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WEAK SCALAR CURVATURE LOWER BOUNDS ALONG RICCI FLOW

WENSHUAI JIANG, WEIMIN SHENG, AND HUAIYU ZHANG

ABSTRACT. In this paper, we study Ricci flow on compact manifolds with a continuous initial metric. It was

known from Simon that the Ricci flow exists for a short time. We prove that the scalar curvature lower bound

is preserved along the Ricci flow if the initial metric has a scalar curvature lower bound in distributional sense

provided that the initial metric is W' for some n < p < co. As an application, we use this result to study the

relation between Yamabe invariant and Ricci flat metrics. We prove that if the Yamabe invariant is nonpositive

and the scalar curvature is nonnegative in distributional sense, then the manifold is isometric to a Ricci flat

manifold.
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1. INTRODUCTION

The study of low-regularity Riemannian metrics with some weak curvature conditions is an important

theme in Riemannian geometry. For sectional curvature lower bounds and Ricci curvature lower bounds,

many beautiful results have been established (for Alexandrov spaces theory, see, e.g. [ABN86], [BBIO1];
for Ricci curvature lower bounds, see, e.g. [[CC97]], [CCO00al], [CCOOb], [CN12], [CN13l|, [JN21], [CIN21];
or for an optimal transport approach, see, e.g. [LVQ9], [St06a], [St06b], [St06cl).
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However, it has not been well understood for scalar curvature lower bounds. One of a fundamental
property for classical scalar curvature lower bounds is that they are preserved by Ricci flow. Ricci flow is
firstly introduced by Hamilton [Ha82], which comes to be an powerful tool in geometry and has been used
to prove the Poincaré Conjecture, see [PrO2], [PrO3l], [PrO3], [BLOS], [CZ06], [MTO7]]. The lower bounds
preserving property is still true for scalar curvature lower bounds in some weak sense and it is quite useful
in the study of low-regularity Riemannian metrics with some weak scalar curvature conditions. Gromov
introduced a scalar curvature lower bound in some weak sense, which could be defined for C® metrics, see
[Gm14)]. Bamler and Burkhardt-Guim considered it by a Ricci flow approach, they elaborated on defining a
weak sense scalar curvature lower bound which is required to be preserved by Ricci flow, see[Bal6l], [Bul9].
If a metric satisfies that its Ricci flow has a scalar curvature lower bound at each short positive time, then
this metric must satisfies the definition of scalar curvature lower bounds in Gromov [[Gm14]. It remains
an open problem whether the converse is true (see [Bul9]). Schoen also considered scalar curvature on
low-regularity metrics. He proposed a question that if the Yamabe invariant (M) is nonpositive, the metric
admits singularity in a subset and the scalar curvature is at least (M) away from the singular set, then
whether we can prove that the metric is smooth and Ricci flat provided that the singular set is small, see
[LM19]. Li and Mantoulidis [LM19] gave an answer for his skeleton metrics and for 3-manifolds with
metrics admitting point singularities. For more related results, see the survey of Sormani [So21]].

McFeron and Székelyhidi [MS12]] proved that if a Lipschitz metric is smooth away from a hypersurface
satisfying certain conditions on the mean curvature and the metric has nonnegative scalar curvature point-
wisely away from the hypersurface, then the scalar curvature will be nonnegative pointwisely on the whole
manifold under Ricci flow. This property appears to be quite useful in the study of the positive mass theo-
rem, especially for the rigidity part of the positive mass theorem, see [MS12]]. (See also [M102].) Shi and
Tam [ST18] have proved the nonnegative scalar curvature preserving property for Wh? (n < p < co) metrics
which are smooth away from a singular set with Minkowski dimension at most n — 2. Moreover, they apply
this property to get a positive mass theorem for low-regularity metrics and establish an answer of Schoen’s
question for W7 metrics. LeFloch and Mardare defind a scalar curvature lower bound in distributional
sense for W' metrics. This was further studied by [LLI13,LS15] in asymptotically flat manifolds. Lee and
Lefloch [LLI3] proved a positive mass theorem on spin manifolds with W' metrics which has nonnegative
scalar curvature in distributional sense. Lee and Lefloch’s ([LL15]]) definition of weak scalar curvature lower
bounds recovers the case in [MS12], [Mi02] and [ST18]], thus the positive mass theorem in [LL15] recovers
it in [Mi02]], [MS12] and [ST18]] in spin case.

We improve some of the above results. The main theorem is the following:

Theorem 1.1. Let M" be a compact manifold with a metric g € W'"P(M) (n < p < o). Assume the scalar
curvature R, > a for some constant a in distributional sense, and let g(t),t € (0,To] be the Ricci flow
starting from the metric g. Then for any t € (0,To], there holds Re;) > a on M.

In [Bul9], Burkhardt-Guim introduced a weak scalar curvature lower bound for C°-metric using Ricci
flow. By comparing with the definition in [Bul9] and Theorem [L.1] we get:
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Corollary 1.2. Let M" be a compact manifold with a metric g € W'"P(M) (n < p < o). Assume the scalar

curvature Ry > a for some constant a in distributional sense, then the scalar curvature Ry > a in the sense
of [Bul9ll.

As a consequence of Theorem we can prove the following result:

Theorem 1.3. Let (M", g) (n > 3) be a compact manifold with g € WHP(M) (n < p < o). Assume the
distributional scalar curvature Ry > 0, then either (M, g) is isometric to a Ricci flat manifold or there exists
a smooth positive scalar curvature metric on M.

Remark 1.1. By Theorem [I3] if M is a topological n-torus with a metric g € W'?(M) for some n < p < o,
then (M, g) is isometric to a flat torus provided that g has nonnegative distributional scalar curvature. More
generally, if M is a differential manifold with the Yamabe invariant (M) < 0 and with a metric g satisfying
the same condition as above, then (M, g) is isometric to a Ricci flat manifold.

Remark 1.2. Bourguignon, Gromov, Lawson, Schoen and Yau have established relevant results in smooth
version, see [GL8O], [SY79b], [KW75].

