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We consider a Landau-Lifshitz-Gilber equation perturbed by a multiplicative space-

dependent noise for a ferromagnet filling a bounded three-dimensional domain. We

show the existence of weak martingale solutions taking values in a sphere S
2. The reg-

ularity of weak solutions is also discussed. Our research is in response to the paper by

Kohn et al. “Magnetic elements at finite temperature and large deviation theory.” Journal

of Nonlinear Science 15 (2005): 223–53, which calls for the study of stochastic equations

with spatially varying magnetization.

1 Introduction

The study of the theory of ferromagnetism was initiated by Weiss, see [6] and references

therein, and further developed by Landau and Lifshitz [28] and Gilbert [18]. According to

this theory, the magnetization u of a ferromagnetic material occupying a region D ⊂ R
3

at temperatures below the critical (so-called Curie) temperature satisfies, for t > 0 and

x ∈ D, the following Landau–Lifshitz–Gilbert (LLG) equation:

∂u

∂t
(t, x) = λ1u(t, x) × H(t, x) − λ2u(t, x) × (u(t, x) × H(t, x)), (1.1)

where × is the vector cross product in R
3 and H is the so-called effective field, which

is the negative of the gradient (with respect to u) of the total magnetic energy func-

tional, E . In the physical situation, the total magnetic energy consists of the anisotropy
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2 Z. Brzeźniak et al.

energy, exchange energy and the stray energy. Visintin [38] studied the deterministic

Equation (1.1) taking into account all three contributions to the total magnetic energy.

In this paper, we prove the existence of weak solutions to a stochastic LLG equation tak-

ing into account the exchange energy only. Under this simplifying assumption the LLG

equation, being a mixture of the Schrödinger equation and the equation for the heat flow

of harmonic maps (see below) is still difficult and its stochastic version has never been

studied before. The same simplifying assumptions are often made in the deterministic

case, see Alouges and Soyeur [2] or Bertsch et al. [4]. The idea to ignore all terms in the

micromagnetic energy but the exchange energy goes back to Stoner and Wohlfarth [34].

Let us note that in the deterministic case the model with the exchange energy only has

been studied by Gioia and James [19] and DeSimone [13] as a limiting case of the models

including other types of energy.

In the simplified situation where the energy functional consists of the exchange

energy only, E(u) = 1
2

∫

D
|∇u(x)|2 dx, we have H = ∆u and obtain the following version of

the LLG equation:

∂u

∂t
= λ1u× ∆u− λ2u× (u× ∆u), t > 0, x ∈ D,

∂u

∂n
(t, x) = 0 t > 0, x ∈ ∂ D,

u(0, x) = u0(x) x ∈ D;

(1.2)

here λ1 ∈ R, λ2 > 0, n is the outer unit normal vector at the boundary ∂ D and we assume

that at time t = 0 the material is saturated, that is

|u0(x)| = 1 for all x ∈ D. (1.3)

Let us recall that the stationary solutions of Equation (1.2) correspond to the equilib-

rium states of the ferromagnet and are not unique in general. An important problem in

the theory of ferromagnetism is to describe phase transitions between different equilib-

rium states induced by thermal fluctuations of the field H . Therefore, the LLG equation

needs to be modified in order to incorporate random fluctuations of the field H into

the dynamics of the magnetization u and to describe noise-induced transitions between

equilibrium states of the ferromagnet. The program to analyze noise-induced transi-

tions was initiated by Néel [30] and further developed in [5, 24] and others. A simple

way to incorporate the noise into the LLG equation is to perturb the effective field by

a Gaussian noise, that is, to replace H in (1.1) by H + ξ , where informally speaking, ξ

is the white noise with respect to time variable while in general it can be colored with

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/a
m

rx
/a

rtic
le

/2
0
1
3
/1

/1
/1

6
6
6
8
9
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2



Weak Solutions of a Stochastic LLG Equation 3

respect to the space variables, that is

Eξ(s, x)ξ(t, y) = C (x, y)δ(t − s), s, t ≥ 0, x, y∈ D.

The case when C (x, y) = δ(x − y) corresponds to the space–time Gaussian white noise. It

is well known [12] in the theory of stochastic partial differential equations (PDEs) that

a rigorous interpretation of ξ is via the relationship ξ = Ẇ, where W is a Wiener process

on L2(D, R
3) (say). By a Wiener process on L2(D, R

3), we mean a process

W(t) =

∞
∑

k=1

akWk(t)ek, t ≥ 0, (1.4)

where {Wk : k≥ 1} is a family of independent real-valued Wiener processes, {ak : k≥ 1} is

a sequence of real numbers and {ek : k≥ 1} is a complete orthonormal basis of L2(D, R
3).

Informally, in the case when all ak = 1 we find that ξ = Ẇ is a space–time white noise.

Therefore, a stochastic version of the simplified LLG equation (1.2) takes the form

∂u

∂t
= λ1u× (∆u+ dW) − λ2u× (u× (∆u+ dW)). (1.5)

However, the questions of how to understand the stochastic term in this equation and

which particular Wiener process (1.4) should be chosen are not obvious. There is strong

evidence, see, for example [17, 24], and it was already argued in [5], that the stochas-

tic terms in (1.5) should be understood in the Stratonovich sense and we adopt this

approach throughout the paper (see also [7, 10] for a corresponding model of stochas-

tic harmonic maps flow). Moreover, following [17, 27], we will assume that the small-

ness of λ2 in physical problems justifies the neglect of noise in the second term on the

right-hand side of (1.5). Then a stochastic version of the simplified LLG equation takes

the form

du(t) = (λ1u(t) × ∆u(t) − λ2u(t) × (u(t) × ∆u(t))) dt +
∑

(aku(t) × ek) ◦ dWk(t), (1.6)

where ◦ dW(t) stands for the Stratonovich differential.

The question of how to choose a Wiener process modeling the thermal fluctua-

tions is more delicate. The choice of W such that Ẇ is a space–time white noise is put for-

ward in Sections 3.2 and 3.3 of an interesting paper [3], where it is argued that it leads to

correct physical conclusions. However, it seems unlikely that Equation (1.6) with ak = 1

for all k has an integrable solution. It is well known that stochastic wave equations,

stochastic Schrödinger equations and other dispersive equations are well posed only if

the driving Wiener process is sufficiently smooth in space (i.e., ak converge to zero fast

enough). We leave this issue for future investigation and in this paper assume that the
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4 Z. Brzeźniak et al.

Wiener process driving Equation (1.6) is sufficiently smooth in space. Then, for simplic-

ity of presentation, we assume that the driving noise is one-dimensional.

Finally, the stochastic version of the LLG equation we are going to study in this

paper has the form:

du(t) = (λ1u(t) × ∆u(t) − λ2u(t) × (u(t) × ∆u(t))) dt + (u(t) × h) ◦ dW(t),

∂u

∂n
(t, x) = 0 on (0, ∞) × ∂ D,

u(0, x) = u0(x) on D,

(1.7)

where W is a real-valued Wiener process and h : D → R
3 is a given bounded function. We

remark that the smallness of λ2 in physical problems gave us an excuse to neglect adding

noise to the field in the second term on the right-hand side of (1.5), thus simplifying the

form of Equation (1.7) we study in this paper; however, the smallness of the parameter λ2

is not used in our proof of existence of a weak solution of (1.7) in the following sections.

While stochastic PDEs and their applications in physics is now a well-developed

area, see, for example, [9, 12] and references therein, to the best of our knowledge fully

nonlinear stochastic dispersive equations such as Equation (1.7) have not been studied.

The only exception is a recent paper [21] made available to the authors after this work

has been completed. In [21] an equation similar to ours is studied in the whole space R
d

using difference method. The noise considered in [21] corresponds to a choice of a func-

tion h in our Equation (1.7) to be constant across the domain D. It is also not clear how

a solution to the stochastic Landau–Lifshitz equation is defined. Our work is strongly

motivated by a series of papers by Kohn and collaborators [26, 27]. In these works,

the thin film approximation is considered in the case of uniform magnetization, when

Equation (1.7) reduces to an ordinary stochastic differential equation. The question how

to extend their results to the case of nonuniform (dependent on location) magnetization

has been formulated as an open problem in [27, Sections 8.3 and 11]. Our paper opens

the way to address this issue providing a result on the existence of an appropriately

defined weak solution u satisfying the saturation condition

|u(t, x)| = 1, x ∈ D, t ≥ 0

for all times. The existence and uniqueness of smooth solutions and the analysis of

phase transitions will be the subject of forthcoming papers. Finally, we note that the

above saturation condition is not satisfied in room temperature, where the Landau–

Lifshitz–Bloch equation should be used instead, see [25] for details. Analysis of the

Landau–Lifshitz–Bloch equation driven by noise is an open problem at present.
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Weak Solutions of a Stochastic LLG Equation 5

In current applications of ferromagnetic materials such as magnetic memory

elements, the element thickness may be much smaller than the other dimensions and a

two-dimensional approximation may be adequate. However, in hard disks the horizontal

dimensions of individual single domain grains in the ferromagnetic film are compara-

ble with the film thickness, thus the domain is effectively three-dimensional; see, for

example, [1, 16, 32]. This provides a motivation to study Equation (1.7) in its full three-

dimensional version. It is also interesting that (1.7) is a stochastic PDE closely related to

other important PDEs and its mathematical analysis shares with them some difficulties.

If h= 0, λ2 = 1 and Equation (1.7) has a smooth solution usuch that |u(t, x)| = 1, then Guo

and Hong [20] have shown that the equation reduces to the following perturbation of the

harmonic maps equation:

∂u

∂t
= ∆u+ |∇u|2u+ λ1u× ∆u.

If h= 0, λ2 = 0, then, using the Hashimoto transform, (1.7) can be transformed into the

nonlinear Schrödinger equation, see [14].

