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Abstract

We motivate then formulate a novel variant of the near-field reflector problem

and call it the near-field reflector problem with spatial restrictions. Let O be

an anisotropic point source of light and assume that we are given a bounded

open set U . Suppose that the light emitted from the source at O in directions

defined by the aperture D ⊆ S2, of radiance g(m) for m ∈ D, is reflected off

R ⊂ U , creating the irradiance f(x) for x ∈ T . The inverse problem consists of

constructing the reflector R ⊆ U from the given position of the source O, the

input aperture D, radiance g, ‘target’ set T , and irradiance f . We focus entirely

on the case where the target set T is finite.
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1. Introduction

Let O be the origin of R3, and let S2 be the unit sphere centered at O. We

treat points on S2 as unit vectors with initial points at O. Let an aperture be

a subset of S2; in our work, the aperture will be an open set. Physically, it

makes sense to consider O as the location of an anisotropic point source of light

such that rays of light are emitted in a set of directions defined by an aperture

D ⊆ S2.
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Definition 1.1. Assume that we are given an aperture that is a connected open

set D ⊆ S2, and a function ρ : D → (0,∞) that is continuous and almost

everywhere differentiable. Then a reflector is the set R = {mρ(m)|m ∈ D} ⊂

R3.

If ρ is a smooth function, we can call R a smooth reflector.

Given an aperture, D, that is a connected open set, assume that we have a

continuous, almost everywhere differentiable, positive function ρ : D → (0,∞),

and a corresponding reflector R = {mρ(m)|m ∈ D}. Suppose that a ray origi-

nating from O in the direction m ∈ D is incident on the reflector R at the point

mρ(m). If ρ is differentiable at m, there is a unit vector, n(m), normal to the

reflector R at mρ(m). Therefore, by the reflection law of geometric optics, a

ray from O of direction m reflects off the point mρ(m) in the direction

y(m) = m− 2〈m,n(m)〉n(m) (1)

where 〈m,n(m)〉 is the standard Euclidean inner product in R3 and n(m) is

oriented such that 〈m,n(m)〉 > 0 [1].

The reflector R is designed such that the ray described by the point mρ(m) ∈

R and the direction y(m) corresponds to some element in a prespecified target

set T . What one means by a ‘target set’ changes depending on the context, and

the correspondence between y(m); also, an element of the target set can also

vary depending on one’s needs. Hence a target set can represent many things.

For example, if the target set T is a subset of S2, then a possible correspondence

can be y(m)
|y(m)| ∈ T ; see [2]. Physically, in this case, T can be considered as a set

of directions for rays of light. If T is a subset R3 \ {O}, then for an example of

another possible correspondence, we can say that for every m ∈ D, there exists

an a(m) > 0 such that a(m)y(m) + mρ(m) ∈ T ; see [3] and [4]. Physically, in

this case, T can be considered as a region that one wants to illuminate.

Assume that g is an integrable and nonnegative function over an aperture D,

and f is an integrable and nonnegative function over a target set T . Physically

speaking, we say g(m) for m ∈ D is the radiance of the source at O in the

directions m ∈ D, or that g is a radiance distribution over D. We also say f(x)
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for x ∈ T is the irradiance of the target set at x ∈ T , or that f is an irradiance

distribution over T .

A reflector system comprises of an aperture D, O, a reflector R, an integrable

and nonnegative function g over D, and a target set T with an integrable and

nonnegative function f over T . From a physical perspective: light emitted from

the source at O in directions defined by the aperture D, of radiance g(m) for

m ∈ D, is reflected off R, creating the irradiance f(x) for x ∈ T . An example

that can serve as an illustration is shown in Figure 1.

A reflector problem is, in short, an inverse problem that seeks to complete

a reflector system by creating a reflector that fits the other information given.

Specifically, suppose we are given O, an aperture D, an integrable and non-

negative function g over D, and a target set T with an integrable and nonneg-

ative function f over T . The aim of a reflector problem is to find a continu-

ous, almost everywhere differentiable, positive ρ over D such that the reflector

R = {mρ(m)|m ∈ D} produces the specified in advance irradiance distribution

f on T .

Reflector problems have been well studied due to their utility in physics and

engineering. Such problems have found numerous applications in the construc-

tion of reflector antennas (see [5], [6]), mirror design [7], heat transfer [8], and

beam shaping [9]. We only consider in the high-frequency approximation of

light, where the laws of geometric optics apply. We now proceed with a general

description and motivation for the near-field reflector problem.

2. The Near-Field Reflector Problem

We discuss a reflector problem that we call the ‘near-field reflector prob-

lem.’ In short, the near-field reflector problem aims to design a reflector that

redistributes the light from the origin onto a set a finite distance away from the

origin.

In this part, when we say surface, we mean it in the differential geometric

sense; see Definition 12.4 in [10]. Suppose that we are given a reflector system
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O

The plane reflector R

The surface normal to R

Light rays going to some target set T

Figure 1: Here is the most basic example of a reflector system with a smooth reflector. Here R

is a plane. Every point on R has a normal. Light originates from the point O with directions

represented by points on the unit sphere S2 and travels according to some target set that is

neither shown nor specified.
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consisting of

1. O,

2. an aperture D ⊂ S2,

3. a nonnegative g ∈ L1(D),

4. a bounded Borel set T ⊂ R3 \ {O} (typically either a subset of a surface

or a finite set),

5. a nonnegative and integrable function f : T → [0,∞),

6. and a smooth function ρ : D → (0,∞) with a smooth reflector R =

{mρ(m)|m ∈ D}.