Remark 1.3. We can check that if g is C> away from a closed subset T with its Hausdorff measure T ) <
cowhenn < p < oo or H" 1(Z) = 0 when p = oo, and if R, > a pointwisely on M \ X, then R, > a in
distributional sense. Though it is proved in [JSZ21]), for the sake of completeness, we give a proof in appen-
dix. Also, if g is C? away from a hypersurface whose mean curvature taken with respect to the metric in the
interior is at least it taken with respect to the metric in the exterior and R, > a away from the hypersurface,
then R, > a in distributional sense. It has been proved in [LL15, Proposition 5.1].

Therefore, as an application, we can get similar results for metrics admitting singularity in a subset,
which are extensions of some results in [ST18]]. Specifically, if g is C> away from a closed subset X with
fJ-C"_PITl(E) < ocowhenn < p < oo or H"(Z) = 0 when p = oo, and if R, > a or R, > 0 pointwisely on
M \ %, then the above theorems still hold.

Organization:

In section 2, we will mollify the metric by convolution, and we also provide an estimate of the weak
scalar curvature in this smooth approximation (see Lemma [2.2). In section 3, we recall the definition of
the Ricci flow and the Ricci-DeTurck flow, and we obtain some estimates for them. The main estimate we
need is Theorem In section 4, we reacall the definition of the conjugate heat equation and prove some
property of the solution of this equation (see Proposition [4.1)), which will be needed in section 5. In section
5, we prove Theorem [L.T] and Theorem In section 6, we state some further questions.

Acknowlegments: The authors would like to thank Prof. Dan Lee and Prof. C. Sormani for many helpful
suggestions.
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2. APPROXIMATION OF SINGULAR METRICS

Let M" be a compact smooth manifold with a metric g € C O(M) N W2(M) and let i be a smooth metric
on M such that C~'h < g < Ch for some constant C > 1. Throughout this paper, V and the dot product will
denote the Levi-Civita connection and the inner product taken with respect to 4 respectively, We define the
distirbutional scalar curvature of g as in [LMO7, [LL15} LLS15]],

s dpg dug -~
Rg, ) = —Ve Ve =+ Feo = dun. Yo € CT(M), 2.1)
M i dpn

where p, is the Lebesgue measure taken with respect to 4, V is a vector field and F is a scalar field, defined

as:
1 - - -

I = 58" (Vign + Vign = Vigsy). 2.2)

VK= gt - g*T, = 678 (V10 - Vegiy), 2.3)

F := trgRic — Vi T, + Vi g* T’ + ¢ (T} If, = T 1), (2.4)

where Ric is the Ricci tensor of A. By [LLI5], (R, ¢) coincides with the integral fM Rgpdu, in classical
sense if g € C>(M) and (Rg, p) is independent of & for any g € CO%(M) N W2(M). For more details about
the distirbutional scalar curvature and related results, see [LL15],[LMO7[],[LS15], [JSZ21]].

Let a be some constant, we say that the distirbutional scalar curvature of g is at least a if (Rg, @) —
a fM @dug > 0 for any nonnegative function ¢ € C*(M). We will abbreviate this inequality as (R,—a, ¢) > 0.

The following mollification lemma has been proved in [GT14, Lemma 4.1], by a standard convolution
mollifying procedure and a use of partition of unity. Although their lemma is a W2 version, our version
could be proved in the same way.

Lemma 2.1 (J[GT14]). Let M" be a compact smooth manifold and g be a C° N WP (1 < p < o) metric on
M, then there exists a family of smooth metric g5, 6 > 0, such that gs converge to g both in C°-norm and in
WP-norm as 6 — 0.

Under this mollification, we have an estimate of the distirbutional scalar curvature. The following lemma
has been essentially proved in [JSZ21]], though [JSZ21]] only gives a proof for the estimate of (R,,, u?), the
following lemma can be proved in the same way. In order to be self-contained, we give a proof here.

Lemma 2.2 ([JSZ21]). Let M" be a compact smooth manifold and g be a CO N W' metric on M. Let g5 be
the mollification in Lemmal[2.1] then we have that for any € > 0, there exists 6o = 6o(g) > 0, such that

[R5, tt) = (Rg, )] < €llul| Yu € C*(M), Y6 € (0, 6).

My’

where Ry is the scalar curvature of gs.

Proof. Let h be a smooth metric on M with C™'h < g < Ch, here and below C will denote some positive
constant which depends on n and the Sobolev constant of g, but independent of ¢ and varis from line to line.
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Let V5 and Fs be the vector field and scalar field in the definition of distirbutional scalar curvature of g;.

Then we have

lim (f Vs — VI"duy, +f |Fs — Fl"/zdyh) =0. (2.5)

0—0"

‘We also have

d . d
lim f ‘ Hes —vﬁ dyy, = 0. 2.6)

6—07*

Using triangular inequality and Holder inequality, we can calculate that

|fF5u—d,uh—fFu%duh|
dpp M dun

dﬂgﬁ dﬂg
F, d
f | ot dpp dﬂh| Hi
dugs  du
f |F5u—Fu|| Hss | gy + f Fu| B - g,
dpig,

d,uh ~duy,
<C f |F5u—Fu|duh+sup| - d,uh f \Fuldu,

2/n (n-2)/n d/l d,u 2/n (n-2)/n
< C(f |F5—F|"/2duh) (f |u|”/(”_2)d,uh) +sup|;ﬂ'ﬁ _ _g|(f |F|n/2dﬂh) (f |u|n/(n—2)d’uh) '
M M M Vdup o dup'\Jy M

By Sobolev inequality
(n=2)/n
n/(n-2)
( fM u duh) < Cluly 1.

we get that

)
|fF5u—d,uh—fFu&duh|
M duy
n d/l d,u 2/n
<|c| | IFs-FI'"*q +C b8 fF"/zd FI.
_[ (fM| 5= F uh) o | ML) B [P
Similarly, for the term involving V, we can calculate that
du
|fv V(u—)dyh—f Vs- V(u—)d,u| 2.7)
du
du
f|v Vs| - |V(u—)|duh+f V|- |v( g5)|dp (2.8)
dw, " du,
1/n d _ (n—1)/n
M n/(n—1)
(f V- Val”dﬂh) (f |V( dgb) llh)
Hh
l/n 5 d d
+(f |V|ndﬂh) (f |V(u Py “g)
M M dur