The paper is structured as follows. In Section 2, Equation (1.7) is reformulated

as an evolution equation in the space L2(D, R
3) and the notion of a weak martingale

solution is made precise. Our weak martingale solution of Equation (1.7) takes values in

W1,2(D, R
3) so we need to interpret the symbol u× ∆u and the Neumann boundary con-

dition in Equation (1.7) in a weak sense via the Stokes theorem. Section 2 also contains

the main result of this paper on the existence of a weak martingale solution, formulated

as Theorem 2.7. Sections 3–5 are devoted to the proof of Theorem 2.7. In Section 3, we

introduce the Faedo–Galerkin approximations and prove for them some uniform bounds

in various norms. In Section 4, we use the method of compactness and the Skorohod

theorem to show the existence of a probability space on which a weak martingale solu-

tion is identified in Section 5. We remark that in Section 3 and parts of Sections 4 and 5,

our approach is similar to that of Flandoli and Gatarek [15], where the two-dimensional

stochastic Navier–Stokes equation is studied. However, the stochastic LLG equation is

fully nonlinear and therefore the regularizing properties of the heat semigroup can be

not directly used. In Sections 4 and 5, we also make greater use of the Skorohod theorem

and avoid using a martingale representation theorem, instead using more direct analytic

arguments. Finally, in the appendices we collected, for the reader’s convenience, some

facts scattered in the literature that are used in the course of the proof.

Notation. The bounded domain D is fixed throughout the paper. We assume that

the boundary ∂ D is C 1; this is sufficient to ensure that the Stokes theorem and standard

theorems concerning Sobolev spaces, which we use below, are valid. The domain D is
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6 Z. Brzeźniak et al.

omitted in the notation of relevant functional spaces. We will use the notation L
p for the

space L p(D, R
3), W

k,p for the Sobolev space Wk,p(D, R
3) and so on. We write H

k instead

of W
k,2 and we sometimes denote by H the Hilbert space L

2 and by V the Hilbert space

H
1. The dual space of V is denoted by V′. Occasionally, we use the same notation for the

corresponding spaces of functions which take matrix values such as L2(D, R
3 ⊗ R

3) and

H1(D, R
3 ⊗ R

3).

We use the notation 〈·, ·〉 for an inner product and also for a pairing of vectors

from a space and its dual; a norm is denoted by | · |. Subscripts denote the appropriate

spaces, except that a subscript may be omitted if the space is a Euclidean space.

2 Definition of a Solution and the Main Results

Assumption 2.1. We assume that we have a filtered probability space (Ω,F , F, P),

where F = (Ft)t≥0 is the filtration, and this probability space satisfies the so-called usual

conditions, that is

(i) P is complete on (Ω,F);

(ii) for each t ≥ 0, Ft contains all (F , P)-null sets;

(iii) the filtration F is right-continuous.

We also assume that defined on this space is a real-valued, (Ft)-adapted Wiener process

(W(t))t≥0. �

Let us observe that since we assume that h∈ L
∞ the map G defined by

G : H ∋ u �→ u× h∈ H (2.1)

is well defined and, see for instance [8], we have, at least on an informal level, the fol-

lowing equality relating the Stratonovich and Itô differentials:

(Gu) ◦ dW(t) = 1
2
G ′(u)[Gu] dt + G(u) dW(t), u∈ H. (2.2)

Since G is a linear map, we infer that G ′(u)[G(u)] = G2u= (u× h) × h. Thus, we have

(Gu) ◦ dW(t) = GudW(t) + 1
2
(u× h) × hdt, u∈ H. (2.3)
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Weak Solutions of a Stochastic LLG Equation 7

Denote by A the Laplacian with the Neumann boundary conditions acting on R
3-valued

functions, that is

D(A) :=

{

u∈ H
2 :

∂u

∂n
= 0 on ∂ D

}

,

Au:= −∆u, u∈ D(A),

(2.4)

where n= (n1, n2, n3) is the unit outward normal vector field on ∂ D and ∂u
∂n

is the direc-

tional derivative of u in the direction n.

It is well known that A is a self-adjoint operator in H and that (I + A)−1 is com-

pact. Hence there exists an orthonormal basis {en}
∞
n=1 of H consisting of eigenvectors of

A. Define A1 := I + A. It is also known that

D(A
1/2
1 ) = H

1. (2.5)

Suppose that u∈ D(A) and v ∈ H
1. Then, by the Stokes theorem, we obtain

〈Au, v〉L2 =

∫

D

〈∇u(x), ∇v(x)〉 dx −

∫

∂ D

〈

∂u

∂n
(y), v(y)

〉

dσ(y) =

∫

D

〈∇u(x), ∇v(x)〉 dx, (2.6)

where σ is the surface measure on ∂ D.

The definition of weak solution will be preceded by some identities, mostly

following Visintin’s paper [38].

Proposition 2.2. If v ∈ V and u∈ D(A), then

∫

D

〈u(x) × Au(x), v(x)〉 dx =
∑

i

∫

D

〈

∂u

∂xi

(x),
∂(v × u)

∂xi

(x)

〉

dx. (2.7)

�

Proof of formula (2.7). Because u∈ H
2, Au∈ L

2 and by the Sobolev–Gagliardo inequal-

ities u∈ L
∞. Hence, u× Au belongs to L

2 and the left-hand side of (2.7) is well defined.

Invoking again the Sobolev–Gagliardo inequalities, we obtain v ∈ L
6, ∂v

∂xi
∈ L

2, i = 1, 2, 3,

and u∈ L
∞ and ∂u

∂xi
∈ L

6, j = 1, 2, 3. Therefore, the right-hand side of equality (2.7) is well

defined as well. Since

〈a × (b × c), d〉 = 〈c, (d× a) × b〉, ab, c, d∈ R
3,

we have

∫

D

〈u(x) × Au(x), v(x)〉 dx =

∫

D

〈Au(x), v(x) × u(x)〉 dx = −
∑

i

∫

D

〈

∂2u

∂x2
i

(x), v(x) × u(x)

〉

dx.
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8 Z. Brzeźniak et al.

Applying the Stokes theorem to the last integral, see, for example [36, Theorem 1.2, p.7],

we infer that

∫

D

〈u(x) × Au(x), v(x)〉 dx

=

∫

D

∑

i

〈

∂u

∂xi

(x),
∂(v(x) × u(x))

∂xi

〉

dx −

∫

∂ D

∑

i

νi

〈

∂u

∂xi

(x), v(x) × u(x)

〉

dσx

=

∫

D

∑

i

〈

∂u

∂xi

(x),
∂(v × u)

∂xi

(x)

〉

dx −

∫

∂ D

〈

∂u

∂ν
(x), v(x) × u(x)

〉

dσ(x),

and (2.7) follows. �

Lemma 2.3. If v ∈ V and u∈ D(A), then

∑

i

∫

D

〈

∂u

∂xi

(x), v(x) ×
∂u

∂xi

(x)

〉

dx = 0. (2.8)

�

Proof. Taking into account that 〈a × b, b〉 = 0 it is enough to show that the integral

in (2.8) is well defined but this follows immediately from the Gagliardo–Nirenberg

inequality �

Thus, we obtain the following result as a direct consequence of Proposition 2.2

and Lemma 2.3.

Corollary 2.4. If v ∈ V and u∈ D(A), then

∫

D

〈u(x) × Au(x), v(x)〉 dx =
∑

i

∫

D

〈

∂u

∂xi

(x),
∂v

∂xi

(x) × u(x)

〉

dx. (2.9)

�

Now we are ready to formulate the definition of a weak solution.

Definition 2.5. Given T ∈ (0, ∞), a weak martingale solution (Ω,F , (Ft)t∈[0,T ], P, W, u)

to Equation (1.7), for the time interval [0, T ], consists of a filtered probability space

(Ω,F , (Ft)t∈[0,T ], P), with the filtration satisfying the usual conditions, a real-valued

(Ft)-adapted Wiener process W = (Wt)t∈[0,T ], and a progressively measurable process

u: [0, T ] × Ω → H
1 such that:
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Weak Solutions of a Stochastic LLG Equation 9

(a) for P-a.e. ω ∈ Ω,

u(·, ω) ∈ C ([0, T ]; V ′) and sup
t∈[0,T ]

|u(t, ω)|H1 < ∞; (2.10)

(b) we have

|u(t, x)| = 1, for Lebesgue—a.e. x ∈ D for all t ∈ [0, T ],

P a.e.; (2.11)

(c) for each ϕ ∈ W
1,4, we have:

〈u(t), ϕ〉L2 − 〈u0, ϕ〉L2 = −λ1

∫ t

0

∑

i

∫

D

〈

∂u

∂xi

(s, x),
∂ϕ

∂xi

(x) × u(s, x)

〉

dx ds

− λ2

∫ t

0

∑

i

∫

D

〈

∂u

∂xi

(s, x),
∂(u× ϕ)

∂xi

(s, x) × u(s, x)

〉

dx ds

+

∫ t

0

∫

D

〈u(s, x) × h(x), ϕ(x)〉dx ◦ dW(s) (2.12)

for all t ∈ [0, T ], P a.e. �

The significance of conditions (a)–(c) in Definition 2.5 is as follows. Condition (b)

requires the magnetization to remain saturated at all times, while condition (a) requires

that the magnetic energy stays bounded on the time interval [0, T ]. If there exists a mea-

surable process u which satisfies conditions (a) and (b) and also takes values in D(A),

then, in view of Corollary 2.4, it seems reasonable to say that u solves Equation (1.7)

only if condition (c) holds. However, condition (c) makes sense even for processes which

satisfy (a) and (b) without taking values in D(A). In the following sections, we will prove

the existence of a weak solution which in fact solves Equation (1.7) in a stronger sense

than in Definition 2.5. In order to formulate our main result we need to explain pre-

cisely how Corollary 2.4 motivates our notation u× ∆u, where u is our weak martingale

solution.

