion of Corollary 8 holds (the former is
actually a consequence of the latter). A cusp excursion of length t > 0 is a segment
of a Teichmüller orbit ωs = gs · ω0, s ∈ [0, t], such that ωs ∈ Cε only for s = 0, t.
Note that the shortest saddle connection at the beginning of a cusp excursion is
never horizontal or vertical, and indeed we have | Imω0

(γ)| > |Reω0
(γ)| > 0, with

the length of the cusp excursion given by t = log
| Imω0 (γ)|
|Reω0

(γ)| .

If ω belong to ∂Cε = {(S,Σ, ω) ∈ C; sys(S,Σ, ω) = ε}, then S admits a canonical
decomposition as a finite union of maximal cylinders Ci, 1 ≤ i ≤ c, with waist
curve γi parallel to the shortes saddle connection γ.

Lemma 23. For any (k, δ, h) with δ > 0 small enough and h > 0 big enough,
there exists an integer k′ ≥ k with the following property. Let us consider a cusp

excursion ωs of length t. Let ε be the sign of
Imω0

(γ)

Reω0 (γ) and let mi =

⌊
et

µ(Ci)

⌋
,

where µ(Ci) is the modulus of the cylinder Ci in the canonical decomposition of
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(S,Σ, ω0). For each (k, δ, h)-tunneling curve ζ for ω0 the class ζ − ε
c∑
i=1

mi〈ζ, γi〉γi

is (k′, δ, h)-tunneling for ωt and for any integers `i such that 0 ≤ `i ≤ mi the classes

ζ − ε
c∑
i=1

`i〈ζ, γi〉γi are (k′, δ)-tunneling for ω0.

Proof. We first reduce our study to (non-necessarily closed) paths inside a single
cylinder. Let X = {x1, x2, . . . , xp} be the middle points of saddle connections in
the direction of the shortest saddle connection for ω0. We call transversal, a flat
geodesic segment γ′ that joins two points of X and disjoint from saddle connections
parallel to the shortest one. Any curve in (S,Σ, ω0) is freely homotopic in S\Σ to
a concatenation of transversals such that | Imω0

(γ′)| < 2M and |Reω0
(γ′)| < 2M

where the constant M may be choosen independently of (S,Σ, ω) in ∂Cε. Moreover,
if ζ is a (k, δ, h)-tunneling curve for ω0, the minimal number of pieces is uniformly
bounded in terms of ε, k, δ and h.

Let us fix x and y on the boundary of some cylinder Ci and denote by T (x, y) the
set of transversals that join x to y. Considering a curve in T (x, y) up to homotopy
in S \Σ fixing the boundary points, one obtains an element of H1(S \Σ, {x, y};Z).

We build rectangles around the curves in T (x, y) in order to be able to reconstruct
a cycle of rectangles. A (k′, δ, h)-path of rectangles for x and y is a set of rectangles
H1, V1, . . . , Hk′ , Vk′ , Hk′+1 such that

• the height of Hj is δ and its width is wj ≥ δ,
• the width of Vj is δ and its height hj satisfies δ ≤ hj ≤ h,
• H∗j (Re(ω)) = ±dx and H∗j (Im(ω)) = dy
• V ∗j (Re(ω)) = dx and V ∗j (Im(ω)) = ±dy
• each rectangle Hj is embedded in the surface,
• for each j, Hj([0, δ]× [0, δ]) = Vj−1([0, δ]× [hj−δ, hj ]) and Hj([wj−δ, wj ]×

[0, δ]) = Vj([0, δ]× [0, δ]).
• H1(δ/2, δ/2) = x and Hk′+1(wk′+1 − δ/2, δ/2) = y.

As we did for cycles of rectangles, to a (k′, δ, h)-path of rectangles for x and y we
may associate its homology class in H1(S \ Σ, {x, y};Z).

Let us fix a transversal γ′ joining x and y inside some cylinder Ci and such that
| Imω0

(γ′)| < 2M and |Reω0
(γ′)| < 2M . Since any (k, δ, h)-tunneling curve can

be decomposed into a uniformly bounded number of such transversals, it will be
enough for us to prove that there exists k′ > 0 (only depending on ε, δ, h,M) with
the following properties:

(1) The transversal γ′ ∈ T (x, y) in the class of γ′ − εmi〈γ′, γi〉γi is a (k′, δ, h)-
tunneling path for ωt,

(2) For every 0 ≤ ` ≤ mi, the class of `γi is (k′, δ)-tunneling for ω0.

Note that the width w(Ci), the height h(Ci), and the modulus, µ(Ci) are all
bounded away from zero and infinity, independently of i, through ∂Cε. In par-
ticular, we may assume that w(Ci) and h(Ci) are bigger than 10δ. Note also that
〈γ′, γi〉 = ±1.

Write
Imω0 (γ)

Reω0
(γ) as ε tan θ with π

4 < θ < π
2 . We may assume that the cusp excursion

of the surface (S,Σ, ω0) in Cε is long enough, so that in particular mi ≥ 10 and
tan θ > 2M

h(Ci)
.
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Let us first show the second property. It is enough to show that for 0 ≤ ` ≤ 3mi
4 ,

`γi can be represented by a (2, δ)-tunneling curve. Let Ĉi denote the “core of Ci”,

obtained by removing a h(Ci)
8 -neighborhood of its boundary. If l ≤ 3mi

4 , then we
can represent `γi by a concatenation γ of a vertical path of length `w(Ci) sin θ and

a horizontal path of length `w(Ci) cos θ inside Ĉi.
4 It easily follows that the δ-

enlargement of the horizontal part of γ is embedded in Ci, while the δ-enlargement
of the vertical part of γ is contained in Ci, so that γ is (2, δ)-tunneling.

Let us now show the first property. By compactness considerations, it will be
enough to show that the transversal γ′ has bounded length with respect to ωt. Up
to changing the orientation of γ′, we may assume that 〈γ′, γi〉 = 1. Then, for the
imaginary part we have

| Imωt(γ
′−εmiγi)| = e−t| Imω0

(γ′−εmiγi)| < e−t2M+e−t
⌊

et

µ(Ci)

⌋
≤ 2M+

1

µ(Ci)
.

For the real part, note first that

Reωt(γ
′ − εmiγi) = et Reω0

(γ′ − εmiγi)

=
| Imω0

(γi)|
|Reω0(γi)|

(Reω0
(γ′)− εmi Reω0

(γi))

= ±| Imω0
(γi)|

(
Reω0(γ′)

Reω0
(γi)
− εmi

)
.