(2.9)

/-1y \=bm
duy (2.10)
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Using Sobolev inequality and Holder inequality again, we have
- ( d
f |V (M /'lgé )
M dptn

_d n/(n—1)
<C(n) f Hes duy, + C(n) f
M Hn M

n/(n—1)
Hh

n/(n—1)
dp

. d
P v 1
du,

" (n-2)/(n-1) _du 1/(n-1)
<C f |Vu|"/<"‘”duh+0( f |u|"/<"‘2>duh) ( |V—g5|"duh)

M duy
ﬂ 1/(n=1)
<C f V" “duhwnun"“" D ( V== Z 1 )
T(M)
_du 1/(n-1)
SC(1+ f |Vi5|"duh) el
M dup T(M)
and we also have,
f|§( dpgs dug) n/(n-1)
u - Hh
M dwn " d,

dug, _ %"/("_l)f |§u|n/(n—l)dﬂh
dup  duy M

(n-2)/(n=1) d d 1/(n=1)
+ C (f |u|n/(n_2)dﬂh) (f |V ( ﬂgﬁ _ ﬂg) |n )
M M \dup  duy

<Cls d’ug‘s — %
d,uh duy

<Cs

We combine these estimates, and then we get
- { d - ( d
|fV'V(M£)dﬂh—f V5-V(uﬁ)duh|
M dpin M dpin
1/n d 1/n
_ym & Hgs n
SCUM Vo= Vi ”) [1 ’ (fM AT h) ]”””Wl’ﬁ%

d/J dpt o (e A "
+C|sup |—= - _g| + (f |V(_gé i L) IR [ TS
Plaw ™ d) "\ e ™ d

Therefore, for any € > 0, there exists ¢p > 0 small enough, such that

Ry t) = Ry )] < elltll i

whcih completes the proof of the lemma.

3. ESTIMATES ON RICCI FLOW

The Ricci flow was introduced by Hamilton[Ha82]. Its definition is as follows:

n/(n-1) - (du du =D
+( f |V(_d & ——g)l"duh) )
M un  dup

Yu € C*(M), V6 € (0,6),

2.11)

(2.12)

(2.13)

(2.14)

(2.15)

(2.16)

2.17)

(2.18)

(2.19)

(2.20)

(2.21)

(2.22)

(2.23)
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Definition 3.1 (Ricci flow). The Ricci flow on M is a family of time dependent metrics g(¢) such that

0 .
Eg(t) = —2Ricg(),

where Ric, is the Ricci curvature tensor of g.

The main theorem in this section is the following:

Theorem 3.2. There exists an €(n) > 0 such that, for any compact n-manifold M with a W' metric § with
n < p < +oo, there exists a Tog = To(n,g) > 0 and a family of metrics g(t) € C(M X (0, Ty]),t € (0, Tp]
which solves Ricci flow for t € (0, Ty], and satisfies

(1) lim,0 dgu((M, g(t)), (M, 2)) = 0.
2) Rm(g))|() < SE2L e € (0, T).

tdp 4

T N
3) [y, Rm(g®)Pdugpdt < C(n. 3. p),
where C(n, g, p) is a positive constant independent of t.
Remark 3.1. In this paper, we assume that Ty < 1 for convenience.
Remark 3.2. The existence of T and g(r) and (1) have been proved by Simon (see Theorem [3.3)). Shi-Tam
[ST18] also got similar estimates as (2). Here we give a proof by using Moser’s iteration.
To prove Theorem [3.2] We consider A-flow (see [Si02]).
Definition 3.3. Given a constant § > 0, a metric 4 is called to be (1 + §)-fair to g, if i is C*,
sup [V/Rm(h)| = k; < oo,
M
and
1+6)'"h<g<(1+6h onM.
Here and below, V means the covariant derivative taken with respect to h.

Remark 3.3. Let M be a compact manifold and g be a C° metric on M, then for any 0 < € < 1, there exists
a smooth metric 4 which is (1 + €)-fair to g. For a proof, see the remarks below [Si02, Definition 1.1].

Definition 3.4. [i-flow] Given a background smooth metrics 4, the h-flow is a family of metrics g satisfies

0
Egij = —2R,'j + V,’Vj + Vle',

where the derivatives are taken with respect to g,
V= gxg™ Ty — Ty,
and T and T are the Christoffel symbols of g and / respectively.
h-flow is equivalent to the Ricci flow modulo an action of diffeomorphisms (see [Si02]), thus we only

need to prove Theorem for h-flow. Firstly we need the following theorem, which has been proved by
Simon[S102].
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Theorem 3.5. ([Si02, Theorem 1.1]) There exists an e(n) > 0 such that, for any compact n-manifold M with
a complete CY metric g and a C* metric h which is (1 + %)-fair to g, there exists a To = To(n, ko) > 0 and
a family of metrics g(t) € C*(M x (0, Ty)), t € (0, To] which solves h-flow for t € (0,Ty), his (1 + e€(n))-fair
to g(t), and

(1)
lim sup [g(x,7) — g(x)| = 0,
1—=0% yepr
()
_ (ks i .
sup [V g()] < K k) o0 im0,
M tz/2

where the derivatives and the norms are taken with respect to h.

Remark 3.4. In order to apply the flow, we will let & be (1 + #)—fair to 2. By Remark [3.3] such a metric
always exists.

Remark 3.5. [S102] Actually, take any family of smooth metrics {25} which converges to g uniformly on M
in C%-norm, then A is 1 + %”) fair to gs for 6 small enough. Starting from smooth metrics g5 we get h-flow
gs(0), t € (0, Tp] with Ty independent of 6. Fix 7 > 0 and let § — 0%, by passing to a subsequence, we get
g(#), which is appeared to be the i-flow such that g(0) = g as in Theorem and this convergence is a
smooth convergence for each ¢ € (0, Ty]. For Ricci flow, the same procedure still works.