Notation 2.6. We wish to use the notation u× ∆u for our weak martingale solution u

even when we do not know that u has weak second-order derivatives. By u× ∆u: [0, T ] ×

Ω → H, we mean a measurable process in H such that for almost every (t, ω) ∈ [0, T ] × Ω

the following identity is satisfied for all φ in W
1,4:

〈(u× ∆u)(t, ω), φ〉L2 =

3
∑

i=1

〈

∂u(t, ω)

∂xi

, u(t, ω) ×
∂φ

∂xi

〉

L2

. (2.13)

�
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10 Z. Brzeźniak et al.

Clearly for a process u in H
1 the right-hand side of (2.13) makes sense and since

the orthonormal basis {en : n∈ N} is contained in W
1,4, when there exists a process u×

∆u, u and property (2.13) determines u× ∆u uniquely up to a set of measure zero.

Now we can formulate the main result of this paper.

Theorem 2.7. Assume that u0 ∈ H
1 satisfies (1.3) and h∈ L

∞ ∩ W
1,3. For T ∈ (0, ∞), there

exists a weak martingale solution (Ω,F , (Ft)t∈[0,T ], P, W, u) to Equation (1.7) such that

(a) we have

E

∫ T

0

|(u× ∆u)(t)|2
L2 dt < ∞ (2.14)

and

E

[

sup
t∈[0,T ]

|u(t)|4
H1

]

< ∞, (2.15)

(b) for every t ∈ [0, T ], P-a.s.,

u(t) = u0 + λ1

∫ t

0

(u× ∆u)(s) ds − λ2

∫ t

0

u(s) × (u× ∆u)(s) ds

+

∫ t

0

(u(s) × h) ◦ dW(s), (2.16)

where the first two integrals are the Bochner integrals in L
2 and the

Stratonovich integral is well defined in L
2,

(c) for every α ∈ (0, 1
2
), P-a.s.,

u(·) ∈ C α([0, T ], L
2). (2.17)

�

This theorem can be considered as an extension of similar result obtained in [2]

for the deterministic Landau–Lifschitz–Gilbert equation. Let us note that the approxi-

mations used in [2] are different from ours. Part (b) of the theorem shows that a weak

solution we constructed has in fact more regularity than required by its definition. This

result was also proved in [2] for deterministic equation but was not explicitly stated.

The remaining part of the paper is devoted to the proof of this theorem.

3 Faedo–Galerkin Approximation

Let πn denote the orthogonal projection from H onto Hn := linspan{e1, . . . , en}. Let us note

that A(Hn) ⊂ Hn ⊂ L
∞ so that we have the following.
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Weak Solutions of a Stochastic LLG Equation 11

Lemma 3.1. Define the maps

F 1
n : Hn ∋ u �→ πn(u× ∆u) ∈ Hn, (3.1)

F 2
n : Hn ∋ u �→ πn(u× (u× ∆u)) ∈ Hn, (3.2)

Gn : Hn ∋ u �→ πn(u× h) ∈ Hn. (3.3)

The maps F 1
n and F 2

n are Lipschitz on balls, the map Gn is linear and

|Gnu|Hn
≤ |h|L∞ |u|H, u∈ Hn. (3.4)

�

We have the following simple consequences of the identity 〈a × b, b〉 = 0 and the

fact that πn is self-adjoint.

Lemma 3.2. Assume that h∈ L
∞. Then for all u∈ Hn, and i = 1, 2,

〈F i
n(u), u〉H = 0 and 〈Gnu, u〉H = 0.

�

The following simple facts will be useful for estimating the H
1 norm of the

Faedo-Galerkin approximants:

Lemma 3.3. For all u∈ Hn, and i = 1, 2,

〈F 1
n (u), ∆u〉H = 0, (3.5)

〈F 2
n (u), ∆u〉H = −|u× ∆u|2

H
. (3.6)

�

Proof of Lemma 3.3. Let us fix u∈ Hn. Because ∆u∈ Hn for u∈ Hn, we have the following

sequences of equalities:

〈F 1
n (u), ∆u〉H = 〈πn(u× ∆u), ∆u〉H = 〈u× ∆u, πn(∆u)〉H

= 〈u× ∆u, ∆u〉H = 0,

〈F 2
n (u), ∆u〉H = 〈πn(u× (u× ∆u)), ∆u〉H = 〈u× (u× ∆u), πn(∆u)〉H

= 〈u× (u× ∆u), ∆u〉H = −|u× ∆u|2
H

,

where the last equality follows from the identity

〈a × (a × b), b〉 = −|a × b|2, a, b ∈ R
3.

This concludes the proof of the Lemma. �

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/a
m

rx
/a

rtic
le

/2
0
1
3
/1

/1
/1

6
6
6
8
9
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2



12 Z. Brzeźniak et al.

Let Fn = λ1 F 1
n − λ2 F 2

n . In view of Lemmas 3.1 and 3.2 the following stochastic

differential equation on Hn

dun(t) = Fn(un(t)) dt + Gnun(t) ◦ dW(t),

un(0) = πnu0

(3.7)

has a unique strong global solution un = (un(t)), t ≥ 0 (see, e.g., [11, Theorem 10.6]). Note

that, since the map Gn is linear, by putting

F̂n(u) := Fn(u) + 1
2
G ′

n(u)(Gnu) = Fn(u) + 1
2
G2

nu= Fn(u) + 1
2
πn[(πn(u× h)) × h] (3.8)

the Stratonovich stochastic differential Equation (3.7) can be written in the following

Itô form, see for instance [8],

dun(t) = F̂n(un(t)) dt + Gn(un(t)) dW(t).

Note also that

|un(0)|H = |πnu0|H ≤ |u0|H, n∈ N. (3.9)

Definition 3.4 (Fractional power spaces of A1 = I + A). For any nonnegative real num-

ber β we define the Hilbert space Xβ := D(A
β

1), which is the domain of the fractional

power operator A
β

1 with the graph norm | · |Xβ := |A
β

1 · |L2 . The space X0 = L
2 is identified

with its dual. For positive real β, the dual of Xβ is denoted by X−β and the norm | · |X−β

of X−β satisfies |x|X−β = |A
−β

1 x|L2 when x is in L
2. �

Our aim is to prove the following a priori estimates.

Theorem 3.5. Assume that h∈ L
∞ ∩ W

1,3 and T ∈ (0, ∞).

For each n= 1, 2, . . . and every t ∈ [0, T ]

|un(t)|L2 = |un(0)|L2 P a.s., (3.10)
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Weak Solutions of a Stochastic LLG Equation 13

moreover, given 2 ≤ p< ∞ and β > 1
4

there exists a constant C , which does not depend

on n but which may depend on u0, h, T , p, and β such that

E

[

sup
t∈[0,T ]

|∇un(t)|
2p

L2

]

≤ C , (3.11)

E

[

(∫ T

0

|un(t) × ∆un(t)|
2
L2 dt

)p
]

≤ C , (3.12)

E

[

(∫ T

0

|un(t) × (un(t) × ∆un(t))|
2

L
3
2

dt

)

p
2

]

≤ C , (3.13)

E

[∫ T

0

|πn[un(t) × (un(t) × ∆un(t))]|
2
X−β dt

]

≤ C , (3.14)

for all n∈ N. �

The rest of this section is devoted to the proof of Theorem 3.5.

Proof of inequality (3.10). We will apply the Itô Lemma to a process ϕ(un), where ϕ :

Hn ∋ u �→ 1
2
|u|2

H
∈ R. Since G∗

n = −Gn, in view of Lemmas 3.1 and 3.2, we obtain

1
2
d|un|

2
H

= 〈F̂n(un), un〉H dt + 〈Gnun, un〉H dW + 1
2
|Gnun|

2
H

dt

= 1
2
〈G2

nun, un〉H dt − 1
2
〈G2

nun, un〉H dt = 0.

Therefore,

1
2
|un(t)|

2
H

= 1
2
|un(0)|2

H
, for all t ≥ 0, P a.s.

as required. �

Proof of inequality (3.11). Let us introduce a function φ defined by

φ(u) = 1
2
|∇u|2

H
, u∈ Hn.

Then

φ′(u)g = 〈∇u, ∇g〉H and φ′′(u)(g, k) = 〈∇g, ∇k〉H, for all u, g, k∈ Hn.

Hence, by the Stokes formula (2.6), we have

φ′(u)g = −〈∆u, g〉H, u, g ∈ Hn. (3.15)
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14 Z. Brzeźniak et al.

Therefore, the Itô formula from [31] yields for all t ≥ 0, P-a.s.

φ(un(t)) − φ(un(0)) =

∫ t

0

〈∇un(s), ∇[F̂n(un)](s)〉H ds

+

∫ t

0

〈∇un(s), ∇[Gnun](s)〉H dW(s) +
1

2

∫ t

0

|∇[Gnun](s)|2
H

ds.

Since, by Lemma 3.3 and formulae (3.8)–(3.15), we have

〈∇un(s), ∇[F̂n(un)](s)〉H = 〈∇un(s), ∇[Fn(un)](s)〉H + 1
2
〈∇un(s), ∇[G2

n(un)](s)〉H

= −〈∆un(s), Fn(un(s))〉H + 1
2
〈∇un(s), ∇[G2

n(un)](s)〉H

= −λ2|un(s) × ∆un(s)|
2
H

+ 1
2
〈∇un(s), ∇[G2

n(un)](s)〉H,

we obtain for t ≥ 0, P-a.s.