From a physical perspective, this setup can be described as follows. The light

is emitted from the source at O in directions defined by the aperture D. Each

ray of direction m ∈ D has radiance g(m) and is reflected off R at the point

mρ(m) in the direction y(m) as described by (1). For every m ∈ D, there exists

an a(m) > 0 such that a(m)y(m) +mρ(m) ∈ T creating the irradiance f(x) for

x ∈ T . A basic illustration of this situation is depicted in Figure 2. With this

setup in mind, we proceed with a formulation of the near-field reflector problem

Let u = (u1, u2) be smooth local coordinates on S2 such that D lies in one

coordinate patch. The position vector of a point m ∈ D is m = m(u). We

choose the coordinates u1, u2 so that 〈m,m1 ×m2〉 = 1 in D; here, 〈, 〉 denotes

the scalar product in R3 and mi = ∂m
∂ui , i = 1, 2. Observe that this implies that

〈m,mi〉 = 0, i = 1, 2. The first fundamental form of S2 is given by e = eijdu
iduj

where eij = 〈mi,mj〉.

Set r(m) = mρ(m), then r(m) defines a smooth surface R = {r(m)|m ∈ D}.

Let g = gijdu
iduj be the first fundamental form of R where gij = 〈ri, rj〉 =

ρiρj + ρ2eij , ri = ∂r
∂ui

, and ρi = ∂ρ
∂ui

.

Let n(m) is the normal vector field on R such that 〈n(m),m〉 > 0 everywhere

on R. Then

n(m) = (ρ2 + |∇̃ρ|2)−1/2(r − ∇̃ρ) (2)
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O

Reflector R

Target set T with irradiance distribution f

Surface normals to R

Light Rays

Figure 2: Here is an illustration of the near-field reflector problem in R3. The radiation

intensity at the origin O is given by a nonnegative function g ∈ L1(D). We want to find a

reflector R such that the reflected rays produce the prescribed irradiance distribution f on T.
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where |∇̃p|2 = ρiρje
ij . This combined with equation (1) determines the direction

a ray will go after reflecting off R [11].

We can now track the path of each ray described by the direction m ∈ D

to a point x(m) ∈ T . A ray, originating at O in direction m, hits the surface

R at a point r(m). Then, said ray reflects off R at r(m) in the direction y(m)

as defined by (1) and reaches T at some point x(m). Thus, from a physical

perspective, an irradiance f(x(m)) is created by the rays reflected at x(m).

This defines a mapping m → x that we call a reflector map; for convenience,

we denote x(m) as the image of m under the reflector map. The reflector map

x : D → T combined with equations (1) and (2) describes the ray tracing from

D to T .

If the reflector map is a diffeomorphism from D to T where T is a subset

of a smooth surface, then one can introduce the first fundamental form of T as

w = wijdu
iduj , where wij = 〈xi, xj〉, xi = ∂x

∂ui .

According to the differential form of the energy conservation law [1],

f(x(m))|J(x(m))| = g(m) (3)

where J is the Jacobian determinant of the map x. Note that

J(x(m)) = ±dν(x(m))

dσ(m)
= ±

√
det(wij)√
det(eij)

(4)

where dσ is the surface area element on S2, and dν is the surface area element

on T . We assign a ± sign to the Jacobian according to whether x preserves

the orientation or reverses it. Therefore, by integration of (3), for all Borel sets

ω ⊆ T , ∫
x−1[ω]

gdσ =

∫
ω

fdν (5)

where x−1[ω] = {m ∈ D|x(m) ∈ ω} and
∫
D
gdσ =

∫
T
fdν.

With this motivation, we can now state the near-field reflector problem.

Assume that we are given O, an aperture D ⊂ S2 with a nonnegative function

g ∈ L1(D), and a bounded Borel set T ⊂ R3\{O} with a nonnegative, integrable

function f : T → [0,∞). The goal is to find a smooth function ρ over D such

that:
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1. The ray originating from O in the direction m ∈ D reflects off the reflector

R = {mρ(m)|m ∈ D} in accordance with equation (1) and reaches the

target set T .

2. g(m) on D is transformed by the reflector map into f on T ; i.e. for all

Borel subsets ω ⊆ T , ∫
x−1[ω]

gdσ =

∫
ω

fdν (6)

where x : D → T the reflector map corresponding to the reflector R =

{mρ(m)|m ∈ D}, x−1[ω] = {m ∈ D|x(m) ∈ ω}, dσ is the surface area

element on S2, and dν is the area element on T (ν is typically some discrete

or Lebesgue measure).

3. The law of total energy conservation is obeyed:
∫
D
gdσ =

∫
T
fdν.

The case where the reflector map is a diffeomorphism from D to T can be

alternatively formulated as a PDE of Monge-Ampère type; specifically equation

(4) from [12].

There has been a lot of work done on the near-field reflector problem. In

1972, Schruben [3] found that if the target set was a subset of a plane in R3, one

can then derive an implicit integro-differential equation describing the reflector;

the existence of a solution was not proved. Then in [13], Schruben considered

the case where the target set was a small rotationally symmetric patch on the

plane. In this case, when the radiance and the irradiance distributions are

rotationally symmetric, the equation derived in [3] can be solved as an ODE.

