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WEAK SOLUTIONS TO A NONLINEAR VARIATIONAL WAVE

EQUATION AND SOME RELATED PROBLEMS

Ping Zhang, Beijing

Abstract. In this paper we present some results on the global existence of weak solutions
to a nonlinear variational wave equation and some related problems. We first introduce
the main tools, the Lp Young measure theory and related compactness results, in the
first section. Then we use the Lp Young measure theory to prove the global existence
of dissipative weak solutions to the asymptotic equation of the nonlinear wave equation,
and comment on its relation to Camassa-Holm equations in the second section. In the
third section, we prove the global existence of weak solutions to the original nonlinear wave
equation under some restrictions on the wave speed. In the last section, we present global
existence of renormalized solutions to two-dimensional model equations of the asymptotic
equation, which is also the so-called vortex density equation arising from sup-conductivity.

Keywords: variational wave equation, weak solutions, Lp Young measure, renormalized
solutions

MSC 2000 : 35D05, 35L05

1. Lp Young measure and some related tools

Young measure for bounded sequence was introduced by Young [33]. This notion
was used to prove the existence of weak solutions by Tartar [30] for a single conser-

vation law, and by DiPerna [5] for 2× 2 conservation laws. The definition was then
extended to sequences in Lp for 1 < p <∞ by DiPerna and Majda in [8]. However,
in order to use this tool to establish the existence of weak solutions to a nonlinear
pde, it is useful to consider the part of the Young measure from [8] located at finite

distance. For the convenience of the reader, let us first recall the following theorem
from [20]:

Theorem 1.1. Let U be an open subset of
� d whose boundary has zero Lebesgue

measure. Given a bounded family {uε(y)} ⊂ Lp(U), p > 1, of
� N -valued functions,

there exist a subsequence {εj} and a measurable family of probability measures
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on
� N , {µy(·), y ∈ U}, such that for all continuous functions F (λ, τ) with F (λ, τ) =

O(|λ|q + |τ |q) as |λ|+ |τ | → ∞ and q < p,

lim
εj→0

∫

U

ϕ(y)F (uεj (y), a(y)) dy =
∫

U

∫
�

N

ϕ(y)F (λ, a(y)) dµy(λ) dy

holds for all ϕ(y) ∈ Lr(U) with compact support in the closure of U , where r−1 +
qp−1 = 1 and a(y) ∈ Lp(U).
�������	�

. The proof of the above theorem can be found in [30], [8] and [11], and
is omitted here. �

Definition 1.1. A bounded sequence uε in Lp(U) is “pure” when no extraction
of a subsequence is necessary.

Proposition 1.1. Let uε be a pure bounded sequence in Lp(U) with Young
measure µ. Then λ ∈ Lp(U × � N , µ) and

∫∫
|λ|p dµy(λ) dy 6 limεj→0‖uεj (y)‖p

Lp .

�������	�
. Let ζ(λ) ∈ C∞0 (

� N ) be such that ζ(λ) = 1 for |λ| 6 1 and 0 6 ζ(λ) 6 1.
Thanks to Theorem 1.1, one has

∫

U

∫
�

N

ζ
(y
k

)
ζ
(λ
k

)
|λ|p dµy(λ) dy = lim

ε→0

∫

U

ζ
(y
k

)
ζ
(uε(y)

k

)
|uε(y)|p dy

6 limεj→0‖uεj (y)‖p
Lp .

Fatou’s Lemma gives

∫

U

∫
�

N

|λ|p dµy(λ) dy 6 lim
k→∞

∫

U

∫
�

N

ζ
(y
k

)
ζ
(λ
k

)
|λ|p dµy(λ) dy

6 limεj→0‖uεj (y)‖p
Lp ,

which completes the proof of the proposition. �

Proposition 1.2. Suppose that uε is a pure bounded sequence in Lp(U) with
Young measure µy and a ∈ Lp(U). Then vε := uε − a is again a pure sequence

in Lp(U), and the associated Young measure νy is given by

∫

U

ϕ(y)
∫
�

N

f(λ) dνy(λ) dy =
∫

U

ϕ(y)
∫
�

N

f(λ− a(y)) dµy(λ) dy

for all ϕ(y) ∈ C∞0 (U) and f ∈ C0
0 (
� N ).
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�������	�
. Thanks to Theorem 1.1, we have
∫

U

ϕ(y)
∫
�

N

f(λ) dνy(λ) dy = lim
ε→0

∫

U

ϕ(y)f(uε(y)− a(y)) dy

=
∫

U

ϕ(y)
∫
�

N

f(λ− a(y)) dµy(λ) dy

from which we conclude the proof of the proposition. �

Proposition 1.3. Suppose that uε is a pure bounded sequence in Lp(U) with
Young measure µy. Let ū(y) :=

∫
�

N λ dµy(λ). Then µy(λ) = δ(λ − ū(y)) for
a.e. y ∈ U iff uε → ū strongly in Lq

loc(U) for any q < p.
�������	�

. Again thanks to Theorem 1.1, for any q < p we have

lim
ε→0

∫

U

ϕ(y)|uε(y)− ū(y)|q dy =
∫

U

ϕ(y)
∫
�

N

|λ− ū(y)|q dµy(λ) dy

for all ϕ(y) ∈ C0
0 (U). Then if uε → ū(y) strongly in Lq

loc(U), we obtain
∫

U

ϕ(y)
∫
�

N

|λ− ū(y)|q dµy(λ) dy = 0 for all ϕ(y) ∈ C0
0 (U),

which implies that µy(λ) = δ(λ − ū(y)) for a.e. y ∈ U . Similarly, when µy(λ) =
δ(λ − ū(y)) for a.e. y ∈ U , one concludes that uε → ū strongly in Lq

loc(U) for any
q < p. �

In order to apply the above mentioned Lp Young measure theory to system of

equations, one may need the so-called Div-Curl Lemma from Murat [28], the key in-
sight of which is that if we have enough information concerning various combinations

of derivatives, we can sometimes show that certain nonlinear functions are weakly
continuous.

Theorem 1.2 (Div-Curl Lemma). Assume that {vn}, {wn} are two bounded
sequences in L2

loc(U,
� N ) such that

i) {div vn} lies in a compact subset of W−1,2
loc (U);

ii) {curlwn} lies in a compact subset of W−1,2
loc (U ;MN×N), where

(curlwn)ij = ∂xjw
i
n − ∂xiw

j
n, (1 6 i, j 6 N).

Suppose further that vn ⇀ v, wn ⇀ w in L2
loc(U ;

� N ). Then

vn · wn ⇀ v · w

in the sense of distributions.
�������	�

. The proof of the above theorem can be found in [28], [11], and is omitted
here. �
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Let us conclude this section by recalling the following mollification lemma from [6]:

Proposition 1.4. Let jε be a regularizing kernel:

jε =
1
εd
j
( ·
ε

)
with 0 6 j ∈ D(

� d ),
∫
�

d

j dx = 1, ε > 0.

Let B ∈ L1((0, T ); (W 1,α
loc (
� d ))d), w ∈ L∞((0, T );Lp

loc(
� d )). Then

(B · ∇w) ∗ jε −B · ∇(w ∗ jε) → 0 in L1((0, T );Lβ
loc(
� d )),

where β is given by β−1 = α−1 + p−1.

2. Asymptotic equation of a nonlinear variational

wave equation and Camassa-Holm equation

2.1. Existence of dissipative solutions to the asymptotic equation
In this sub-section, we establish the global existence of admissible dissipative weak

solutions to the initial-boundary value problem

(2.1)





∂tv + u∂xv = − 1
2v

2, x > 0, t > 0,

∂xu = v(t, x),

u(t, x)|x=0 = 0,

v|t=0 = v0(x),

where v0(x) ∈ L2(
� + ). The two equations in (2.1) are normally written as one

equation which is referred to as the asymptotic equation (see [17]). It governs
uni-directional and weakly nonlinear solutions of a class of hyperbolic variational

equations
∂2

t u− c∂x(c∂xu) = 0, (c = c(u) > 0).

We use the notation
� + := (0,∞). We recall that Hunter and Zheng [18] estab-

lished the global existence of both the dissipative and conservative weak solutions
to (2.1) with initial data v0(x) ∈ BV (

� + ). We [35] established the global existence
of dissipative weak solutions to (2.1) with general initial data v0(x) ∈ L2(

� + ). Due
to the space restriction, we only present the part of [35] on the global existence of

admissible dissipative weak solutions to (2.1) by applying the Lp Young measure
theory of the last section.

Let us first give the definition of admissible dissipative weak solutions. Let Q∞ :=
[0,∞)× [0,∞).
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Definition 2.1 (Admissible dissipative weak solutions). We call (v(t, x), u(t, x))
an admissible dissipative weak solution of (2.1) if

(d1) the functions have the regularity

(v, u)(t, x) ∈ L∞loc(
� + , L2(

� + ))⊗ C(Q∞);

(d2) the functions satisfy in the sense of distributions the equations

∂tv + ∂x(uv) =
1
2
v2, ∂xu = v;

(d3) the energy
∫
� + v

2(t, x) dx is non-increasing in t ∈ [0,∞);
(d4) the function u(t, x) is equal to zero at x = 0 as a continuous function. The

function v(t, x) takes on the initial value v0(x) in the sense of C([0,∞), L2(
� + ));

(d5) the entropy condition holds:

v(t, x) 6 2
t
, a.e. (t, x) ∈ Q∞.

Theorem 2.1 (Dissipative solutions). Let v0(x) ∈ L2(
� + ) have compact support.

Then (2.1) has a unique global admissible dissipative weak solution (v, u) in the sense
of Definition 2.1. In addition, the solution satisfies v ∈ Lp

loc(Q∞), u ∈W 1,p
loc (Q∞) for

all p < 3, v(t, x) ∈ C([0,∞), Lq(
� + )) for all q < 2, and v(t, x) ∈ C+([0,∞), L2(

� + ))
(the right continuity).

�������	�
. As the proof is rather too long, we divide the proof into the following

main steps:

Step 1. Approximate solutions
As in [18], we solve (2.1) with simple functions as initial data. Without loss of

generality, we assume that supp v0 ⊂ [0, 1). We approximate v0(x) by step functions
{vn

0 (x)} defined by

vn
0 (x) = vn

i := n

∫ i
n

i−1
n

v0(y) dy, x ∈
[ i− 1

n
,
i

n

)
, i = 1, 2 . . . , n.

