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WEAK SCALAR CURVATURE LOWER BOUNDS ALONG RICCI FLOW

WENSHUAI JIANG, WEIMIN SHENG, AND HUAIYU ZHANG

ABSTRACT. In this paper, we study Ricci flow on compact manifolds with a continuous initial metric. It was

known from Simon that the Ricci flow exists for a short time. We prove that the scalar curvature lower bound

is preserved along the Ricci flow if the initial metric has a scalar curvature lower bound in distributional sense

provided that the initial metric is W1,p for some n < p ≤ ∞. As an application, we use this result to study the

relation between Yamabe invariant and Ricci flat metrics. We prove that if the Yamabe invariant is nonpositive

and the scalar curvature is nonnegative in distributional sense, then the manifold is isometric to a Ricci flat

manifold.
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1. INTRODUCTION

The study of low-regularity Riemannian metrics with some weak curvature conditions is an important

theme in Riemannian geometry. For sectional curvature lower bounds and Ricci curvature lower bounds,

many beautiful results have been established (for Alexandrov spaces theory, see, e.g. [ABN86], [BBI01];

for Ricci curvature lower bounds, see, e.g. [CC97], [CC00a], [CC00b], [CN12], [CN13], [JN21], [CJN21];

or for an optimal transport approach, see, e.g. [LV09], [St06a], [St06b], [St06c]).

Date: October 28, 2021.

The first author was supported by NSFC (No. 12071425, No. 12125105); The second author was supported by NSFC (No.

11971424, No. 12031017); The third author was supported by NSFC (No. 11971424).

1

http://arxiv.org/abs/2110.12157v2


2 WENSHUAI JIANG, WEIMIN SHENG, AND HUAIYU ZHANG

However, it has not been well understood for scalar curvature lower bounds. One of a fundamental

property for classical scalar curvature lower bounds is that they are preserved by Ricci flow. Ricci flow is

firstly introduced by Hamilton [Ha82], which comes to be an powerful tool in geometry and has been used

to prove the Poincaré Conjecture, see [Pr02], [Pr03], [Pr03], [BL08], [CZ06], [MT07]. The lower bounds

preserving property is still true for scalar curvature lower bounds in some weak sense and it is quite useful

in the study of low-regularity Riemannian metrics with some weak scalar curvature conditions. Gromov

introduced a scalar curvature lower bound in some weak sense, which could be defined for C0 metrics, see

[Gm14]. Bamler and Burkhardt-Guim considered it by a Ricci flow approach, they elaborated on defining a

weak sense scalar curvature lower bound which is required to be preserved by Ricci flow, see[Ba16], [Bu19].

If a metric satisfies that its Ricci flow has a scalar curvature lower bound at each short positive time, then

this metric must satisfies the definition of scalar curvature lower bounds in Gromov [Gm14]. It remains

an open problem whether the converse is true (see [Bu19]). Schoen also considered scalar curvature on

low-regularity metrics. He proposed a question that if the Yamabe invariant σ(M) is nonpositive, the metric

admits singularity in a subset and the scalar curvature is at least σ(M) away from the singular set, then

whether we can prove that the metric is smooth and Ricci flat provided that the singular set is small, see

[LM19]. Li and Mantoulidis [LM19] gave an answer for his skeleton metrics and for 3-manifolds with

metrics admitting point singularities. For more related results, see the survey of Sormani [So21].

McFeron and Székelyhidi [MS12] proved that if a Lipschitz metric is smooth away from a hypersurface

satisfying certain conditions on the mean curvature and the metric has nonnegative scalar curvature point-

wisely away from the hypersurface, then the scalar curvature will be nonnegative pointwisely on the whole

manifold under Ricci flow. This property appears to be quite useful in the study of the positive mass theo-

rem, especially for the rigidity part of the positive mass theorem, see [MS12]. (See also [Mi02].) Shi and

Tam [ST18] have proved the nonnegative scalar curvature preserving property for W1,p (n < p ≤ ∞) metrics

which are smooth away from a singular set with Minkowski dimension at most n − 2. Moreover, they apply

this property to get a positive mass theorem for low-regularity metrics and establish an answer of Schoen’s

question for W1,p metrics. LeFloch and Mardare defind a scalar curvature lower bound in distributional

sense for W1,p metrics. This was further studied by [LL15, LS15] in asymptotically flat manifolds. Lee and

Lefloch [LL15] proved a positive mass theorem on spin manifolds with W1,n metrics which has nonnegative

scalar curvature in distributional sense. Lee and Lefloch’s ([LL15]) definition of weak scalar curvature lower

bounds recovers the case in [MS12], [Mi02] and [ST18], thus the positive mass theorem in [LL15] recovers

it in [Mi02], [MS12] and [ST18] in spin case.

We improve some of the above results. The main theorem is the following:

Theorem 1.1. Let Mn be a compact manifold with a metric g ∈ W1,p(M) (n < p ≤ ∞). Assume the scalar

curvature Rg ≥ a for some constant a in distributional sense, and let g(t), t ∈ (0, T0] be the Ricci flow

starting from the metric g. Then for any t ∈ (0, T0], there holds Rg(t) ≥ a on M.

In [Bu19], Burkhardt-Guim introduced a weak scalar curvature lower bound for C0-metric using Ricci

flow. By comparing with the definition in [Bu19] and Theorem 1.1, we get:
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Corollary 1.2. Let Mn be a compact manifold with a metric g ∈ W1,p(M) (n < p ≤ ∞). Assume the scalar

curvature Rg ≥ a for some constant a in distributional sense, then the scalar curvature Rg ≥ a in the sense

of [Bu19].

As a consequence of Theorem 1.1, we can prove the following result:

Theorem 1.3. Let (Mn, g) (n ≥ 3) be a compact manifold with g ∈ W1,p(M) (n < p ≤ ∞). Assume the

distributional scalar curvature Rg ≥ 0, then either (M, g) is isometric to a Ricci flat manifold or there exists

a smooth positive scalar curvature metric on M.

Remark 1.1. By Theorem 1.3, if M is a topological n-torus with a metric g ∈ W1,p(M) for some n < p ≤ ∞,

then (M, g) is isometric to a flat torus provided that g has nonnegative distributional scalar curvature. More

generally, if M is a differential manifold with the Yamabe invariant σ(M) ≤ 0 and with a metric g satisfying

the same condition as above, then (M, g) is isometric to a Ricci flat manifold.

Remark 1.2. Bourguignon, Gromov, Lawson, Schoen and Yau have established relevant results in smooth

version, see [GL80], [SY79b], [KW75].

Remark 1.3. We can check that if g is C2 away from a closed subset Σwith its Hausdorff measure H
n−

p

p−1 (Σ) <

∞ when n < p < ∞ or Hn−1(Σ) = 0 when p = ∞, and if Rg ≥ a pointwisely on M \ Σ, then Rg ≥ a in

distributional sense. Though it is proved in [JSZ21], for the sake of completeness, we give a proof in appen-

dix. Also, if g is C2 away from a hypersurface whose mean curvature taken with respect to the metric in the

interior is at least it taken with respect to the metric in the exterior and Rg ≥ a away from the hypersurface,

then Rg ≥ a in distributional sense. It has been proved in [LL15, Proposition 5.1].

Therefore, as an application, we can get similar results for metrics admitting singularity in a subset,

which are extensions of some results in [ST18]. Specifically, if g is C2 away from a closed subset Σ with

H
n−

p

p−1 (Σ) < ∞ when n < p < ∞ or Hn−1(Σ) = 0 when p = ∞, and if Rg ≥ a or Rg ≥ 0 pointwisely on

M \ Σ, then the above theorems still hold.

Organization:

In section 2, we will mollify the metric by convolution, and we also provide an estimate of the weak

scalar curvature in this smooth approximation (see Lemma 2.2). In section 3, we recall the definition of

the Ricci flow and the Ricci-DeTurck flow, and we obtain some estimates for them. The main estimate we

need is Theorem 3.2. In section 4, we reacall the definition of the conjugate heat equation and prove some

property of the solution of this equation (see Proposition 4.1), which will be needed in section 5. In section

5, we prove Theorem 1.1 and Theorem 1.3. In section 6, we state some further questions.