1

2
|∇un(t)|

2
H

+ λ2

∫ t

0

|un(s) × ∆un(s)|
2
H

ds

=
1

2
|∇un(0)|2

H
+

∫ t

0

〈∇un(s), ∇[Gnun](s)〉H dW(s)

+
1

2

∫ t

0

|∇[Gnun](s)|2
H

ds +
1

2

∫ t

0

〈∇un(s), ∇[G2
n(un)](s)〉H ds. (3.16)

Recall that we defined A1 = I + A, thus we obtain the estimate

|∇Gnun(s)|
2
L2 ≤ |A

1
2

1 πn(un(s) × h)|2
L2 = |Gnun(s)|

2
H1

≤ |A
1
2

1 (un(s) × h)|2
L2 = |un(s) × h|2

H1

= |∇(un(s) × h)|2
L2 + |un(s) × h|2

L2

≤ 2[|∇un(s) × h|2
L2 + |un(s) × ∇h|2

L2 ] + |un(s) × h|2
L2 . (3.17)

From Hölder’s inequality and the Sobolev imbedding of H
1 into L

6, we have

|un(s) × ∇h|2
L2 ≤ |un(s)|

2
L6 |∇h|2

L3

≤ c(|∇un(s)|
2
L2 + |un(s)|

2
L2)|∇h|2

L3 . (3.18)

We obtain from (3.17), (3.18), and (3.10)

|∇Gnun(s)|
2
L2 ≤ 2[|h|2

L∞ |∇un(s)|
2
L2 + c(|∇un(s)|

2
L2 + |un(s)|

2
L2)|∇h|2

L3 ] + |h|2
L∞ |un(s)|

2
L2

≤ a|∇un(s)|
2
L2 + b, for all s ≥ 0, P-a.s. (3.19)

for some constants a and b depending only on h and u0.
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Weak Solutions of a Stochastic LLG Equation 15

The same reasoning that leads to inequality (3.19) yields the following estimate.

|∇G2
nun(s)|

2
L2 ≤ a|∇(Gnun(s))|

2
L2 + b

≤ a(a|∇un(s)|
2
L2 + b) + b

= a1|∇un(s)|
2
L2 + b1 for all s ≥ 0, P-a.s.. (3.20)

Thanks to the estimates in (3.19) and (3.20), we have, from Equation (3.16),

sup
r∈[0,t]

|∇un(r)|2
L2 ≤ |∇un(0)|2

L2 + 2 sup
r∈[0,t]

∣

∣

∣

∣

∫ r

0

〈∇un(s), ∇Gnun(s)〉L2 dW(s)

∣

∣

∣

∣

+

∫ t

0

(a2|∇un(s)|
2
L2 + b2) ds for all t ≥ 0, P-a.s., (3.21)

where a2 and b2 depend on h and u0 but not on n.

Take p∈ [2, ∞) and recall that T ∈ (0, ∞). We now raise both sides of inequality

(3.21) to the power p, take expectations and invoke the Burkholder–Davis–Gundy (BDG)

inequality (see Appendix 3) and Jensen’s inequality to obtain for any t ∈ [0, T ]:

E

[

sup
r∈[0,t]

|∇un(r)|
2p

L2

]

≤ cE

[

(∫ t

0

〈∇un(s), ∇Gnun(s)〉
2
L2 ds

)

p
2

]

+

∫ t

0

(a3E[|∇un(s)|
2p

L2 ] + b3) ds

≤ aT + bT

∫ t

0

E

[

sup
r∈[0,s]

|∇un(r)|
2p

L2

]

ds, (3.22)

where c, a3, b3, aT , and bT depend on h, u0, p, and T but not on n. Finally, using the

Gronwall inequality we obtain (3.11). �

Proof of inequality (3.12). Since λ2 > 0, we can proceed from identity (3.16) and write

down inequalities like (3.21) and (3.22) but with
∫ t

0
|un(s) × ∆un(s)|

2
H ds on the left-hand

side in place of supr∈[0,t] |∇un(r)|2
L2 . Inequality (3.12) then follows immediately by using

inequality (3.11) on the right-hand side. �

Proof of inequality (3.13). By Hölder’s inequality and the Sobolev imbedding of H
1 into

L
6 we have

|un(t) × (un(t) × ∆un(t))|
L

3
2

≤ |un(t)|L6 |un(t) × ∆un(t)|L2

≤ c|un(t)|H1 |un(t) × ∆un(t)|L2 . (3.23)
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16 Z. Brzeźniak et al.

We use the inequality (3.23) to obtain the estimate in (3.13) (in the following, c1 and c2

are constants not depending on n):

E

[

(∫ T

0

|un(t) × (un(t) × ∆un(t))|
2

L
3
2

dt

)

p
2

]

≤ c1E

[

sup
r∈[0,T ]

|un(r)|
p

H1

(∫ T

0

|un(t) × ∆un(t)|
2
L2 dt

)

p
2

]

≤ c1

(

E

[

sup
t∈[0,T ]

|un(t)|
2p

H1

])
1
2
(

E

[

(∫ T

0

|un(t) × ∆un(t)|
2
L2 dt

)p
])

1
2

≤ c2,

thanks to inequalities (3.10)–(3.12). �

Proof of inequality (3.14). Let β > 1
4
. The fractional power space Xβ is continuously

imbedded in L
3 (see, e.g., [22, Theorem 1.6.1]). Consequently, L

3
2 is continuously imbed-

ded in X−β . Thus, we have

E

∫ T

0

|πn[un(t) × (un(t) × ∆un(t))]|
2
X−β dt

≤ E

∫ T

0

|un(t) × (un(t) × ∆un(t))|
2
X−β dt

≤ cE

∫ T

0

|un(t) × (un(t) × ∆un(t))|
2

L
3
2

dt,

and we invoke inequality (3.13) to complete the proof. �

4 Tightness, Continuing the Proof of Theorem 2.7

In this section, we show that the set of laws {L(un) : n∈ N}, on a suitable path space, is

tight; we then use Skorohod’s theorem to obtain a probability space and a pointwise

convergent sequence defined on this space whose limit is a weak martingale solution of

Equation (1.7). We leave for Section 5 the verification of property (c) of Definition 2.5 and

the proofs of Theorem 2.7(b) and (c).

Equation (3.7) can be written in the following way:

un(t) = u0,n + λ1

∫ t

0

F 1
n (un(s)) ds − λ2

∫ t

0

F 2
n (un(s)) ds +

1

2

∫ t

0

G2
nun(s) ds +

∫ t

0

Gnun(s) dW(s),

=: u0,n +

4
∑

i=1

ui
n(t) t ≥ 0.

Our first aim is to prove the following:
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Weak Solutions of a Stochastic LLG Equation 17

Lemma 4.1. The terms ui
n as path-valued random variables have the following uniform

bounds.

(1) There exists C ∈ (0, ∞) such that, for all n∈ N,

E[|u1
n|

2
W1,2(0,T ;L2)] ≤ C .

(2) For each β > 1
4

there exists C ∈ (0, ∞) such that, for all n∈ N,

E[|u2
n|

2
W1,2(0,T ;X−β )] ≤ C .

(3) There exists C ∈ (0, ∞) such that for all n∈ N

|u3
n|

2
W1,2(0,T ;L2) ≤ C , P-a.s.

(4) For each p∈ [2, ∞) and α ∈ (0, 1
2
) there exists C > 0 such that, for all n∈ N,

E[|u4
n|

p

Wα,p(0,T ;L2)
] ≤ C . (4.1)

It follows that for each β > 1
4
, α ∈ (0, 1

2
), and p∈ [2, ∞) we have the uniform bound for un:

sup
n∈N

E[|un|
2
Wα,p(0,T ;X−β )] < ∞. (4.2)

�

Proof. The first three of the above inequalities follow from Theorem 3.5.

In order to prove (4.1) let us first observe that in view of the first a priori estimate

(3.10) in Theorem 3.5, for each p∈ [2, ∞), we have

sup
n∈N

E

[

sup
t∈[0,T ]

|un(t)|
p

L2

]

< ∞.

Thus, inequality (4.1) is a direct consequence of inequality (3.4) and Lemma A.1.

The inequality (4.2) follows from the other inequalities thanks to the continuous

imbeddings

(i) L
2 →֒ X−β , and,

(ii) by Simon [33, Corollary 18, p. 138], W1,2(0, T ; X−β) →֒ Wα,p(0, T ; X−β) if 1
2

>

α − 1
p
. �
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18 Z. Brzeźniak et al.

Lemma 4.2. For any p∈ [2, ∞) and q ∈ [2, 6) and β > 1
4

the set of laws {L(un) : n∈ N} on

the Banach space

L p(0, T ; L
q) ∩ C ([0, T ]; X−β)

is tight. �

Proof. We use some quite deep compactness results in path spaces by Flandoli and

Gatarek [15] and also listed in Appendix 2, together with the fact that Xν is compactly

imbedded in Xν ′

whenever ν and ν ′ are real numbers with ν > ν ′ (see, e.g., [22, Theorem

1.4.8]). The idea is to show that the laws L(un) are concentrated on a ball in a space of

paths which is compactly imbedded in another space of paths.

Now to be more precise. Take p∈ [2, ∞) and β ′ > 1
4

and α ∈ (0, 1
2
).

For γ ∈ [−β ′, 1
2
) the space L p(0, T ; H

1) ∩ Wα,p(0, T ; X−β ′

) is compactly imbedded in

L p(0, T ; Xγ ), by Lemma A.2 and [15, Theorem 2.1]. We note that for any positive real

number r

P{|un|L p(0,T ;H1)∩Wα,p(0,T ;X−β′
) > r}

≤ P

{

|un|L p(0,T ;H1) >
r

2

}

+ P

{

|un|Wα,p(0,T ;X−β′
) >

r

2

}

≤
4

r2
E[|un|

2
L p(0,T ;H1) + |un|

2
Wα,p(0,T ;X−β′

)
]

and the expected value on the right-hand side of the last inequality is uniformly

bounded in n, by the estimates in (4.2), (3.10), and (3.11). This implies that the family

of laws {L(un) : n∈ N} is tight on L p(0, T ; Xγ ). Given q ∈ [2, 6) we can find γ < 1
2

such that

Xγ is continuously imbedded in L
q (see [22, Theorem 1.6.1]) and hence L p(0, T ; Xγ ) is con-

tinuously imbedded in L p(0, T ; L
q). Since tightness of laws is preserved by continuous

maps, {L(un) : n∈ N} is also tight on L p(0, T ; L
q).