When the initial metric is W7, n < p < +oo, we have the following estimate:

Theorem 3.6. In the condition of Theorem(3.3 and moreover, if we assume that M is compact and fM \ValPduy, <
A for some constant A and n < p < +oo, where the derivative and the norm are taken with respect to h. Then
there exists a To = To(n, h, A, p), such that g(t), t € (0, To] is the h-flow starting from metric g, and

() [, IVg@)IPduy < 10A, Vi € (0, Ty,
) [Vglr) < S22, Vi € (0,7,
=P
(3) [V2gl(r) < 24D e € (0, Tl
*z

n
t4r

where C(n, h, A, p) is a positive constant independent of t.

To prove Theorem [3.6] we prove the following lemma at first.

Lemma 3.7. In the condition of Theorem if for some T € (0, 1), there holds fM IVe()|Pduy, < 104,
VYt € (0, T], then for the same T, ng(t) < % VYt € (0, T] also holds, where C(n, h, A, p) is a positive
=P

constant independent of t.
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Proof. By [Sh89], we have the evolution equation of Wg,- j|2:

0 - s e . - -
2 IVeiil =g VaVplVei* - 28" Va (Vi) - Vp(Vgiy)
+I~{m>x<g_1 *g_l *g*@g*@g—i—g_l *g*@ﬁm*ﬁg
+g_1 *g_l *6g*?g*62g+g_l *g_l *g_l *6g*§g*6g*?g,

where the derivatives and norms are taken with respect to 4, and Rm is the Riemannian curvature tensor of
h. Thus

gwgiﬂz — 8"V, VglVgiil* < —Ci(n, )V gl?
+ C(n, W)|Vg* + C(n, h)| Vg
+ C(mIVgl* + Co(n)| Vgl [V2g]
< —Ci(n, h)V?gl
+ C(n, h)|Vg* + C(n, h)|Vg]

Cr(n)
2€

Cr(n)e

+C(n)|Vgl* + Vgl + TWZgF, Ve >0,

here and below C and C;s are positive constants independent of # and C varies from line to line. Take € = %,
we have

0 =~ o - N N N
EIV&;IZ — g%V, VglVgi* < —C(n, )|V?gl* + C(n, h)(Vg| + Vgl + [Vgl*) (3.1)

< C(n, h)(\Vgl + Vgl* + Vgl 3.2)
Denote f = Wg,-jl2 + 1, then we have
d .
= f = 8PVVf < COLS + 17+ ) < C (L + )
Denote v = 1 + f, then
] .
P f = 8"V, Vsf < Cn, h)fv. (3.3)

Suppose that T € (0, 1] is a constant such that fM Wg(t)l’7 duy < 10A, ¥t € (0,T]. Then v has uniformly

bounded Lz (M)-norm on [0, T'], in other words, we have

f vgduh <C(n,hA +C(n,h),Yt € [0,T].
M

For any g > 0, we multiple f7 to equation (3.3)) and integrate it, then we get

f (aﬁf—gaﬁ%%f)fqduhscm,h) f S vduy,. (3.4)
m\0t M
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Thus we have

*du, < C(n, h fva BV Fld
q+16tff up < C(n, h) (V&Y Vs f) flduy,
- f 8PV )Vo fdp
M
+ f fq“vduh]. (3.5)
M
By Holder inequality, we have
- f (Fag™) T ) fdan < Cn, ) f P A1
M M
< Cre f 19279 dyay
M
Cs q+2
+— | f"dup, Ve > 0. (3.6)
€ Jmu
And we have
- fM P51V f i = — fM (95T ) ity
< -Cuq f V17 £~  du. (3.7)
M

Recall that v = £ + 1 and hence f9*? < f9*!y. Take € = % in (3.6) and combine inequality (3.3), (3.6) and
(3D, then we get

f i dpy, + C(n, hyg f V£ 4 dpy, < Cln, h)(1+ 1) f A vduy, (3.8)
M

q—i—lat

Since

= gt )2 g+1\’ - =112

VI i = ==) | [Vf-F [ dn,

M M
we get
T+ + C(n, b f 5P
q+18tff pn + C(n, ) 1)2 V| du
SC(n,h)— f Frvduy,. (3.9)
q M

Ifweletq>£—1>0 then 0 < pTZ Sq%S 1, thus we have

0 & 12
5 | st | (955 P < Csounopa [ 77, (3.10)
t M M
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For the last term, use Holder inequality and since p > n we can use interpolation inequality, then we get

2 p=2
f fq+1Vd/th( f vgduh)’ ( f (f4“>p%duh)’
M M M

n=2
< Ce(n, h,A) E(f (fq“)ﬁdﬂh) + 6‘“[ |, (3.11)
M M
where u = (% - pT—Z)/ (% -1 = % We also have the Sobolev inequality
n=2
~ g+l n n
f 95 Pdun = C1n, h)( f <f4“)mduh) . (3.12)
M M
Take € = % and combine (3.10), 3.11) and (3.12), then we get
s n=2
= f Fo iy + ( f <f4“>#duh)
ot Jy M
< C(n,h, A, p)g"** f ST duy. (3.13)
M
Forany 0 <t <t <T'<T <1,let
0, if0<tr<?,
Ut =1 o, ifr <t<t”,
1, ift”" <t<T.
Multiplying (3.13) by ¢, we get
P =2
o [ wrrdu s w( | <f4“>%duh)
<[C(n,h, A, p)g"*y + lﬁ']f J duy. (3.14)
M

Integrating it with respect to 7, we get
2

T’ =
sup f Py + f ( f <f4“)ﬁduh) dt
te[t”, T"] IM t’ M

1 T
<iconapg™ 1 [ [ dua (3.15)
- v M
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Then we have

T/

f ff("“)(“%)duhdt

44 M

- 2 n=2
sf (f fq+1dﬂh) (f f(q“)n_"zduh) dt

t’ M M

T’ =2

< sup ( | f“lduh) [ ( [ f@*%duh) d
te[[// T/ 1’
s[C<n,h,A,p>q““+t,, ]”‘( f f fq+ldl1hdf) gz fot (3.16)

T . »
H(g,7) = (f f fqd/zhdt) Vg > E’O <t<T.
T M

Then equation (3.16)) can be shortly writen as

Denote

2
Hig(1 +).1") < [Cln, h,A, p)g" ™ +

1 ’
——1H(q.1).