In 1989, Oliker [12] found a formulation of the near-field reflector problem in

the form of a strongly non-linear PDE of Monge-Ampère type. The exploration

of the said equation is difficult and in [12] was solved only for the rotationally

symmetric case.

In 1998, Kochengin and Oliker [4] introduced an alternative formulation to

the near-field reflector problem, which was a geometric approach involving the

analysis of the boundaries of convex sets generated by families of supporting

ellipsoids. This approach can also be considered a weak solution to the PDE
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introduced in [12]. The strategy was to assume that the target set was a finite

set on a plane and constructively prove the existence of solutions for that case.

Since the reflectors that were constructed were convex, one can use the Blaschke

selection theorem (for more details, see [14]) to prove the existence of a solution

with a continuous target set on the plane. This method was largely motivated

by previous work done by Caffarelli and Oliker [2] which involved the analysis

of the boundaries of convex sets generated by families of supporting paraboloids

to solve a related problem.

In [15] a provably convergent numerical algorithm was introduced that ex-

plicitly finds the ellipsoids required to construct the reflectors described in [4].

It was shown that this construction leads to infinitely many solutions; however,

the algorithm has the benefit of converging to a unique solution if we fix an ini-

tial point on the reflector. This algorithm and its variations have been explored

extensively in various scenarios. For example, Fournier, Cassarly, and Rolland

in [16] adapted the algorithm in [15], to situations where the light source is

not a single point; specifically, a flat rotationally symmetric emitter. In [17] a

method was proposed for smoothing out a reflector with a discrete irradiance

distribution to a reflector with a continuous irradiance distribution. Optimal

transport methods have also been studied [18].

2.1. The Near-Field Reflector Problem with Spatial Restrictions

In this paper, we study a novel variant of the near-field reflector problem

where we have extreme limitations on where we can place and construct the

reflectors. Specifically, we are given an open set U ⊂ R3 \{O}, and our reflector

R must now be a subset of U .

Definition 2.1. Given an x ∈ R3 \ {O} and a subset S ⊆ R3 \ {O}, then we

define Proj(x) = x
|x| as the projection of x onto S2 and Proj[S] = {Proj(x) ∈

S2|x ∈ S} as the projection of S onto S2.

Assume that we are given a positive, continuous, almost everywhere differen-

tiable function ρ over Proj[U ]. We have a reflector R = {mρ(m)|m ∈ Proj[U ]}
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which determines our reflector map x : Proj[U ] → T which is determined by

tracking the path of each ray described by the direction m ∈ Proj[U ] to a point

x(m) ∈ T . A ray, originating at O in direction m, hits the reflector R at a

point mρ(m). Then, assuming ρ is differentiable at m, said ray reflects off R

at mρ(m) in the direction y(m) as defined by (1) and reaches T at some point

x(m). Thus, from a physical perspective, an irradiance f(x(m)) is created by

the rays reflected at x(m). This defines a mapping m→ x(m) that we call the

reflector map; for convenience, we denote x(m) as the image of m under the

reflector map.

We can now formulate the near-field reflector problem with spatial restric-

tions. Assume that we are given an open set U ⊂ R3 \ {O}, O, an aper-

ture Proj[U ] ⊂ S2, a nonnegative g ∈ L1(Proj[U ]), and a bounded Borel set

T ⊂ R3 \ {O} with an integrable function f : T → [0,∞).

The goal is to find a positive, continuous, almost everywhere differentiable

function ρ over Proj[U ] such that:

1. R = {mρ(m)|m ∈ Proj[U ]} ⊂ U .

2. The ray originating from O in the direction m ∈ Proj[U ] reflects off of R

in accordance with equation (1) and reaches the target set T .

3. g(m) on Proj[U ] is transformed by the reflector map into f on T , i.e. for

all Borel subsets ω ⊆ T , ∫
x−1[ω]

gdσ =

∫
ω

fdν (7)

where x : Proj[U ]→ T is the reflector map, x−1[ω] = {m ∈ Proj[U ]|x(m) ∈

ω}, dσ is the surface area element on S2, and dν is the area element on T

(ν is typically some discrete or Lebesgue measure).

4. The law of total energy conservation is obeyed:
∫

Proj[U ]
gdσ =

∫
T
fdν.

This variation of the near-field reflector problem has clear applications to

engineering; as often one has to grapple with restrictions of space in real-world

designs. For example, in the construction of automotive headlights, there are
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strict restrictions, guided purely by aesthetics, as to where a reflector can be

placed and how a reflector must be shaped [19]. However, to the author’s

knowledge, no mathematical research has been done in this direction. We focus

exclusively on the case where the target set is finite.

3. Ellipsoids of Revolution

We do all our work in R3. We denote S2 to be the unit sphere with the

center at O and kx = x/|x| for all x ∈ R3 \ {O}. We borrow much of this

geometric setup from [4] and [15]. Ellipsoids of revolution are of paramount

importance when solving the near-field reflector problem due to their unique

optical properties.

Let x ∈ R3 \ {O} and d ∈ (0,∞). We denote by Ed(x) an ellipsoid of

revolution about the axis Ox and with foci at points O and x. The polar radius

relative to O can be represented as:

ψx,d(m) =
d

1− ε〈m, kx〉
, m ∈ S2 (8)

where ε is the eccentricity and

ε =

√
1 +

d2

x2
− d

|x|
. (9)

So in other words

Ed(x) = {mψx,d(m)|m ∈ S2}. (10)

From this point on, whenever we use the term ellipsoid we specifically refer to

an ellipsoid of this kind with one of the foci always at O. Note that each Ed(x)

is uniquely defined by the x ∈ R3 \ {O} and the d ∈ (0,∞). In this paper, we

define Ψx,d(m) = mψx,d(m).