By Flandoli and Gatarek [15, Theorem 2.2], if β > β ′ and αp> 1, then

Wα,p(0, T ; X−β ′

) is compactly imbedded in C ([0, T ]; X−β). This allows us to conclude that

the family of laws {L(un) : n∈ N} is tight on C ([0, T ]; X−β).

The lemma is proved by combining these two tightness results. �

4.1 Proof of the existence of a solution

By Lemma 4.2, we can find a subsequence of (un), denoted in the same way as the full

sequence, such that the laws L(un, W) converge weakly to a certain probability measure

µ on L p(0, T ; L
q) ∩ C ([0, T ]; X−β) × C ([0, T ]; R), where p∈ [2, ∞), q ∈ [2, 6) and β > 1

4
are

chosen real numbers. In what follows, we choose p= 4, q = 4, and β = 1
2
.
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Weak Solutions of a Stochastic LLG Equation 19

Proposition 4.3. There exists a probability space (Ω ′,F ′, P
′) and there exists a sequence

(u′
n, W′

n) of L4(0, T ; L
4) ∩ C ([0, T ]; X−β) × C ([0, T ]; R)-valued random variables defined on

(Ω ′,F ′, P
′) such that the laws of (un, W) and (u′

n, W′
n) on L4(0, T ; L

4) ∩ C ([0, T ]; X−β) ×

C ([0, T ]; R) are equal for each n∈ N and there exists an L4(0, T ; L
4) ∩ C ([0, T ]; X−β) ×

C ([0, T ]; R)-valued random variable (u′, W′) defined on (Ω ′,F ′, P
′) such that the law of

(u′, W′) on L4(0, T ; L
4) ∩ C ([0, T ]; X−β) × C ([0, T ]; R) is equal to µ and

u′
n → u′ in L4(0, T ; L

4) ∩ C ([0, T ]; X−β) P
′ a.s. (4.3)

and

W′
n → W′ in C ([0, T ]; R) P

′ a.s. (4.4)

�

Proof. This result follows from the Skorohod theorem, see, for example [23,

Theorem 4.30], once we observe that L4(0, T ; L
4) ∩ C ([0, T ]; X−β) × C ([0, T ]; R) is a sep-

arable metric space. �

Remark 4.4. The Borel subsets of C ([0, T ]; Hn) are Borel subsets of L4(0, T ; L
4) ∩

C ([0, T ]; X−β) (see [37, Theorem 1.1, Chapter 1]) and P{un ∈ C ([0, T ]; Hn)} = 1. Hence, we

may assume that u′
n takes values in Hn and that the laws on C ([0, T ]; Hn) of un and u′

n are

equal. �

Thanks to Remark 4.4, it is straightforward to show that the sequence (u′
n) sat-

isfies the same estimates as the original sequence (un). In particular, from Theorem 3.5

sup
t∈[0,T ]

|u′
n(t)|L2 ≤ |u0|L2 , P

′-a.s., (4.5)

sup
n∈N

E
′

[

sup
t∈[0,T ]

|u′
n(t)|

2r
H1

]

< ∞ for any real r ≥ 1, (4.6)

sup
n∈N

E
′

[

(∫ T

0

|u′
n(t) × ∆u′

n(t)|
2
L2 dt

)r
]

< ∞ for any real r ≥ 1, (4.7)

sup
n∈N

E
′

∫ T

0

|u′
n(t) × (u′

n(t) × ∆u′
n(t))|

2
L3/2 dt < ∞, (4.8)

sup
n∈N

E
′

∫ T

0

∣

∣πn[u′
n(t) × (u′

n(t) × ∆u′
n(t))]

∣

∣

2

X−β dt < ∞. (4.9)
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20 Z. Brzeźniak et al.

Estimates (4.5) and (4.6) for u′
n lead to corresponding estimates for u′. Extend the defini-

tions of | · |H and | · |H1 to the domain X− 1
2 as follows:

|v|H := ∞ if v ∈ X− 1
2 \H

and

|v|H1 := ∞ if v ∈ X− 1
2 \H

1;

these extended maps are lower semicontinuous. Similarly, the extended maps

v ∈ C ([0, T ]; X− 1
2 ) �→ sup

t∈[0,T ]

|v(t)|H and v ∈ C ([0, T ]; X− 1
2 ) �→ sup

t∈[0,T ]

|v(t)|H1

are lower semicontinuous. Therefore, pointwise convergence of u′
n to u′ in C ([0, T ]; X− 1

2 )

and (4.5) imply that

sup
t∈[0,T ]

|u′(t)|H ≤ |u0|H (4.10)

and

sup
t∈[0,T ]

|u′(t)|X−β ≤ c|u0|H (4.11)

P
′ a.s., where c in (4.11) is a positive real constant. Pointwise convergence of u′

n to u′ in

C ([0, T ]; X− 1
2 ) and inequality (4.6) and Fatou’s lemma imply that u′ enjoys the following

property:

E
′

[

sup
t∈[0,T ]

|u′(t)|4
H1

]

< ∞. (4.12)

Pointwise convergence of u′
n to u′ in L4(0, T ; L

4) and uniform integrability from (4.6) and

(4.12) yield

E
′

∫ T

0

|u′
n(t) − u′(t)|4

L4 dt → 0 (4.13)

as n goes to infinity.

By inequalities (4.7)–(4.9), we can also assume that, given real r ≥ 1, there exist

measurable processes on [0, T ] × Ω ′, Y ∈ L2r(Ω ′; L2(0, T ; L
2)) and Z ∈ L2(Ω ′; L2(0, T ; L

3
2 ))

such that

u′
n × ∆u′

n → Y weakly in L2r(Ω ′; L2(0, T ; L
2)), (4.14)

u′
n × (u′

n × ∆u′
n) → Z weakly in L2(Ω ′; L2(0, T ; L

3
2 )), (4.15)

and

πn(u
′
n × (u′

n × ∆u′
n)) → Z weakly in L2(Ω ′; L2(0, T ; X−β)). (4.16)
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Weak Solutions of a Stochastic LLG Equation 21

Inequality (4.6) implies that supn∈N
E

′
∫ T

0
|u′

n(t)|
2
H1 dt < ∞ and this implies that we

can assume there is weak convergence of weak derivatives

∂u′
n

∂xi

→
∂u′

∂xi

weakly in L2(Ω ′; L2(0, T ; L
2)), i = 1, 2, 3. (4.17)

We use this fact to prove Lemma 4.5. This lemma shows that the process Y from (4.14)

is u′ × ∆u′ in the weak sense described in Notation 2.6.

Lemma 4.5. For any measurable process ϕ ∈ L4(Ω ′; L4(0, T ; W
1,4)) in the Sobolev space

W
1,4, we have the equality

lim
n→∞

E
′

∫ T

0

〈u′
n(s) × ∆u′

n(s), ϕ(s)〉L2 ds

= E
′

∫ T

0

〈Y(s), ϕ(s)〉L2 ds

= E
′

∫ T

0

3
∑

i=1

〈

∂u′(s)

∂xi

, u′(s) ×
∂ϕ(s)

∂xi

〉

L2

ds.
�

Remark 4.6. It follows by considering processes of the form ϕ(t, ω) := χB(t, ω)ψ , where

χB is the indicator of a measurable subset B of [0, T ] × Ω ′ and ψ is a fixed element of

W
1,4, that for each ψ ∈ W

1,4

〈Y(t, ω), ψ〉L2 =

3
∑

i=1

〈

∂u′(t, ω)

∂xi

, u′(t, ω) ×
∂ψ

∂xi

〉

L2

(4.18)

for almost every (t, ω) ∈ [0, T ] × Ω ′. Since W
1,4 is separable, for (t, ω) outside a set of

measure zero, equality (4.18) holds for all ψ ∈ W
1,4. �

Proof. We now prove Lemma 4.5. By Corollary 2.4, for each n∈ N, we have

〈u′
n(t) × ∆u′

n(t), ϕ〉L2 =

3
∑

i=1

〈

∂u′
n(t)

∂xi

, u′
n(t) ×

∂ϕ(t)

∂xi

〉

L2

(4.19)

for almost every t ∈ [0, T ] P
′ a.s. Indeed, by Remark 4.4 the law of u′

n is supported by

C ([0, T ]; Hn) and Hn ⊂ D(A). For each i ∈ {1, 2, 3}, we may write

〈

∂u′
n

∂xi

, u′
n ×

∂ϕ

∂xi

〉

L2

−

〈

∂u′

∂xi

, u′ ×
∂ϕ

∂xi

〉

L2

=

〈

∂u′
n

∂xi

−
∂u′

∂xi

, u′ ×
∂ϕ

∂xi

〉

L2

+

〈

∂u′
n

∂xi

, (u′
n − u′) ×

∂ϕ

∂xi

〉

L2

.

(4.20)
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22 Z. Brzeźniak et al.