Recall that mi = bh(Ci)
u(Ci)

tan θc, while Imω0
(γi) is uniformly bounded. In order

to conclude, let us show that
Reω0 (γ′)

Reω0
(γi)

is at a uniformly bounded distance from

ε h(Ci)
w(Ci)

tan θ. Using that 〈γ′, γi〉 = 1 and that tan θ > 2M
h(Ci)

, we see that Reω0
(γ′)

and Imω0(γi) have the same sign,5 which implies that
Reω0 (γ′)

Reω0
(γi)

and ε h(Ci)
w(Ci)

tan θ have

the same sign as well. We have |Reω0
(γi)| = w(Ci) cos θ and

|Reω0
(γ′)| ± | Imω0

(γ′)| cot θ =
h(Ci)

sin θ
,

so that
|Reω0

(γ′)|
|Reω0

(γi)|
=
h(Ci)

w(Ci)

1

sin θ cos θ
∓ | Imω0

(γ′)|
w(Ci) sin θ

.

It follows that

|Reω0
(γ′)|

|Reω0(γi)|
− h(Ci)

w(Ci)
tan θ =

h(Ci)

w(Ci)
cot θ ∓ | Imω0

(γ′)|
w(Ci) sin θ

.

Since h(Ci) is uniformly bounded away from infinity, w(Ci) is uniformly bounded
away from 0, cot θ < 1, sin θ > 2−1/2 and | Imω0

(γ′)| < 2M , the result follows. �

We now prove how Lemma 23 may be used to conclude the proof of Lemma 22.

4To see that such a concatenation lies inside Ĉi, note that the maximal length of a vertical

path in Ĉi is exactly 3
4
h(Ci)
cos θ

and 3
4
miw(Ci) sin θ ≤ 3

4
h(Ci)

sin2 θ
cos θ

≤ 3
4
h(Ci)
cos θ

.
5Indeed, let us consider an horizontal path γ′′ in Ci joining the boundaries of Ci, which is

homotopic to γ′ relative to ∂Ci. Since Imω0 (γ′) < 2M , the condition tan θ > 2M
h(Ci)

implies that

the sign of Reω0 (γ′) is the same as the sign of Reω0 (γ′′), and since 〈γ′′, γi〉 = 〈γ′, γi〉 = 1, this

must have the same sign as Imω0 (γi).
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Proof of Lemma 22. Let (k, δ, h) with δ small enough and h large enough that every
surface in Cε admits a (k, δ, h)-tunneling basis, and such that for every surface
in ∂Cε, the waist curves γi of the canonical cylinder decomposition are (k, δ, h)-
tunneling. Let k′ ≥ k be such that the conclusion of Lemma 23 holds. Let M ′ be
an upper bound for

∑
|cα| over all expressions

∑
cαζα of a (k′, δ, h)-tunneling curve

in a (k′, δ, h)-tunneling basis. Let (S,Σ, ω) be a surface that admits an eigenvalue ν.
We know from Theorem 20 that there exists a time t0 such that for every t ≥ t0 and
every (k′, δ)-tunneling curve α for ωt = gt ·ω we have dist(ν Imω(α),Z) < 1/(4M ′).

Recall that for t ≥ t0 such that ωt ∈ Cε, we may define nt ∈ H1(S\Σ;Z) from
the nearest integer vectors of elements of (k′, δ, h)-tunneling basis. By construction,
nt remains constant in interval of times for which ωt ∈ Cε. Let t ≥ t0 be such that
ωt is the beginning of a cusp excursion of length τ . We will prove that nt+τ = nt.

From Lemma 23, we know that there exist basis {ζ0
j } and {ζ1

j } of H1(S\Σ;Z)

such that the ζ0
j are (k, δ, h)-tunnneling for ωt, the ζ1

j are (k′, δ, h)-tunneling for

ωt+τ and for each j, ζ1
j − ζ0

j = −ε
c∑
i=1

mi〈ζ0
j , γi〉γi is a sum of multiples of waist

curves of cylinders in the canonical decomposition of (S,Σ, ωt). Moreover, each

partial sum ζ`j = ζ0
j − ε

c∑
i=1

`i〈ζ0
j , γi〉γi, with 0 ≤ `i ≤ mi, is (k′, δ)-tunneling for ωt

which implies by choice of t ≥ t0 that ν Imω(ζ`j ) is at distance less than 1/(4M ′)

from an integer. Because we may pass from ζ0
j to ζ1

j through a sequence of ζ`j with
two consecutive ones differing by a single curve γi which is (k′, δ, h)-tunneling for ωt
(and hence that ν Imω(γi) is 1/(4M ′)-close to nt(γi)), we deduce that nt+τ (ζ1

j ) =

nt(ζ
0
j ) − ε

∑c
i=1mi〈ζ0

j , γi〉nt(γi). It follows that nt and nt+τ coincide as elements

of H1(S\Σ;Z). �

4.3. On the group of eigenvalues. Using Theorem 18, we will show that the
Kronecker factor (the maximal measurable almost periodic factor) of the translation
flow of a Veech surface is always small. For arithmetic Veech surfaces (square tiled
surfaces), we will see that, in any minimal direction, this factor actually identifies
with a maximal torus quotient of that surface. For non-aritmetic one, we obtain
that the dimension of the Kronecker factor is at most the degree of the holonomy
field.

Let (S,Σ, ω) be a Veech surface, V = Reω ⊕ Imω ⊂ H1(S;R) the tautological
bundle and k its trace field. For each embedding σ : k → R we note V σ the Galois
conjugate of V . The subspace W =

⊕
V σ ⊂ H1(S;R) is defined over Q and has

dimension 2[k :Q].
The field k acts by multiplication on H1(S;R) preserving H1(S;Q) as follows:

for λ ∈ k consider the endomorphism of H1(S;R) that acts by multiplication by λσ

in V σ. In particular, the set of elements λ ∈ k that preserves H1(S;Z) forms an
order (a Z-module of rank [k :Q], stable under multiplication). This phenomenon is
actually much deeper as the action of k preserves the complex structure on H1(S;C)
and the Hodge decomposition H1(S;C) = H1,0(S)⊕H0,1(S) into holomorphic and
anti-holomorphic one forms: Veech surfaces belong to so-called real multiplication
loci, see [McM03] and [BM10].

Now we turn to the case of arithmetic surfaces and describe their maximal tori.
Let (S,Σ, ω) be a square tiled surface. Let x be a point in S and Λ the subgroup of
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C generated by the integration of ω along closed loops. Then we have a well defined
map f : S → C/Λ defined by f(y) =

∫
γ
ω mod Λ where γ is any path that joins x

to y. The intersection H1(S;Z)∩ (Reω ⊕ Imω) naturally identifies to H1(C/Λ;Z)
through f∗ and we call C/Λ together with the projection f the maximal torus of
S. Note that f is not necessarily ramified over only one point.