FixO<fo<ti<T'<1l,q02 5% andset)(— 1+—,qk —qo,\/ T =1ty + (1 - )(t1 — ty9). Then we have (see
also [J116]], [JWZ17]]))

L){ ]f'k H(qy, i)

H(gs1,Tis1) < [C(n b, A, p)g, ™ + e

1 2 .1
= [C(n, 1, A, P)gb 0+ — B2 M gy, )
H—ty 2
Cn, h, A, p,qo). L *w
< [—pq]qu qk H(Qk,Tk)

-1

where in the last inequality we use O < #p < #; < T. By iteration, we get

C(na h, A’ D> ‘IO)]Z’" o k(1+)

H(Gme1, Tme1) < [ p— k=0 a =40 s H(qo, To)

1 ne2
< C(n,h,A, p, qO)(n — to)”’0 H(qo,70),

. ) 1 _ n+2 )
since .~ T and )7 0 qk converges. Letting m — oo, we get

1
H(poo, Too) < C(l’l, haAa D, QO)(tl

Y0 H(go, 70), Vo > §

where po, = +00, T = f1. Letting gg = g we have

w2 p
H(=,1).
z (2 0)

Thus we have
2
P

1 T
sup f(y,t)SC(n,h,A,p)—M( f Agdt)
0

oHEMX[,T"] (-t »
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Letting t;y —» T’ and tp = T’ /2, we get
1
sup f(y’ T,) < C(l’l, haAa p)—na VT, S (Oa T]
yeM (T")?

Thus we have
C(n,h,A, p)

12p

IVgl(r) < Yt e (0,71,

which completes the proof of the lemma.

13

O

Proof of Theorem[3.6l The existence of the h-flow g(¢) is claimed in Theorem 3.3 so we only need to prove

that conclusions (1), (2) and (3) hold for some Ty(n, i, A, p).

To prove that (1) and (2) hold for some Ty(n, h, A, p), let f = ngjlz + 1.
We denote

(1) = f £ duy,.
M

Then we have
0 »
‘= | =(fHdup.
@' (1) j;wat(fz),uh

We denote
T = {T € (0, 1]|f IVe(O)lPduy, < 10A4,Yx € M, V1 € [0, T]},
M
and Tax = sup J. Take g = p/2 — 1, then equation (3.10) gives
¢'()) < C(n, h, p) f f7vdpy,
M

where v = f + 1. By Lemma[3.7] we have

C(n, h, A, p)
v=frl<l+ tn—/pp,\ne O, Tonax |-
Thus we get
C(n,h,A,
¢'(1) < (1 + u) f SR dpp, Nt € (0, Tina.
mip M
Since Tyax < 1, we have
, C(n,h,A, p)
#(0) S =90, 1 € 0, T
thus we have
C(n,h,A, p)

(log ¢(1))" < , V1 € (0, Trmax ]

mip
By integration, we get
log ¢(t) < log ¢(0) + C(n, h, A, p)t' ™7, € (0, Tmax],
thus we have
(1) < O)CIAPTY it € (0, Tona],

Since ¢(0) < C(n, h)A, we have

f Vet dup < ¢(t) < Cln, HYCPAP " A it € (0, Topan -
M

(3.17)

(3.18)

(3.19)
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Suppose that if we fix n, h, p and A, there exists a sequence of initial metric {2,,},°_,, such that each of the
metric g, satisfies the condition of the theorem and the corresponding T'max.» tends to 0. But by we
know that if T, satisfies C(n, h)eC("’h’A’p)Tflﬂ;Q/p < 5 and Thax < 1, then the maximal time interval (0, Tppax ]
could be extended to (0, Tyhax + 8], for some 6 > 0 small enough, which is a contradiction. Hence Ty, is
only depend on n, h, p and A. Thus we get that the conclusion (1) and (2) hold simultaneously for some

To(n,h,A, p).

To prove (3), recall that Simon’s result, Theorem [3.3] gives

.. (. h
sup [¥g(0) < S vr e 0,71,
M 1i2

We choose a finite atlas for M such that % is uniformly equivalent to the Euclidean metric of each chart. For
any chart (U, ®), we let f denote any component function 6,-g k(t) of 6g(t), and let /gy denote the Euclidean

metric of (U, ®). We can assume that 27'/1p < h < 2hy. We choose an arbitrary point p € U and let y(u) be

0 0

37 where 37 is the coordinate vector field of (@, U). Then we have

a curve satisfying y(0) = p and y’(u) =

S d _ _ _
[ 2 vt = Fovs) - o145 € .50,
0 u

where s( is a positive constant independent of the chart and ¢, and sg is small enough such that y(u) € U for
any u € (0, so) and for any coordinate neighborhood U'.
On the one hand, we have

S d - s , s a'
fo L F -y = fo A0y (0)du = fo 2L (vt

On the other hand, we have

_ _ - C(n,h,A,
F7(6) - f(p) < 2sup V) < %
Thus there exists ug € (0, s), such that
of Cn,h,A,
a—f(y(uo» LLwhAp)
X St2p
Since
af af (" 0% f
ot - SLoo) = [ L pwa
> —uoC(n, h) sup [V2g(1)|
M
> —s—C(n3’ h).
12
We have
of of of C(n,h
a—f(p) = 2 0 < 2Ly + s E81
X' ox! ox! £

C(n,h, A C(n, h
S (n’ 4 ’p)+s (n’ )

o 3
St 12

(3.20)
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The right hand side of (3.20) attains its minimum for s = C(n, h, A, p)t%_“ip. Note that lim,_,o+ t%_% =0,
3 _n
thus there exists Ty = To(n, h, A, p), such that for any ¢ € (0, Ty), we have C(n, h, A, p)t* % < s¢9. Therefore,

we have that for any ¢ € (0, Ty), the right hand side of (3.20) attains its minimum for some s € (0, s¢), and
C(n,h,A,p)
3. -

the minimum value is "
1473

Since p is an arbitrary point on M and 275 < h < 2k, we get
C(n, h,p,A)

3
tw*E

IV2el(r) <

Thus (3) holds for some Ty(n, h, A, p), which completes the proof of the theorem. O

Theorem [3.2](2) follows immediately from Theorem Moreover, for Theorem [3.2](3), we just need to
prove the following lemma:

Lemma 3.8. In the condition of Theorem we have

To ~
f f V2 g(t)Pduydt < C(n, h, A, p).
0 M

Proof. We calculate as the proof of Lemma[3.7] but this time we preserve the |[V2g|?> term in (3.1). Integrate
both sides of the inequality (3.3), then we have

0 - - -
5 [ s+ [ o< con [ @9, Tpsdun v coum [ o,
ot Iy M M M

where f = Wg,- j|2 + 1 and v = f + 1, here and below C and C;s denote a positive constant and C varies from
line to line. Using integration by parts twice, we have

0 - .
2 fM Fduy + fM 726 dun < COn, ) fM ¥ 5¥ag" fduy + Cn, ) fM Foduy
< Ci(n, h) f V2 glfdun + C(n, h) f fvduy,
M M
< Ci(n,h)e f V2 el duy, + Ci(n, h)e™! f F2duy + C(n, h) f fvdup, Ve > 0.
M M M

Taking € = %, since f < v, we have

0 -
P f felun + f Vgl dpy, < Ca(n,h) f frdup. (3.21)
ot Iu M M

For the last term, using Holder inequality and interpolation inequality, we get

fM fvduhs( fM v’-z’duh)’%( fM fﬁduh)

n-2

e( fM f%duh)" b fM fun

p=2

< C3(n, b, A) : (3.22)
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where u = (% - pT—Z)/ (% -1 = % We also have the Sobolev inequality

n-2

( f f”Tnzd,Uh)n < Ca(n.h) f E
M M

V(Vg,Vg)  2(V%g,Vg)

2IVgP + 1T 2(1Fgl + 1)}
Vgl Vgl

T (Vg +1)2

Taking € = m, by (3.21), (3.22), (3.23) and (3.24), we have

0 -
—ffduwf |V28|2dﬂhﬁc(n,h,A,P)ffdﬂh~
ot Iy M M

By Theorem B8, [, [Vg(®)Pduy, < 10A, Vi € (0,To. Since p > n > 2, we have [, fdup < C(n,h, A, p),
thus we have

2
duy. (3.23)

Since

V= V(VgP + )7 =

< |V%g|, (3.24)

0 N
—ffduwf IV2gl*duy, < C(n, h, A, p).
ot M M

Integrate it, we get

To 5
f FTo)duy - f FOdun + f f V2gPdundt < Cln, b, A, p).
M M 0 M

Since [, f(To)dup > 0 and [, f(0)dup < C(n, h, A, p), we get

To 5
f f \V2elPdupdt < C(n, h, A, p),
0 M

which completes the proof of the lemma. O
Now Theorem [3.2) would follow without much effort.

Proof of Theorem[3.2] Let g(¢) be the h-flow stated in Theorem Then there is a family of diffeomor-
phisms ¢(t) : M — M, such that ¢(¢)*g(r),t € (0, Ty] is a Ricci flow. (See [S102]]).

Since M is compact, by Theorem[3.3](1) we have that (M, g(r)) converges to (M, 2) in Gromov-Hausdorff
distance. Since the Ricci flow ¢(r)*g(¢) and the h-flow g(¢) are isometric for each ¢ € (0, T], Theorem 3.2]
(1) holds.

To prove (2) and (3), note that Rm = 62g +0g+dg and p > n > 2. Since the Ricci flow ¢(¢)*g(¢) and
the h-flow g(¢) are isometric for each ¢ € (0, 7y] and both g(#) and ¢(¢)*g(¢) are uniformly equivalent to 4,
Theorem 3.2](2) and (3) follows immediately from Theorem [3.6/ and Lemma[3.8] m]
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4. CONJUGATE HEAT EQUATION

Let (M", g) be a compact manifold let g(¢) be the Ricci flow starting from the metric 2. In this section
we suppose that 2 is smooth. Let ug) be the Lebesgue measure taken with respect to g(7), and let Ry and
Ry denote the distirbutional scalar curvature of g and g(r) respectively. Let ¢ be an arbitrary nonnegative
function in C*(M) and take any T € (0, To]. We consider the following conjugate heat equation

{ attpt = _Ag(t)(pt + Rg(t)‘pt on M x [0, T],

_ 4.1)
Cil=r = &,
where Ay is the Laplacian taken with respect to g(7).

For fixed (x,f) € M x (0, Typ], the conjugate heat kernel on the Ricci flow background is the function
K(x,t;-,+), defined for 0 < s < t and y € M and satisfying

(=0s = Ay + R(y, ))K(x,t;y,5) =0  and lim K(x,1;y, s) = 0x(y),
s—1

where the Laplacian is taken with respect to g(s), and ¢, is the Dirac operator supported on {x}. K also
satisfies (0; — A,)K(x, t;y, s) = 0, where A, is taken with respect to g(¢).

By directly calculation(see also [BZ17]]), we get that equation (.I)) has a solution with the explicity
expression

() = fM KO, T5 5, 080 dbgr) (). “2)

By the maximum principle, we get that this solution is nonnegative and unique. Furthermore, by this ex-
pression we can see that ¢, is uniformly bounded. Our main purpose in this section is proving the following
estimates for ¢, which will be used in the proof of our main theorem.

Proposition 4.1. Assume as above, then ¢, satisfies

(1) ¢ < C(n, h, A, p,1@llr=), Yt € [0, T].
@) fy \Verpdsditgny < Cn,h, A, p, @), V1 € [0,T],
3) fM(Rg(f) — a)pditg(r) is monotonously increasing with respect to t.

Proof. To see (1), by equation (4.2), we have
00 <l || KOLT: b ) 4.3)
M
We denote F(t,T) = fM K(y, T; x,t)dugr)(y), then we have limr_+ F(t,T) = 1, and

OrF(t,T) = f (AVKQ, T x,0) = RrK (v, T x, ) dptgr (),
M

where we have used the standard evolution equation drdugr) = —Rrdugry. By divergence theorem, we
have

LA),K(y, T; x, D)dugr)(y) = 0.
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Thus by Theorem [3.2] we have

C(n,h, A, p)
8TF(t, T) < Tp

F(@,T),
for some a € (0, 1). Since limy_,+ F(t,T) = 1, by integration we have
F(t,T)<CnhA,p),YO<t<T<T,. 4.4)
By and (4.4), we have
¢ < C(n, h, A, p, 11¢ll=), Y1 € [0, T,
which proves (1).