Because ϕ ∈ L4(Ω ′; L4(0, T ; W
1,4)), in view of (4.13) and (4.6) and Hölder’s inequality, we

infer that

E
′

∫ T

0

∣

∣

∣

∣

〈

∂u′
n(t)

∂xi

, (u′
n(t) − u′(t)) ×

∂ϕ(t)

∂xi

〉

L2

∣

∣

∣

∣

dt

≤ C

(

E
′

[

sup
t∈[0,T ]

|u′
n(t)|

2
H1

])
1
2

×

(

E
′

∫ T

0

|u′
n(t) − u′(t)|4

L4 dt

)

1
4

×

(

E
′

∫ T

0

|ϕ(t)|4
W1,4 dt

)

1
4

→ 0.

(4.21)

Since the process u′ × ∂ϕ

∂xi
is in L2(Ω ′; L2(0, T); L

2), the weak convergence of weak deriva-

tives in (4.17) yields

lim
n→∞

E
′

∫ T

0

〈

∂u′
n(t)

∂xi

−
∂u′(t)

∂xi

, u′(t) ×
∂ϕ(t)

∂xi

〉

L2

dt = 0. (4.22)

Hence we have proved that

lim
n→∞

E
′

∫ T

0

〈

∂u′
n(t)

∂xi

, u′
n(t) ×

∂ϕ(t)

∂xi

〉

L2

dt = E
′

∫ T

0

〈

∂u′(t)

∂xi

, u′(t) ×
∂ϕ(t)

∂xi

〉

L2

dt. (4.23)

We also have, using (4.14):

lim
n→∞

E
′

∫ T

0

〈u′
n(t) × ∆u′

n(t), ϕ〉L2 dt = E
′

∫ T

0

〈Y(t), ϕ〉L2 dt. (4.24)

We equate the expressions from the right-hand sides of (4.23) and (4.24) to prove the

lemma. �

We will need the next lemma when we come to apply Itô’s formula to show that

|u′(t, ω)| = 1 a.e. on D.

Lemma 4.7. For any bounded measurable function φ : D → R we have

〈Y(s, ω), φu′(s, ω)〉L2 = 0 for almost every (s, ω) ∈ [0, T ] × Ω ′. �

Proof. Let B ⊂ [0, T ] × Ω ′ be a measurable set and χB be the indicator function of B.

Since u′
n converges to u′ in L2(Ω ′; L2(0, T ; L

2)) (see (4.13)), we also have that χBφu′
n con-

verges to χBφu′ in L2(Ω ′; L2(0, T ; L
2)). This fact and the fact that u′

n × ∆u′
n converges to Y

weakly in L2(Ω ′; L2(0, T ; L
2)) implies that

0 = E
′

∫ T

0

χB(s)〈u′
n(s) × ∆u′

n(s), φu′
n(s)〉L2 ds → E

′

∫ T

0

χB(s)〈Y(s), φu′(s)〉H ds

as n goes to infinity. This proves the lemma. �
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Weak Solutions of a Stochastic LLG Equation 23

Now we show that the process Z from (4.15) is u′ × Y.

Lemma 4.8. For any process ψ ∈ L4(Ω ′; L4(0, T ; L
4)), we have

lim
n→∞

E
′

∫ T

0

〈u′
n(s) × (u′

n(s) × ∆u′
n(s)), ψ(s)〉L2 ds

= E
′

∫ T

0
L

3
2
〈Z(s), ψ(s)〉L3 ds (4.25)

= E
′

∫ T

0
L

3
2
〈u′(s) × Y(s), ψ(s)〉L3 ds. (4.26)

�

Remark 4.9. Since L4(Ω ′; L4(0, T ; L
4)) is dense in L2(Ω ′; L2(0, T ; L

3)), we may conclude

that Z = u′ × Y as elements of L2(Ω ′; L2(0, T ; L
3
2 )). �

Proof. Put Yn := u′
n × ∆u′

n for each n∈ N.

Since ψ ∈ L4(Ω ′; L4(0, T ; L
4)) defines an element of the dual space of

L2(Ω ′; L2(0, T ; L
3
2 )), (4.15) implies that the first equality in the statement of the lemma

holds.

Now to prove equality (4.26). We may write

〈u′
n × Yn, ψ〉L2 −

L
3
2
〈u′ × Y, ψ〉L3 = 〈Yn, ψ × u′

n〉L2 − 〈Y, ψ × u′〉L2

= 〈Yn − Y, ψ × u′〉L2 + 〈Yn, ψ × (u′
n − u′)〉L2 .

Since by (4.13) u′ belongs to L4(Ω ′; L4(0, T ; L
4)), the process ψ × u′ belongs to

L2(Ω ′; L2(0, T ; L
2)). Hence the weak convergence in (4.14) ensures the integral

E
′
∫ T

0
〈Yn(t) − Y(t), ψ(t) × u′(t)〉L2 dt converges to zero as n goes to infinity. Since the

sequence (Yn) is bounded in L2(Ω ′; L2(0, T ; L
2)) (see (4.7)), we may apply Hölder’s inequal-

ity and (4.13) to infer that E
′
∫ T

0
〈Yn(t), ψ(t) × (u′

n(t) − u′(t))〉L2 dt also converges to zero as

n goes to infinity. This completes the proof of the lemma. �

5 End of the Proof of Theorem 2.7

The process u′ we constructed is a candidate for a solution to the LLG equation. However,

in order to define a weak martingale solution we also need to construct a driving Wiener

process.
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24 Z. Brzeźniak et al.

We define a sequence of H-valued processes (Mn(t))t∈[0,T ] on the probability space

(Ω,F , P) by

Mn(t) := un(t) − un(0) − λ1

∫ t

0

πn(un(s) × ∆un(s)) ds

+ λ2

∫ t

0

πn(un(s) × (un(s) × ∆un(s))) ds −
1

2

∫ t

0

πn[(πn(un(s) × h)) × h] ds.

By the definition of un(t), we have Mn(t) =
∫ t

0
πn(un(s) × h) dW(s) for each t ∈ [0, T ]. We also

define a sequence of H-valued processes (M′
n(t))t∈[0,T ] on the probability space (Ω ′,F ′, P

′)

by

M′
n(t) := u′

n(t) − un(0) − λ1

∫ t

0

πn(u
′
n(s) × ∆u′

n(s)) ds

+ λ2

∫ t

0

πn(u
′
n(s) × (u′

n(s) × ∆u′
n(s))) ds −

1

2

∫ t

0

πn[(πn(u
′
n(s) × h)) × h] ds.

Lemma 5.1. For each t ∈ (0, T ] the sequence of random variables M′
n(t) converges

weakly in L2(Ω ′; X−β) to the limit

M′(t) := u′(t) − u0 − λ1

∫ t

0

(u′ × ∆u′)(s) ds

+ λ2

∫ t

0

u′(s) × (u′ × ∆u′)(s) ds −
1

2

∫ t

0

(u′(s) × h) × hds

as n goes to infinity. �

Proof. Let t ∈ (0, T ]. Let U ∈ L2(Ω ′; Xβ). We have

E
′[X−β 〈M′

n(t), U 〉Xβ ] = E
′

[

X−β 〈u′
n(t), U 〉Xβ − X−β 〈un(0), U 〉Xβ

− λ1

∫ t

0

〈u′
n(s) × ∆u′

n(s), πnU 〉L2 ds

+ λ2

∫ t

0
X−β 〈πn(u

′
n(s) × (u′

n(s) × ∆u′
n(s))), U 〉Xβ ds

−
1

2

∫ t

0

〈πn(u
′
n(s) × h) × h, πnU 〉L2 ds

]

.

Pointwise convergence of u′
n to u′ in C ([0, T ]; X−β) as well as the convergence in (4.14),

(4.16), and (4.13) imply that we can take the limit as n goes to infinity. We obtain

lim
n→∞

E
′[X−β 〈M′

n(t), U 〉Xβ ] = E
′

[

X−β 〈u′(t), U 〉Xβ − X−β 〈u0, U 〉Xβ − λ1

∫ t

0

〈Y(s), U 〉L2 ds

+ λ2

∫ t

0
X−β 〈Z(s), U 〉Xβ ds −

1

2

∫ t

0

〈(u′(s) × h) × h, U 〉L2 ds

]

.
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Weak Solutions of a Stochastic LLG Equation 25

By definition of (u′ × ∆u′), the right-hand side of the last equality is E
′[X−β 〈M′(t),

U 〉Xβ ]. �

Lemma 5.2. We have the following:

(1) the process (W′(t))t∈[0,T ] is a real-valued Brownian motion on (Ω ′,F ′, P
′) and

if 0 ≤ s < t ≤ T , then the increment W′(t) − W′(s) is independent of the σ -

algebra generated by u′(r) and W′(r) for r ∈ [0, s];

(2) for each t ∈ [0, T ], we have M′(t) =
∫ t

0
(u′(s) × h) dW′(s). �

Proof. Proof of 1. Recall from Proposition 4.3 that the distributions of (un, W) and

(u′
n, W′

n) on L4(0, T ; L
4) ∩ C ([0, T ]; X−β) × C ([0, T ]; R) are equal for each n in N and u′

n con-

verges to u′ in L4(0, T ; L
4) ∩ C ([0, T ]; X−β) and W′

n converges to W′ in C ([0, T ]; R) P
′ a.e.

It is straightforward to show that, for each n∈ N, the process (W′
n(t))t∈[0,T ] is a real-

valued Brownian motion on the probability space (Ω ′,F ′, P
′) and that, for 0 ≤ s < t ≤ T ,

the increment W′
n(t) − W′

n(s) is independent of the σ -algebra generated by u′
n(r) and W′

n(r)

for r ∈ [0, s].

To see that the process (W′(t))t∈[0,T ] has the right finite-dimensional distributions

to be a Brownian motion on (Ω ′,F ′, P
′), we consider characteristic functions. Let k∈ N

and let s0 = 0 < s1 < · · · < sk ≤ T . For (t1, . . . , tk) ∈ R
k we have, for each n∈ N,

E
′[ei

∑k
j=1 tj(W

′
n(sj)−W′

n(sj−1))] = e− 1
2

∑k
j=1 t2

j (sj−sj−1).