Theorem 24. Let (S,Σ, ω) be a Veech surface, k its trace field. Then in each
minimal direction the group of eigenvalues is finitely generated. Moreover,

• if (S,Σ, ω) is arithmetic (k = Q) then, in each minimal direction, all eigen-
functions of the flow of S are lifts from the maximal torus of S. In partic-
ular, there are exactly 2 rationally independent continuous eigenvalues.
• if (S,Σ, ω) is non-arithemtic (k 6= Q) then, the ratio of any two eigenvalues

for the flow of S belongs to k. In particular, in each minimal direction, there
are at most [k :Q] rationally independent eigenvalues.

Proof. Let us assume that ν ∈ R is an eigenvalue of the flow of (S,Σ, ω).
Let W =

⊕
V σ and WZ = W ∩H1(S;Z). Let Es ⊂ W be the stable space of

the Kontsevich-Zorich cocycle restricted to W and denote Es,σ = Es ∩ V σ. Note
that Es,σ has dimension at most 1. From Theorem 18, if ν is an eigenvalue of the
flow, there exists v ∈ WZ such that ν Imω − v ∈ Es. The map ν 7→ v provides a
isomorphism between the group of eigenvalues and a subgroup of WZ, so the group
of eigenvalues is finitely generated.

Decomposing v =
∑
vσ with respect to the direct sum W =

⊕
V σ we get

• ν Imω − vid ∈ Es,id,
• for any σ 6= id, vσ ∈ Es,σ.

In particular, if the dimension of Es is not maximal then there is no eigenvalue.
The action of Ok preserves the set of lines in each V σ and hence preserves

(globally) the stable space Es. In particular, if ν Imω − v ∈ Es then for any
λ ∈ Ok we have λν Imω −

∑
σ(λ)vσ ∈ Es. So the set of potential eigenvalues

Θ = {µ ∈ R;∃v ∈WZ, µ Imω − v ∈ Es}

is stable under multiplication by Ok.
If k = Q, then we saw that WZ naturally identifies to the cohomology of the

maximal torus of S. As all eigenvalues are contained in Θ, they all come from the
maximal torus.

If k 6= Q, we know that the dimension of Θ is at most [k :Q] + 1 (there are two
dimension for V and one dimension for each V σ with σ 6= id). But, as Θ is stable
under multiplication by Ok its rank is a multiple of [k :Q] and hence is 0 or [k :Q].
As the ratio of any two eigenvalues is the ratio of two elements of Θ it belongs to
k. �

5. Anomalous Lyapunov behavior, large deviations and Hausdorff
dimension

We have seen so far that weak mixing can be established by ruling out non-
trivial intersections of Imω with integer translates of the strong stable space. We
will later see how this criterion can be rephrased in terms of certain fixed vectors
(projections of integer points on Galois conjugates of the tautological bundle) lying
in the strong stable space, which implies in particular that its iterate must see a
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non-positive rate of expansion, instead of the expected rate (given by one of the
positive Lyapunov exponents).

In this section we introduce techniques to bound anomalous Oseledets behavior
in the setting of locally constant cocycles with bounded distortion. The Oseledets
Theorem states that for a typical orbit, any vector will expand precisely at the rate
of some Lyapunov exponent. For a given vector, one can consider the minimum
expansion rate which can be seen with positive probability. We will first show a
(finite time) upper bound on the probability of seeing less than such minimum
expansion. Then we will show that such an estimate can be converted into an
upper bound on the Hausdorff dimension of orbits exhibiting exceptionally small
expansion.

5.1. Large deviations. Let T : ∆→ ∆ be a transformation with bounded distor-
tion with respect to the reference measure µ, let ν be the invariant measure, and
let (T,A) be a locally constant integrable cocycle over T . The expansion constant
of (T,A) is the maximal c ∈ R such that for all v ∈ Rd \ {0} and for µ-almost every
x ∈ ∆ we have

lim
n→∞

1

n
ln ‖An(x) · v‖ ≥ c.

(The limit exists by Oseledets Theorem applied to ν.)

Theorem 25. Assume that A is fast decaying. for every c′ < c, there exist C3 > 0,
α3 > 0 such that for every unit vector v ∈ Rd,

µ{‖An(x) · v‖ ≤ ec
′n} ≤ C3e

−α3n.

Proof. For v ∈ Rd \ {0}, let I(x, n, v) = 1
n ln ‖An(x)·v‖

‖v‖ and I(l, v) = 1
|l|
‖Al·v‖
‖v‖ .

We claim that

lim
n→∞

inf
|l|=n

inf
v∈Rd\{0}

∫
I(x, n, v)dµl(x) ≥ c.

First notice that we have, for every δ > 0,

lim
n→∞

sup
v∈Rd\{0}

µ{x; I(x, n, v) < c− δ} = 0.

Indeed, the definition of c gives

sup
v∈Rd\{0}

lim
n→∞

µ{x; I(x, n, v) < c− δ} = 0,

and we can use compactness to exchange quantifiers since v may be assumed to be
a unit vector. See Lemma 3.1 of [AF07] for an elaboration.

Since 1
Cµ ≤ µl ≤ Cµ, the claim now follows since I(x, n, v) ≤ 1

n ln ‖An(x)‖ and

the sequence 1
n ln ‖An(x)‖ is uniformly integrable: for every ε > 0, there exists

δ > 0 such that for every n ≥ 1,∫
X

1

n
ln ‖An(x)‖dµ < ε,

over every set X satisfying µ(X) < δ.
Using the claim, we see that there exists n0 ≥ 1, κ > 0 satisfying

sup
v∈Rd\{0}

sup
l

∫
c′ − I(x, n0, v)dµl < −κ.
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By fast decay, there exists C ′ > 0, δ′ > 0 such that for 1 ≤ n ≤ n0, µl{x; I(x, n, v) ≥
|t|} ≤ e−C

′δ′t, for every v ∈ Rd \ {0} and every l. This implies that there exists
C ′′ > 0, δ′′ > 0 such that for s ∈ C with |s| < δ′′, 1 ≤ n ≤ n0, v ∈ Rd \ {0} and
every l ∫

|esn(c′−I(x,n,v))|dµl(x) ≤ C ′′,

so that

s 7→
∫
esn(c′−I(x,n,v))dµl(x)

are uniformly bounded holomorphic functions of |s| < δ′′. Note that they equal
to 1 at s = 0 and their derivative at s = 0 is n

∫
c′ − I(x, n, v)dµl(x). Thus there

exists δ > 0 such that

sup
v∈Rd\{0}

sup
l

∫
eδn0(c′−I(x,n0,v))dµl < e−κn0δ,

while, for every 1 ≤ n ≤ n0 − 1,

sup
v∈Rd\{0}

sup
l

∫
eδn(c′−I(x,n,v))dµl < 2e−κnδ.