Without loss of generality, we assume that every point of [0, 1] is a Lebesgue point
of v0(x), thus

(2.2) lim
n→∞

‖vn
0 − v0‖L2([0,1]) = 0 and lim

n→∞
vn
0 (x) = v0(x), for all x ∈ [0, 1].
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From [18] or by directly applying the characteristic method, we obtain admissible

dissipative weak solutions

(2.3) vn(t, x) =
2vn

i

2 + vn
i t
, xn

i−1(t) 6 x < xn
i (t)

where xn
0 (t) := 0 and

(2.4) xn
i (t) :=

1
n

i∑

j=1

(
1 +

1
2
vn

j t
)2

1{2+vn
j t>0}.

The associated un follows by integrating vn.

Step 2. Primitive estimates and pre-compactness

Lemma 2.1 (primitive estimates). For all p ∈ [2, 3), T > 0 and R > 0, the
approximate solution sequence {vn, un} constructed above satisfies the estimates
(a) vn(t, x) 6 2 · t−1,

(b) ‖vn(t2, ·)‖L2(
� +) 6 ‖vn(t1, ·)‖L2(

� +) 6 ‖vn
0 ‖L2([0,1]), 0 < t1 < t2,

(c) ‖vn‖p
Lp([0,T ]× � +) 6 CT,p‖vn

0 ‖2
L2([0,1]).

Moreover, {un(t, x)} are uniformly bounded in W 1,p
loc (Q∞).

�������	�
. The proof can be found on p. 329 of [18]. The third inequality (c) can

also be deduced from Theorem 3 of [34]. �

Lemma 2.2 (Basic pre-compactness). There exist u ∈ W 1,p
loc (Q∞) for all p < 3

and a subsequence of {un} which we still denote by {un} such that

un(t, x) −→ u(t, x)

uniformly on any compact subset of Q∞. Moreover,

vn(t, x) = ∂xu
n(t, x) ⇀ ∂xu(t, x) =: v(t, x)

weakly in Lp
loc(Q∞) for all p < 3. Further,

‖u(t, ·)‖L∞ 6
∫ 1

0

|v0(x)| dx+
t

2

∫ 1

0

|v0|2 dx

and

supp vn(t, ·) ⊂ [0,K(t))

for some K(t) <∞.
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�������	�
. The basic convergence follows directly from Lemma 2.1, and thanks to

the construction of the approximate solutions, we have

‖un(t, ·)‖L∞ 6
∫ ∞

0

|vn(t, x)| dx

=
1
n

n∑

i=1

2|vn
i |

|2 + vn
i t|

(
1 +

1
2
vn

i t
)2

1{2+vn
i t>0}

6
∫ 1

0

|vn
0 (x)| dx+

t

2

∫ 1

0

|vn
0 (x)|2 dx 6 C(t)

for some locally bounded function C(t). Finally, a similar argument together
with (2.4) gives the support properties of vn(t, ·). �

In the sequel, we shall use the notation QT := [0, T ] × [0,K(T )]. In particular,
Q∞ = [0,∞)× [0,∞) is consistent with our earlier notation.

Step 3. Strong pre-compactness

We prove pre-compactness of the solution sequence {vn(t, x)} in Lp([0, T ]× � + )
for all T <∞, p < 3, by applying the Young measure theory ([8], [11], [30], [33]), the
ideas used by P.-L. Lions [24] in the proof of the global existence of weak solutions to

multi-dimensional Navier-Stokes equations, and the ideas used by Joly, Metivier and
Rauch [20] in the rigorous justification of the weakly nonlinear geometric optics for

semilinear wave equations. Thanks to Theorem 1.1 and Lemma 2.1, we immediately
have

Lemma 2.3 (Time-distinguished Young measures). There exist a subsequence of
the solution sequence {vn(t, x)}, for convenience still denoted by {vn(t, x)}, and a
family of Young measures µt,x(λ) such that for all continuous functions f(t, x, λ) =
O(|λ|q) we have ∂λf(t, x, λ) = O(|λ|q−1) as λ → ∞ for q < 2, and for all ψ(x) ∈
Lr

c([0,∞)) with r−1 + 1
2q = 1, we have

lim
n→∞

∫
� +
f(t, x, vn(t, x))ψ(x) dx =

∫
� +
f(t, x, v)ψ(x) dx

uniformly in every compact subset of [0,∞), where

f(t, x, v) :=
∫

λ∈ �
f(t, x, λ) dµt,x(λ) ∈ C([0,∞);L

q′
q (
� + ))
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for all q′ ∈ (q, 2). Moreover, for all T > 0,

lim
n→∞

∫ T

0

∫
� +
g(t, x, vn)ϕ dx dt =

∫ T

0

∫
� +
g(t, x, v)ϕ dx dt

and

λ ∈ L∞(
� + , L2(

� + × � , dx ⊗ dµt,x(λ))) ∩ Lp
loc(
� + × � + × � , dt ⊗ dx⊗ dµt,x(λ))

for all p < 3, where the continuous function g(t, x, λ) = O(|λ|p) as λ → ∞ for some
p < 3, and ϕ(t, x) ∈ Lm(QT ) with p−1 +m−1 = 1.
�������	�

. The detailed proof of the above lemma can be found in [34]. �

Comparing the notation in Lemma 2.2 with that of Lemma 2.3, we have v ≡ v.

Lemma 2.4. For almost all (t, x) ∈ � + × � + we have µt,x(λ) = δ(λ − v(t, x)).
�������	�

. Step a.

We derive an evolution equation for the variance of the Young measures.
Step a.1. From the construction of {vn}, we have

∂tv
n + un∂xv

n = −1
2
(vn)2

in the weak sense. Thanks to Proposition 1.4, one has

(2.5) ∂tv
n,ε + un∂xv

n,ε = −1
2
(vn,ε)2 + rε

n,

where vn,ε(t, x) :=
∫
� vn(t, y)jε(x − y) dy, rε

n(t, x) := −(un∂xv
n) ∗ jε + un∂xv

n,ε +
1
2 ((vn,ε)2 − (vn)2 ∗ jε), with jε(x) the standard Friedrichs’ mollifier, and rε

n → 0
in L1

loc(
� + , L1 (

� + )) ∩ Lp/2
loc (
� + × � + ) for all p < 3. We remark that across the

boundary x = 0, we extend the functions vn and un by zero. Let

(2.6) T+
R (ξ) =





0, ξ < 0,

ξ, 0 6 ξ 6 R,

R, ξ > R,

S+
R (ξ) =





0, ξ < 0,
1
2ξ

2, 0 6 ξ 6 R,

Rξ − 1
2R

2, ξ > R.

Now, we multiply both sides of (2.5) by T+
R (vn,ε) to conclude that

∂tS
+
R(vn,ε) + ∂x(unS+

R (vn,ε)) = vnS+
R (vn,ε)− 1

2
T+

R (vn,ε)(vn,ε)2 + T+
R (vn,ε)rε

n.

By taking ε→ 0 we find

∂tS
+
R (vn) + ∂x(unS+

R (vn)) = vnS+
R (vn)− 1

2
T+

R (vn)(vn)2.
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Hence, thanks to Lemmas 2.2–2.3, we obtain

(2.7) ∂tS
+
R(v) + ∂x(uS+

R (v)) = vS+
R (v)− 1

2
T+

R (v)v2 =: F+.

Step a.2. On the other hand, applying Lemmas 2.2–2.3 to the equation

∂tv
n + ∂x(unvn) =

1
2
(vn)2

and passing to the limit n→∞, we find

∂tv + ∂x(uv) =
1
2
v2,

from which we deduce by a similar argument as in the proof of (2.7) that

(2.8) ∂tS
+
R(v) + ∂x(uS+

R (v)) = T+
R (v)

(1
2
v2 − (v)2

)
+ vS+

R (v) =: G+.

Step a.3. Subtracting (2.8) from (2.7), we obtain

(2.9) ∂t(S+
R (v)− S+

R (v)) + ∂x(u(S+
R(v) − S+

R (v))) = F+ −G+.

However,

F+ =
∫
�

(
λS+

R (λ) − 1
2
T+

R (λ)λ2
)

dµt,x(λ)

=
∫
�

(1
2
Rλ(λ−R)1λ>R

)
dµt,x(λ)

and

G+ =
1
2
T+

R (v)(v2 − v2) +
1
2
Rv(v −R)1v>R,

and by the construction of {vn} we find that both v(t, x) and vn(t, x) are less than
or equal to 2t−1. Thus we have suppµt,x(·) ⊂ (−∞, 2

t ] and

F+ = 0,
1
2
Rv(v − R)1v>R = 0 for t >

2
R
.

Summing up the above, we find

(2.10) ∂t(S+
R (v)− S+

R (v)) + ∂x(u(S+
R (v)− S+

R (v))) 6 0, t >
2
R
.
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Step a.4. Similarly to the proof of (2.10), we can also prove that

∂t(S−R (v)− S−R (v)) + ∂x(u(S−R (v) − S−R (v))) = F− −G−,

where

T−R (ξ) =





0, ξ > 0,

ξ, −R 6 ξ 6 0,

−R, ξ 6 −R,
S−R (ξ) =





0, ξ > 0,
1
2ξ

2, −R 6 ξ 6 0,

−Rξ − 1
2R

2, ξ 6 −R,

and

F− := vS−R (v) − 1
2
T−R (v)v2 =

∫
�

(
−1

2
Rλ(λ+R)1λ6−R

)
dµt,x(λ),

G− := vS−R (v) + T−R (v)
(1

2
v2 − (v)2

)

=
1
2
T−R (v)(v2 − v2)− 1

2
Rv(v +R)1v6−R.

Therefore,

F− −G− = −1
2
RJR −

1
2
T−R (v)(v2 − v2),

where

JR :=
∫
� λ(λ+R)1λ6−R dµt,x(λ) − v(v +R)1v6−R.