By Lebesgue’s dominated convergence theorem, the same equality holds with W′ in place

of W′
n. Thus (W′(t))t∈[0,T ] is a Brownian motion on (Ω ′,F ′, P

′).

Now let 0 ≤ r1 < · · · < rk ≤ s < t ≤ T and let φ1, . . . , φk be continuous and bounded

real-valued functions on X−β and let ψ1, . . . , ψk, ψ be continuous and bounded real-

valued functions on R. We have, for each n∈ N,

E
′

⎡

⎣

⎛

⎝

k
∏

i=1

φi(u
′
n(ri))

k
∏

j=1

ψ j(W
′
n(r j))

⎞

⎠ψ(W′
n(t) − W′

n(s))

⎤

⎦

= E
′

⎡

⎣

k
∏

i=1

φi(u
′
n(ri))

k
∏

j=1

ψ j(W
′
n(r j))

⎤

⎦E
′[ψ(W′

n(t) − W′
n(s))].

By Lebesgue’s dominated convergence theorem, the same equality holds with u′ in place

of u′
n and W′ in place of W′

n. This proves that W′(t) − W′(s) is independent of the σ -algebra

generated by u′(r) and W′(r) for r ∈ [0, s]. �
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26 Z. Brzeźniak et al.

Proof of 2. Step (i). We show that M′
n(t) =

∫ t

0
πn(u

′
n(s) × h) dW′

n(s) P
′ a.e. for each t ∈ [0, T ]

and each n∈ N.

Fix n∈ N and t ∈ (0, T ]. For each m ∈ N define the partition {sm
j := jT

m
, j = 0, . . . , m}

of [0, T ]. For each m the random variables in H:

Mn(t) −

m−1
∑

j=0

πn(un(s
m
j ) × h)(W(t ∧ sm

j+1) − W(t ∧ sm
j ))

and

M′
n(t) −

m−1
∑

j=0

πn(u
′
n(s

m
j ) × h)(W′

n(t ∧ sm
j+1) − W′

n(t ∧ sm
j ))

have the same distribution. Since Mn(t) −
∑m−1

j=0 πn(un(s
m
j ) × h)(W(t ∧ sm

j+1) − W(t ∧ sm
j ))

converges in L2(Ω; H) to Mn(t) −
∫ t

0
πn(un(s) × h) dW(s) = 0 as m goes to infinity, we have

M′
n(t) −

∫ t

0
πn(u

′
n(s) × h) dW′

n(s) = 0 P
′ a.e.

Step (ii). We show that M′
n(t) converges in L2(Ω ′; X−β) to

∫ t

0
(u′(s) × h) dW′(s) as n

goes to infinity. Since we already know from Lemma 5.1 that M′
n(t) converges weakly in

L2(Ω ′; X−β) to M′(t), this will complete the proof. �

First, we make an observation that will be useful in the proof of convergence in

the next paragraph. Since h belongs to L
∞ ∩ W

1,3, the map z∈ H
1 �→ z × h is a bounded

linear operator on H
1 = Xβ . This implies that the map defined on the dense subspace L

2

of X−β by the formula u �→ u× h extends to a bounded linear operator on X−β : for u∈ L
2

and z∈ Xβ , we have

|X−β 〈u× h, z〉Xβ | = |X−β 〈u, z × h〉Xβ | ≤ ch|z|Xβ |u|X−β ,

where ch is a positive real number depending only on h.

Let ǫ > 0. Choose a natural number m such that for the partition {sm
i := iT

m
,

i = 0, 1, . . . , m} of the interval [0, T ], we have

⎛

⎜

⎝
E

′

∫ t

0

∣

∣

∣

∣

∣

∣

u′(s) × h −

m−1
∑

j=0

(u′(sm
j ) × h)χ(sm

j ,sm
j+1](s)

∣

∣

∣

∣

∣

∣

2

X−β

ds

⎞

⎟

⎠

1
2

<
ǫ

2
.

Then we have the following four facts which combine to tell us how close M′
n(t) is to

∫ t

0
(u′(s) × h) dW′(s) in L2(Ω ′; X−β):
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(1)

⎛

⎜

⎝
E

′

⎡

⎢

⎣

∣

∣

∣

∣

∣

∣

∫ t

0

(πn(u
′
n(s) × h) −

m−1
∑

j=0

πn(u
′
n(s

m
j ) × h)χ(sm

j ,sm
j+1](s)) dW′

n(s)

∣

∣

∣

∣

∣

∣

2

X−β

⎤

⎥

⎦

⎞

⎟

⎠

1
2

≤

(

E
′

∫ t

0

|u′
n(s) × h − u′(s) × h|2X−β ds

)
1
2

+

⎛

⎜

⎝
E

′

∫ t

0

∣

∣

∣

∣

∣

∣

u′(s) × h −

m−1
∑

j=0

(u′(sm
j ) × h)χ(sm

j ,sm
j+1](s)

∣

∣

∣

∣

∣

∣

2

X−β

ds

⎞

⎟

⎠

1
2

+

⎛

⎜

⎝
E

′

∫ t

0

∣

∣

∣

∣

∣

∣

m−1
∑

j=0

(u′(sm
j ) − u′

n(s
m
j )) × hχ(sm

j ,sm
j+1](s)

∣

∣

∣

∣

∣

∣

2

X−β

ds

⎞

⎟

⎠

1
2

,

which is < ǫ
2
, for all sufficiently large n, since there is pointwise convergence

of u′
n to u′ in C ([0, T ]; X−β)P′ a.e.;

(2)

E
′

⎡

⎣

∣

∣

∣

∣

∣

∣

m−1
∑

j=0

πn(u
′
n(s

m
j ) × h)(W′

n(t ∧ sm
j+1) − W′

n(t ∧ sm
j ))

−

m−1
∑

j=0

πn(u
′(sm

j ) × h)(W′(t ∧ sm
j+1) − W′(t ∧ sm

j ))

∣

∣

∣

∣

∣

∣

2

X−β

⎤

⎥

⎦

converges to zero as n goes to infinity, thanks to pointwise convergence to

zero of the integrand and uniform integrability;

(3)

⎛

⎜

⎝
E

′

⎡

⎢

⎣

∣

∣

∣

∣

∣

∣

∫ t

0

(πn(u
′(s) × h) −

m−1
∑

j=0

πn(u
′(sm

j ) × h)χ(sm
j ,sm

j+1](s)) dW′(s)

∣

∣

∣

∣

∣

∣

2

X−β

⎤

⎥

⎦

⎞

⎟

⎠

1
2

<
ǫ

2
;

(4) and finally

E
′

[

∣

∣

∣

∣

∫ t

0

(πn(u
′(s) × h) − (u′(s) × h)) dW′(s)

∣

∣

∣

∣

2

X−β

]

converges to zero as n goes to infinity.

Combining the four facts listed above, we have that (E′[|M′
n(t) −

∫ t

0
(u′(s) ×

h) dW′(s)|2
X−β ])

1
2 < ǫ for all sufficiently large n. �
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28 Z. Brzeźniak et al.

Once we prove that u′ has property (2.11), we will have proved the existence of a

weak martingale solution to Equation (1.7). We have that, for every t ∈ [0, T ], the process

u′ satisfies the equation

u′(t) = u0 + λ1

∫ t

0

(u′ × ∆u′)(s) ds

− λ2

∫ t

0

u′(s) × (u′ × ∆u′)(s) ds +

∫ t

0

(u′(s) × h) ◦ dW′(s), P
′a.s., (5.1)

where the first two integrals are the Bochner integrals of paths in L2(0, T ; L
2) and

L2(0, T ; X−β), respectively, and the stochastic integral is the Stratonovich integral in L
2.

We now prove that u′ has property (2.11) in our definition of a solution.

Proof of (2.11). We will apply Itô’s formula in the form presented in Pardoux’s funda-

mental work [31, Theorem 2]. To this end, let φ ∈ C ∞
0 (D, R). Then we consider a function

ψ : H ∋ u �→ 〈u, φu〉H ∈ R.

Since ψ ′(u) = 2φu (where we identify H with its dual) and ψ ′′(u)(v) = 2〈φv, ·〉H for u, v ∈

H, we can easily verify that ψ satisfies the assumptions (i)–(v) of Pardoux’s theorem.

Moreover, the process u′ satisfies the assumptions of Pardoux’s theorem, that is

E
′

∫ T

0

|u′(t)|2V dt < ∞ by (4.12),

E
′

∫ T

0

|(u′ × ∆u′)(t)|2V ′ dt < ∞ by (4.14),

E
′

∫ T

0

|u′(t) × (u′ × ∆u′)(t)|2V ′ dt < ∞ by (4.15),

E
′

∫ T

0

|(u′(s) × h) × h|2V ′ dt < ∞ by (4.10),

E
′

∫ T

0

|u′(s) × h|2
H

dt < ∞ by (4.10).

Hence, we have that, for all t ∈ [0, T ], P
′-a.s.

〈u′(t), φu′(t)〉H − 〈u0, φu0〉H

=

∫ t

0
V ′〈λ1(u

′ × ∆u′)(s) − λ2u′(s) × (u′ × ∆u′)(s) +
1

2
(u′(s) × h) × h, 2φu′(s)〉V ds

+

∫ t

0

〈2φu′(s), u′(s) × h〉H dW′(s) +

∫ t

0

〈φu′(s) × h, u′(s) × h〉H ds. (5.2)
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The right-hand side of this equality vanishes for all t ∈ [0, T ], P
′ a.s. To see this, first note

that, by Lemma 4.7,

〈u′ × ∆u′, φu′〉H = 0 a.e. on [0, T ] × Ω ′.