Note that∫
eδ(n+m)(c′−I(x,n+m,v))dµ(x) ≤

∑
|l|=n

µ(∆l)eδn(c′−I(l,v))

∫
eδm(c′−I(x,Al·v))dµl(x)

≤
∫
eδn(c′−I(x,n,v))dµ(x) sup

|l|=m

∫
eδm(c′−I(x,m,Al·v))dµl.

It follows that for every n ≥ 1,∫
eδn(c′−I(x,n,v))dµ(x) ≤ 2e−κnδ,

so that
µ{x; I(x, n, v) ≤ c′} ≤ 2e−κnδ

giving the result. �

Remark 5.1. The previous theorem can be somewhat refined: If A is fast decaying
and for some vector v ∈ Rd \ {0} we have lim 1

n ln ‖An(x) · v‖ > c′ for a positive µ-

measure set of x ∈ ∆, then the µ-measure of the set of x such that 1
n ln ‖An(x)·v‖ ≤

c′ is exponentially small in n. This can be proved by reduction to the setting above
after taking the quotient by an appropriate invariant subspace.

5.2. Hausdorff dimension. The next result shows how to convert Theorem 25
into an estimate on Hausdorff dimension. We will assume that T : ∆ → ∆ is a
transformation with bounded distortion, ∆ is a simplex in PRp for some p ≥ 2 and
T |∆(l) is a projective transformation for every l ∈ Z.

Theorem 26. Assume that T is fast decaying. For n ≥ 1, let Xn ⊂ ∆ be a union
of ∆l with |l| = n, and let X = lim inf Xn. Let

δ = lim sup
n→∞

1

n
lnµ(Xn),

then HD(X) ≤ p− 1−min(δ, α1) where α1 is the fast decay constant of T .

We will need a preliminary result:
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Lemma 27. Assume that T has bounded distortion and is fast decaying. Then for
0 < α4 < α1, there exists C4 > 0 such that for every n ≥ 1, we have∑

|l|=n

µ(∆l)1−α4 ≤ Cn4 .

Proof. Notice that for 0 < ε < α1,∑
l

µ(∆(l))1−ε ≤
∑
k≥0

2−(1−ε)kC12−α1k

2−k−1
≤ 2C1

∑
k≥0

2(ε−α1)k.

It follows that for every l, ∑
l

µl(∆(l))1−ε ≤ C4.

On the other hand, it is clear that∑
|l′|=n+1

µ(∆l′)1−ε =
∑
|l|=n

µ(∆l)1−ε
∑
l

µl(∆(l))1−ε.

The result follows by induction. �

Proof of Theorem 26. Notice that there exists C ′ > 0 such that if 0 < ρ ≤ ρ′, then

any simplex with Lebesgue measure ρ′ is contained in the union of C ′ ρ′

ρp−1 balls of

diameter ρ.
Let 0 < δ′ < α1 be such that µ(Xn) < e−δ

′Cn for infinitely many n, and fix an
arbitrary such n. Fix δ′ < α4 < α1, let C4 > 0 be as in the previous lemma, and
let C > 0 be such that C4e

−C(α4−δ′) < 1. We are going to find a cover {Bi} of Xn

by balls of diameter at most e−Cn satisfying∑
i

diam(Bi)
p−1−δ′ ≤ 2C ′,

showing that HD(lim inf Xn) ≤ p− 1− δ′.
Let Xn = Yn ∪ Zn, where Yn is the union of those ∆l with |l| = n such that

µ(∆l) > e−Cn and Zn is the complement. It follows that Yn can be covered with
at most C ′µ(Yn)epCn balls of diameter e−Cn. This cover {BYi } satisfies∑

i

diam(BYi )p−1−δ′ ≤ C ′µ(Xn)eδ
′Cn ≤ C ′.

Let us cover each ∆l ⊂ Zn by the smallest possible number of balls of diameter
µ(∆l). The resulting cover {BZi } of Zn then satisfies

∑
i

diam(BZi )p−1−δ′ ≤
∑

|l|=n,µ(∆l)≤e−Cn
C ′µ(∆l)1−δ′

(2)

≤
∑
|l|=n

C ′µ(∆l)1−α4e−Cn(α4−δ′) ≤ C ′Cn4 e−Cn(α4−δ′) ≤ C ′.

The result follows. �

The following simple result will allow us to control the set of escaping points as
well.



WEAK MIXING DIRECTIONS IN NON-ARITHMETIC VEECH SURFACES 27

Theorem 28. Assume that T is fast decaying. Let ∆n ⊂ ∆ be the domain of Tn

and let ∆∞ =
⋂
n∈N ∆n. Then HD(∆ \∆∞) ≤ p − 1 − α1

1+α1
, where α1 is the fast

decay constant of T .

Proof. Note that ∆n \∆n+1 = T−n(∆ \∆1), so HD(∆ \∆∞) = HD(∆ \∆1).
For simplicity, let us map ∆ to the interior of the cube W = [0, 1]p−1 by a

bi-Lipschitz map P . For M ∈ N, let us partition W into 2M(p−1) cubes of side
δ = 2−M in the natural way. and let us estimate the number N of cubes that are
not contained in P (∆1). In order to do this, we estimate the total volume L of
those cubes.

For fixed ε > 0, L is at most the sum L0 of the volumes of all P (∆(l)) with
volume at most ε, plus the sum L1 of the volumes of the

√
p− 1δ-neighborhood of

the boundary of each P (∆(l)) with volume at least ε.
By the fast decay of T , we obviously have L0 ≤ Cεα1 . On the other hand, the

volume of the
√
p− 1δ-neighborhood of the boundary of each P (∆(l)) is at most

Cδ. Thus L ≤ C(δε−1 + εα1). Taking ε = δ
1

1+α1 , we get L ≤ 2Cδ
α1

1+α1 and hence

N ≤ 2Cδ−M+
α1

1+α1 . The result follows. �

6. Proof of Theorem 2

Let x = (S,Σ, ω) be a non arithmetic Veech surface, and let C ⊂ MS,Σ(κ) be its
SL(2,R) orbit. Let us consider the Markov model (T,A) for the Kontsevich-Zorich
cocycle associated to an appropriate Poincaré section Q through x. This Poincaré
section contains the unstable horocycle segment {p(u, 0); u ∈ ∆}. We will show
that in this horocycle segment, the set of surfaces for which the the vertical flow
is not weak mixing has Hausdorff dimension d < 1. By Lemma 16, for any surface
in C, the set of directions for which the directional flow is not weak mixing has
Hausdorff dimension d as well.