To handle (v2 − v2), we use the splitting

v2 = (v+)2 + (v−)2, v2 = ((v)+)2 + ((v)−)2

and the identity

1
2
((v−)2 − ((v)−)2) = S−R (v)− S−R (v) +

1
2
JR +

1
2
RHR,

where we have introduced the notation

w± = ±max{0,±w}; (w = v, λ, or v)

(v±)2 =
∫
� (λ±)2 dµt,x(λ);

HR :=
∫

(λ +R)1λ6−R dµt,x(λ) − (v +R)1v6−R.
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We then have

F− −G− = − 1
2
RJR −

1
2
T−R (v)(JR +RHR)

− T−R (v)(S−R (v)− S−R (v))− 1
2
T−R (v)((v+)2 − ((v)+)2).

And since R + T−R (v) > 0, −T−R (v) > 0, and λ(λ + R)1λ6−R is a convex function

while (λ+R)1λ6−R is a concave function, we obtain

−1
2
(R+ T−R (v))JR 6 0; −1

2
T−R (v)HR 6 0.

Thus, we arrive at

∂t(S−R (v)− S−R (v)) + ∂x(u(S−R (v)− S−R (v)))(2.11)

6 R
{
[S−R (v)− S−R (v)] +

1
2
[(v+)2 − ((v)+)2]

}
.

Step b. We show that the family of Young measures are Dirac masses.
Step b.1. Let us first claim the right continuity

(2.12) lim
t→0+

∫
v2(t, x) dx =

∫
� v

2
0(x) dx.

In fact, by the equation satisfied by v(t, x), we have

v(t, x) ⇀ v0(x) in L2(
�
) as t→ 0.

Hence, by Theorem 1 on p. 4 of [11], we obtain
∫
v2
0(x) dx 6 limt→0+

∫
v2(t, x) dx.

But by Lemma 2.1
∫
� v

2(t, x) dx 6
∫
� v

2
0(x) dx, for all t > 0,

from which we conclude (2.12).
Step b.2. We then claim that

(2.13)
∫
� ((v+)2 − (v+)2)(t, x) dx = 0, for all t ∈ � + .

In fact, by Lemma 2.3 and (2.10) we have for t > 2/R
∫
� (S

+
R (v)− S+

R (v))(t, x) dx 6
∫
� (S

+
R (v) − S+

R(v))
( 2
R
, x

)
dx.
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On the other hand, thanks to Lemma 2.3 and the Lebesgue Dominated Convergence

Theorem, we have

lim
R→∞

∫
� (S

+
R (v) − S+

R(v))(t, x) dx =
1
2

∫
� ((v+)2 − (v+)2)(t, x) dx.

Further, by the definition of S+
R (ξ), we find

1
2
((v+)2 − ((v)+)2) = S+

R (v)− S+
R (v) +

1
2
IR,

where

IR :=
∫

(λ −R)21λ>R µ(t, x, dλ) − (v −R)21v>R > 0

due to the convexity, which implies

∫
� (S

+
R (v)− S+

R (v))
( 2
R
, x

)
dx 6 1

2

∫
� (v

2 − v2)
( 2
R
, x

)
dx,

and therefore

lim
R→∞

∫
� (v

2 − v2)
( 2
R
, x

)
dx 6

∫
� v

2
0(x) dx− lim

R→∞

∫
� v

2
( 2
R
, x

)
dx = 0.

Step b.3. Integrating (2.11) with respect to x and using (2.13), we have

∂t

∫
� (S

−
R (v)− S−R (v)) dx 6 R

∫
� (S

−
R (v)− S−R (v)) dx.

Thus, by Lemma 2.3 and Gronwall’s inequality, we immediately obtain

∫
� (S

−
R (v)− S−R (v))(t, x) dx = 0, for all t ∈ � + .

Then the Lebesgue Dominated Convergence Theorem gives

1
2

∫
� ((v−)2 − (v−)2)(t, x) dx = lim

R→∞

∫
� (S

−
R (v)− S−R (v))(t, x) dx = 0.

Thus, ∫
� (v

2 − v2)(t, x) dx =
∫∫
� 2
|λ− v(t, x)|2 dµt,x(λ) dx = 0.

This shows that µt,x(λ) = δ(λ−v(t, x)) for almost all (t, x) ∈ � +× � . This completes
the proof of the lemma. �

438




 ������ � �����	���	�����������������
of Theorem 2.1. By Lemmas 2.1 and 2.4, we

have that vn(t, y) → v(t, y) in Lp
loc(
� + × � + ) for all p < 3 and v(t, y) 6 2t−1. Thus

by Lemma 2.2, we can take the limit n→∞ in the equation

∂tv
n + ∂x(unvn) =

1
2
(vn)2.

This proves that v(t, x) is indeed a global weak solution of (2.1). The uniqueness
part is omitted here, one may check [35] for more details. �

2.2. Relation to the Camassa-Holm equation
Physically, by approximating directly the Hamiltonian for Euler equations in the

shallow water regime, Camassa and Holm [2] obtained the equation

(2.14) ∂tu− ∂2
x∂tu+ 3u∂xu = 2∂xu∂

2
xu+ u∂3

xu, t > 0, x ∈ � .

Mathematically, (2.14) is obtained and proved to be formally integrable by Fuchs-
steiner and Fokas [13] as a bi-Hamiltonian generalization of the KDV equation.
(2.14) has several important features that distinguish it from the well-known

KDV equation. First, Camassa and Holm discovered that (2.14) possesses peaked
solutions with a corner at their crest, which is in sharp contrast to the smooth soli-

tary waves for KDV. Second, physical water waves often break down, which cannot
be predicted by the solutions to the KDV equation.

Formally (2.14) is equivalent to

(2.15)





∂tu+ u∂xu+ ∂xP = 0, t > 0, x ∈ � ,

P (t, x) =
1
2

∫ ∞

−∞
e−|x−y|

(
u2 +

1
2
(uy)2

)
dy,

u|t=0 = u0.

In [4], [27], the authors proved the finite time break-down of the smooth solution
to (2.15). In particular, Mckean gave a necessary and sufficient condition on the ini-

tial data for the finite-time formulation of singularities in a smooth solution to (2.15).
Furthermore, Mckean described the blowup process by showing the formation of

cusps instead of shocks for compressible fluids. Motivated by the Young measure
approach of our paper [35], Xin and Zhang in [32] proved the global existence of a

weak solution to (2.15) with initial data in H1(
�
). More precisely, they obtained the

following result.
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Theorem 2.2. Assume that u0 ∈ H1(
� 1 ). Then the Cauchy problem (2.15) has

a weak solution u = u(t, x). Furthermore, this weak solution u(t, x) possesses the
following properties:

(a) (Non-increasing of energy).

∫
� (u

2 + (ux)2)(t, x) dx 6
∫
� (u

2
0 + (∂xu0)2)(x) dx, t > 0.

(b) (One-sided super-norm estimate). There exists a positive constant

C = C(‖u0‖H1(
� 1))

such that the following one-sided L∞-norm estimate of the first order spatial

derivative holds in the sense of distributions:

∂xu(t, x) 6 C
(
1 +

1
t

)
, for all t > 0.

(c) (Space-time higher integrability estimate). P (t, x) ∈ L∞(
� 1

+ ,W
1,∞(
� 1 )) and

∂xu(t, x) ∈ Lp
loc(
� 1

+ × � 1 ) for any p < 3, i.e. for any 0 < R, T < +∞, there
exists a positive constant C1 = C1(R, T, p, ‖u0‖H1) such that

∫ T

0

∫

|x|6R

|∂xu(t, x)|p dx dt 6 C1 for all p < 3.

(d) (Large time behavior). If, in addition, u0 ∈ L1(
� 1 ), then the admissible weak

solution u = u(t, x) approaches zero pointwise as time goes to infinity, i.e.,

lim
t→+∞

u(t, x) = 0 for all x ∈ � 1 ,

provided that u(t, x) is of one sign.

The main idea of the proof lies in the following observation: setting v = ∂xu, by
taking ∂x to the first equation of (2.15) we get

∂tv + u∂xv = −1
2
v2 − P + u2,

which can be viewed as the first-order approximation to (2.1). However, due to the
global properties of (2.15), the proof of Theorem 3.1 is much more involved that the

proof of Theorem 2.1. One may check [32] for more details.
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3. Weak solutions to a nonlinear variational wave equation

In this section we study the existence and regularity properties of weak solutions
to the nonlinear wave equation

(3.1)

{
∂2

t u− c(u)∂x(c(u)∂xu) = 0,

u|t=0 = u0, ∂tu|t=0 = u1,

where c(·) is a given smooth, bounded, and positive function, u0(x) ∈ Lip(
�
), and

u1(x) ∈ L∞(
�
).

Equation (3.1) is the Euler-Lagrange equation of the action principle

∂

∂u

∫∫
{(∂tu)2 − c2(u)(∂xu)2} dx dt = 0,

from which the name variational wave equation comes. We are attracted to study

the equation first of all by its simplicity and closeness to the linear wave equation
with constant wave speeds. What makes it more interesting is that equation (3.1)

arises in a number of various physical contexts. For example, it describes, to the first
order, the motion of long waves on a dipole chain in the continuum limit, see Zorski

and Infeld [40], Grundland and Infeld [16], or Glassey, Hunter, and Zheng [14]. For
another example, it is the simplest representative of a large class of variational wave

equations in the classical field theories and general relativity, see Glassey, Hunter,
and Zheng [14]. And most importantly, it was derived by Saxton [29] and [17] for

the director field in a simplified situation of a nematic liquid crystal in the regime
where inertia of the director field dominates dissipation.

The general problem of global existence and uniqueness of solutions to the Cauchy
problem of equation (3.1) is open. The global existence and uniqueness of solutions

to the Cauchy problem of the asymptotic equation describing weakly nonlinear waves
of (3.1) is fairly complete, see Hunter and Saxton [17], Hunter and Zheng [18] and

the author [35]. Glassey, Hunter, and Zheng [15] have shown that singularities can
form from smooth data for equation (3.1). Some partial existence results are given
in [36], where the authors prove the global existence of weak rarefactive solutions

to (3.1) under the conditions c′(·) > 0, R0 6 0, S0 6 0, (R0, S0) ∈ Lp(
�
), p > 3.