Acknowlegments: The authors would like to thank Prof. Dan Lee and Prof. C. Sormani for many helpful

suggestions.
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2. APPROXIMATION OF SINGULAR METRICS

Let Mn be a compact smooth manifold with a metric g ∈ C0(M) ∩W1,2(M) and let h be a smooth metric

on M such that C−1h ≤ g ≤ Ch for some constant C > 1. Throughout this paper, ∇̃ and the dot product will

denote the Levi-Civita connection and the inner product taken with respect to h respectively, We define the

distirbutional scalar curvature of g as in [LM07, LL15, LS15],

〈Rg, ϕ〉 :=

∫

M

(

−V · ∇̃

(

ϕ
dµg

dµh

)

+ Fϕ
dµg

dµh

)

dµh,∀ϕ ∈ C∞(M), (2.1)

where µh is the Lebesgue measure taken with respect to h, V is a vector field and F is a scalar field, defined

as:

Γ
k
i j :=

1

2
gkl

(

∇̃ig jl + ∇̃ jgil − ∇̃lgi j

)

, (2.2)

Vk := gi j
Γ

k
i j − gik

Γ
j

ji
= gi jgkℓ(∇̃ jgiℓ − ∇̃ℓgi j), (2.3)

F := trgR̃ic − ∇̃kgi j
Γ

k
i j + ∇̃kgik

Γ
i
ji + gi j

(

Γ
k
kℓΓ

ℓ
i j − Γ

k
jℓΓ

ℓ
ik

)

, (2.4)

where R̃ic is the Ricci tensor of h. By [LL15], 〈Rg, ϕ〉 coincides with the integral
∫

M
Rgϕdµg in classical

sense if g ∈ C2(M) and 〈Rg, ϕ〉 is independent of h for any g ∈ C0(M) ∩W1,2(M). For more details about

the distirbutional scalar curvature and related results, see [LL15],[LM07],[LS15], [JSZ21].

Let a be some constant, we say that the distirbutional scalar curvature of g is at least a if 〈Rg, ϕ〉 −

a
∫

M
ϕdµg ≥ 0 for any nonnegative function ϕ ∈ C∞(M). We will abbreviate this inequality as 〈Rg−a, ϕ〉 ≥ 0.

The following mollification lemma has been proved in [GT14, Lemma 4.1], by a standard convolution

mollifying procedure and a use of partition of unity. Although their lemma is a W2, n
2 version, our version

could be proved in the same way.

Lemma 2.1 ([GT14]). Let Mn be a compact smooth manifold and g be a C0 ∩W1,p (1 ≤ p ≤ ∞) metric on

M, then there exists a family of smooth metric gδ, δ > 0, such that gδ converge to g both in C0-norm and in

W1,p-norm as δ→ 0+.

Under this mollification, we have an estimate of the distirbutional scalar curvature. The following lemma

has been essentially proved in [JSZ21], though [JSZ21] only gives a proof for the estimate of 〈Rgδ , u
2〉, the

following lemma can be proved in the same way. In order to be self-contained, we give a proof here.

Lemma 2.2 ([JSZ21]). Let Mn be a compact smooth manifold and g be a C0 ∩W1,n metric on M. Let gδ be

the mollification in Lemma 2.1, then we have that for any ǫ > 0, there exists δ0 = δ0(g) > 0, such that

|〈Rgδ , u〉 − 〈Rg, u〉| ≤ ǫ‖u‖W1, n
n−1 (M)

,∀u ∈ C∞(M),∀δ ∈ (0, δ0).

where Rgδ is the scalar curvature of gδ.

Proof. Let h be a smooth metric on M with C−1h < g < Ch, here and below C will denote some positive

constant which depends on n and the Sobolev constant of g, but independent of δ and varis from line to line.
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Let Vδ and Fδ be the vector field and scalar field in the definition of distirbutional scalar curvature of gδ.

Then we have

lim
δ→0+

(∫

M

|Vδ − V |ndµh +

∫

M

|Fδ − F|n/2dµh

)

= 0. (2.5)

We also have

lim
δ→0+

∫

M

∣

∣

∣

∣

∣

∣

∇̃
dµgδ

dµh

− ∇̃
dµg

dµh

∣

∣

∣

∣

∣

∣

n

dµh = 0. (2.6)

Using triangular inequality and Hölder inequality, we can calculate that

∣

∣

∣

∣

∫

M

Fδu
dµgδ

dµh

dµh −

∫

M

Fu
dµg

dµh

dµh

∣

∣

∣

∣

≤

∫

M

∣

∣

∣

∣

Fδu
dµgδ

dµh

− Fu
dµg

dµh

∣

∣

∣

∣

dµh

≤

∫

M

|Fδu − Fu|
∣

∣

∣

∣

dµgδ

dµh

∣

∣

∣

∣

dµh +

∫

M

|Fu|
∣

∣

∣

∣

dµgδ

dµh

−
dµg

dµh

∣

∣

∣

∣

dµh

≤ C

∫

M

|Fδu − Fu|dµh + sup
M

∣

∣

∣

∣

dµgδ

dµh

−
dµg

dµh

∣

∣

∣

∣

∫

M

|Fu|dµh

≤ C

(∫

M

|Fδ − F|n/2dµh

)2/n (∫

M

|u|n/(n−2)dµh

)(n−2)/n

+ sup
M

∣

∣

∣

∣

dµgδ

dµh

−
dµg

dµh

∣

∣

∣

∣

(∫

M

|F|n/2dµh

)2/n (∫

M

|u|n/(n−2)dµh

)(n−2)/n

.

By Sobolev inequality
(∫

M

|u|n/(n−2)dµh

)(n−2)/n

≤ C‖u‖
W

1, n
n−1 (M)

,

we get that

∣

∣

∣

∣

∫

M

Fδu
dµgδ

dµh

dµh −

∫

M

Fu
dµg

dµh

dµh

∣

∣

∣

∣

≤















C

(∫

M

|Fδ − F|n/2dµh

)2/n

+C sup
M

∣

∣

∣

∣

dµgδ

dµh

−
dµg

dµh

∣

∣

∣

∣

(∫

M

|F|n/2dµh

)2/n














‖u‖
W

1, n
n−1 (M)

.

Similarly, for the term involving V , we can calculate that

∣

∣

∣

∣

∫

M

V · ∇̃

(

u
dµg

dµh

)

dµh −

∫

M

Vδ · ∇̃

(

u
dµgδ

dµh

)

dµh

∣

∣

∣

∣

(2.7)

≤

∫

M

|V − Vδ| ·
∣

∣

∣

∣

∇̃

(

u
dµgδ

dµh

)

∣

∣

∣

∣

dµh +

∫

M

|V | ·
∣

∣

∣

∣

∇̃

(

u
dµg

dµh

− u
dµgδ

dµh

)

∣

∣

∣

∣

dµh (2.8)

≤

(∫

M

|V − Vδ|
ndµh

)1/n (∫

M

∣

∣

∣

∣

∇̃

(

u
dµgδ

dµh

)

∣

∣

∣

∣

n/(n−1)
dµh

)(n−1)/n

(2.9)

+

(∫

M

|V |ndµh

)1/n (∫

M

∣

∣

∣

∣

∇̃

(

u
dµgδ

dµh

− u
dµg

dµh

)

∣

∣

∣

∣

n/(n−1)
dµh

)(n−1)/n

. (2.10)
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Using Sobolev inequality and Hölder inequality again, we have

∫

M

∣

∣

∣

∣

∇̃

(

u
dµgδ

dµh

)

∣

∣

∣

∣

n/(n−1)
dµh (2.11)

≤C(n)

∫

M

∣

∣

∣

∣

∣

∣

∇̃u
dµgδ

dµh

∣

∣

∣

∣

∣

∣

n/(n−1)

dµh +C(n)

∫

M

∣

∣

∣

∣

∣

∣

u∇̃
dµgδ

dµh

∣

∣

∣

∣

∣

∣

n/(n−1)

dµh (2.12)

≤C

∫

M

|∇̃u|n/(n−1)dµh +C

(∫

M

|u|n/(n−2)dµh

)(n−2)/(n−1) (∫

M

|∇̃
dµgδ

dµh

|ndµh

)1/(n−1)

(2.13)

≤C

∫

M

|∇̃u|n/(n−1)dµh +C‖u‖
n/(n−1)

W
1, n

n−1 (M)

(∫

M

|∇̃
dµgδ

dµh

|ndµh

)1/(n−1)

(2.14)

≤C

(

1 +

∫

M

|∇̃
dµgδ

dµh

|ndµh

)1/(n−1)