Note that for all possible values of d, we have that ε ∈ (0, 1). Also for a

fixed x, as d→ 0 the ellipsoid will degenerate into a line segment, i.e. Ed(x)→

{tx+ (1− t)O|t ∈ [0, 1]}. Such an ellipsoid is called degenerate. Observe that as

d→∞, |ψx,d(m)| → ∞ for all m ∈ S2.

An important property of ellipsoids can be described by the following propo-

sition.
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Proposition 3.1. Let c, d > 0. Then the ellipsoids Ecd(x) and Ed(x) have the

same foci: O and x.

From a physical perspective, the aforementioned property is important be-

cause a reflector that is shaped like an ellipsoid Ed(x) will illuminate the focus

x with the light emitted from O such that the total energy emitted from O is

equal to the total energy reflected onto x. This property is still true no matter

how large or small the ellipsoid is; all that matters is the location of the foci.

4. Generalized Reflectors

Before we proceed, we reiterate that the near-field reflector problem can

be expressed analytically as a PDE of Monge Ampére Type. Specifically, the

equation (4) from [12]. Therefore we will consider the following formulation of

the near-field reflector problem with spatial restrictions as a weak formulation

and its solutions, weak solutions. The following formulation only concerns the

case where the target set is finite.

4.1. Weak Solutions Using Generalized Reflectors

Definition 4.1. Assume that we are given an aperture D ⊆ S2 that is an

open set, and a function ρ : D → (0,∞) that is not necessarily continuous

and almost everywhere differentiable. Then a generalized reflector is the set

R = {mρ(m)|m ∈ D} ⊂ R3.

The upper half-space of R3 be represented as R3+ = {(x, y, z) ∈ R3|z > 0},

and the lower half-space of R3 be represented as R3− = {(x, y, z) ∈ R3|z < 0}.

Let σ denote the standard measure on S2. Consider an open set U ⊆ R3+, a

corresponding aperture Proj[U ], and a finite target set T ⊂ R3−.

Let B be a countable family of open subsets of S2 such that σ(Proj[U ] \⋃
B∈B B) = 0, Proj[U ] ⊆

⋃
B∈B B, and σ(B∩B′) = 0 for all distinct B,B′ ∈ B.

Let the set B(U) be the set of all such families.

Since every ellipsoid requires foci and an eccentricity to be well defined, given

a family B ∈ B(U), let UT (B) be the set of all functions B → T and V (B) be
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the set of all functions B → (0,∞). Thus we define

ET (U) =

{ ⋃
B∈B

Ψu(B),v(B)[B]

∣∣∣∣∣B ∈ B(U), u ∈ UT (B), v ∈ V (B)

}
. (11)

Assume we are given a Z ∈ ET (U). Let us define

BZ =
{

Int(Proj[Ed(x) ∩ Z]) ⊆ S2 |d ∈ (0,∞), x ∈ T, σ(Proj[Ed(x) ∩ Z]) 6= 0
}
.

(12)

The geometry of the ellipsoid and the definition of BZ imply that there ex-

ists unique u ∈ UT (B) and v ∈ V (B) such that Z =
⋃
B∈BZ

Ψu(B),v(B)[B].

Define uZ ∈ UT (BZ) and vZ ∈ V (BZ) be the unique functions such that

Z =
⋃
B∈BZ

ΨuZ(B),vZ(B)[B]. Given some Z ∈ ET (U), let y1
Z(m) = {B ∈

BZ |m ∈ B} for m ∈ Proj[U ]. Given a B ∈ B(U), let N (B) be the set of all

injective functions s : B → N. For Z ∈ ET (U) and s ∈ N (BZ), define

ρsZ(m) = ψuZ(s−1(min s[y1Z(m)])),vZ(s−1(min s[y1Z(m)]))(m), m ∈ Proj[U ]. (13)

Observe that the function ρsZ is positive, not necessarily continuous, and almost

everywhere differentiable. Let W (ρsZ) = {mρsZ(m)|m ∈ Proj[U ]} and thus we

describe a set of generalized reflectors

RU1 (T ) =
{
W (ρsZ)|Z ∈ ET (U) where Z ⊂ U, s ∈ N (BZ)

}
. (14)

Assume we are given a generalized reflector R ∈ RU1 (T ). Let us define

BR =
{

Int(Proj[Ed(x) ∩R]) ⊆ S2 |d ∈ (0,∞), x ∈ T, σ(Proj[Ed(x) ∩R]) 6= 0
}
.

(15)

The geometry of the ellipsoid and the definition of BR imply that there exists

an s ∈ N (BR), unique u ∈ UT (B) and unique v ∈ V (B) such that W (ρsZ) = R

where Z =
⋃
B∈BR

Ψu(B),v(B)[B]. Therefore, for every generalized reflector

R ∈ RU1 (T ), we may define a unique BR ∈ B(U) such that for each B ∈ BR

there are unique xB ∈ T and dB ∈ (0,∞) such that, for some s ∈ N (BR),

R = W (ρsZ) where Z =
⋃
B∈BR

ΨxB ,dB [B].