The notation here is that R and S are the Riemann invariants, see below. If the

condition c′(·) > 0 is strengthened to

c′(·) > 0,

then the condition p > 3 can be relaxed to p = 2. If, in addition, the initial data are
in the regularity class u0 ∈ Hk+1(

�
), u1 ∈ Hk(

�
) for some integer k > 1, then the
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solutions are in the same regularity class. In [37], the condition R0 6 0 is removed.
Finally, in [38], both the restrictions R0 6 0 and S0 6 0 are removed.
Before we present our main result from [38], let us first introduce the following

definition. Our notation is
� + = (0,∞), Hk are Sobolev spaces, Lip stands for

Lipschitz. We use

R := ∂tu+ c(u)∂xu, S := ∂tu− c(u)∂xu, c̃(·) :=
1
4

ln c(·),

so that c̃′(u) = c′(u)/(4c(u)). We use R0(x) = R(0, x) and S0(x) = S(0, x).

Definition 3.1. We call u(t, x) a weak solution of (3.1) if
1) u(t, x) ∈ L∞(

� + , H1
loc(
�
)) ∩ Lip(

� + , L2(
�
)) and

∫
� |∂tu|2 + |c(u)∂xu|2 dx 6

∫
� |u1|2 + |c(u0)∂xu0|2 dx;

2) for all test functions ϕ(t, x) ∈ C∞c (
� + × � ):

∫∫
� +× �

(∂tϕ∂tu− c2(u)∂xϕ∂xu− c′(u)c(u)ϕ(∂xu)2) dx dt = 0;

3) u(t, x) → u0(x) in C([0,∞), L2(
�
)) and ∂tu(t, x) → u1(x) in the sense of dis-

tributions as t→ 0+.

In the sequel, we always assume that there exist two positive constants C1, C2

such that

(3.2) 0 < C1 6 c(·) 6 C2, and |c(l)(·)| 6 Ml, l > 1

for some positive constants Ml.

Theorem 3.1 (Global weak solutions). Assume c′ > 0 and (R0, S0) ∈ L∞(
�
) ∩

L2(
�
). Then (3.1) has a global weak solution u in the sense of Definition (3.1).

Moreover, (R,S) ∈ L∞(
� + , L2(

�
)) and c′(u)|∂xu|2+α ∈ L1

loc(
� + × � ) hold for any

α ∈ (0, 1). Furthermore, the characteristics exist; i.e., the following ordinary dif-
ferential equations have global solutions Φ±t (x) ∈ C([0,∞) × � ) with ∂xΦ±t (x) ∈
L∞([0,∞)× � ): 




dΦ±t (x)
dt

= ±c(u(t,Φ±t (x))),

Φ±0 (x) = x.

In particular, if S0 6 0, then S(t, x) 6 0, S(t, x) ∈ L∞(
� + × � ), and for any T > 0

there exist two positive constants M1(T ) and M2(T ) such that

M1(T ) 6 ∂xΦ+
t (x) 6 M2(T ) (0 6 t 6 T ).
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. Similarly to the proof of Theorem 2.1, we divide

the proof of this theorem into several steps:

Step 1. Approximate solutions
Let us define for ε > 0

Qε(ξ) :=





1
ε

(
ξ − 1

2ε

)
, ξ > 1

ε
,

1
2
ξ2, −∞ < ξ <

1
ε
.

Let us now define the approximate solution sequence by the equations

(3.3)





∂tR
ε − c(uε)∂xR

ε = c̃′(uε)(2Qε(Rε)− (Sε)2),

∂tS
ε + c(uε)∂xS

ε = c̃′(uε)(2Qε(Sε)− (Rε)2),

∂xu
ε =

Rε − Sε

2c(uε)
,

lim
x→−∞

uε(t, x) = 0, (Rε, Sε)|t=0 = (R0, S0)(x).

For convenience, we sometimes omit the superscript ε in the approximate solution

sequence {(Rε, Sε, uε)}ε>0.

Lemma 3.1 (Solution of (3.3) with smooth data). Let (R0, S0)(x) ∈ C∞c (
�
).

Then problem (3.3) has a global smooth solution (R,S)(t, x) ∈ L∞(
� + ,W 2,∞(

�
)),

u(t, x) ∈ L∞(
� + ,W 3,∞(

�
)), which satisfies the energy inequalities

∫
(R2 + S2)(t, x) dx 6

∫
(R2

0 + S2
0)(x) dx

and
∫ ∞

0

∫
� c

′(uε)Gε dx dt 6
∫

(R2
0 + S2

0)(x) dx,

where

Gε := R(R2 − 2Qε(R)) + S(S2 − 2Qε(S)) > 0.

Moreover, if we introduce the plus and minus characteristics Φ±t (b) as

{ d
dt

Φ±t = ±c(u(t,Φ±t )),

Φ±t |t=0 = b,

then we have the energy inequality in a characteristic cone

∫ d

a

R2(t+a (y), y) dy +
∫ b

d

S2(t−b (y), y) dy 6 1
2

∫ b

a

(R2
0 + S2

0)(x) dx,
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where a < b, and d is where the two characteristics Φ+
t (a) and Φ−t (b) meet at some

positive time, and t = t+a (y) is the inverse of y = Φ+
t (a), etc. Besides, we have

R(t, x) > −M, S(t, x) > −M (t > 0),

whereM = ‖(R0, S0)‖L∞+ 1
8MC−1

1 ‖(R0, S0)‖2
L2 . Finally, S(t, x) 6 0 holds provided

that S0(x) 6 0.
�������	�

. The proof of the above lemma is standard, and one can check [38] for
more details. �

Step 2. Further estimate
In order to cancel the possible concentrations in the approximate solution se-

quence, we need the following lemma:

Lemma 3.2 (L2+α estimate). Let c′(·) > 0, (R0, S0) ∈ L∞ ∩ L2, α ∈ (0, 1),
T > 0, a < b. Then the solutions {(Rε, Sε, uε)}ε>0 of (3.3) satisfy the estimate

(3.4)
∫ T

0

∫ b

a

c′(uε)|∂xu
ε|2+α dx dt 6 Cα,T,a,b,

where the constant Cα,T,a,b depends only on the L∞(
�
) and L2(

�
) norms of (R0, S0),

and on the listed variables.
�������	�

. We assume that α = d2/d1 ∈ (0, 1) where d2 is an even positive integer

and d1 an odd positive integer. We then multiply the first equation of (3.3) by
Rα(t, x) to obtain

1
1 + α

{∂tR
1+α − ∂x(c(u)R1+α)}+

2
1 + α

c̃′(u)(R− S)R1+α

= c̃′(u)(2RαQε(R)−RαS2).

We note that

2
1 + α

R2+α − 2RαQε(R) =
1− α

1 + α
R2+α +Rα

(
R− 1

ε

)2∣∣∣
R> 1

ε

.

Therefore,

1− α

1 + α
c̃′(u)(R− S)R1+α + c̃′(u)(RαS2 − SR1+α)(3.5)

= − 1
1 + α

∂tR
1+α +

1
1 + α

∂x(c(u)R1+α)− c̃′(u)Rα
(
R− 1

ε

)2

1R>1/ε.
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Similarly to the proof of (3.5), for S we can obtain the equation

1− α

1 + α
c̃′(u)(S −R)S1+α + c̃′(u)(SαR2 −RS1+α)(3.6)

= − 1
1 + α

∂tS
1+α − 1

1 + α
∂x(c(u)S1+α)− c̃′(u)Sα

(
S − 1

ε

)2

1S>1/ε.

For the specific choice of α we have

RαS2 − SR1+α + SαR2 − RS1+α = RαSα(R− S)(R1−α − S1−α) > 0.

Summing up (3.5)–(3.6), we obtain

1− α

1 + α
c̃′(u)(R− S)(R1+α − S1+α) + c̃′(u)RαSα(R − S)(R1−α − S1−α)(3.7)

6 1
1 + α

{−∂t(R1+α + S1+α) + ∂x(c(u)(R1+α − S1+α))}.

Note that our solutions of (3.3) have finite speed of propagation due to condi-
tion (3.2). We can cut off our initial data (R0, S0) to make them compactly sup-
ported without changing the solutions in the domain [0, T ] × [a, b]. So we assume
that suppR0, suppS0 ⊂ [a, b]. By (3.2) and Lemma 3.1, we have that suppR(t, ·)
and suppS(t, ·) are contained in [a−C2T, b+C2T ] for t 6 T . Thus, integrating (3.7)
over [0, T ]× � , we find

∫ T

0

∫
�

{1− α

1 + α
c̃′(u)(R − S)(R1+α − S1+α)

+ c̃′(u)RαSα(R− S)(R1−α − S1−α)
}

dx ds 6 Cα,T,a,b,

from which we immediately obtain

1− α

1 + α

∫ T

0

∫ b

a

c̃′(u)(R− S)2(Rα + Sα) dx dt 6 Cα,T,a,b.

This implies (3.4), which completes the proof of the lemma. �

We note that the constant Cα,T,a,b in Lemma 3.2 tends to infinity as α→ 1.

Step 3. Pre-compactness
Let (R0, S0) ∈ L∞ ∩ L2(

�
). Let jε(x) be the standard Friedrichs’ mollifier. We

denote Rε
0 = R0 ∗ jε and Sε

0 = S0 ∗ jε. Then by Lemma 3.1, problem (3.3) has a

445



global smooth solution (Rε, Sε, uε) with the initial data (Rε
0, S

ε
0). Moreover, we have

∫
((Rε)2 + (Sε)2)(t, x) dx 6

∫
(R2

0 + S2
0)(x) dx(3.8)

and

Rε(t, x) > −M, Sε(t, x) > −M (t > 0).(3.9)

Now, we establish the precompactness of {(Rε, Sε, uε)(t, x)}.
Firstly, by copying the proof of Lemma 3 of [37], we can prove up to a subsequence

of εj that

(3.10) uεj (t, x) converges uniformly to a continuous function u(t, x)

on every compact subset of [0,∞)× � .
Thanks to Theorem 1.1 and a similar proof of Lemma 2.3, we immediately have

Lemma 3.3 (Time-distinguished Young measures). There exist a subsequence of
the solution sequence {Rε(t, x), Sε(t, x)}, for convenience still denoted by {Rε(t, x),
Sε(t, x)}, and three families of Young measures ν1

t,x(ξ) and ν2
t,x(η) on

�
and µt,x(ξ, η)

on
� 2 such that for all continuous functions f(λ) ∈ C∞c (

�
), ψ(x) ∈ C∞c (

�
), g(ξ, η) ∈

C∞c (
� 2 ) and ϕ(t, x) ∈ C∞c (

� + × � ) we have

lim
ε→0

∫
� f(Rε(t, x))ψ(x) dx =

∫∫
� × �

f(ξ)ψ(x) dν1
t,x(ξ) dx,

lim
ε→0

∫
� f(Sε(t, x))ψ(x) dx =

∫∫
� × �

f(η)ψ(x) dν2
t,x(η) dx

uniformly in every compact subset of [0,∞), and

lim
ε→0

∫ ∞

0

∫
� g(R

ε(t, x), Sε(t, x))ϕ(t, x) dx dt

=
∫ ∞

0

∫
�

∫∫
� × �

g(ξ, η)ϕ(t, x) dµt,x(ξ, η) dx dt.