Let k be the holonomy field of (S,Σ, ω). We recall from Section 2.4 that the
Hodge bundle H1(S;R) admits [k :Q] invariant planes V σ associated to the embed-

dings σ : k → R. We define W =
⊕
σ

V σ, and πσ : W → V σ the natural projection.

The real vector space W is actually defined over Q and we note WZ = W ∩H1(S;Z)
the integer lattice in W . By definition, πσ restricted to WZ is injective (because W
is the smallest subspace defined over Q that contains V = V id).

Let ∆∞ be the set of all u ∈ ∆ which are in the domain of Tn for all n ∈ N.
For any u ∈ ∆∞, we may define the stable space Es(u) of the Kontsevich-Zorich
restricted to W 0 as the set of all v ∈ W 0 such that An(u) · v → 0 as n → ∞ as
n→∞.

By Theorem 18), if u ∈ ∆∞ is such that p(u, 0) = ω admits an eigenvalue ν, then
there exists a vector v ∈ H1(S \Σ;Z) such that limAn(u) · (v−ν Imω) = 0. Notice
that in this case, we necessarily have v ∈ W : Indeed, Imω ∈ W , so the projection
of v−ν Imω on the quotient H1(S\Σ;R)/W is contained in H1(S\Σ;Z)/WZ, if the
projection of v− ν Imω would be non-zero then the projection of An(u) · v− ν Imω
would be a non-zero integer vector as well, and hence far away from zero.

Notice that if v = 0 then ν = 0 (since Imω generates the strongest unstable
subspace for the Kontsevich-Zorich cocycle), and any measurable eigenfunction
with eigenvalue 0 must be constant by ergodicity (which follows from the recurrence
hypothesis u ∈ ∆∞).
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Thus the set of u ∈ ∆∞ such that p(u, 0) is not weak mixing is contained in

E =
⋃

v∈WZ\{0}

⋂
σ 6=id

E(πσ(v)),

where

E(w) = {u ∈ ∆∞; w ∈ Es(u)}
By Theorem 28, HD(∆ \ ∆∞) < 1, so the result will follow once we show that
HD(E) < 1. In order to do this, we will show that for each σ 6= id, there exists a
constant dσ < 1 such that for each w ∈ V σ \ {0}, HD(E(w)) ≤ dσ.

Let us show that the expansion constant of (T,A|V σ) is the largest Lyapunov
exponent of (T,A|V σ), which we recall is given by rλσ where λσ > 0 by Lemma 13.
By the Oseledets Theorem, for any w ∈ V σ \{0}, and for µ-almost every u ∈ ∆, we
have lim 1

n ln ‖An(u) ·w‖ = rλσ, unless w belongs to the one-dimensional Oseledets
subspace Eσ− ⊂ V σ associated to the exponent −rλσ. Assume that there exists a
subset of ∆ of positive µ-measure such that w ∈ Eσ−. By a density point argument,

Eσ− is constant,6 so that it must be invariant by all the A(l). This contradicts the

fact that the group generated by all the A(l) is not solvable, see the proof of Lemma
13.

If w ∈ Es(u)∩ (V σ \ {0}), then of course lim sup 1
n ln ‖An(u) ·w‖ ≤ 0. Since the

expansion constant of (T,A|V σ) is strictly positive, we can apply Theorems 25 and
26 to conclude.

7. Construction of directions with non-trivial eigenfunctions

In this section, we provide a general construction of directional flows with non-
trivial eigenfunctions in a Veech surface. This construction makes use of very
particular elements in the Veech group called Salem. The presence of a single
element will allow us to apply a somewhat more general geometric criterion for
positivity of Hausdorff dimension of certain exceptional Oseledets behavior, which
we will now describe in the setting of locally constant cocycles.

7.1. Lower bound on Hausdorff dimension. Let H be a finite dimensional
(real or complex) vector space. We consider locally constant SL(H)-cocycles (T,A)
where T :

⋃
l∈Z ∆(l) → ∆ restricts to projective maps ∆(l) → ∆ between simplices

in PRp, p ≥ 2. We will assume that there exists some l ∈ Ω such that ∆l is
compactly contained in ∆, but we will not need to assume that T has bounded
distortion or even that

⋃
l∈Z ∆(l) has full measure in ∆.

Theorem 29. Let (T,A) be a cocycle as above. Assume that for every v ∈ H \{0},
there exists l ∈ Ω such that ‖Al · v‖ < ‖v‖. Then there exists a finite subset J ⊂ Z
such that for every v ∈ H \ {0}, there exists a compact set Kv ⊂ ∆ with positive
Hausdorff dimension such that for every x ∈ Kv we have Tn(x) ∈

⋃
j∈J ∆(j), n ≥ 0,

and lim sup 1
n ln ‖An(x) · v‖ < 0.

Proof. Fix two words l′, l′′ ∈ Ω such that ∆l′ and ∆l′′ have disjoint closures con-
tained in ∆.

6Indeed one can find l such that the probability that u ∈ ∆l is such that w ∈ Eσ−(u) is

arbitrarily close to 1. Mapping ∆l to ∆ by an iterate of T and using bounded distortion, we see
that Eσ− is constant on a subset of ∆ of probability arbitrarily close to 1.
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By compactness, there exists ε > 0 and a finite subset F ⊂ Ω such that for every
v ∈ H \ {0}, there exists l(v) ∈ F such that ‖Al(v) · v‖ < e−ε‖v‖. Let J ⊂ Z be a
finite subset containing all entries of words in F , as well as all entries of l′ and l′′.

Let Fn ⊂ Ω be the subset consisting of the concatenation of n words (not
necessarily distinct) in F . By induction, we see that for every v ∈ H \ {0}, there
exists ln(v) ∈ Fn such that ‖Aln(v) · v‖ < e−nεv (just take l1(v) = l(v) and for
n ≥ 2 take ln(v) as the concatenation of l(v) and ln−1(Al(v) · v)).

Choose n such that e−nε < 1
2 max{‖Al′‖, ‖Al′′‖}.

For k ≥ 1 and a sequence (t0, ..., tk−1) ∈ {0, 1}k, let us define a word l(v, t)
as follows. For k = 1, we let l(v, t) = ln(v)l′ if t = (0) and l(v, t) = ln(v)l′′ if
t = (1). For k ≥ 2 and t = (t0, ..., tk−1), denoting σ(t) = (t1, ..., tk−1), we let
l(v, t) = l(v, t0)l(Al(v,t0) · v, σ(t)).