‖u‖
n/(n−1)

W
1, n

n−1 (M)
, (2.15)

and we also have,
∫

M

∣

∣

∣

∣
∇̃

(

u
dµgδ

dµh

− u
dµg

dµh

)

∣

∣

∣

∣

n/(n−1)
dµh (2.16)

≤C sup
M

∣

∣

∣

∣

dµgδ

dµh

−
dµg

dµh

∣

∣

∣

∣

n/(n−1)
∫

M

|∇̃u|n/(n−1)dµh (2.17)

+C

(∫

M

|u|n/(n−2)dµh

)(n−2)/(n−1) (∫

M

|∇̃

(

dµgδ

dµh

−
dµg

dµh

)

|ndµh

)1/(n−1)

(2.18)

≤C















sup
M

∣

∣

∣

∣

dµgδ

dµh

−
dµg

dµh

∣

∣

∣

∣

n/(n−1)
+

(∫

M

|∇̃

(

dµgδ

dµh

−
dµg

dµh

)

|ndµh

)1/(n−1)














‖u‖
n/(n−1)

W
1, n

n−1 (M)
. (2.19)

We combine these estimates, and then we get

∣

∣

∣

∣

∫

M

V · ∇̃

(

u
dµg

dµh

)

dµh −

∫

M

Vδ · ∇̃

(

u
dµgδ

dµh

)

dµh

∣

∣

∣

∣
(2.20)

≤C

(∫

M

|Vδ − V |ndµh

)1/n














1 +

(∫

M

|∇̃
dµgδ

dµh

|ndµh

)1/n














‖u‖
W

1, n
n−1 (M)

(2.21)

+C















sup
M

∣

∣

∣

∣

dµgδ

dµh

−
dµg

dµh

∣

∣

∣

∣

+

(∫

M

|∇̃

(

dµgδ

dµh

−
dµg

dµh

)

|ndµh

)1/n














‖u‖
W

1, n
n−1 (M)

. (2.22)

Therefore, for any ǫ > 0, there exists δ0 > 0 small enough, such that

|〈Rgδ , u〉 − 〈Rg, u〉| ≤ ǫ‖u‖W1, n
n−1 (M)

,∀u ∈ C∞(M),∀δ ∈ (0, δ0), (2.23)

whcih completes the proof of the lemma.

�

3. ESTIMATES ON RICCI FLOW

The Ricci flow was introduced by Hamilton[Ha82]. Its definition is as follows:
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Definition 3.1 (Ricci flow). The Ricci flow on M is a family of time dependent metrics g(t) such that

∂

∂t
g(t) = −2Ricg(t),

where Ricg is the Ricci curvature tensor of g.

The main theorem in this section is the following:

Theorem 3.2. There exists an ǫ(n) > 0 such that, for any compact n-manifold M with a W1,p metric ĝ with

n < p ≤ +∞, there exists a T0 = T0(n, g) > 0 and a family of metrics g(t) ∈ C∞(M × (0, T0]), t ∈ (0, T0]

which solves Ricci flow for t ∈ (0, T0], and satisfies

(1) limt→0 dGH((M, g(t)), (M, ĝ)) = 0.

(2) |Rm(g(t))|(t) ≤
C(n,ĝ,p)

t
n

4p
+

3
4

, ∀t ∈ (0, T0].

(3)
∫ T0

0

∫

M
|Rm(g(t))|2dµg(t)dt ≤ C(n, ĝ, p),

where C(n, ĝ, p) is a positive constant independent of t.

Remark 3.1. In this paper, we assume that T0 ≤ 1 for convenience.

Remark 3.2. The existence of T0 and g(t) and (1) have been proved by Simon (see Theorem 3.5). Shi-Tam

[ST18] also got similar estimates as (2). Here we give a proof by using Moser’s iteration.

To prove Theorem 3.2. We consider h-flow (see [Si02]).

Definition 3.3. Given a constant δ ≥ 0, a metric h is called to be (1 + δ)-fair to g, if h is C∞,

sup
M

|∇̃ jRm(h)| = k j < ∞,

and

(1 + δ)−1h ≤ g ≤ (1 + δ)h on M.

Here and below, ∇̃ means the covariant derivative taken with respect to h.

Remark 3.3. Let M be a compact manifold and g be a C0 metric on M, then for any 0 < ǫ < 1, there exists

a smooth metric h which is (1 + ǫ)-fair to g. For a proof, see the remarks below [Si02, Definition 1.1].

Definition 3.4. [h-flow] Given a background smooth metrics h, the h-flow is a family of metrics g satisfies

∂

∂t
gi j = −2Ri j + ∇iV j + ∇ jVi,

where the derivatives are taken with respect to g,

V j = g jkgpq(Γk
pq − Γ̃

k
pq),

and Γ and Γ̃ are the Christoffel symbols of g and h respectively.

h-flow is equivalent to the Ricci flow modulo an action of diffeomorphisms (see [Si02]), thus we only

need to prove Theorem 3.2 for h-flow. Firstly we need the following theorem, which has been proved by

Simon[Si02].
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Theorem 3.5. ([Si02, Theorem 1.1]) There exists an ǫ(n) > 0 such that, for any compact n-manifold M with

a complete C0 metric ĝ and a C∞ metric h which is (1 +
ǫ(n)

2
)-fair to ĝ, there exists a T0 = T0(n, k0) > 0 and

a family of metrics g(t) ∈ C∞(M × (0, T0]), t ∈ (0, T0] which solves h-flow for t ∈ (0, T0], h is (1 + ǫ(n))-fair

to g(t), and

(1)

lim
t→0+

sup
x∈M

|g(x, t) − ĝ(x)| = 0,

(2)

sup
M

|∇̃ig(t)| ≤
ci(n, k1, ..., ki)

ti/2
,∀t ∈ (0, T0], i ≥ 1,

where the derivatives and the norms are taken with respect to h.

Remark 3.4. In order to apply the flow, we will let h be (1 +
ǫ(n)

2
)-fair to ĝ. By Remark 3.3, such a metric

always exists.

Remark 3.5. [Si02] Actually, take any family of smooth metrics {ĝδ} which converges to ĝ uniformly on M

in C0-norm, then h is 1 +
δ(n)

2
fair to ĝδ for δ small enough. Starting from smooth metrics ĝδ we get h-flow

gδ(t), t ∈ (0, T0] with T0 independent of δ. Fix t > 0 and let δ → 0+, by passing to a subsequence, we get

g(t), which is appeared to be the h-flow such that g(0) = ĝ as in Theorem 3.5, and this convergence is a

smooth convergence for each t ∈ (0, T0]. For Ricci flow, the same procedure still works.

When the initial metric is W1,p, n < p ≤ +∞, we have the following estimate:

Theorem 3.6. In the condition of Theorem 3.5, and moreover, if we assume that M is compact and
∫

M
|∇̃ĝ|pdµh <

A for some constant A and n < p ≤ +∞, where the derivative and the norm are taken with respect to h. Then

there exists a T0 = T0(n, h, A, p), such that g(t), t ∈ (0, T0] is the h-flow starting from metric ĝ, and

(1)
∫

M
|∇̃g(t)|pdµh ≤ 10A, ∀t ∈ (0, T0],

(2) |∇̃g|(t) ≤
C(n,h,A,p)

t
n

2p
, ∀t ∈ (0, T0],

(3) |∇̃2g|(t) ≤
C(n,h,A,p)

t
n

4p
+

3
4

, ∀t ∈ (0, T0],

where C(n, h, A, p) is a positive constant independent of t.

To prove Theorem 3.6, we prove the following lemma at first.