Therefore, given a generalized reflector R ∈ RU1 (T ), we obtain a correspond-

ing BR; for each B ∈ BR we define unique xB and dB . We also obtain an

sR ∈ N (BR) and a unique ZR =
⋃
B∈BR

ΨxB ,dB [B] such that R = W (ρsRZR).
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Given a generalized reflector R ∈ RU1 (T ), for all m ∈ Proj[U ] we define

M(m) = xB ∈ T (16)

where mρsRZR(m) = ΨxB ,dB (m). Let y2
R(m) be the points of intersection between

R \ {mρsRZR(m)} and the line segment connecting mρsRZR(m) to M(m).

Given a generalized reflector R ∈ RU1 (T ), the map α1 : Proj[U ]→ T ∪R,

α1(m) =

M(m) if y2
R(m) = ∅

y2
R(m) if y2

R(m) 6= ∅
(17)

is called the generalized reflector map. Physically speaking, a ray of light of

direction m originating from O can only reach the target set if y2
R(m) is empty.

Assume we are given a nonnegative g ∈ L1(S2). Let us define for all Borel

X ⊆ S2

µg(X) =

∫
X

g(m)dσ(m) (18)

where σ denotes the standard measure on S2. Assume that g ≡ 0 outside of

Proj[U ]. Physically speaking, g is the radiance distribution of the source at O.

In order to formulate and solve the generalized reflector problem (in the

framework of weak solutions to be defined below), we need to define a mea-

sure representing the energy generated by g and redistributed by a generalized

reflector R ∈ RU1 (T ).

Given a generalized reflector R ∈ RU1 (T ) and a set ω ⊆ T we define the

visibility set of ω as

V U1 (ω) =
⋃
A∈A

A \ {m ∈ Proj[U ]|α1(m) = y2
R(m)} (19)

where A = {B ∈ BR|xB ∈ ω}. We now need to show that V U1 (ω) is measurable.

Note the following definition.

Definition 4.2. For an element x ∈ R3 and a set A ⊂ R3, let the set Cx,A =

{at + x(1 − t)|t ∈ [0, 1], a ∈ A} be the union of all line segments from x to A

and Cx,A,∞ = {at + x(1 − t)|t ∈ [0,∞), a ∈ A} be the union of all rays from x

that intersect A.
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We proceed with the following lemmas.

Lemma 4.1. Let w : S2 → (0,∞) be continuous and W (m) = mw(m) for all

m ∈ S2. If B is a Borel set of S2, then CO,W [B] and CO,W [B],∞ are Borel sets

of R3.

Proof. Recall that all Borel sets can be formed from open sets through the

operations of countable union, countable intersection, and relative complement.

Let {Ei} be a countable collection of open sets of S2 such that through said

operations, we obtain B. Then given the countable collection of open sets of R3,

{Int(CO,W [Ei])}, through the same sequence of operations we used to obtain B

from {Ei}, we obtain Int(CO,W [B]). Thus CO,W [B] is Borel. Therefore, assuming

Wi ≡ (im)w(m) for all m ∈ S2 and i ∈ (0,∞),
⋃∞
n=1 CO,Wn[B] = CO,W [B],∞ is

Borel.

Lemma 4.2. If B is a Borel set of S2, x ∈ R3 \ {O} and d ∈ (0,∞), then

Cx,Ψx,d[B] and Cx,Ψx,d[B],∞ are Borel sets of R3.

Proof. Let S2
x = {m+x|m ∈ S2} be the set of all unit vectors originating from x,

i.e the unit sphere centered at x. Since x is another focus of the ellipsoid, there

exists a continuous function w : S2 → (0,∞) such that Ed(x) = {mw(m)+x|m ∈

S2}. Let Wx(m) = mw(m) + x and let W (m) = mw(m). Note that since B is

Borel in S2, Ψx,d[B] is Borel in Ed(x). Thus W−1
x [Ψx,d[B]] is Borel in S2. By

Lemma 4.1, CO,W [W−1
x [Ψx,d[B]]] and CO,W [W−1

x [Ψx,d[B]]],∞ are Borel sets of R3.

Thus, by translation, Cx,Ψx,d[B] and Cx,Ψx,d[B],∞ are Borel sets of R3.

We can now prove the following proposition.

Proposition 4.1. Let R be a generalized reflector in RU1 (T ). For any set ω ⊆ T

the visibility set V U1 (ω) is Borel.

Proof. We make use of the fact that sets formed from Borel sets through the

operations of countable union, countable intersection, and relative complement

are Borel. Recall that we obtain a sR ∈ N (BR). Note that by the definition

of a generalized reflector in RU1 (T ), R =
⋃
B∈BR

ΨxB ,dB [B′] where B′ = {m ∈
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B|mρsRZR = ΨxB ,dB (m)} = B\
⋃
K∈K K where K = {A ∈ BR|sR(A) < sR(B)};

note that B′ is clearly Borel and B ⊆ B′ ⊆ B.

For B ∈ BR, we have that CxB ,ΨxB,dB [B′] and CO,ΨxB,dB [B′] are Borel sets

by Lemmas 4.2 and 4.1 respectively. Since BR is countable and functions of

the form ΨxB ,dB are continuous and bijective, R is Borel. Thus for all B ∈ BR,

the set QB = CxB ,ΨxB,dB [B′] ∩ (R \ ΨxB ,dB [B′]) is Borel and therefore the set

LB = CxB ,QB ,∞ ∩ ΨxB ,dB [B′] is Borel. Thus Proj[LB ] is Borel, as it is the

preimage of LB under ΨxB ,dB . Since

{m ∈ Proj[U ]|α1(m) = y2
R(m)} =

⋃
B∈BR

Proj[LB ], (20)

we have that {m ∈ Proj[U ]|α1(m) = y2
R(m)} is Borel and thus V U1 (ω) is Borel.