Moreover,

t ∈ [0,∞) 7−→
∫∫
� × �

f(ξ)ψ(x) dν1
t,x(ξ) dx is continuous;

t ∈ [0,∞) 7−→
∫∫
� × �

f(η)ψ(x) dν2
t,x(η) dx is continuous.
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In the sequel, we use the notation

g(R,S) =
∫
� g(ξ, η) dµt,x(ξ, η).

With Theorem 1.2, (3.10) and the above lemma, we can prove the decoupling of
the Young measure µt,x(ξ, η) into the tensor product of the Young measures ν1

t,x(ξ)
and ν2

t,x(η).

Lemma 3.4 (Decoupling of the Young measure). Let {Rε, Sε} be solutions
to (3.3). Then the Young measures ν1

t,x(ξ), ν2
t,x(η) and µt,x(ξ, η) satisfy the equality

µt,x(ξ, η) = ν1
t,x(ξ)⊗ ν2

t,x(η).

�������	�
. Take any f ∈ C∞c (

�
) and g ∈ C∞c (

�
). By (3.3) and a trivial calculation,

we find that

∂tf(Rε)− ∂x(c(uε)f(Rε)) = T ε,

where

T ε := 2c̃′(uε)(Sε −Rε)f(Rε) + c̃′(uε)(2Qε(Rε)− (Sε)2)f ′(Rε).

By (3.8), we find that {T ε} is uniformly bounded in L1
loc(
� + × � ). Since f(Rε) and

c(uε) are uniformly bounded in L∞(
� + × � ), we obtain by Murat Lemma [28] (or

Corollary 1 on p. 8 of [11]) that {T ε} is also a pre-compact subset of H−1
loc (
� + × � ).

Summing up the above, we have proved the pre-compactness

(3.11) {∂tf(Rε)− ∂x(c(uε)f(Rε))} ⊂⊂ H−1
loc (
� + × � ).

Exactly as in the proof of (3.11), we can also prove that

(3.12) {∂tg(Sε) + ∂x(c(uε)g(Sε))} ⊂⊂ H−1
loc (
� + × � ).

Hence, by Theorem 1.2, (3.10), (3.11) and (3.12), we find that

c(uε)f(Rε)g(Sε) ⇀ c(u)f(R) · g(S) as ε→ 0,
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where (f(R), g(S)) is the weak limit of (f(Rε), g(Sε)). Thus, by Lemma 3.3, we have
proved that for any ϕ(t, x) ∈ C∞c (

� + × � ),
∫∫∫∫

ϕ(t, x)f(ξ)g(η) dµt,x(ξ, η) dx dt

= lim
ε→0

∫∫
ϕ(t, x)f(Rε)g(Sε) dx dt

=
∫∫

ϕ(t, x)f(R) · g(S) dx dt

=
∫∫

ϕ(t, x)
∫∫

f(ξ)g(η) dν1
t,x(ξ)⊗ ν2

t,x(η) dx dt.

Since the above equality holds for any ϕ(t, x) ∈ C∞c (
� +× � ) and f(ξ), g(η) ∈ C∞c (

�
),

the proof of Lemma 3.4 is complete. �

Motivated by the proof of Lemma 2.4, we can now prove the pre-compactness of
{Rε, Sε}.

Lemma 3.5 (Precompactness of {(Rε, Sε)}). Assume c′ > 0 and (R0(x), S0(x)) ∈
L∞ ∩ L2(

�
). Then ν1

t,x(ξ) = δR(t,x)(ξ) and ν
2
t,x(η) = δS(t,x)(η).

� � ���������$���%�����$�#�����	�
. The idea is to derive an evolution equation (in-

equality) for the quantity R2−R2
, so that it is zero for all positive times if it is zero

at time zero, which is true in our case. In the derivation of the evolution equation
we need to cut off the desired multipliers and mollify various equations that are true

only in the weak sense.

Since the proof of ν1
t,x(ξ) = δR(t,x)(ξ) is the same as that of ν

2
t,x(η) = δS(t,x)(η),

we present only the proof for the former.

Step a. Derivation of the equation for R.

(3.13) ∂tR− ∂x(c(u)R) = −c̃′(u)(R2 − 2RS + S2).

Step b. Cut-off of (Rε)2.

∂tS
+
λ (R)− ∂x(c(u)S+

λ (R))(3.14)

= c̃′(u)
{
−2RS+

λ (R) + T+
λ (R)R2 + 2SS+

λ (R)− T+
λ (R)S2

}
.

Step c. Cut-off of R
2
.

∂tS
+
λ (R)− ∂x(c(u)S+

λ (R))(3.15)

= c̃′(u){−2RS+
λ (R) + T+

λ (R)R2 + 2SS+
λ (R)− T+

λ (R)S2 − T+
λ (R)(R2 −R2)}.
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Step d. Evolution equation for “R2 −R
2
”.

∂t(S+
λ (R)− S+

λ (R))− ∂x(c(u)(S+
λ (R)− S+

λ (R)))(3.16)

= c̃′(u)
{
−(λ− T+

λ (R))[(R − λ)21R>λ − (R − λ)21R>λ]

− λ2[T+
λ (R)− T+

λ (R)]− (T+
λ (R)− T+

λ (R))S2

+ 2(S + T+
λ (R))(S+

λ (R)− S+
λ (R))

}

6 c̃′(u)
{
(T+

λ (R)− T+
λ (R))S2 + 2(S + T+

λ (R))(S+
λ (R)− S+

λ (R))
}
,

since T+
λ (ξ) is concave and (ξ − λ)21ξ>λ is convex in ξ. We note in passing that we

could save −λ2 to reduce the term S2 by −λ2, as we have done in paper [37]. But

that is not enough when S is unbounded, so we choose a new path—renormalization.

Step e. Renormalization. We set fλ(t, x) := S+
λ (R)− S+

λ (R), then

(3.17) ∂tfλ − ∂x(c(u)fλ) 6 c̃′(u)
{
2(S + T+

λ (R))fλ + S2(T+
λ (R)− T+

λ (R))
}
.

Next, we claim that

(3.18)
1
2
(T+

λ (R)− T+
λ (R))2 6 S+

λ (R)− S+
λ (R).

In fact, by the Cauchy inequality, we have

T+
λ (R)

2
=

(∫
T+

λ (ξ) dν1
tx(ξ)

)2

6 (T+
λ (R))2.

Using the identities

ξ = T+
λ (ξ) + (ξ − λ)1ξ>λ, R = T+

λ (R) + (R − λ)1R>λ,

we obtain

T+
λ (R)T+

λ (R) = T+
λ (R)R− T+

λ (R)(R− λ)1R>λ

= (T+
λ (R))2 − T+

λ (R)((R − λ)1R>λ − (R − λ)1R>λ).

Thus

(T+
λ (R)− T+

λ (R))2

= T+
λ (R)

2
+ (T+

λ (R))2 − 2T+
λ (R)T+

λ (R)

6 (T+
λ (R))2 − (T+

λ (R))2 + 2T+
λ (R)((R − λ)1R>λ − (R − λ)1R>λ).
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Using

S+
λ (ξ)− 1

2
(T+

λ (ξ))2 = λ(ξ − λ)1ξ>λ,

we then have

S+
λ (R)− S+

λ (R)

=
1
2
((T+

λ (R))2 − (T+
λ (R))2) + λ((R − λ)1R>λ − (R− λ)1R>λ)

> 1
2
(T+

λ (R)− T+
λ (R))2 + (λ− T+

λ (R))((R − λ)1R>λ − (R− λ)1R>λ)

> 1
2
(T+

λ (R)− T+
λ (R))2.

This proves (3.18).
Notice that fλ(t, x) ∈ L∞(R+, L2(

�
)) for any fixed λ. Thus Proposition 1.4 and

the Lebesgue Dominated Convergence Theorem in the time direction again yield

∂tf
ε
λ − ∂x(c(u)fε

λ) 6 c̃′(u)
{
2(S + T+

λ (R))fε
λ + S2[T+

λ (R)− T+
λ (R)]

}
+ γε,

where fε
λ(t, x) :=

∫
� fλ(t, y)jε(x− y) dy and γε → 0 in L1

loc(
� + × � ). For any η > 0,

we multiply the above equation by 1
2 (fε

λ + η)−1/2 to obtain

∂t(fε
λ + η)1/2 − ∂x(c(u)(fε

λ + η)1/2)

6 c̃′(u)(R+ T+
λ (R))fε

λ(fε
λ + η)−1/2 − 2c̃′(u)(R− S)(f ε

λ + η)1/2

+
1
2
c̃′(u)S2(fε

λ + η)−1/2(T+
λ (R)− T+

λ (R)) +
1
2
(fε

λ + η)−1/2γε.

By taking ε→ 0 we find

∂t(fλ + η)1/2 − ∂x(c(u)(fλ + η)1/2)(3.19)

6 c̃′(u)(R + T+
λ (R))fλ(fλ + η)−1/2 − 2c̃′(u)(R− S)(fλ + η)1/2

+
1
2
c̃′(u)S2(fλ + η)−1/2(T+

λ (R)− T+
λ (R)).

Moreover, by (3.18), we find that

S2(fλ + η)−1/2(T+
λ (R)− T+

λ (R)) 6 2S2.