Note that the diameter of ∆l(v,t) in the Hilbert metric of ∆ is exponentially
small in k: indeed, the diameter of ∆l(v,t) in ∆l(v,t0) is equal to the diameter of
∆l(v,σ(t)) in ∆, and the Hilbert metric of ∆l(v,(t0)) is strictly stronger than the
Hilbert metric of ∆. Thus given an infinite sequence t ∈ {0, 1}N, the sequence
∆l(v,(t0,...,tk−1)) decreases to a point denoted by γv(t) ∈ ∆. The map γv then
provides a homeomorphism between {0, 1}N and a Cantor set Kv ⊂ ∆.

By definition, if t ∈ {0, 1}k then ‖Al(v,t) · v‖ < 2−k‖v‖. It thus follows that for
x ∈ Kv we have lim sup 1

n ln ‖An(x) · v‖ ≤ − ln 2
M , where M is the maximal length of

all possible words l(v, t), v ∈ Rd \ {0}, t ∈ {0, 1}.
Let us endow {0, 1}N with the usual 2-adic metric d2, where for t 6= t′ we let

d2(t, t′) = 2−k where k is maximal such that tj = t′j for j < k. With respect to this

metric, {0, 1}N has Hausdorff dimension 1. To conclude, it is enough to show that
γ−1
v : K → {0, 1} is α-Hölder for some α > 0, as this will imply that the Hausdorff

dimension of K is at least α.
Let d be the spherical metric on PH. Let ε0 > 0 be such that for every x ∈ ∂∆

and y ∈
⋃
v∈H\{0}

⋃
t∈{0,1}∆l(v,t) we have d(x, y) > ε0. Let Λ > 1 be an upper

bound on the derivative of the projective actions of any Al(v,t), v ∈ Rd \ {0},
t ∈ {0, 1}. For k ∈ N, and t ∈ {0, 1}N, γv(t) is contained in ∆l(v,(t0,...,tk)) and hence
at distance at least εΛ−k from ∂∆l(v,(t0,...,tk−1)). It follows that if d2(t, t′) ≥ 21−k

then d(γv(t), γv(t
′)) ≥ ε0Λ−k. The result the follows with α = ln 2

ln Λ . �

The previous result would have been enough to construct continuous eigenfunc-
tions. In order to construct discontinuous eigenfunctions as well, we will need the
following more precise result.

Theorem 30. Let (T,A) be a cocycle as above. Assume that for every v ∈ H \{0},
there exist l, l̃ ∈ Ω such that ‖Al · v‖ < ‖v‖ < ‖Al̃ · v‖. Then there exists a finite
subset J ⊂ Z such that for every v ∈ H \ {0}, and for every sequence ak ∈ R+,
k ∈ N, such that supk | ln ak − ln ak+1| < ∞, there exists a compact set Kv ⊂ ∆
with positive Hausdorff dimension such that for every x ∈ Kv we have Tn(x) ∈⋃
l∈J ∆(l), n ≥ 0, and there exists a strictly increasing subsequence mk, k ∈ N,

such that supkmk+1 −mk <∞ and supk | ln ‖Amk(x) · v‖ − ln ak| <∞.

Proof. Fix two words l′, l′′ ∈ Ω such that ∆l′ and ∆l′′ have disjoint closures con-
tained in ∆.

Let C0 be an upper bound for | ln aj − ln aj+1|.
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As in the proof of the previous theorem, define a finite set F ⊂ Ω such that for
every v ∈ Rd \ {0}, there exist lc(v), le(v) ∈ F , such that

max
l∈{l′,l′′

‖Al
c(v)l · v‖ < e−C0‖v‖,

min
l∈{l′,l′′

‖Al
e(v)l · v‖ > eC0‖v‖.

Given k ≥ 1 and a sequence t = (t0, ..., tk−1) ∈ {0, 1}k, define l(v, t) by induction

as follows. If k = 1, then we let l(v, t) = lalb where la = lc(v) if ‖v‖ > a0,

la = le(v) if ‖v‖ ≤ a0, lb = l′ if t = 0 and lb = l′′ if t = 1. If k ≥ 2, we let
l(v, t) = l(v, t0)l(Al(v,t0) · v, σ(t)), where σ(t0, ..., tk−1) = (t1, ..., tk−1).

Notice that the set G ⊂ Ω of possible words l(v, t) with v ∈ Rd\{0} and t ∈ {0, 1}
is finite.

By induction, we get | ln ‖Al(v,t) · v‖ − ln ak| ≤ | ln ‖v‖ − ln a0|+ C1, where

C1 = max
l∈G
{ln ‖Al‖, ln ‖(Al)−1‖}.

As in the proof of the previous theorem, we define γv : {0, 1}N → ∆ so that γv(t)
is the intersection of the ∆l(v,(t0,...,tk−1)), and conclude that Kv = γv({0, 1}N) is a
Cantor set of positive Hausdorff dimension.

By construction, if x = γv(t), then for every n ∈ N we have An(x) ∈ ∆(j) for some
entry j of some word in G. Moreover, | ln ‖Amk(x) ·v‖− ln ak| ≤ | ln ‖v‖− ln a0|+C1

where mk is the length of l(v, (t0, ..., tk−1)). In particular, mk is strictly increasing
and mk+1 −mk is bounded by the maximal length of the words in G. �

7.2. Salem elements and eigenfunctions. A real number λ is a Salem number
if it is an algebraic integer greater than 1, all its conjugates have absolute values no
greater than 1 and at least one has absolute value 1. The last condition implies that
the minimal polynomial of a Salem number is reciprocal and that all conjugates
have modulus one except λ and 1/λ. For M ∈ SL(2,R), we say that M is a Salem
matrix if its dominant eigenvalue is a Salem number.

Let (S,Σ, ω) be a Veech surface, Γ its Veech group and k the trace field of Γ. We
recall that the action of the Veech group on the tautological subspace V = RRe(ω)⊕
R Im(ω) is naturally identified with the Veech group (see Section 2.2). For each
σ ∈ Gal(k/Q) there is a well defined conjugate V σ of V which is preserved by the
affine group of (S,Σ, ω). These actions identifies to conjugates of the Veech group
(see Section 2.4). Salem elements in Veech group have an alternative definition:
an element of a Veech group is Salem if and only if it is direct hyperbolic and its
Galois conjugates are elliptic.

Theorem 31. Let (S,Σ, ω) be a non arithmetic Veech surface and assume that
its Veech group contains a Salem element. Then

(1) the set of angles whose directional flow has a continuous eigenfunction has
positive Hausdorff dimension,

(2) the set of angles whose directional flow has a measurable discontinuous
eigenfunction has positive Hausdorff dimension.

To build directions with eigenvalues, we use a criterion proved in [BDM1] which
is a partial reciprocal of the Veech criterion (see Section 4). An earlier version of
this criterion appears in the paper of Veech [Ve84]. The criterion of [BDM1] only
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concerns linearly recurrent systems: the translation flow of (S, ω) is linearly recur-
rent if there exists a constant K such that for any horizontal interval J embedded
in (S, ω) the maximum return time to J is bounded by K/|J |. Equivalently, a
translation surface is linearly recurrent if and only if the associated Teichmüller
geodesic is bounded in the moduli space of translation surfaces.