To prove (2), denote E(t) = fM Ve @il dpgr)- By direct calculation, we have

2
o)
0E(1) = f (_Rg(t)ldﬂot@([) + 2Ric g1 (Ve @t Vayr) + 2{V g 0101, Vg(t)¢;>g(r)) dpg(r)- 4.5)
M
By (.1) and using Bochner formula we have

L (Vo011 V g6y o0y g(r) = fM —(Veiy(Bey®r — RytyP1)> Ve 1) gy ig(r)
= fM (=(VewAetr26 Vetr2 + (Vetr R @) Ve #idetw ) ditgr

1 .
- fM (—EAg(mvgm%@@ + V@il + Riceny (Vs r: Vo)
V() Reo0): Vo 1)) ) dttgr

= fM [(1IV2) 112, + Rice (Vo1 Vo) = Reo@rgtn @] ditgry.  (4.6)

Since |Ag(t)§0t|§(t) <C (n)|V§(t)<p;|2, using Cauchy inequality, (4.6) gives

L(Vg(t)at‘pt’ Voo @) enydiery = fM (Ricg(t)(Vg(mp;, Vewyer) — C(n)Réz,([)gotz) dug). 4.7
By @.3) and (4.7)), since |Rg(plgry < c(n)IRiCq o), We get
OE(t) > fM (4Rice() (V01 Vet 2r) = Reol Vet erlaey — CONRZ 07 ) ditny
> ~C(n,h,A, p) f IRicy()|IV g0 pil*ditgny — C(n, h, A, p) f R: @i dugan- (4.8)
M M
By Theorem [3.2]and (1), we have for some « € (0, 1) that
C(n,h,A, p) 5
OiE®) > ——2= | Vel dugsy — Cor, 0, A, p, @) | Redgin-
) M M
Thus we have

C(n,h,A, p)
t[l/

at (E(t) + 1) 2= (E(t) + 1) - C(”; ha Aa ps ¢)f Rz([)dﬂg(t}
M
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Dividing both sides by (E(f) + 1), we get

C ’h’A’
S log (E(t) + 1) = —%

- C(na h5 A’ p’ ¢) ‘f]:l Rz;([)d/'lg(t) °

By Lemma [3.8] fM Rg(t)d,ug(,) is integrable on (0,7). Since 97 = @, E(T) < C(n,h,A, p,d) and % is
integrable on (0, T"), we can integrate the inequality above and get

E(@t) < C(n,h,A, p, ), VYt €[0,T].
Thus we complete the proof of (2).

To prove (3), we can directly calculate that
0; f (Re(r) — @)prdpig(r)
M
= L |(AgrRecr + 2IRicgin ) o + Ry = @) (~Agiopr + Reopr) + Ry = e (~Rean) | it

= fM 2ARic(n 3 prdugin + fM (Mg Rt et = Reto/Agoer) dpagy + a fM Aty prdpig -

By integration by parts, we have that

L (Ag(t)Rg(t)‘Pt - Rg(t)Ag(t)SDt) dugn = 0, L Agoypiditgn = 0.
Thus we have

0, f (Re(r) — @)prdpgy > 0.
M

Therefore fM(Rg(,) — a)@idug is monotonously increasing. Hence we finish the proof of (3) and thus the
proof of the proposition. O

5. PROOF OF THE MAIN THEOREM

In this section, we will give the proof of our main theorem. Let us restate Theorem as follows.

Theorem 5.1. Let M" be a compact manifold with a metric § € WHP(M) (n < p < o). Assume the
distirbutional scalar curvature Ry > a for some constant a, and let g(t),t € (0, To] be the Ricci flow starting
from the metric §. Then for any t € (0, Ty, there holds Rg;) > a on M.

Proof. By Lemma [2.1] we get a family of smooth metrics 5 which converges to g both in C°-norm and
WP-norm. Then by Lemma[2.2] we have

‘fMRg#dﬂgﬁ = (Re, )| < Dliglly 152 0 Yo € CT (M), Y6 € (0,60, (.1

where bj is a positive function of 6 which only depends on g and satisfies lims_,o+ b5 = 0 and d¢ is some
positive constant small enough.
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dugs
dug

Moreover, we have limg_,q+

- 0, thus by Holder inequality, we have

dpigs )
= ® —1]|du;
‘»fM ( dug ¢

oM

’ f edpg, — f edu,
M M

dus
< H_d ot ol
Hg oy vM
dug,
< C s 0 -1 n_ . 52
(n,2) I ekl I (5.2)
By triangular inequality, combining (3.1)) and (5.2)), we have
‘f (Rg(s - a)‘pd/'lg(s - <R£’ —a, ‘P> < f Rg(s‘pdlug(s - <Rg5 ‘P> + |a| f ‘Pd:ug’(s - f QDd,Ug
M M M M
< brSHQDHWl,nT”l(M)’vQD eC (M)a Vo e (05 60]5 (53)
where b; is a positive function of ¢ which only depends on a, n, g and satisfies limgs_,g+ bs = 0.
By the condition on R; we have
(Ry —a,p)>0,Yp e C*(M),p > 0. (5.4)

Let gs(1), g(?) be the Ricci flow starting from the metric §; and g respectively, and let Ry, Ry and
dugy Ty, dug be the scalar curvature and the volume form of gs(¢), g(f) respectively. Take an arbitrary
T € (0, Tp] and an arbitrary nonnegative function ¢ € C*(M). For any ¢ € (0, 5g], we let ¢, be the solution
of the conjugate heat equation taken with repsect to the family of metrics gs(¢) and with ¢;|,=y = @, then
@0 > 0, and by Proposition [4.1](3), (3.3) and (5.4), we have

L(Rgé(r) — a)@dpgyry = fM(Rg5 — a)pody, = _b6“‘p0||wl,ﬁ(M)~ (5.5)

By Hoélder inequality and Proposition [4.1](1) and (2), since gs(7), (6, 1) € (0,60] X [0, To] and A are uniformly
equivalent, by Holder inequality we have

lpolly 1z 4y < €@ I Pllgolleony + V500l 201y < €, b, A, p, @),

and as mentioned in Remark it is known in [Si02] that for any fixed T € (0, To], gs(T) smoothly
converges to g(T') as ¢ tends to 0*.