To establish the almost everywhere convergence, we first have by the Cauchy-Schwarz
inequality that

|R− Tλ(R)| =
∫

(ξ − λ)1ξ>λ dν1
t,x(ξ) 6 1

λ

∫
ξ2 dν1

t,x(ξ),
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hence

lim
λ→∞

∥∥R− T+
λ (R)

∥∥
L1([0,T ]× � ) = 0, for all T <∞.

Similarly, we can prove that lim
λ→∞

‖R−T+
λ (R)‖L1([0,T ]× � ) = 0. Then by the triangle

inequality we obtain

lim
λ→∞

∥∥T+
λ (R)− T+

λ (R)
∥∥

L1([0,T ]× � ) = 0, for all T <∞.

Thus, by the Lebesgue Dominated Convergence Theorem, we find for any T > 0 that

(3.20) lim
λ→∞

∥∥S2(fλ + η)−1/2(T+
λ (R)− T+

λ (R))
∥∥

L1([0,T ]× � ) = 0.

Trivially, by the Lebesgue Dominated Convergence Theorem, we have

lim
λ→∞

fλ(t, x) =
1
2
(R2 −R2) =: f(t, x).

Summing up, we obtain

∂t(f + η)1/2 − ∂x(c(u)(f + η)1/2) 6 2c̃′(u)(Rf(f + η)−1/2 − (R− S)(f + η)1/2).

We set
√
f(t, x) =: g. Then, by taking η → 0 in the above equation, we find

(3.21) ∂tg − ∂x(c(u)g) 6 2c̃′(u)Sg.

Step f. The proof of the precompactness (Re-renormalization). Notice that
g(t, x) ∈ L∞(

� + , L2(
�
)). Thus Proposition 1.4 implies

(3.22) ∂tg
ε − ∂x(c(u)gε) 6 2c̃′(u)Sgε + γε,

where 0 6 gε(t, x) :=
∫
g(t, y)jε(x− y) dy and γε(t, x) → 0 in L1

loc(
� + × � ).

On the other hand, parallelling the proof of (3.13), we can prove that

(3.23) ∂tS + ∂x(c(u)S) = −c̃′(u)(R− S)2.

Moreover, the third equation of (3.3) yields

(3.24) 2c(u)ux = R− S.

Subtracting (3.23) from (3.13), we obtain

∂t(R− S)− ∂x(c(u)(R + S)) = 0.
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Substituting (3.24) into the above equation, we find

∂x(c(u)(2ut − (R+ S))) = 0,

that is

(3.25) ut =
1
2
(R + S).

Dividing (3.22) by c(u), we obtain

∂t

( gε

c(u)

)
− ∂x(gε) 6 −2c̃′(u)S

gε

c(u)
+

γε

c(u)
.

Taking ε→ 0 in the above, we conclude that

(3.26) ∂t

( g

c(u)

)
− ∂xg 6 −2c̃′(u)S

g

c(u)
.

We next claim that

(3.27) g(t, x) ∈ L∞loc(
� + , L1(

�
)).

First, by the definition of g(t, x) we have g(t, x) ∈ L∞(
� + , L2(

�
)). Now, let us

take ϕ(x) ∈ C∞c (
�
) with ϕ(x) = 1 for |x| 6 1, suppϕ ⊂ {x : |x| 6 2}. Then

multiplying (3.26) by ϕ( x
n ) and integrating it over [0, t]× � we obtain

1
C2

∫
g(t, x)ϕ

(x
n

)
dx 6

∫
g(0, x)
c(u)

ϕ
(x
n

)
dx+

1
n

∫ t

0

∫
g
∣∣∣ϕ′

(x
n

)∣∣∣dx ds

+
∫ t

0

∫
2c̃′(u)S

g

c(u)
dx ds

6 t√
n
‖g‖L∞(

� +,L2(
�
))‖∂xϕ‖L2

+ Ct‖S‖L∞(
� +,L2(

�
))‖g‖L∞(

� +,L2(
�
)) .

Thus, Fatou’s Lemma yields that
∫
g(t, x) dx 6 Ct‖S‖L∞(

� +,L2(
�
))‖g‖L∞(

� +,L2(
�
)) .

This proves claim (3.27)
On the other hand, it follows from (3.9) that there is a constant C such that

−S 6 C. Thus due to (3.27), we can integrate (3.26) over
�
to obtain

∫
�

g

c(u)
(t, x) dx 6 C

∫ t

0

∫
�

g

c(u)
(s, x) dx ds.
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Applying Gronwall’s inequality, we have

g(t, x) = 0 a.e. (t, x) ∈ � + × � .

Hence, f(t, x) = 0 a.e. (t, x) ∈ � + × � and therefore ν1
t,x(ξ) = δR(t,x)(ξ). Similarly,

we can prove that ν2
t,x(η) = δS(t,x)(η). This completes the proof of the lemma. �

Lemma 3.6 (Flow regularity). Let u be the limit of {uεj}. Then the flows Φ±t (x)





dΦ±t (x)
dt

= ±c(u(t,Φ±t (x))),

Φ±t (x)|t=0 = x

are Lipschitz continuous with respect to x. Moreover, if S0 6 0, then for any T > 0
there exist two positive constants M1(T ) and M2(T ) such that

M2(T ) 6 ∂xΦ+
t (x) 6 M1(T ) (0 6 t 6 T ).

�������	�
. For simplicity, we deal only with positive characteristics. Consider the

approximate solutions uε and their flows Φε
t (x):

{ dΦε
t (x)
dt

= c(uε(t,Φε
t (x))),

Φε
t (x)|t=0 = x.

Taking ∂x on both sides of the above equation, we find

∂xΦε
t (x) = exp

[∫ t

0

(c′(uε)∂yu
ε)(s,Φε

s(x)) ds
]

(3.28)

= exp
[∫ t

0

c′(uε)
(Rε − Sε

2c(uε)

)
(s,Φε

s(x)) ds
]
.

Now, −Sε has a uniform upper bound and Rε is uniformly bounded in L2 together

with the characteristics from Lemma 3.1, therefore the exponent in (3.28) is bounded
from above. This shows that Φ+

t (x) is Lipschitz continuous with respect to x.
Furthermore, if S0 6 0, then Sε is uniformly bounded, hence the last assertion of

the lemma follows directly from (3.28). This completes the proof of Lemma 3.6. �

Now, we prove Theorem 3.1.

 ������ � �����	�&�	���"�#�'�#�����	�

of Theorem 3.1. First, by (3.24) and (3.25), we

find
R = ∂tu+ c(u)∂xu, S = ∂tu− c(u)∂xu.
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Second, by (3.13), (3.23), Lemma 3.2 and Lemma 3.5, we find that

∂tR − ∂x(c(u)R) = − c̃′(u)(R − S)2,

∂tS + ∂x(c(u)S) = − c̃′(u)(R − S)2

hold in the sense of distributions. Summing up the above equations, we find that

u solves the nonlinear wave equation in the sense of distributions. The other as-
sertions follow directly from (3.8) and Lemma 3.6. This completes the proof of the

theorem. �

4. Renormalized solutions to the vortex density equations

arising from sup-conductivity

In this section we shall establish the global existence of renormalized solutions to

(4.1)





∂t%+ div(u%) = 0, (t, x) ∈ (0,∞)× � 2 ,
u = ∇∆−1%,

%|t=0 = %0,

with initial data %0 ∈ L1(
� 2 ).

Our main motivation for studying this problem comes from the type-II super-
conductivity. It is generally accepted that, when effects due to thermal or field

fluctuations are taken into account, the Abrikosov vortex lattice obtained from the
mean-field theory can melt and form a vortex liquid. Then one of the important is-

sues that one wishes to understand is the intrinsic nonlinear effects in the dynamics
of such a liquid, where the vortex density satisfies (4.1). The rigorous finite gradient

vortex dynamics was studied in [22] (see also [19]). The formal derivation of (4.1)
from the finite vortex dynamics was carried out in [10] (see also [3]). Under the as-

sumption that %0 is a positive Randon measure, the authors in [23] mathematically
justified the formal derivation. One can check more physical explanation to (4.1)

from [10], [3] and [23].

First of all, let us introduce the definition of renormalized solutions to (4.1):

Definition 4.1. We call (%(t, x), u(t, x)) a renormalized solution of (4.1) if for
any β(τ) ∈ C1(

�
) with β(0) = 0 and β′(τ) = O(|τ |α−1) for some 0 < α < 1 and

τ large, we have

(4.2) ∂tβ(%) + div(uβ(%)) = %β(%)− %2β′(%)
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and

(4.3) u = ∇∆−1%

in the sense of distributions.

Then the main result in this section can be formulated as the following theorem:

Theorem 4.1. Let %0 ∈ L1(
� 2 ). Then (4.1) has a global renormalized solu-

tion (%, u) in the sense of Definition 4.1. Furthermore, %(t, x) ∈ L∞(
� + , L1(

� 2 )) ∩
Lq

loc(
� + × � 2 ) for any q < 2, and u(t, x) ∈ Lp1

loc(
� + ,W 1,p2

loc (
� 2 )) with exponents p1,

p2 given on the line next to (4.14). Furthermore, for t > 0, we have

(4.4) %(t, x) <
1
t
a.e. x ∈ � 2 .

(!�*),+���-
4.1. Note that by (4.4) there are only concentrations on the negative

part of %(t, x). Therefore, we actually only need to renormalize the negative part
of % in Definition 4.1.

(!�*),+���-
4.2. In the one space dimension case, (4.1) is reduced to

(4.5) ∂t%+ ∂x(u%) = 0, u(t, x) =
∫ x

0

%(t, y) dy.

It is easy to observe that when %(0, x) takes negative values, a smooth solution to (4.5)
will blow up in finite time. In fact, we have the following explicit solution (%, u)
to (4.5):

%(t, x) =





0, t > 1,

− 1
1− t

χ[t−1,1−t](x), 0 < t 6 1,

−χ[−1,1](x), t = 0,

u(t, x) =





0, t > 1

1, x 6 t− 1

− x

1− t
, t− 1 6 x 6 1− t,

−1, x > 1− t.