Lemma 3.7. In the condition of Theorem 3.6, if for some T ∈ (0, 1], there holds
∫

M
|∇̃g(t)|pdµh ≤ 10A,

∀t ∈ (0, T ], then for the same T, |∇̃g|(t) ≤
C(n,h,A,p)

t
n

2p
, ∀t ∈ (0, T ] also holds, where C(n, h, A, p) is a positive

constant independent of t.
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Proof. By [Sh89], we have the evolution equation of |∇̃gi j |
2:

∂

∂t
|∇̃gi j |

2
=gαβ∇̃α∇̃β|∇̃gi j |

2 − 2gαβ∇̃α(∇̃gi j) · ∇̃β(∇̃gi j)

+ R̃m ∗ g−1 ∗ g−1 ∗ g ∗ ∇̃g ∗ ∇̃g + g−1 ∗ g ∗ ∇̃R̃m ∗ ∇̃g

+ g−1 ∗ g−1 ∗ ∇̃g ∗ ∇̃g ∗ ∇̃2g + g−1 ∗ g−1 ∗ g−1 ∗ ∇̃g ∗ ∇̃g ∗ ∇̃g ∗ ∇̃g,

where the derivatives and norms are taken with respect to h, and R̃m is the Riemannian curvature tensor of

h. Thus

∂

∂t
|∇̃gi j |

2 − gαβ∇̃α∇̃β|∇̃gi j |
2 ≤ −C1(n, h)|∇̃2g|2

+C(n, h)|∇̃g|2 +C(n, h)|∇̃g|

+C(n)|∇̃g|4 +C2(n)|∇̃g|2 |∇̃2g|

≤ −C1(n, h)|∇̃2g|2

+C(n, h)|∇̃g|2 +C(n, h)|∇̃g|

+C(n)|∇̃g|4 +
C2(n)

2ǫ
|∇̃g|4 +

C2(n)ǫ

2
|∇̃2g|2,∀ǫ > 0,

here and below C and Cis are positive constants independent of t and C varies from line to line. Take ǫ = C1

C2
,

we have

∂

∂t
|∇̃gi j |

2 − gαβ∇̃α∇̃β|∇̃gi j |
2 ≤ −C(n, h)|∇̃2g|2 +C(n, h)(|∇̃g| + |∇̃g|2 + |∇̃g|4) (3.1)

≤ C(n, h)(|∇̃g| + |∇̃g|2 + |∇̃g|4). (3.2)

Denote f = |∇̃gi j |
2
+ 1, then we have

∂

∂t
f − gαβ∇̃α∇̃β f ≤ C(n, h)( f + f

1
2 + f 2) ≤ C(n, h) f (1 + f )

Denote v = 1 + f , then

∂

∂t
f − gαβ∇̃α∇̃β f ≤ C(n, h) f v. (3.3)

Suppose that T ∈ (0, 1] is a constant such that
∫

M
|∇̃g(t)|pdµh ≤ 10A, ∀t ∈ (0, T ]. Then v has uniformly

bounded L
p

2 (M)-norm on [0, T ], in other words, we have

∫

M

v
p

2 dµh ≤ C(n, h)A +C(n, h),∀t ∈ [0, T ].

For any q > 0, we multiple f q to equation (3.3) and integrate it, then we get

∫

M

(

∂

∂t
f − gαβ∇̃α∇̃β f

)

f qdµh ≤ C(n, h)

∫

M

f q+1vdµh. (3.4)
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Thus we have

1

q + 1

∂

∂t

∫

M

f q+1dµh ≤ C(n, h)

[

−

∫

M

(∇̃αgαβ)(∇̃β f ) f qdµh

−

∫

M

gαβ(∇̃β f )(∇̃α f q)dµh

+

∫

M

f q+1vdµh

]

. (3.5)

By Hölder inequality, we have

−

∫

M

(∇̃αgαβ)(∇̃β f ) f qdµh ≤ C(n, h)

∫

M

f
1
2 |∇̃ f | f qdµh

≤ C3ǫ

∫

M

|∇̃ f |2 f q−1dµh

+
C3

ǫ

∫

M

f q+2dµh,∀ǫ > 0. (3.6)

And we have

−

∫

M

gαβ∇̃β f ∇̃α f qdµh = −q

∫

M

(gαβ∇̃β f ∇̃α f ) f q−1dµh

≤ −C4q

∫

M

|∇̃ f |2 f q−1dµh. (3.7)

Recall that v = f + 1 and hence f q+2 ≤ f q+1v. Take ǫ =
C4q

2C3
in (3.6) and combine inequality (3.5), (3.6) and

(3.7), then we get

1

q + 1

∂

∂t

∫

M

f q+1dµh +C(n, h)q

∫

M

|∇̃ f |2 f q−1dµh ≤ C(n, h)

(

1 +
1

q

) ∫

M

f q+1vdµh. (3.8)

Since

∫

M

∣

∣

∣∇̃ f
q+1

2

∣

∣

∣

2
dµh =

(

q + 1

2

)2 ∫

M

∣

∣

∣∇̃ f · f
q−1

2

∣

∣

∣

2
dµh,

we get

1

q + 1

∂

∂t

∫

M

f q+1dµh +C(n, h)
q

(q + 1)2

∫

M

∣

∣

∣∇̃ f
q+1

2

∣

∣

∣

2
dµh

≤ C(n, h)
q + 1

q

∫

M

f q+1vdµh. (3.9)

If we let q ≥
p

2
− 1 > 0, then 0 <

p−2

p
≤

q

q+1
≤ 1, thus we have

∂

∂t

∫

M

f q+1dµh +

∫

M

∣

∣

∣∇̃ f
q+1

2

∣

∣

∣

2
dµh ≤ C5(n, h, p)q

∫

M

f q+1vdµh. (3.10)



WEAK SCALAR CURVATURE LOWER BOUNDS ALONG RICCI FLOW 11

For the last term, use Hölder inequality and since p > n we can use interpolation inequality, then we get

∫

M

f q+1vdµh ≤

(∫

M

v
p
2 dµh

)
2
p
(∫

M

( f q+1)
p

p−2 dµh

)

p−2
p

≤ C6(n, h, A)

















ǫ

(∫

M

( f q+1)
n

n−2 dµh

)
n−2

n

+ ǫ−µ
∫

M

f q+1dµh

















, (3.11)

where µ = (n−2
n
−

p−2

p
)/(

p−2

p
− 1) =

p−n

n
. We also have the Sobolev inequality

∫

M

∣

∣

∣∇̃ f
q+1

2

∣

∣

∣

2
dµh ≥ C7(n, h)

(∫

M

( f q+1)
n

n−2 dµh

)
n−2

n

. (3.12)

Take ǫ =
C7

2C5C6q
and combine (3.10), (3.11) and (3.12), then we get

∂

∂t

∫

M

f q+1dµh +

(∫

M

( f q+1)
n

n−2 dµh

) n−2
n

≤ C(n, h, A, p)q1+µ

∫

M

f q+1dµh. (3.13)

For any 0 < t′ < t′′ < T ′ ≤ T ≤ 1, let

ψ(t) =























0, if 0 ≤ t ≤ t′,
t−t′

t′′−t′
, if t′ ≤ t ≤ t′′,

1, if t′′ ≤ t ≤ T.

Multiplying (3.13) by ψ, we get

∂

∂t

∫

M

ψ f q+1dµh + ψ

(∫

M

( f q+1)
n

n−2 dµh

) n−2
n

≤ [C(n, h, A, p)q1+µψ + ψ′]

∫

M

f q+1dµh. (3.14)

Integrating it with respect to t, we get

sup
t∈[t′′ ,T ′]

∫

M

f q+1dµh +

∫ T ′

t′′

(∫

M

( f q+1)
n

n−2 dµh

) n−2
n

dt

≤ [C(n, h, A, p)q1+µ
+

1

t′′ − t′
]

∫ T ′

t′

∫

M

f q+1dµhdt. (3.15)
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Then we have
∫ T ′

t′′

∫

M

f (q+1)(1+ 2
n

)dµhdt

≤

∫ T ′

t′′

(∫

M

f q+1dµh

)
2
n
(∫

M

f (q+1) n
n−2 dµh

)
n−2

n

dt

≤ sup
t∈[t′′,T ′]

(∫

M

f q+1dµh

) 2
n
∫ T ′

t′′

(∫

M

f (q+1) n
n−2 dµh

) n−2
n

dt

≤ [C(n, h, A, p)q1+µ
+

1

t′′ − t′
]1+ 2

n













∫ T ′

t′

∫

M

f q+1dµhdt













1+ 2
n

,∀q ≥
p

2
− 1. (3.16)

Denote

H(q, τ) =













∫ T ′

τ

∫

M

f qdµhdt













1
q

,∀q ≥
p

2
, 0 < τ < T ′.

Then equation (3.16) can be shortly writen as

H(q(1 +
2

n
), t′′) ≤ [C(n, h, A, p)q1+µ

+
1

t′′ − t′
]

1
q H(q, t′).