Define for any generalized reflector R ∈ RU1 (T ),

G1(ω) = µg(V
U
1 (ω)) (21)

which we will deem the energy function of the generalized reflector problem.

Let F be a nonnegative, finite measure on the finite set T . We say that a

generalized reflector R ∈ RU1 (T ) is a weak solution to the generalized reflector

problem if the generalized reflector map α1 determined by R is such that

F (ω) = G1(ω) for any Borel set ω ⊆ T. (22)

It would be useful to point out the similarity of condition (22) and condition

(6).

4.2. Geometric Lemmas

One thing that should be noted is that the definition of the generalized

reflector map takes into account that there could potentially be a part of the

generalized reflector that intercepts an already reflected ray before it can reach

the target set. That fact inspires some key geometric lemmas.
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Lemma 4.3. Let R ∈ RU1 (T ) for some finite set T ⊂ R3− and open set U ⊆

R3+. For all B ∈ BR, if m ∈ B, then α1(m) = xB if and only if y2
R(m) = ∅.

Proof. This follows directly from the definition of the reflector map of the gen-

eralized reflector problem.

Note the following definition.

Definition 4.3. When we say that r is a ray in Cx,B,∞, then r = {at+x(1−

t)|t ∈ [0,∞)} for some a ∈ B, similarly if we say r is a line segment in Cx,B,

then r = {at+ x(1− t)|t ∈ [0, 1]} for some a ∈ B.

Lemma 4.4. Let A,B ⊂ S2 be disjoint sets. Then for any x ∈ R3 \ {O} and

a, b ∈ (0,∞), Cx,Ψx,a[A] ∩Ψx,b[B] = ∅ and Cx,Ψx,b[B] ∩Ψx,a[A] = ∅ if and only

if Cx,Ψx,a[A],∞ ∩Ψx,b[B] = ∅.

Proof. If Cx,Ψx,a[A],∞∩Ψx,b[B] 6= ∅, then there exists a ray r in Cx,Ψx,a[A],∞ such

that r intersects Ψx,b[B]. Thus, either there exists a line segment in Cx,Ψx,a[A]

that intersects Ψx,b[B] and thus Cx,Ψx,a[A] ∩Ψx,b[B] 6= ∅, or there exists a line

segment in Cx,Ψx,b[B] that intersects Ψx,a[A] and thus Cx,Ψx,b[B] ∩Ψx,a[A] 6= ∅.

Conversely, if Cx,Ψx,a[A] ∩ Ψx,b[B] 6= ∅, then there exists a line segment

in Cx,Ψx,a[A] that intersects Ψx,b[B], said line segment coincides with a ray in

Cx,Ψx,a[A],∞; thus Cx,Ψx,a[A],∞ ∩Ψx,b[B] 6= ∅. If Cx,Ψx,b[B] ∩Ψx,a[A] 6= ∅, then

there exists a line segment in Cx,Ψx,b[B] that intersects Ψx,a[A], said line segment

coincides with a ray in Cx,Ψx,a[A],∞; thus Cx,Ψx,a[A],∞ ∩Ψx,b[B] 6= ∅.

These two lemmas give us the following result.

Lemma 4.5. Assume that U is an open set in R3+, and T is a finite target

set in R3−. Let R ∈ RU1 (T ) be a generalized reflector and A,B ∈ BR such that

A 6= B and x = xA = xB. Then the following conditions are equivalent:

1. for all m ∈ A and m′ ∈ B, α1(m) = α1(m′) = x,

2. Cx,Ψx,dA [A] ∩Ψx,dB [B] = ∅ and Cx,Ψx,dB [B] ∩Ψx,dA [A] = ∅,

3. Cx,Ψx,dA [A],∞ ∩Ψx,dB [B] = ∅.
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Proof. (2) and (3) are equivalent by Lemma 4.4. By Lemma 4.3, for all m ∈ A

α1(m) = x if and only if y2
R(m) = ∅. By definition, y2

R(m) = ∅ if and only if

the line segment between Ψx,dA(m) and x does not intersect R \ {Ψx,dA(m)}.

Similarly, By Lemma 4.3, for all m′ ∈ B, α1(m′) = x if and only if y2
R(m′) = ∅.

By definition, y2
R(m′) = ∅ if and only if the line segment between Ψx,dB (m′)

and x does not intersect R\{Ψx,dB (m′)}. Therefore, statements (1) and (2) are

equivalent.

4.3. Generalized Reflectors Constructed in an Open Conical Cylinder of Arbi-

trary Thickness

Let S2
+ = {m ∈ S2|〈m, (0, 0, 1)〉 > 0} be the open hemisphere of the S2

oriented towards the positive z−axis. Similarly, S2
− = {m ∈ S2|〈m, (0, 0, 1)〉 <

0} be the open hemisphere of the S2 oriented towards the negative z−axis.

Given an open U ⊆ S2
+, and δ, z′ > 0, we then define an open conical cylinder

of thickness δ as C δ
U (z′) = CO,U,∞ ∩ {(x, y, z) ∈ R3|z′ + δ > z > z′}.