On can easily check that (%, u) thus defined is a renormalized solution but not a
distributional weak solution to (4.5).
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Similarly to the proofs of Theorems 2.1 and 3.1, we divide the proof of Theorem 4.1

into the following steps:

Step 1. The construction of the approximate solutions
Note that given sign-changing smooth initial data %0 it is easy to observe that

the smooth solution to (4.1) will blow-up in finite time. Therefore to construct

approximate solutions to (4.1), we first introduce the cut-off function

Tε(ξ) :=





ξ, ξ > −1
ε
,

−1
ε
, ξ 6 −1

ε
,

and mollify the initial data %0 by %0,ε = (%0χε) ∗ jε, where χε(x) = χ(εx), χ ∈

C∞c (
� 2 ), χ(x) =

{
1, |x| 6 1,

0, |x| > 2,
and jε is the standard Friedrich’s mollifier with

supp jε ⊂ Bε(0), namely jε(x) = 1/ε2 j(x/ε), j ∈ C∞c (
� 2 ), and

∫
j(x) dx = 1. We

consider

(4.6)





∂t%ε + uε · ∇%ε = −Tε(%ε)%ε, (t, x) ∈ (0,∞)× � 2 ,
uε = ∇∆−1%ε,

%ε|t=0 = %0,ε.

Then by [9], (4.6) has a unique global smooth solution (%ε, uε) for any fixed ε.
Moreover, combining Lemma 2.1 and Lemma 2.2 of [9], we have

Lemma 4.1 (Solution of (4.6) with smooth data). Let %0 ∈ L1(
� 2 ). Then, for any

fixed ε, there exists a unique strong solution (%ε, uε) to (4.6) such that %ε ∈ L∞([0, T ],
W 1,p(

� 2 )), ∇uε ∈ L∞([0, T ],W 1,p(
� 2 )) for any 1 < p <∞, T <∞, and

(4.7) ‖%ε(t, ·)‖L1 6 ‖%0‖L1 , %ε(t, x) 6 1
t
for t > 0.

Furthermore, for any α ∈ (0, 1), T, L > 0, there exists a positive constant Cα,T,L

which depends only on the L1 norm of %0 and the listed variables, such that

(4.8)
∫ T

0

∫

|x|6L

|%ε|1+α dx dt 6 Cα,T,L.

�������	�
. For completeness, we outline the main idea of the proof. One can check

the proof of Lemma 2.2 of [9] for more details.
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Step a. Let α = d2/d1 ∈ (0, 1
2 ) with d1 and d2 being odd positive integers, and

ζ(x) ∈ C∞c (
� 2 ), ζ > 0 with ζ = 1 on {x : |x| 6 R} and supp ζ ⊂ {x : |x| 6 R + 1}.

Set η(ξ) = α
∫ ξ

0
max(1, |s|)α−1 ds for ξ ∈ � 1 such that η′(ξ) = αmax(1, ξ)α−1. We

now multiply the first equation of (4.6) by ζ(x)η′(%ε), integrate the resulting identity
over [0, T ]× � 2 , and perform integration by parts several times to obtain:

∫ T

0

∫
� 2
ζ(%εη(%ε)− %εTε(%ε)η′(%ε)) dx dt(4.9)

=
∫
� 2
ζη(%ε) dx|T0 −

∫ T

0

∫
� 2
∇ζuεη(%ε) dx ds.

Taking into account the definition of α and η, we have

∫ T

0

∫
� 2
ζ(%εη(%ε)− %εTε(%ε)η′(%ε)) dx dt >

∫ T

0

∫
� 2

1|%ε|>1ζ((1− α)%1+α
ε + α%ε) dx,

which together with the first part of (4.7), (4.9) and some classical estimates for uε

leads to

(4.10)
∫ T

0

∫

|%ε|>1

ζ%1+α
ε dx dt 6 1

1− α

(
α

∫
� 2
ζ|%ε| dx+ C1 + C2

)

for all α = d2/d1 ∈ (0, 1
2 ).

Step b. In (4.10) we take α = d2/d1 ∈ (0, 5
6 ), and repeat the argument from (4.9)–

(4.10) to get

(4.11)
∫ T

0

∫

|x|6R+1

|%ε|p2 dx dt 6 C(α,R, T, ‖%0,ε‖L1), for all p2 <
11
6
.

Step c. Inductively, we can prove that

(4.12)
∫ T

0

∫

|x|6R+1

|%ε|pn+1 dx dt 6 C(α,R, T, ‖%0,ε‖L1), for all pn+1 < 1 + αn+1,

where pn+1 = 1 + αn and αn is defined by the inductive formula αn+1 = 1
2 (1 +

3αn)(1 + αn)−1. Noting that lim
n→∞

αn = 1, we complete the proof of (4.8). �

Step 2. Pre-compactness of the approximate solution sequence
By virtue of (4.7) and (4.8) there is a subsequence of {%ε}, which we denote

by {%εj}, and a function %̄(t, x) ∈ L∞(
� + , L1(

� 2 ))∩Lp
loc(
� +× � 2 ) for any 1 < p < 2,

such that

(4.13) %εj ⇀ %̄ weakly in Lp
loc(
� + × � 2 )
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as εj → 0. Moreover, by (4.7), (4.8) and a trivial interpolation we find that

(4.14) %ε is uniformly bounded in L
p1
loc(
� + , Lp2

loc(
� 2 ))

with p−1
1 = βq−1, p−1

2 = 1− β + βq−1 for all 0 < β < 1, 1 < q < 2. Therefore

(4.15) {uε} is uniformly bounded in Lp1
loc(
� + ,W 1,p2

loc (
� 2 )).

On the other hand, by (2.51) of [9], {∂t%ε} is uniformly bounded in

Lp1
loc(
� + ,W

−1,2/(5−2q)
loc (

� 2 ) + L1(
� 2 )).

Then Lions-Aubin’s Lemma implies that there is a subsequence of {uε}, which we
denote by {uεj}, such that

(4.16) uεj → u
def= ∇∆−1%̄ strongly in Lp1

loc(
� + , Ls

loc(
� 2 ))

as εj → 0 and s < p3 with p3
−1 = p2

−1 − 1
2 .

To prove that (%̄, u) thus obtained is indeed a renormalized solution to (4.1), we
need first to prove that there is no oscillation in the approximate solutions sequence.
In order to do, we use again the Lp Young measure method. Actually, thanks to

Theorem 1.1 and Lemma 4.1, there is a family of Young measures µt,x(λ) such that
for all continuous functions F (λ) with F (λ) = O(|λ|q) as |λ| → ∞ and q < 2, one
has

(4.17) lim
εj→0

∫
� +× � 2

ϕ(t, x)F (%εj ) dx dt =
∫
� +× � 2

∫
� ϕ(t, x)F (λ) dµt,x(λ) dx dt

for all test functions ϕ(t, x) ∈ C∞c ([0,∞)× � 2 ). In particular, from (4.13) we have

%̄(t, x) =
∫
� λ dµt,x(λ).

Lemma 4.2 (pre-compactness of {%ε}). Let %0 ∈ L1(
� 2 ). Then µt,x(λ) =

δ%̄(t,x)(λ).
�������	�

. The proof is based on an argument of the propagation of pre-

compactness (see [24] and [25] for some similar arguments). As in the proof of
Lemma 2.4, we separate the analysis of the pre-compactness of the solution sequence

into the pre-compactness of the positive part and of the negative one respectively.
Therefore, we decompose %ε into

(4.18) %ε = %ε1%ε>0 + %ε1%ε60
def= %+,ε − %−,ε,
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where 1%ε>0 denotes the characteristic function on the set {(t, x) : %ε(t, x) > 0}, and
so for 1%ε60.

Step a. The propagation of the precompactness of the positive part of %ε.
Let us denote ωε = √

%+,ε. Then by (4.7) and (4.8), {ωε} is actually uniformly
bounded in L∞(

� + , L2(
� 2 )) ∩ Lq1

loc(
� + × � 2 ) for any q1 < 4. Therefore thanks to

Theorem 1.1, there is a subsequence of {ωε} which we denote by {ωεj}, a function
ω(t, x) ∈ L∞(

� + , L2(
� 2 )) ∩ Lq1

loc(
� + × � 2 ), and a family of Young measures ν1

t,x(λ)
such that

(4.19) ωεj ⇀ ω =
∫ ∞

0

λ dν1
t,x(λ) ∗ -weakly in L∞(

� + , L2(
� 2 )) ∩ Lq1

loc(
� + × � 2 )

as εj → 0, and a similar equality as (4.17) holds with %εj and µt,x(λ) being replaced
by ωεj and ν

1
t,x(λ); F (λ) grows at infinity like O(|λ|q) for any q < 4.

Next we are going to prove that ν1
t,x(λ) = δω(t,x)(λ). Note that ωε is only uniformly

bounded in L∞(
� + , L2(

� 2 )). To study the propagation of the precompactness of ωε,

we cannot take F (λ) growing like (O|λ|2) at infinity. To overcome this technical
difficulty, we are going to use the cut-off functions defined in (2.6). Noticing that

%εωε = Tε(%ε)ωε = ω3
ε , by virtue of (4.6) it is easy to observe that

(4.20) ∂tωε + div(uεωε) =
1
2
ω3

ε ,

holds in the sense of distributions.
From (4.20) and an argument similar to that in the proof of Lemma 2.4, one arrives

at

(4.21) ∂t(S+
R (ω)− S+

R (ω)) + div(u(S+
R (ω)− S+

R (ω))) 6 0

for t > R−2.

Let us denote g =: 1
2 (ω2 − ω2). Then

(4.22) (S+
R (ω)− S+

R (ω))(t, x) = g(t, x)

for a.e. (t, x) ∈ (R−2,∞)× � 2 . Furthermore,

‖g(t, ·)‖L1 6 1
2

∫
� 2
ω2(t, x) dx 6 1

2

∫
� 2
|%(t, x)| dx,(4.23)

‖g(t, ·)‖L∞ 6 1
2
ω2 6 1

2t
.

On the other hand, from (4.21) it is easy to observe that

∂tω
2
ε + div(uεω

2
ε) = 0
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holds in the sense of distributions, from which and an argument similar to that in

the proof of (2.12), we find

(4.24) lim
t→0+

∫
� 2

(ω2 − ω2)(t, x) dx = 0.