Fix 0 < t0 < t1 < T ′ ≤ 1, q0 ≥
p

2
and set χ = 1 + 2

n
, qk = q0χ

k, τk = t0 + (1 − 1
χk )(t1 − t0). Then we have (see

also [Ji16], [JWZ17])

H(qk+1, τk+1) ≤ [C(n, h, A, p)q
1+µ

k
+

1

t1 − t0

χ

χ − 1
χk]

1
qk H(qk, τk)

= [C(n, h, A, p)q
1+µ

0
χk(1+µ)

+
1

t1 − t0

n + 2

2
χk]

1
qk H(qk, τk)

≤ [
C(n, h, A, p, q0)

t1 − t0
]

1
qk χ

k(1+µ)
qk H(qk, τk),

where in the last inequality we use 0 < t0 < t1 < T . By iteration, we get

H(qm+1, τm+1) ≤ [
C(n, h, A, p, q0)

t1 − t0
]
∑m

k=0
1

qk χ
∑m

k=0
k(1+µ)

qk H(q0, τ0)

≤ C(n, h, A, p, q0)(
1

t1 − t0
)

n+2
2q0 H(q0, τ0),

since
∑∞

k=0
1
qk
=

n+2
2q0

and
∑∞

k=0
k(1+µ)

qk
converges. Letting m→ ∞, we get

H(p∞, τ∞) ≤ C(n, h, A, p, q0)(
1

t1 − t0
)

n+2
2q0 H(q0, τ0),∀q0 ≥

p

2
,

where p∞ = +∞, τ∞ = t1. Letting q0 =
p

2
, we have

H(∞, t1) ≤ C(n, h, A, p)(
1

t1 − t0
)

n+2
p H(

p

2
, t0).

Thus we have

sup
(y,t)∈M×[t1 ,T ′]

f (y, t) ≤ C(n, h, A, p)
1

(t1 − t0)
n+2

p













∫ T ′

t0

A
p

2 dt













2
p

.
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Letting t1 → T ′ and t0 = T ′/2, we get

sup
y∈M

f (y, T ′) ≤ C(n, h, A, p)
1

(T ′)
n
p

,∀T ′ ∈ (0, T ].

Thus we have

|∇̃g|(t) ≤
C(n, h, A, p)

t
n

2p

,∀t ∈ (0, T ],

which completes the proof of the lemma. �

Proof of Theorem 3.6. The existence of the h-flow g(t) is claimed in Theorem 3.5, so we only need to prove

that conclusions (1), (2) and (3) hold for some T0(n, h, A, p).

To prove that (1) and (2) hold for some T0(n, h, A, p), let f = |∇̃gi j |
2
+ 1.

We denote

φ(t) =

∫

M

f
p
2 dµh.

Then we have

φ′(t) =

∫

M

∂

∂t
( f

p

2 )dµh. (3.17)

We denote

T =

{

T ∈ (0, 1]
∣

∣

∣

∫

M

|∇̃g(t)|pdµh ≤ 10A,∀x ∈ M,∀t ∈ [0, T ]

}

,

and Tmax = sup T. Take q = p/2 − 1, then equation (3.10) gives

φ′(t) ≤ C(n, h, p)

∫

M

f p/2vdµh,

where v = f + 1. By Lemma 3.7, we have

v = f + 1 ≤ 1 +
C(n, h, A, p)

tn/p
,∀t ∈ (0, Tmax].

Thus we get

φ′(t) ≤

(

1 +
C(n, h, A, p)

tn/p

) ∫

M

f p/2dµh,∀t ∈ (0, Tmax]. (3.18)

Since Tmax ≤ 1, we have

φ′(t) ≤
C(n, h, A, p)

tn/p
φ(t),∀t ∈ (0, Tmax],

thus we have

(log φ(t))′ ≤
C(n, h, A, p)

tn/p
,∀t ∈ (0, Tmax].

By integration, we get

log φ(t) ≤ log φ(0) +C(n, h, A, p)t1−n/p,∀t ∈ (0, Tmax],

thus we have

φ(t) ≤ φ(0)eC(n,h,A,p)t1−n/p

,∀t ∈ (0, Tmax],

Since φ(0) ≤ C(n, h)A, we have
∫

M

|∇̃g(t)|pdµh ≤ φ(t) ≤ C(n, h)eC(n,h,A,p)t1−n/p

A,∀t ∈ (0, Tmax]. (3.19)
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Suppose that if we fix n, h, p and A, there exists a sequence of initial metric {ĝm}
∞
m=1

, such that each of the

metric ĝm satisfies the condition of the theorem and the corresponding Tmax;m tends to 0. But by (3.19) we

know that if Tmax satisfies C(n, h)eC(n,h,A,p)T
1−n/p
max ≤ 5 and Tmax < 1, then the maximal time interval (0, Tmax]

could be extended to (0, Tmax + δ], for some δ > 0 small enough, which is a contradiction. Hence Tmax is

only depend on n, h, p and A. Thus we get that the conclusion (1) and (2) hold simultaneously for some

T0(n, h, A, p).

To prove (3), recall that Simon’s result, Theorem 3.5, gives

sup
M

|∇̃ig(t)| ≤
ci(n, h)

ti/2
, ∀t ∈ (0, T0].

We choose a finite atlas for M such that h is uniformly equivalent to the Euclidean metric of each chart. For

any chart (U,Φ), we let f̄ denote any component function ∇̃ig jk(t) of ∇̃g(t), and let h0 denote the Euclidean

metric of (U,Φ). We can assume that 2−1h0 ≤ h ≤ 2h0. We choose an arbitrary point p ∈ U and let γ(u) be

a curve satisfying γ(0) = p and γ′(u) ≡ ∂
∂xi , where ∂

∂xi is the coordinate vector field of (Φ,U). Then we have

∫ s

0

d

du
f̄ ◦ γ(u)du = f̄ ◦ γ(s) − f̄ (p),∀s ∈ (0, s0),

where s0 is a positive constant independent of the chart and t, and s0 is small enough such that γ(u) ∈ U for

any u ∈ (0, s0) and for any coordinate neighborhood U.

On the one hand, we have
∫ s

0

d

du
f̄ ◦ γ(u)du =

∫ s

0

d f̄ |γ(u)(γ
′(u))du =

∫ s

0

∂ f̄

∂xi
(γ(u))du.

On the other hand, we have

f̄ ◦ γ(s) − f̄ (p) ≤ 2 sup
M

|∇̃g(t)| ≤
C(n, h, A, p)

t
n

2p

.

Thus there exists u0 ∈ (0, s), such that

∂ f̄

∂xi
(γ(u0)) ≤

C(n, h, A, p)

st
n

2p

.

Since

∂ f̄

∂xi
(γ(u0)) −

∂ f̄

∂xi
(γ(0)) =

∫ u0

0

∂2 f̄

(∂xi)2
(γ(u))du

≥ −u0C(n, h) sup
M

|∇̃3g(t)|

≥ −s
C(n, h)

t
3
2

.

We have

∂ f̄

∂xi
(p) =

∂ f̄

∂xi
(γ(0)) ≤

∂ f̄

∂xi
(γ(u0)) + s

C(n, h)

t
3
2

≤
C(n, h, A, p)

st
n

2p

+ s
C(n, h)

t
3
2

. (3.20)
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The right hand side of (3.20) attains its minimum for s = C(n, h, A, p)t
3
4
− n

4p . Note that limt→0+ t
3
4
− n

4p = 0,

thus there exists T0 = T0(n, h, A, p), such that for any t ∈ (0, T0), we have C(n, h, A, p)t
3
4
− n

4p ≤ s0. Therefore,

we have that for any t ∈ (0, T0), the right hand side of (3.20) attains its minimum for some s ∈ (0, s0), and

the minimum value is
C(n,h,A,p)

t
3
4
+

n
4p

.

Since p is an arbitrary point on M and 2−1h0 ≤ h ≤ 2h0, we get

|∇̃2g|(t) ≤
C(n, h, p, A)

t
n

4p+
3
4

.

Thus (3) holds for some T0(n, h, A, p), which completes the proof of the theorem. �

Theorem 3.2 (2) follows immediately from Theorem 3.6. Moreover, for Theorem 3.2 (3), we just need to

prove the following lemma:

Lemma 3.8. In the condition of Theorem 3.6, we have

∫ T0

0

∫

M

|∇̃2g(t)|2dµhdt ≤ C(n, h, A, p).