In this paper, given a finite target set T ⊂ R3−, we aim to construct a

generalized reflector R ∈ RC δ
U (z′)

1 (T ) that is a weak solution of the generalized

reflector problem. This condition is very strict and the following strategies can

potentially be applied to other kinds of open subsets in R3+.

We first consider the case where the target set is a single point. We proceed

with the following lemmas.

Lemma 4.6. Let U be an open set in S2
+ and z′, δ > 0. Let {Si}i∈N be a

countable collection of open subsets in U , {di}i∈N is a countable collection of

distinct positive numbers, and x ∈ R3−. Assume that each Ψx,di [Si] ⊂ C δ
U (z′)

and denote Ψi = Ψx,di [Si]. Then we have that

Proj

[
C δ
U (z′) \

⋃
i∈N

(CO,Ψi,∞ ∪ Cx,Ψi,∞)

]
= Proj

[
C δ
U (z′) \

⋃
i∈N

CO,Ψi,∞

]
. (23)

Proof. Assume to the contrary that

Proj

[
C δ
U (z′) \

⋃
i∈N

(CO,Ψi,∞ ∪ Cx,Ψi,∞)

]
6= Proj

[
C δ
U (z′) \

⋃
i∈N

CO,Ψi,∞

]
. (24)

18



Then there exists a ray r in CO,U\
⋃
i∈N Si,∞

= CO,U,∞ \
⋃
i∈N CO,Si,∞ such that

r ∩ C δ
U (z′) ⊂

⋃
i∈N Cxi,Si,∞. Equivalently, one can say that there must be a ray

of direction m ∈ U \
⋃
i∈N Si originating from O that we denote as r such that

r ∩ (C δ
U (z′) \

⋃
i∈N(CO,Ψi,∞ ∪ Cx,Ψi,∞)) = ∅.

Consider the plane P (α) = {(x, y, z) ∈ R3|z = α}. Let m ∈ U \
⋃
i∈N Si.

Assume that there exists a set P (z′) ∩
⋃
i∈N Cx,Ψi,∞ such that[(

P (z′) ∩
⋃
i∈N

Cx,Ψi,∞

)
\

(
P (z′) ∩

⋃
i∈N

CO,Ψi,∞

)]
∩ CO,U,∞ 6= ∅. (25)

Otherwise there does not exist a ray r of direction m ∈ U \
⋃
i∈N Si originating

from O such that r ∩ (C δ
U (z′) \

⋃
i∈N(CO,Ψi,∞ ∪Cx,Ψi,∞)) = ∅; a contradiction.

Thus we assume such a ray exists r exists. Then m must be in a direction such

that there exists a dmin > 0 where

Ψx,dmin
(m) ∈

[(
P (z′) ∩

⋃
i∈N

Cx,Ψi,∞

)
\

(
P (z′) ∩

⋃
i∈N

CO,Ψi,∞

)]
∩ CO,U,∞.

(26)

Since C δ
U (z′) is bounded, there must also exist a dmax > 0 such that

Ψx,dmax(m) ∈ P (z′ + δ) ∩ CO,U,∞. (27)

Note that by our assumptions, for all d ∈ (dmin, dmax), there exists an α ∈ N

such that the line segment between Ψx,d(m) and x is a subset of a line segment

in Cx,Ψα . However, since all Ψi are closed, then for all d ∈ [dmin, dmax], there

exists an α such that the line segment between Ψx,d(m) and x is a subset of a

line segment in Cx,Ψα .

Case 1. dmax > di for all i ∈ N.

Recall that by our assumptions, Ψx,d(m) ∈
⋃
i∈N Cx,Ψi,∞ for all d ∈ [dmin, dmax].

However, since ψx,dmax(m) > ψx,di(m) for all i ∈ N, Ψx,dmax(m) cannot reside

on the interior of any ellipsoid Ed′(x) where d′ ∈ {di}i∈N, thus Ψx,d(m) 6∈⋃
i∈N Cx,Ψi,∞. A contradiction.

Case 2. There exists some α ∈ N such that dmax = dα.

If there exists some α such that dmax = dα, then, since tΨx,dmax
(m) + (1 −
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t)x 6∈ C δ
U (z′) for all t > 1, Ψx,dmax(m) resides on the ellipsoid Edα(x). Therefore

Ψx,dmax
(m) ∈ Ψα ∩ P (z′ + δ) and thus m ∈ Sα. A contradiction.

Case 3. There exists some α ∈ N such that dα > dmax.

Assume that {di}i∈N is arranged such that di+1 ≥ di If there exists some α

such that dα > dmax, then there exists a ray originating from x that intersects

the point Ψx,dmax
(m) that also intersects a point (xβ , yβ , zβ) ∈ Ψβ where dβ ≥

dmax. The case where dβ = dmax has already been covered. When dβ > dmax:

since x ∈ R3− and Ψx,dmax
(m) ∈ P (z′ + δ), this implies that zβ > z′ + δ. A

contradiction.

Lemma 4.7. Recall that σ is the standard measure on S2. Let U be a Borel

set in R3 \ {O} such that Int(U) 6= ∅. Let x ∈ R3 \ {O}. Consider the set

K(d) = Proj[Ed(x) ∩ U ] and the corresponding function D(d) = σ(K(d)) for

d ∈ (0∞). Then D(d) cannot be identically zero.

Furthermore, if U is open, K(d) is open in S2 for all d ∈ (0,∞).

Proof. Clearly there exists a d′ ∈ (0,∞) such that K(d′) ∩ Int(U) 6= ∅. Then

Ed′(x) ∩ Int(U) is open in Ed′(x) and thus Proj[Ed′(x) ∩ Int(U)] is open in S2.