Furthermore, motivated by [39], let us take ϕ(x) ∈ C∞c (
� 2 ) with ϕ(x) = 1 for |x| 6 1

and ϕ(x) = 0 for |x| > 2, δ = 6R−2, and choose t̄ > 20R−2 to be one of the Lebesgue
points of

∫
� 2 g(t, x)ϕ(x/n) dx, and take ψδ(t) ∈ C∞c (R−2,∞) such that

ψδ(t) =

{
0, t 6 1

2δ or t > t̄+ δ,

1, δ 6 t 6 t̄− δ,

0 6 ∂tψ
ε(t) 6 C/δ, t ∈ [0, δ], −∂tψ

ε(t) 6 C/δ, t ∈ [t̄− δ, t̄+ δ].

Let us multiply (4.21) by ψδ(t)ϕ( x
n ) and integrate the resulting inequality over

( 1
4δ,∞)× � 2 . This yields

C

δ

∫ t̄+δ

t̄−δ

∫
� 2
gϕ

(x
n

)
dx dt(4.25)

6 −
∫ t̄+δ

t̄−δ

∫
� 2
∂tψ

δgϕ
(x
n

)
dx dt

6
∫ δ

δ
4

∫
� 2
∂tψ

δgϕ
(x
n

)
dx dt+

1
n

∫ t̄+δ

δ
4

∫
� 2
ψδ∇ϕ

(x
n

)
ug dx dt

6 C

δ

∫ δ

δ
4

∫
� 2
gϕ

(x
n

)
dx dt− C

n

∫ t̄+δ

δ
4

∫
� 2
ψδ%̄∇∆−1

(
∇ϕ

(x
n

)
g
)

dx dt,

where in the last step we have used integration by parts and the fact that u = ∇∆−1%̄.
To proceed further, note that by the standard inequality in 2 space dimensions,

‖∇∆−1h‖L∞ 6 C‖h‖
1
2
L∞‖h‖

1
2
L1 ,

and by (4.23) we find

∥∥∥∇∆−1
(
∇ϕ

(x
n

)
g
)∥∥∥

L∞
6 C‖∇ϕ‖L∞‖g‖

1
2
L1‖g‖

1
2
L∞ 6 C‖∇ϕ‖L∞t

− 1
2 .

Therefore, taking R→∞ in (4.25), we find by (4.24) that

C

∫
� 2
g(t̄, x)ϕ

(x
n

)
dx 6 C

n

∫ t̄

0

∫
� 2
|%̄(t, x)|‖∇ϕ‖L∞t

− 1
2 dx dt 6 C

√
t̄‖∇ϕ‖L∞

n
,
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which together with Fatou’s Lemma yields that

∫
� 2
g(t̄, x) dx = 0.

Note that
∫
� 2 g(t, x)ϕ( x

n ) dx ∈ L∞(
� + ), therefore almost every t ∈ � + is a Lebesgue

point of
∫
� 2 g(t, x)ϕ( x

n ) dx. Due to the arbitrariness of t̄, we obtain

g(t, x) = 0 a.e. (t, x) ∈ � + × � 2 .

Hence for a.e. (t, x) ∈ � + × � 2 , there holds
∫
� 2

∫ ∞

0

|λ− ω|2 dν1
t,x(λ) dx =

∫
� 2

(ω2 − ω2)(t, x) dx = 0,

which implies that

(4.26) ν1
t,x(λ) = δω(t,x)(λ)

for a.e. (t, x) ∈ � + × � 2 .
Step b. The proof of the precompactness for the negative part of %ε.
To prove the pre-compactness of the negative part of the solutions sequence {%−,ε},

we will use a different renormalization procedure to the approximate solutions se-
quence. First, by (4.6), %−,ε satisfies

(4.27) ∂t%−,ε + uε · ∇%−,ε = −Tε(%ε)%−,ε

in the sense of distributions. We denote (%−,ε)
1
4 by ηε; then, by Lemma 4.1, {ηε} is

uniformly bounded in L∞(
� + , L4(

� 2 )) ∩ Lr
loc(
� + × � 2 ) for any r < 8. Therefore,

by Theorem 1.1, there exists a subsequence of {ηε}, {ηεj}, and its associate Young
measure ν2

t,x(λ). Furthermore,

(4.28) ∂tηε + div(uεηε) = −η5
ε +

1
4
Tε(η4

ε )ηε.

From (4.28) and proceeding similarly to the proof of Lemma 2.4 again, we obtain

(4.29) ∂t(η2 − η2) + div[u(η2 − η2)] = −1
2
η6 − η4η2 +

3
2
η5η + %+ η

2.

Notice that due to (4.8) and (4.26) we can take a subsequence of {%+,ε}, {%+,εj}
such that %+,εj → %+ in L

p
loc(
� + × � 2 ) for any p < 2. Therefore,

%+,εjηεj ⇀ %+ η weakly in Ls
loc(
� + × � 2 )
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for any s < 8
5 . But by their definitions, %+,εjηεj = 0, hence

%+ η = 0.

Hence, the right-hand side of (4.29) equals

−1
2
η6 − η4 η2 +

3
2
η5 η(4.30)

= −
(1

2
(η6 + η4 η2)− η5 η

)
+

1
2
(η5 η − η4 η2)

= − 1
2

∫
� λ

4(λ− η)2 dν2
t,x(λ) +

1
2

∫
� λ

4η(λ− η) dν2
t,x(λ).

Note that
∫
� η5(λ− η) dν2

t,x(λ) = 0, from which we obtain

−1
2
η6 − η4 η2 +

3
2
η5 η(4.31)

= − 1
2

∫
� λ

4(λ− η)2 dν2
t,x(λ) +

1
2

∫
� (λ

4 − η4)η(λ− η) dν2
t,x(λ)

=
1
2

∫
� (−λ

4 + λ3η + λ2η2 + λη3 + η4)(λ− η)2 dν2
t,x(λ)

6 Cη4

∫
� (λ− η)2 dν2

t,x(λ).

Combining (4.29) with (4.31), we find that

∂t(η2 − η2) + div(u(η2 − η2)) 6 Cη4

∫
� (λ− η)2 dν2

t,x(λ).

However,

η4 6 η4 = %−,
∫
� (λ− η)2 dν2

t,x(λ) = (η2 − η2), %+ η2 = 0.

Therefore

∂t(η2 − η2) + div(u(η2 − η2)) 6 C(%− − %+)(η2 − η2) = −C%̄(η2 − η2),

where we have used the fact that %̄ = −(%− − %+). In what follows, we denote
(η2 − η2) by f , fε = f ∗ jε. Then by Proposition 1.4 we obtain

(4.32) ∂tfε + div(ufε) 6 −C%̄fε + rε
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with rε → 0 in Ls
loc(
� + × � 2 ) for s < 4

3 . Let θ, γ > 0 be small constants which will
be determined later. Then multiplying (4.32) by θ(fε + γ)θ−1 we find

∂t(fε + γ)θ + div(u(fε + γ)θ) = (θ(C − 1)− 1)(%− − %+)(fε + γ)θ + θ(fε + γ)θ−1rε.

If we take ε→ 0 then γ → 0 and picking the constant θ so small that θ(C−1)−1 6 0
and fθ(t, x) ∈ L∞(

� + , L4(
� 2 )), we arrive at

(4.33) ∂tf
θ + div(ufθ) 6 0.

Due to (4.33), a proof similar to the last part of Step a implies that for almost all

t̄ ∈ � + , we have

(4.34) C

∫
� 2
fθ(t̄, x)ϕ

(x
n

)
dx 6 −C

n

∫ t̄

0

∫
� 2
%̄(t, x)∇∆−1

(
∇ϕ

(x
n

)
fθ

)
dx dt.

On the other hand, note that

|∇∆−1h| =
∣∣∣∣
∫
� 2

x− y

|x− y|2 h(y) dy
∣∣∣∣

6
∣∣∣∣
∫

|x−y|6r

x− y

|x− y|2 h(y) dy
∣∣∣∣ +

∣∣∣∣
∫

|x−y|>r

x− y

|x− y|2 h(y) dy
∣∣∣∣

6 C
(
r

1
2 ‖h‖L4 +

1
r
‖h‖L1

)
.

By taking r =
(
‖h‖L1/‖h‖L4

)2
3 in the above inequality, we obtain

‖∇∆−1h‖L∞ 6 C‖h‖
1
3
L1‖h‖

2
3
L4 ,

hence

‖∇∆−1(∇ϕ
(x
n

)
fθ)‖L∞ 6 C‖∇ϕ

(x
n

)
‖

1
3

L
4
3
‖∇ϕ‖

2
3
L∞‖fθ‖L4

6 Cn
1
2 ‖∇ϕ‖

1
3

L
4
3
‖∇ϕ‖

2
3
L∞‖fθ‖L4 ,

from which and (4.33), and using Fatou’s Lemma, we arrive at
∫
� 2
fθ(t, x) dx = 0

for almost all t > 0. This implies that

ν2
t,x(λ) = δη(t,x)(λ),

which together with (4.26) completes the proof of the lemma. �
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With the above lemma, it is trivial to complete the proof of Theorem 4.1. One

may check [26] for more details.

Remarks and further references
The presentation of Theorem 1.1 and Proposition 1.3 is taken from [20], Theo-

rem 1.2 is from [11], the general compensated compactness theorem can be found
in [30] and Proposition 1.4 is taken from [6]. For more general compensated com-

pactness result induced by H-measure or micro-local defect measure, one may see [21]
and [31] for more details.

Theorem 2.1 is taken from [35]. For the uniqueness of the dissipative weak solutions
to (2.1), and the related results on the conservative weak solutions to (2.1), one may

check [35] for more details. For the general asymptotic equations, one may see [1]
for the recent progress.

Theorem 2.2 is taken from [32], where it is proved via the vanishing viscosity
method.

Theorem 3.1 is taken from [38], and one may check [39] for the related existence
result for general H1 initial data.

The last result, Theorem 4.1, is taken from [26], where we have also proved an exis-
tence result for related model equations arising from sup-conductivity. The definition

of renormalized solutions was first introduced by R. J. DiPerna and P.-L. Lions in the
proof of the global existence of solutions to transport and kinetic equations [6], [7] to

overcome possible concentrations in the approximate solution sequence. This notion
was applied later by the authors in [12] to the isotropic compressible Navier-Stokes

equations. Remark 4.2 shows the necessity of the renormalized solutions for (4.1).
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