Proof. We calculate as the proof of Lemma 3.7, but this time we preserve the |∇̃2g|2 term in (3.1). Integrate

both sides of the inequality (3.3), then we have

∂

∂t

∫

M

f dµh +

∫

M

|∇̃2g|2dµh ≤ C(n, h)

∫

M

gαβ∇̃α∇̃β f dµh +C(n, h)

∫

M

f vdµh,

where f = |∇̃gi j |
2
+ 1 and v = f + 1, here and below C and Cis denote a positive constant and C varies from

line to line. Using integration by parts twice, we have

∂

∂t

∫

M

f dµh +

∫

M

|∇̃2g|2dµh ≤ C(n, h)

∫

M

∇̃β∇̃αgαβ f dµh +C(n, h)

∫

M

f vdµh

≤ C1(n, h)

∫

M

|∇̃2g| f dµh +C(n, h)

∫

M

f vdµh

≤ C1(n, h)ǫ

∫

M

|∇̃2g|2dµh +C1(n, h)ǫ−1

∫

M

f 2dµh +C(n, h)

∫

M

f vdµh,∀ǫ > 0.

Taking ǫ = C1

2
, since f ≤ v, we have

∂

∂t

∫

M

f dµh +

∫

M

|∇̃2g|2dµh ≤ C2(n, h)

∫

M

f vdµh. (3.21)

For the last term, using Hölder inequality and interpolation inequality, we get

∫

M

f vdµh ≤

(∫

M

v
p

2 dµh

) 2
p
(∫

M

f
p

p−2 dµh

)
p−2

p

≤ C3(n, h, A)

















ǫ

(∫

M

f
n

n−2 dµh

) n−2
n

+ ǫ−µ
∫

M

f dµh

















, (3.22)
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where µ = (n−2
n
−

p−2

p
)/(

p−2

p
− 1) =

p−n

n
. We also have the Sobolev inequality

(∫

M

f
n

n−2 dµh

)
n−2

n

≤ C4(n, h)

∫

M

∣

∣

∣

∣

∇̃ f
1
2

∣

∣

∣

∣

2
dµh. (3.23)

Since

∇̃ f
1
2 = ∇̃(|∇̃g|2 + 1)

1
2 =

∇̃〈∇̃g, ∇̃g〉

2(|∇̃g|2 + 1)
1
2

=
2〈∇̃2g, ∇̃g〉

2(|∇̃g|2 + 1)
1
2

≤
|∇̃2g||∇̃g|

(|∇̃g|2 + 1)
1
2

≤ |∇̃2g|, (3.24)

Taking ǫ = 1
2C2C3C4

, by (3.21), (3.22), (3.23) and (3.24), we have

∂

∂t

∫

M

f dµh +

∫

M

|∇̃2g|2dµh ≤ C(n, h, A, p)

∫

M

f dµh.

By Theorem 3.6,
∫

M
|∇̃g(t)|pdµh ≤ 10A, ∀t ∈ (0, T0]. Since p > n ≥ 2, we have

∫

M
f dµh ≤ C(n, h, A, p),

thus we have

∂

∂t

∫

M

f dµh +

∫

M

|∇̃2g|2dµh ≤ C(n, h, A, p).

Integrate it, we get

∫

M

f (T0)dµh −

∫

M

f (0)dµh +

∫ T0

0

∫

M

|∇̃2g|2dµhdt ≤ C(n, h, A, p).

Since
∫

M
f (T0)dµh ≥ 0 and

∫

M
f (0)dµh ≤ C(n, h, A, p), we get

∫ T0

0

∫

M

|∇̃2g|2dµhdt ≤ C(n, h, A, p),

which completes the proof of the lemma. �

Now Theorem 3.2 would follow without much effort.

Proof of Theorem 3.2. Let g(t) be the h-flow stated in Theorem 3.5. Then there is a family of diffeomor-

phisms φ(t) : M → M, such that φ(t)∗g(t), t ∈ (0, T0] is a Ricci flow. (See [Si02]).

Since M is compact, by Theorem 3.5 (1) we have that (M, g(t)) converges to (M, ĝ) in Gromov-Hausdorff

distance. Since the Ricci flow φ(t)∗g(t) and the h-flow g(t) are isometric for each t ∈ (0, T0], Theorem 3.2

(1) holds.

To prove (2) and (3), note that Rm = ∂2g + ∂g ∗ ∂g and p > n ≥ 2. Since the Ricci flow φ(t)∗g(t) and

the h-flow g(t) are isometric for each t ∈ (0, T0] and both g(t) and φ(t)∗g(t) are uniformly equivalent to h,

Theorem 3.2 (2) and (3) follows immediately from Theorem 3.6 and Lemma 3.8. �
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4. CONJUGATE HEAT EQUATION

Let (Mn, ĝ) be a compact manifold let g(t) be the Ricci flow starting from the metric ĝ. In this section

we suppose that ĝ is smooth. Let µg(t) be the Lebesgue measure taken with respect to g(t), and let Rĝ and

Rg(t) denote the distirbutional scalar curvature of ĝ and g(t) respectively. Let ϕ̃ be an arbitrary nonnegative

function in C∞(M) and take any T ∈ (0, T0]. We consider the following conjugate heat equation














∂tϕt = −∆g(t)ϕt + Rg(t)ϕt on M × [0, T ],

ϕt |t=T = ϕ̃,
(4.1)

where ∆g(t) is the Laplacian taken with respect to g(t).

For fixed (x, t) ∈ M × (0, T0], the conjugate heat kernel on the Ricci flow background is the function

K(x, t; ·, ·), defined for 0 ≤ s < t and y ∈ M and satisfying

(−∂s − ∆y + R(y, s))K(x, t; y, s) = 0 and lim
s→t−

K(x, t; y, s) = δx(y),

where the Laplacian is taken with respect to g(s), and δx is the Dirac operator supported on {x}. K also

satisfies (∂t − ∆x)K(x, t; y, s) = 0, where ∆x is taken with respect to g(t).

By directly calculation(see also [BZ17]), we get that equation (4.1) has a solution with the explicity

expression

ϕt(x) =

∫

M

K(y, T ; x, t)ϕ̃(y)dµg(T )(y). (4.2)

By the maximum principle, we get that this solution is nonnegative and unique. Furthermore, by this ex-

pression we can see that ϕt is uniformly bounded. Our main purpose in this section is proving the following

estimates for ϕt which will be used in the proof of our main theorem.

Proposition 4.1. Assume as above, then ϕt satisfies

(1) ϕt ≤ C(n, h, A, p, ‖ϕ̃‖L∞ ), ∀t ∈ [0, T ].

(2)
∫

M
|∇g(t)ϕt |

2
g(t)

dµg(t) ≤ C(n, h, A, p, ϕ̃), ∀t ∈ [0, T ].

(3)
∫

M
(Rg(t) − a)ϕtdµg(t) is monotonously increasing with respect to t.

Proof. To see (1), by equation (4.2), we have

ϕt(x) ≤ ‖ϕ̃‖L∞

∫

M

K(y, T ; x, t)dµg(T )(y). (4.3)

We denote F(t, T ) =
∫

M
K(y, T ; x, t)dµg(T )(y), then we have limT→t+ F(t, T ) = 1, and

∂T F(t, T ) =

∫

M

(

∆yK(y, T ; x, t) − RT K(y, T ; x, t)
)

dµg(T )(y),

where we have used the standard evolution equation ∂T dµg(T ) = −RT dµg(T ). By divergence theorem, we

have
∫

M

∆yK(y, T ; x, t)dµg(T )(y) = 0.
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Thus by Theorem 3.2, we have

∂T F(t, T ) ≤
C(n, h, A, p)

Tα
F(t, T ),

for some α ∈ (0, 1). Since limT→t+ F(t, T ) = 1, by integration we have

F(t, T ) ≤ C(n, h, A, p),∀0 ≤ t < T ≤ T0. (4.4)

By (4.3) and (4.4), we have

ϕt ≤ C(n, h, A, p, ‖ϕ̃‖L∞ ),∀t ∈ [0, T ],

which proves (1).