Theorem 32 ([BDM1]). Let U be a relatively compact open subset in the moduli
space Mg(κ) in which the Hodge bundle admits a trivialization and let An be the
associated Kontsevich Zorich cocycle. Let (S,Σ, ω) ∈ U be such that the return
times to U have bounded gaps, then

(1) ν is a continuous eigenvalue of (S, ω) if and only if there exists an integer
vector v ∈ H1(S;Z)\{0} such that∑

n≥0

‖An(ω) · (ν Im(ω)− v)‖ <∞.

(2) ν is an L2 eigenvalue of (S,Σ, ω) if and only if there exists an integer vector
v ∈ H1(S;Z)\{0} such that∑

n≥0

‖An(ω) · (ν Im(ω)− v)‖2 <∞.

Actually, the criterion applies to the Cantor space obtained from the translation
surface where each point that belongs to a singular leaf is doubled. The continuity in
that space is weaker than the continuity on the surface. But from the cohomological
equation, a continuous eigenfunction on the modified surface is well defined and
continuous on the surface.

Remark 7.1. Theorem 32 allows to strengthen the conclusion of Theorem 24 when
the flow is linearly recurrent: if (S,Σ, ω) is a non-arithmetic Veech surface with
trace field k and whose flow is linearly recurrent then it admits either 0 or [k : Q]
rationally independent eigenvalues. Moreover, they are simultaneously contiuous
or discontinuous. Indeed (following the proof of Theorem 24), any two non-zero
“potential eigenvalues” µ, µ′ ∈ R such that there exists v, v′ ∈WZ with µ Im(ω)− v
and µ′ Im(ω′)−v′ belong to Es are such that ‖An(ω)·(µ Im(ω)−v)‖

‖An(ω)·(µ Im(ω)−v)‖ is uniformly bounded

away from zero or infinity (independent of n). By Theorem 32, µ is a continuous
eigenvalue if and only if µ′ is, and µ is an L2 eigenvalue if and only if µ′ is. Since
the set Θ of potential eigenvalues is either {0} or has dimension [k : Q] over Q, the
result follows.

Before going into details of the proof, we provide various examples of Veech
surfaces which contain Salem elements. In particular the next result shows that
Theorem 3 follows from Theorem 31.

Proposition 33 ([BBH], Proposition 1.7). A Veech surface with quadratic trace
field has a Salem element in its Veech group.

Proof. We follow [BBH]. The Veech group has only one conjugate and this conju-
gate is non discrete (see Proposition 15). On the other hand we know from a result
of Beardon ([Be83] Theorem 8.4.1) that any non discrete subgroup of SL(2,R) con-
tains an elliptic element with irrational angle. If g is an element of the Veech group
whose conjugate is an irrational rotation then g can not be elliptic as it is of in-
finite order and the Veech group is discrete and g can not be parabolic because a
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conjugate of a parabolic element is again parabolic. Hence g is hyperbolic and g2

is a Salem element of the Veech group. �

For more general Veech surfaces, we obtain examples through computational
experiments (see appendix A for explicit matrices).

Proposition 34. For respectively odd q ≤ 15 and any q ≤ 15 the triangle groups
∆(2, q,∞) and ∆(q,∞,∞) contain Salem elements.

In particular, Theorem 31 holds for many billiards in regular polygons Pn defined
in the introduction.

Now, we proceed to the proof of Theorem 31.

Lemma 35. Let λ be a Salem number and {λ, 1/λ, eiα1 , e−iα1 , . . . , eiαk , e−iαk} its
Galois conjugates, then α1, . . . , αk, π are rationally independant.

Proof. Let n1, . . . nk,m be integer such that

(3) n1α1 + . . .+ nkαk = 2mπ.

Then

(4)
(
eiα1

)n1
. . .
(
eiαk

)nk
= 1

Each element of the Galois group is a field homomorphism and hence it preserves the
partition {λ, 1/λ}, {eiα1 , e−iα1}, . . . , {eiαk , e−iαk}. By definition, the Galois group
acts transitively on {λ, 1/λ, eiα1 , e−iα1 , . . . , eiαk , e−iαk} and for each i = 1, . . . , k
there exists a field homomorphism that maps eiαj to λ and all other eiαj′ to some
e±αj′′ . By applying this field homomorphism to the equality (4) and taking absolute
value we get that ni = 0 because |λ| > 1. Hence the relation (3) is trivial. �

We now show that the presence of Salem elements allows us to verify the hy-
pothesis of Theorem 30.

Lemma 36. Let (S,Σ, ω) be a Veech surface, k its holonomy field, V = RReω ⊕
Imω the tautological subspace and W 0 =

⊕
σ∈Gal(k/Q)\{id} V

σ. Let γ be a Salem

element of the Veech group and γj, j ≥ 1, be such that for each σ 6= id, the norm
of the conjugates γσj grows to infinity. Denote by g and gk their actions on W 0.

Then for any v ∈W 0 \{0} there exist positive integers n−, n+ and k−, k+ such that
elements g− = gk−g

n− and g+ = gk+g
n+ satisfy ‖g−v‖ < ‖v‖ < ‖g+v‖.

Proof. Let v ∈ W 0 be a unit vector, and for σ 6= id, let πσ : W 0 → V σ be the
projection on the V σ-coordinate. Let D ⊂ Gal(k/Q) \ {id} be the set of all σ such
that πσ(v) 6= 0. We show that there exists positive integers n and k such that for all

σ ∈ D, we have ‖gkgnπσ(v)‖ < ‖v‖
#D , which implies the first inequality with n = n−

and k = k−. The other inequality may be obtained by the very same argument.
Let θσk be the norm of γσk . By hypothesis, θσk > 1 for every σ and every k

sufficiently large. Let Fσ− ∈ PV σ be the most contracted direction of γσk in V σ.
Consider the action of g on the torus

∏
σ∈D PV σ. By Lemma 35, this action is

minimal. In particular there exist a sequence of non negative integer nj such that
gnjπσ(v) converges to a vector wσ in Fσ− \ {0} for every σ ∈ D. In particular, for

fixed k ∈ N we have limj→∞ ‖gkgnjπσ(v)‖ = ‖wσ‖
θσk

for every σ ∈ D. The result

follows by taking k such that ‖wσ‖θσk
< ‖v‖

#D (recall that θσk →∞ as k →∞). �
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Proof of Theorem 31. Let V = RRe(ω)⊕ R Im(ω) be the tautological subspace of
the cohomology H1(S;R) and W = ⊕σ:k→RV

σ and W 0 = ⊕σ 6=idV
σ. We are going

to construct a Markov model (T : ∆ → ∆, A) for the Kontsevich-Zorich over the
SL(2,R) orbit C of (S,Σ, ω), a point x ∈ ∆ and a positive integer n, and a sequence
of points yk ∈ ∆ and positive integers nk, such that An(x)|V is a Salem element and
limk→∞ infσ 6=id ‖Ank |V σ‖ = ∞. First, let us show how this construction implies
the result.