Thus we can let § — 0% in inequality (5.3), and get

f (Ro(ry — a)@dpgry > 0,YT € (0, Tol, Yy € C(M).
M

Since g(#) is a smooth metric for ¢ € (0, Ty], we get that Ry;) > a pointwisely on M, which completes the
proof of the theorem. O

Now we are ready to prove Theorem
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Proof of Theorem|[[.3] Recall that R, satisfies the standard evolution equation
IiRg) = ARy + 2Ricy(n |, (5.6)

Noting that R, > 0 in distributional sense, by Theorem [I.1] we see that Ry, > 0 for any 7 € (0, 7). There
are two cases needed to be handled. First, if Ry;) = 0 on M X (0, Ty], then (5.6) shows that Ricy;) = 0 on
M x (0, Ty]. Then by Ricci flow equation we have that g(r) = g(s), ¥t, s € (0, Ty]. By (1) of Theorem 3.2]
we directly have that (M, g) is isometric to (M, g(¢)). On the other hand, if Rg;y # 0 on M X (0, To], then
by the maximal principle we get that Re;y > 0 on M for any ¢ € (0, Tp). Since g(¢) is smooth and Rg;) > 0
pointwisely on M, the theorem holds. O

6. FURTHER QUESTIONS

In this section, let us discuss some problems related to singular metrics. To study the scalar curvature of
low-regularity metrics, Schoen proposed such a conjecture (see [LM19]):

Conjecture 6.1 (Schoen). Let g be a CY metric on M which is smooth away from a submanifold ¥ ¢ M with
codim(X ¢ M) > 3, 0(M) < 0 and R; > 0 on M \ Z, then g smoothly extends to M and Ric, = 0.

Gromov also considered scalar curvature with low-regularity metrics, see [Gml4]. For a Ricci flow
approach, see also [Bal6], [Bul9l]. Motivated by their results, we will have the following natural question:

Question: Let (M", g,X) be a compact manifold with g € C%(M) and g is smooth away from X, and
R, > 0 on M\ . What is the condition on X such that there exists a smooth metric on M with nonnegative
scalar curvature? What is the condition on X such that the Ricci flow starting from g has nonnegative scalar
curvature for time ¢ > 0?

Remark 6.1. Comparing with the conjecture of Schoen and the structure of nonnegative scalar curvature in
[SY79b], one may expect that ¥ is a codimensional three submanifold for the above question.

Remark 6.2. From our result and the main result in [JSZ21], if we assume g € C° N W(M) (n < p < o),
the condition for X should be fJ-C"_P[Tl(E) <ocowhenn < p < ooor H"!(Z) =0 when p = .

APPENDIX A. LOWER SCALAR CURVATURE BOUNDS ON SINGULAR METRICS

In this appendix, we check that if g is C> away from a closed subset X with f]-f"_P]T’l(Z) < oo when
n<p<ooor H"(T) =0 when p = oo, and R, > a pointwisely on M \ X, then R, > a in distributional
sense. Though it is proved in [JSZ21]], for the sake of completeness, we give a proof here.

Lemma A.1. Let M" be a smooth manifold with g € C° N Wllo’f (M) withn < p < co. Assume g is smooth

away from a closed subset T with 9{"_%(2) <ooifn<p<ooorH () =0if p = o, and assume
Ry > a on M \ X for some constant a, then (R, — a,u) > 0 for any nonnegative u € C*(M).

To prove the Lemma we need a standard cut-off function lemma (see [JSZ21, Lemma A.1] and
[ChO31)):
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Lemma A.2. Let (M",h) be a smooth manifold. Assume ¥ C M is a closed subset. Then there exists a
sequence of cut-off function ¢ of X such that the following holds:

(1) 0 < ¢e <1 and ¢ =0inaneighborhood of ¥ and . = 1 on M \ B(X).

) IfH"'(2) = 0, then lime_ [}, [Veel(x)dx = 0.
(3) If H"P(Z) < co with p > 1, then lime_g |, IV@elP(x)dx = 0.

proof of LemmalA 1l Let n. > 0 be a sequence of smooth cut-off functions of  as in Lemmal[A.2lsuch that

(1) ne = 1 in a neighborhood of %,
(2) suppne C B«(Z)and 0 <7 < 1.
(3) limeso [y, Vnel? PV, = 0.

For any u € C*(M) with u > 0, we have
(Rg — a,u) = (Rg — a,meu) + Ry — a, (1 — neuy). (A.1)
Noting that for any € > 0, we have
(R a.(=now = [ (R~ )1 = noud, >0, (A2)
M\
Thus to prove the lemma, it suffices to show that

lirr(l) (Rg — a,neuy| = 0. (A.3)

Actually, noting that u € C*(M), by definition, (R, u) = fM (—V v (u%) + Fu%i) duy,, we can estimate

- dug dug
KRy —a,mew)| < | V|- |[V(peu——)\dun + | |F —al - neu——du,
M dpy M duy

<C f \VIIVReldun + C f \VIIVglneduy + C f \VInedun + C f |F — alneduy
M M M M

<c( [ waram) ([ ([ @n00 4 > )
M M

_ 2/p (r-2)/p
+C (f IVgI”duh) +1 (f |775|p/(p_2)dﬂh) ,
M M

here and below C = C(n, p, h, g) will denote a positive constant independent of € and varies from line to

)(p—l)/p

line.

By Holder inequality and Sobolev inequality, we have
(p=D/p (p-2)/p _ (p=D/p
([ e van) < can( [ mre2an) < cm( [ o van)
M M M

Thus we have

3 (r=D/p
KR, — a, neu)] < C( f |Vn5|1’/<1"”duh)
M
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Letting € — 0, by the properties of 1. we get (A.3). Thus we finish the proof of the lemma forn < p < .
When p = oo, the arguement above still works. (See also [LL15]].) Thus the lemma holds. O
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