To prove (2), denote E(t) =
∫

M
|∇g(t)ϕt |

2
g(t)

dµg(t). By direct calculation, we have

∂tE(t) =

∫

M

(

−Rg(t)|dϕt |
2
g(t) + 2Ricg(t)(∇g(t)ϕt,∇g(t)ϕt) + 2〈∇g(t)∂tϕt,∇g(t)ϕt〉g(t)

)

dµg(t). (4.5)

By (4.1) and using Bochner formula we have
∫

M

〈∇g(t)∂tϕt,∇g(t)ϕt〉g(t)dµg(t) =

∫

M

−〈∇g(t)(∆g(t)ϕt − Rg(t)ϕt),∇g(t)ϕt〉g(t)dµg(t)

=

∫

M

(

−〈∇g(t)∆g(t)ϕt,∇g(t)ϕt〉g(t) + 〈∇g(t)(Rg(t)ϕt),∇g(t)ϕt〉g(t)

)

dµg(t)

=

∫

M

(

−
1

2
∆g(t) |∇g(t)ϕt|

2
g(t) + |∇

2
g(t)ϕt|

2
g(t) + Ricg(t)(∇g(t)ϕt,∇g(t)ϕt)

+〈∇g(t)(Rg(t)ϕt),∇g(t)ϕt〉g(t)

)

dµg(t)

=

∫

M

[(

|∇2
g(t)ϕt|

2
g(t) + Ricg(t)(∇g(t)ϕt,∇g(t)ϕt)

)

− Rg(t)ϕt∆g(t)ϕt

]

dµg(t). (4.6)

Since |∆g(t)ϕt|
2
g(t)
≤ C(n)|∇2

g(t)
ϕt |

2, using Cauchy inequality, (4.6) gives

∫

M

〈∇g(t)∂tϕt,∇g(t)ϕt〉g(t)dµg(t) ≥

∫

M

(

Ricg(t)(∇g(t)ϕt,∇g(t)ϕt) −C(n)R2
g(t)ϕ

2
t

)

dµg(t). (4.7)

By (4.5) and (4.7), since |Rg(t)|g(t) ≤ c(n)|Ricg(t) |g(t), we get

∂tE(t) ≥

∫

M

(

4Ricg(t)(∇g(t)ϕt,∇g(t)ϕt) − Rg(t)|∇g(t)ϕt|
2
g(t) −C(n)R2

g(t)ϕ
2
t

)

dµg(t)

≥ −C(n, h, A, p)

∫

M

|Ricg(t)||∇g(t)ϕt |
2dµg(t) −C(n, h, A, p)

∫

M

R2
g(t)ϕ

2
t dµg(t). (4.8)

By Theorem 3.2 and (1), we have for some α ∈ (0, 1) that

∂tE(t) ≥ −
C(n, h, A, p)

tα

∫

M

|∇g(t)ϕt|
2dµg(t) −C(n, h, A, p, ϕ̃)

∫

M

R2
g(t)dµg(t).

Thus we have

∂t (E(t) + 1) ≥ −
C(n, h, A, p)

tα
(E(t) + 1) −C(n, h, A, p, ϕ̃)

∫

M

R2
g(t)dµg(t).
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Dividing both sides by (E(t) + 1), we get

∂t log (E(t) + 1) ≥ −
C(n, h, A, p)

tα
−C(n, h, A, p, ϕ̃)

∫

M

R2
g(t)dµg(t).

By Lemma 3.8,
∫

M
R2

g(t)
dµg(t) is integrable on (0, T ). Since ϕT = ϕ̃, E(T ) ≤ C(n, h, A, p, ϕ̃) and 1

tα
is

integrable on (0, T ), we can integrate the inequality above and get

E(t) ≤ C(n, h, A, p, ϕ̃),∀t ∈ [0, T ].

Thus we complete the proof of (2).

To prove (3), we can directly calculate that

∂t

∫

M

(Rg(t) − a)ϕtdµg(t)

=

∫

M

[(

∆g(t)Rg(t) + 2|Ricg(t)|
2
g(t)

)

ϕt + (Rg(t) − a)
(

−∆g(t)ϕt + Rg(t)ϕt

)

+ (Rg(t) − a)ϕt

(

−Rg(t)

)]

dµg(t)

=

∫

M

2|Ricg(t)|
2
g(t)ϕtdµg(t) +

∫

M

(

∆g(t)Rg(t)ϕt − Rg(t)∆g(t)ϕt

)

dµg(t) + a

∫

M

∆g(t)ϕtdµg(t).

By integration by parts, we have that
∫

M

(

∆g(t)Rg(t)ϕt − Rg(t)∆g(t)ϕt

)

dµg(t) = 0,

∫

M

∆g(t)ϕtdµg(t) = 0.

Thus we have

∂t

∫

M

(Rg(t) − a)ϕtdµg(t) ≥ 0.

Therefore
∫

M
(Rg(t) − a)ϕtdµg(t) is monotonously increasing. Hence we finish the proof of (3) and thus the

proof of the proposition. �

5. PROOF OF THE MAIN THEOREM

In this section, we will give the proof of our main theorem. Let us restate Theorem 1.1 as follows.

Theorem 5.1. Let Mn be a compact manifold with a metric ĝ ∈ W1,p(M) (n < p ≤ ∞). Assume the

distirbutional scalar curvature Rĝ ≥ a for some constant a, and let g(t), t ∈ (0, T0] be the Ricci flow starting

from the metric ĝ. Then for any t ∈ (0, T0], there holds Rg(t) ≥ a on M.

Proof. By Lemma 2.1, we get a family of smooth metrics ĝδ which converges to ĝ both in C0-norm and

W1,p-norm. Then by Lemma 2.2, we have
∣

∣

∣

∣

∣

∫

M

Rĝδϕdµĝδ − 〈Rĝ, ϕ〉

∣

∣

∣

∣

∣

≤ b′δ‖ϕ‖W1, n
n−1 (M)

,∀ϕ ∈ C∞(M),∀δ ∈ (0, δ0], (5.1)

where b′
δ

is a positive function of δ which only depends on ĝ and satisfies limδ→0+ b′
δ
= 0 and δ0 is some

positive constant small enough.
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Moreover, we have limδ→0+

∥

∥

∥

∥

dµĝδ

dµĝ
− 1

∥

∥

∥

∥

C0(M)
= 0, thus by Hölder inequality, we have

∣

∣

∣

∣

∣

∫

M

ϕdµĝδ −

∫

M

ϕdµĝ

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∫

M

ϕ

(

dµĝδ

dµĝ

− 1

)

dµĝ

∣

∣

∣

∣

∣

∣

≤

∥

∥

∥

∥

∥

∥

dµĝδ

dµĝ

− 1

∥

∥

∥

∥

∥

∥

C0(M)

∫

M

|ϕ|dµĝ

≤ C(n, ĝ)

∥

∥

∥

∥

∥

∥

dµĝδ

dµĝ

− 1

∥

∥

∥

∥

∥

∥

C0(M)

‖ϕ‖
W

1, n
n−1 (M)

. (5.2)

By triangular inequality, combining (5.1) and (5.2), we have

∣

∣

∣

∣

∣

∫

M

(Rĝδ − a)ϕdµĝδ − 〈Rĝ − a, ϕ〉

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

∫

M

Rĝδϕdµĝδ − 〈Rĝ, ϕ〉

∣

∣

∣

∣

∣

+ |a|

∣

∣

∣

∣

∣

∫

M

ϕdµĝδ −

∫

M

ϕdµĝ

∣

∣

∣

∣

∣

≤ bδ‖ϕ‖W1, n
n−1 (M)

,∀ϕ ∈ C∞(M),∀δ ∈ (0, δ0], (5.3)

where bδ is a positive function of δ which only depends on a, n, ĝ and satisfies limδ→0+ bδ = 0.

By the condition on Rĝ we have

〈Rĝ − a, ϕ〉 ≥ 0,∀ϕ ∈ C∞(M), ϕ ≥ 0. (5.4)

Let gδ(t), g(t) be the Ricci flow starting from the metric ĝδ and ĝ respectively, and let Rgδ(t), Rg(t) and

dµgδ(T ), dµg(t) be the scalar curvature and the volume form of gδ(t), g(t) respectively. Take an arbitrary

T ∈ (0, T0] and an arbitrary nonnegative function ϕ̃ ∈ C∞(M). For any δ ∈ (0, δ0], we let ϕt be the solution

of the conjugate heat equation taken with repsect to the family of metrics gδ(t) and with ϕt |t=T = ϕ̃, then

ϕ0 ≥ 0, and by Proposition 4.1 (3), (5.3) and (5.4), we have

∫

M

(Rgδ(T ) − a)ϕ̃dµgδ(T ) ≥

∫

M

(Rĝδ − a)ϕ0dµĝδ ≥ −bδ‖ϕ0‖W1, n
n−1 (M)

. (5.5)

By Hölder inequality and Proposition 4.1 (1) and (2), since gδ(t), (δ, t) ∈ (0, δ0]× [0, T0] and h are uniformly

equivalent, by Hölder inequality we have

‖ϕ0‖W1, n
n−1 (M)

≤ C(n, h, p)‖ϕ0‖L∞(M) + ‖∇ĝδϕ0‖L2(M) ≤ C(n, h, A, p, ϕ̃),

and as mentioned in Remark 3.5, it is known in [Si02] that for any fixed T ∈ (0, T0], gδ(T ) smoothly

converges to g(T ) as δ tends to 0+.