Thanks to the identity 〈a × b, a〉 = 0 ∀a, b ∈ R
3 and the continuous imbedding of H

1 into

L
6, we also have

V ′〈u′ × (u′ × ∆u′), φu′〉V =
L

6
5
〈u′ × (u′ × ∆u′), φu′〉L6 = 0 a.e. on [0, T ] × Ω ′.

The remaining Lebesgue integrals on the right-hand side of (5.2) cancel and the Itô

integral vanishes. Thus, from equality (5.2), we have 〈u′(t), φu′(t)〉H = 〈u0, φu0〉H for all

t ∈ [0, T ], P
′ a.s. Since φ is arbitrary and |u0(x)| = 1 for a.e. x ∈ D we infer that |u′(t)(x)| = 1

for a.e. x ∈ D for all t ∈ [0, T ], P
′ a.s. �

Now the just proved property (2.11) of the process u′, in conjunction with (2.14),

implies easily that

|u′(t, ω) × ((u′ × ∆u′)(t, ω))|L2 ≤ |(u′ × ∆u′)(t, ω)|L2 (5.3)

for a.e. (t, ω) ∈ [0, T ] × Ω ′ and E
′
∫ T

0
|u′(t) × (u′ × ∆u′)(t)|2

L2 dt < ∞. Thus in fact all integrals

on the right-hand side of Equation (5.1) are in L
2 as asserted in Theorem 2.7.

Finally, we prove property (2.17) of Theorem 2.7. By (5.3) and (4.10) and a stan-

dard estimate for moments of Itô integrals (see [12, Lemma 7.2]), we have for any real

q > 1 and 0 ≤ s < t ≤ T :

E
′[|u′(t) − u′(s)|

2q
H

] ≤ |t − s|q

(

C1E
′

[

(∫ T

0

|(u′ × ∆u′)(τ )|2
H

dτ

)q
]

+ C2

)

.

By (4.14), the expected value on the right-hand side of this inequality is finite, hence the

Kolmogorov criterion applies.
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Appendix 1

For the reader’s convenience we will recall some facts that are crucial for the proof of

tightness of the approximating sequence (un). Let us recall first that the Sobolev space

W1,q(0, T ; E), where q ∈ [1, ∞) and E is a separable Banach space is the space of all func-

tions u∈ Lq(0, T ; E) that are weakly differentiable and have a weak derivative u′ also

belonging to Lq(0, T ; E). If α ∈ (0, 1) and q ∈ [1, ∞), then the Besov–Slobodetski space

Wα,q(0, T ; E) is the space of all u∈ Lq(0, T ; E) such that

∫ T

0

∫ T

0

|u(t) − u(s)|
q
E

|t − s|1+αq
ds dt < ∞.

Then for α ∈ (0, 1], the space Wα,q(0, T ; E) endowed with the norm

|u|Wα,q(0,T ;E) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

[

∫ T

0
|u(t)|

q
E dt +

∫ T

0

∫ T

0

|u(t) − u(s)|
q
E

|t − s|1+αq
dt ds

]1/q

if α ∈ (0, 1),

[

∫ T

0
|u(t)|

q
E dt +

∫ T

0
|u′(t)|

q
E dt

]
1
q

if α = 1

(A.1)

is a separable Banach space. It is known, see, for example, [33] for a direct treatment,

that Wα,q(0, T ; E) →֒ Wβ,q(0, T ; E) if β ≤ α ≤ 1 and Wα,q(0, T ; E) →֒ C δ([0, T ]; E) continu-

ously provided that δ ≥ 0 and α > δ + 1
q
.

The following result is just Lemma 2.1 from [15].

Lemma A.1. Assume that E is a separable Hilbert space, p∈ [2, ∞) and α ∈ (0, 1
2
). Then

there exists a constant C depending on T and α, such that for all processes ξ : [0, T ] ×

Ω → E for which the stochastic integral in (A.3) is defined and the integral on the right-

hand side of (A.2) is finite, we have

E|I (ξ)|
p
Wα,p(0,T ;E) ≤ CE

∫ T

0

|ξ(r)|
p
E dt, (A.2)

where the process I (ξ) is defined by

I (ξ) :=

∫ t

0

ξ(s) dW(s), t ≥ 0. (A.3)

In particular, P-a.s. the trajectories of the process I (ξ) belong to Wα,2(0, T ; E). �
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Appendix 2

We will need the following two compactness results. For the first one, see [15,

Theorem 2.1] which is a modification of results in [29, Section I.5; 35, Section 13.3].

The second one is related to [15, Theorem 2.2].

Lemma A.2. Assume that B0 ⊂ B ⊂ B1 are Banach spaces, B0 and B1 being reflexive.

Assume that the embedding B0 ⊂ B is compact, q ∈ (1, ∞) and α ∈ (0, 1). Then the embed-

ding

L p(0, T ; B0) ∩ Wα,q(0, T ; B1) →֒ L p(0, T ; B) (A.4)

is compact. �

Lemma A.3. Assume that X0 ⊂ X are Banach spaces such that the embedding X0 ⊂ X

is compact. Assume that p∈ (1, ∞) and 0 < α < 1 and αp> 1. Then the embedding

Wα,p(0, T ; X0) ⊂ C ([0, T ]; X) is compact. �

Appendix 3

A formulation of the BDG inequality for continuous local martingales can be found in,

for example, [23, Theorem 17.7]. The upper bound of the BDG inequality for Itô inte-

grals is stated here for the reader’s convenience. Let m ∈ (0, ∞). There exists a positive

real constant Km with the following property. Let T ∈ (0, ∞) and let (Ω,F , (Ft)t∈[0,T ], P)

be a filtered probability space satisfying the usual conditions and let (W(t))t∈[0,T ] be a

real-valued (Ft)-Wiener process defined on this space. For any progressively measurable

function F : [0, T ] × Ω → R such that P{
∫ T

0
F 2(s) ds < ∞} = 1, we have

E

[

sup
t∈[0,T ]

∣

∣

∣

∣

∫ t

0

F (s) dW(s)

∣

∣

∣

∣

2m
]

≤ KmE

[

(∫ T

0

F 2(s) ds

)m
]

.
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Birkhäuser, 1990.

[12] Da Prato, G. and J. Zabczyk. Stochastic Equations in Infinite Dimensions. Cambridge:

Cambridge University Press, 1992.

[13] De Simone, A. “Hysteresis and imperfection sensitivity in small ferromagnetic particles.

Microstructure and phase transitions in solids (Udine, 1994).” Meccanica 30, no. 5 (1995):

591–603.

[14] Faddeev, L. D. and L. A. Takhtajan. Hamiltonian Methods in the Theory of Solitons. Springer,

1987.

[15] Flandoli, F. and D. Ga̧tarek. “Martingale and stationary solutions for stochastic Navier–

Stokes equations.” Probability Theory and Related Fields 102, no. 3 (1995): 367–91.

[16] Fontana, R. E. and S. R. Hetzler. “Magnetic memories: memory hierarchy and processing

perspectives.” Journal of Applied Physics 99, no. 8 (2006): Article Number: 08N902.

[17] Garcia-Palacios, J. L. and F. J. Lázaro. “Langevin-dynamics study of the dynamical properties

of small magnetic particles.” Physical Review B 58, no. 22 (1998): 14937–58.

[18] Gilbert, T. L. “A Lagrangian formulation of the gyromagnetic equation of the magnetization

field.” Physical Review 100, no. 4 (1955): 1243.

[19] Gioia, G. and R. D. James. “Micromagnetics of very thin films.” Proceedings of The Royal

Society of London. Series A. Mathematical, Physical and Engineering Sciences 453, no. 1956

(1997): 213–23.

[20] Guo, B. and M.-C. Hong. “The Landau–Lifshitz equation of the ferromagnetic spin chain and

harmonic maps.” Calculus of Variations 1, no. 3 (1993): 311–34.

[21] Guo, B. and X. Pu. “Stochastic Landau–Lifschitz equation.” Differential and Integral Equa-

tions 22, no. 3–4 (2009): 251–74.

[22] Henry, D. Geometric Theory of Semilinear Parabolic Equations. Lecture Notes in Mathemat-

ics 840. Berlin: Springer, 1981.

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/a
m

rx
/a

rtic
le

/2
0
1
3
/1

/1
/1

6
6
6
8
9
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2



Weak Solutions of a Stochastic LLG Equation 33

[23] Kallenberg, O. Foundations of Modern Probability, 2nd ed. New York: Springer, 2002.

[24] Kamppeter, T. and F. G. Mertens et al. “Stochastic vortex dynamics in two-dimensional

easy-plane ferromagnets: Multiplicative versus additive noise.” Physical Review B 59, no. 17

(1999): 11349–57.

[25] Kazantseva, N., D. Hinzke, U. Nowak, R. W. Chantrell, U. Atxitia, and O. Chubykalo-Fesenko.

“Towards multiscale modeling of magnetic materials: simulation of FePt.” Physical Review

B 77, no. 18 (2008): 184–428.

[26] Kohn, R. V., F. Otto, M. Reznikoff, and E. Vanden-Eijnden. “Action minimization and sharp-

interface limits for the stochastic Allen–Cahn equation.” Communications on Pure and

Applied Mathematics 60, no. 3 (2007): 393–438.

[27] Kohn, R. V., M. G. Reznikoff, and E. Vanden-Eijnden. “Magnetic elements at finite tempera-

ture and large deviation theory.” Journal of Nonlinear Science 15, no. 4 (2005): 223–53.

[28] Landau, L. and E. Lifshitz. “On the theory of the dispersion of magnetic permeability in

ferromagnetic bodies.” Phys. Z. Sowj. 8 (1935): 153; terHaar, D. (eds.) Reproduced in: Collected

Papers of L. D. Landau, 101–14. New York: Pergamon Press, 1965.
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