By Lemma 36, this implies that the hypothesis of Theorem 30 are satisfied for
the cocycle (T,A|W 0), so for every w ∈W 0 \{0}, there exist subsets Zc, Zm ⊂ Λ of
positive Hausdorff dimension such that for u ∈ Zc we have

∑
‖An(u) ·w‖ <∞ and

for u ∈ Zm we have
∑
‖An(u) ·w‖2 <∞ and

∑
‖An(u) ·w‖ =∞. Moreover, since

Theorem 30 provides also that Tn(u) visits only finitely many distinct ∆(l), the
return times r(Tn(u)) remain bounded so that the forward Teichmüller geodesic
starting at u is bounded in moduli space.

Let us take w as the projection on W 0, along V , of a non-zero vector v ∈
W ∩H1(S;Z). Fix u ∈ Zc∪Zm. Let ω = p(u, 0) and write v = w+ν Imω+ηReω.
Then An(u) · (ν Imω − v) = −An(u) · w − ηAn(u) · Reω. Note that An(u) · Reω
decays exponentially fast, since Reω is in the direction of the strongest contracting
subbundle of the Kontsevich-Zorich cocycle. Notice that ν 6= 0, otherwise the
integer non-zero vectors An(u) · v would converge to 0. By Theorem 32, if u ∈ Zc,
then the vertical flow for ω admits a continuous eigenfunction with eigenvalue ν
and if u ∈ Zm then the vertical flow for ω admits a measurable eigenfunction, but
no continuous eigenfunction, with eigenvalue ν.

We have thus obtained positive Hausdorff dimension subsets p(Zc × {0}) and
p(Zm × {0}) of an unstable horocycle for which the vertical flow has continuous
and measurable but discontinuous eigenfunctions. Using Lemma 16, we transfer
the result to the directional flow in any surface in C, giving the desired conclusion.

We now proceed with the construction of the Markov model. Recall that for
each hyperbolic element γ in the Veech group, there exists a periodic orbit Oσ of
the Teichmüller flow in the SL(2,R) orbit and a positive integer nγ , such that the
restriction to V of the nγ-th iterate of the monodromy of the Kontsevich-Zorich
cocycle along this periodic orbit is conjugate to γ.

Let γ be a Salem element in the Veech group, and let us consider the Markov
model (T,A) for the Kontsevich-Zorich cocycle obtained by taking a small Poincaré
section Q through some x ∈ Oγ . Then clearly Anγ (x)|V is a Salem element.

On the other hand, by Lemma 13, (T,A|V σ) has a positive Lyapunov exponent
for every σ. Thus for large n and for a set of y of probability close to 1, the norm
of ‖An(y)|V σ‖ is large. In particular, for each k ∈ N there exists yk and a positive
integer nk such that ‖Ank |V σ‖ > k for every σ 6= id. The result follows. �

Appendix A. Salem elements in triangle groups

In that appendix we provide explicit Salem matrices in triangle groups ∆(2, q,∞)
and ∆(q,∞,∞) for trace field of degree greater than two and small values of q. The
matrices are given in terms of the standard generators s, t of the triangle group
∆(p, q, r) that satisfy

sp = tq = (st)r = ±id.
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Instead of writing down the minimal polynomial of the eigenvalue, we write it for
half the trace. The roots of modulus less than one are cosine of the angles of the
corresponding elliptic matrices.

The array stops at the values q = 17 for ∆(2, q,∞) and q = 16 for ∆(q,∞,∞)
for which we were unable to find Salem elements. All these examples were obtained
using the mathematical software Sage [Sa].

A.1. Salem elements in ∆(2, q,∞).

q degree matrix m

minimal polynomial of trace(m)/2

approximate conjugates of trace(m)/2

7 3 t3.s

x3 − 2x2 − x+ 1

2.247, 0.5550, −0.8019

9 3 t4.s

x3 − 3x2 + 1

2.879, 0.6527, −0.5321

11 5 t5.s.t4.s

x5 − 39
2 x

4 − 47x3 − 243
8 x2 − 17

16x+ 89
32

21.73, 0.2425, −0.6156, −0.8781, −0.9764

13 6 t7.s.t7.s.t4.s

x6 − 227x5 − 11x4 + 318x3 + 41x2 − 110x− 25

227.0, 0.9072, 0.8412, −0.2464, −0.6697, −0.8746

15 4 t7.s

x4 − 4x3 − 4x2 + x+ 1

4.783, 0.5112, −0.5473, −0.7472
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A.2. Salem elements in ∆(q,∞,∞).

q degree matrix m

minimal polynomial of trace(m)/2

approximate conjugates of trace(m)/2

7 3 t.s3

x3 − 3x2 − 4x− 1

4.049, −0.3569, −0.6920

8 4 t.s2.t.s3

x4 − 24x3 + 15x2 + 4x+ 1
8

23.35, 0.8571, −0.03655, −0.1709

9 3 t.s2

x3 − 3x2 + 1

2.879, 0.6527, −0.5321

10 4 t.s3.t.s7

x4 − 49x3 − 441
4 x2 − 291

4 x− 199
16

51.18, −0.2644, −0.9504, −0.9672

11 5 t.s4.t.s7

x5 − 155
2 x4 − 122x3 − 459

8 x2 − 173
16 x−

23
32

79.05, −0.1907, −0.2214, −0.2388, −0.9015

12 4 t.s2.t.s3

x4 − 24x3 − 61x2 − 48x− 191
16

26.38, −0.5254, −0.9096, −0.9468

13 6 t.s4.t.s5.t−1.s4.t−1.s5

x6 − 43107
2 x5 − 188297

4 x4 − 26514x3 + 53979
8 x2 + 304515

32 x+ 124175
64

21560., 0.5373, −0.3375, −0.7022, −0.8374, −0.8440

14 6 t.s5.t.s9

x6 − 125x5 − 955
4 x4 − 45

4 x
3 + 1653

8 x2 + 967
8 x+ 1009

64

126.9, 0.9692, −0.1912, −0.6930, −0.9794, −0.9879

15 4 t.s3

x4 − 4x3 − 4x2 + x+ 1

4.783, 0.5112, −0.5473, −0.7472
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