Thus we can let δ→ 0+ in inequality (5.5), and get

∫

M

(Rg(T ) − a)ϕ̃dµg(T ) ≥ 0,∀T ∈ (0, T0],∀ϕ̃ ∈ C∞(M).

Since g(t) is a smooth metric for t ∈ (0, T0], we get that Rg(t) ≥ a pointwisely on M, which completes the

proof of the theorem. �

Now we are ready to prove Theorem 1.3.
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Proof of Theorem 1.3. Recall that Rg(t) satisfies the standard evolution equation

∂tRg(t) = ∆Rg(t) + 2|Ricg(t)|
2. (5.6)

Noting that Rg ≥ 0 in distributional sense, by Theorem 1.1 we see that Rg(t) ≥ 0 for any t ∈ (0, T0). There

are two cases needed to be handled. First, if Rg(t) ≡ 0 on M × (0, T0], then (5.6) shows that Ricg(t) ≡ 0 on

M × (0, T0]. Then by Ricci flow equation we have that g(t) = g(s), ∀t, s ∈ (0, T0]. By (1) of Theorem 3.2

we directly have that (M, ĝ) is isometric to (M, g(t)). On the other hand, if Rg(t) . 0 on M × (0, T0], then

by the maximal principle we get that Rg(t) > 0 on M for any t ∈ (0, T0). Since g(t) is smooth and Rg(t) > 0

pointwisely on M, the theorem holds. �

6. FURTHER QUESTIONS

In this section, let us discuss some problems related to singular metrics. To study the scalar curvature of

low-regularity metrics, Schoen proposed such a conjecture (see [LM19]):

Conjecture 6.1 (Schoen). Let g be a C0 metric on M which is smooth away from a submanifold Σ ⊂ M with

codim(Σ ⊂ M) ≥ 3, σ(M) ≤ 0 and Rg ≥ 0 on M \ Σ, then g smoothly extends to M and Ricg ≡ 0.

Gromov also considered scalar curvature with low-regularity metrics, see [Gm14]. For a Ricci flow

approach, see also [Ba16], [Bu19]. Motivated by their results, we will have the following natural question:

Question: Let (Mn, g,Σ) be a compact manifold with g ∈ C0(M) and g is smooth away from Σ, and

Rg ≥ 0 on M \ Σ. What is the condition on Σ such that there exists a smooth metric on M with nonnegative

scalar curvature? What is the condition on Σ such that the Ricci flow starting from g has nonnegative scalar

curvature for time t > 0?

Remark 6.1. Comparing with the conjecture of Schoen and the structure of nonnegative scalar curvature in

[SY79b], one may expect that Σ is a codimensional three submanifold for the above question.

Remark 6.2. From our result and the main result in [JSZ21], if we assume g ∈ C0 ∩W1,p(M) (n < p ≤ ∞),

the condition for Σ should be H
n−

p

p−1 (Σ) < ∞ when n < p < ∞ or Hn−1(Σ) = 0 when p = ∞.

APPENDIX A. LOWER SCALAR CURVATURE BOUNDS ON SINGULAR METRICS

In this appendix, we check that if g is C2 away from a closed subset Σ with H
n−

p

p−1 (Σ) < ∞ when

n < p < ∞ or Hn−1(Σ) = 0 when p = ∞, and Rg ≥ a pointwisely on M \ Σ, then Rg ≥ a in distributional

sense. Though it is proved in [JSZ21], for the sake of completeness, we give a proof here.

Lemma A.1. Let Mn be a smooth manifold with g ∈ C0 ∩W
1,p

loc
(M) with n ≤ p ≤ ∞. Assume g is smooth

away from a closed subset Σ with H
n−

p

p−1 (Σ) < ∞ if n < p < ∞ or H
n−1(Σ) = 0 if p = ∞, and assume

Rg ≥ a on M \ Σ for some constant a, then 〈Rg − a, u〉 ≥ 0 for any nonnegative u ∈ C∞(M).

To prove the Lemma A.1, we need a standard cut-off function lemma (see [JSZ21, Lemma A.1] and

[Ch03]):
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Lemma A.2. Let (Mn, h) be a smooth manifold. Assume Σ ⊂ M is a closed subset. Then there exists a

sequence of cut-off function ϕǫ of Σ such that the following holds:

(1) 0 ≤ ϕǫ ≤ 1 and ϕ ≡ 0 in a neighborhood of Σ and ϕǫ ≡ 1 on M \ Bǫ(Σ).

(2) If Hn−1(Σ) = 0, then limǫ→0

∫

M
|∇ϕǫ |(x)dx = 0.

(3) If Hn−p(Σ) < ∞ with p > 1, then limǫ→0

∫

M
|∇ϕǫ |

p(x)dx = 0.

proof of Lemma A.1. Let ηǫ ≥ 0 be a sequence of smooth cut-off functions of Σ as in Lemma A.2 such that

(1) ηǫ ≡ 1 in a neighborhood of Σ,

(2) supp ηǫ ⊂ Bǫ(Σ) and 0 ≤ ηǫ ≤ 1.

(3) limǫ→0

∫

M
|∇ηǫ |

p/(p−1)dµh = 0.

For any u ∈ C∞(M) with u ≥ 0, we have

〈Rg − a, u〉 = 〈Rg − a, ηǫu〉 + 〈Rg − a, (1 − ηǫ)u〉. (A.1)

Noting that for any ǫ > 0, we have

〈Rg − a, (1 − ηǫ)u〉 =

∫

M\Σ

(Rg − a)(1 − ηǫ )udµg ≥ 0. (A.2)

Thus to prove the lemma, it suffices to show that

lim
ǫ→0
|〈Rg − a, ηǫu〉| = 0. (A.3)

Actually, noting that u ∈ C∞(M), by definition, 〈Rg, u〉 =
∫

M

(

−V · ∇̃
(

u
dµg

dµh

)

+ Fu
dµg

dµh

)

dµh, we can estimate

|〈Rg − a, ηǫu〉| ≤

∫

M

|V | ·

∣

∣

∣

∣

∣

∣

∇̃(ηǫu
dµg

dµh

)

∣

∣

∣

∣

∣

∣

dµh +

∫

M

|F − a| · ηǫu
dµg

dµh

dµh

≤C

∫

M

|V ||∇̄ηǫ |dµh +C

∫

M

|V ||∇̃g|ηǫdµh +C

∫

M

|V |ηǫdµh +C

∫

M

|F − a|ηǫdµh

≤C

(∫

M

|∇̃g|pdµh

)1/p (∫

M

(

|∇̃ηǫ |
p/(p−1)

+ |ηǫ |
p/(p−1)

)

dµh

)(p−1)/p

+C















(∫

M

|∇̃g|pdµh

)2/p

+ 1















(∫

M

|ηǫ |
p/(p−2)dµh

)(p−2)/p

,

here and below C = C(n, p, h, g) will denote a positive constant independent of ǫ and varies from line to

line.

By Hölder inequality and Sobolev inequality, we have

(∫

M

|ηǫ |
p/(p−1)dµh

)(p−1)/p

≤ C(h)

(∫

M

|ηǫ |
p/(p−2)dµh

)(p−2)/p

≤ C(h)

(∫

M

|∇̃ηǫ |
p/(p−1)dµh

)(p−1)/p

.

Thus we have

|〈Rg − a, ηǫu〉| ≤ C

(∫

M

|∇̃ηǫ |
p/(p−1)dµh

)(p−1)/p

.
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Letting ǫ → 0, by the properties of ηǫ we get (A.3). Thus we finish the proof of the lemma for n < p < ∞.

When p = ∞, the arguement above still works. (See also [LL15].) Thus the lemma holds. �
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