Therefore, D(d′) ≥ σ(Proj[K(d′) ∩ Int(U)]) > 0.

Theorem 4.1. Let U be an open set in S2
+, δ, z′ > 0, and T = {x} ∈ R3−.

Assume that we are given a nonnegative g ∈ L1(S2) where g ≡ 0 outside U .

Then there exists a generalized reflector R ∈ RC δ
U (z′)

1 (T ) such that G1({x}) =

µg(U).

Proof. For convenience, label C∗ = C δ
U (z′). Recall that σ is the standard mea-

sure on S2.

Consider the set K1(d) = Proj[Ed(x) ∩ C∗] and its corresponding function

D1(d) = σ(K1(d)) where d ∈ (0,∞). Note that since C∗ is bounded, D1(d)→ 0

as d → ∞ and D1(d) → 0 as d → 0. By construction, it is clear that D1 is

bounded by 0 and σ(U). Therefore, Dmax
1 = sup{D1(d)|d ∈ (0,∞)} exists and

is finite, and by Lemma 4.7, Dmax
1 > 0.
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Let ε1 ∈ [0, Dmax
1 ). We define dmax1 to be a value such that D1(dmax1) =

Dmax
1 − ε1 where ε1 = 0 if Dmax

1 ∈ {D1(d)|d ∈ (0,∞)}. We now eliminate the

parts of U that had already been accounted for and the parts of C∗ that can no

longer be used: let E1 = Proj[Edmax1 (x) ∩ C∗], Ψ1 = Ψx,dmax1
[E1],

Q2 = C∗ \ (Cx,Ψ1,∞ ∪ CO,Ψ1,∞), (28)

and U2 = U \ E1. Note by Lemma 4.6, U2 = Proj[Q2]. Let us define K2(d) =

Proj[Ψx,d[U2] ∩Q2] and D2(d) = σ(K2(d)).

Note that since Q2 is bounded, D2(d) → 0 as d → ∞ and D2(d) → 0

as d → 0. By construction, it is clear that D2 is bounded by 0 and σ(U2).

Therefore, Dmax
2 = sup{D2(d)|d ∈ (0,∞)} exists and is finite, and by Lemma

4.7, Dmax
2 > 0. Let ε2 ∈ [0, Dmax

2 ). We define dmax2 to be a value such that

D1(dmax1
) ≥ D2(dmax2

) = Dmax
2 − ε2.

Given that U1 = U and Q1 = C∗, we can now recursively define a sequence

of functions and sets for k ≥ 2:

Ek−1 = Proj[Ψx,dmaxk−1
[Uk−1] ∩Qk−1], (29)

Ψk−1 = Ψx,dmaxk−1
[Ek−1], (30)

Qk = Qk−1 \ (Cx,Ψk−1,∞ ∪ CO,Ψk−1,∞), (31)

Uk = U \

k−1⋃
j=1

Ej

 = Proj[Qk], (32)

Kk(d) = Proj[Ed(x) ∩Qk], (33)

Dk(d) = σ(Kk(d)). (34)

Also, note that since Qk is bounded, Dk(d) → 0 as d → ∞ and Dk(d) → 0

as d → 0. By construction, it is clear that Dk is bounded by 0 and σ(Uk).

Therefore, Dmax
k = sup{Dk(d)|d ∈ (0,∞)} exists and is finite, and by Lemma

4.7, Dmax
k > 0. Let εk ∈ [0, Dmax

k ). We define dmaxk to be a value such that

Dk−1(dmaxk−1
) ≥ Dk(dmaxk) = Dmax

k − εk.

Observe that the set Kk(d) is open for all d > 0. We can therefore construct
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a sequence σ
 k⋃
j=1

Ej


∞

k=1

. (35)

Claim 4.1. There exists {εi}i∈N such that
{
σ
(⋃k

j=1Ej

)}∞
k=1

converges to

σ(U).

Proof. By construction, the sequence increases monotonically and is bounded

between 0 and σ(U); thus it converges. Assume to the contrary that for every

possible {εi}i∈N,
{
σ
(⋃k

j=1Ej

)}∞
k=1

that converges to an L ∈ (0, σ(U)). Then

σ
(
U \

⋃∞
j=1Ej

)
= σ(U)− L > 0.

Consider the function

D∗(d) = σ

(
Proj

[
Ed(x) ∩ lim

j→∞
Qj

])
. (36)

Observe that limj→∞Qj = C∗\
⋃∞
i=1(Cx,Ψi,∞∪CO,Ψi,∞). Note that

⋃∞
i=1(Cx,Ψi,∞∪

CO,Ψi,∞) ⊆
⋃∞
i=1(Cx,Ψi,∞ ∪ CO,Ψi,∞). Observe that for all i ∈ N, Int(Cx,Ψi,∞ ∪ CO,Ψi,∞) =

Cx,Ψi,∞∪CO,Ψi,∞; thus
⋃∞
i=1 Int(Cx,Ψi,∞ ∪ CO,Ψi,∞) =

⋃∞
i=1(Cx,Ψi,∞ ∪ CO,Ψi,∞).

Thus limj→∞Qj = C∗\
⋃∞
i=1(Cx,Ψi,∞ ∪ CO,Ψi,∞) is open and thus Int(limj→∞Qj) 6=

∅.

Thus, by Lemma 4.7, there exists a d′ such that D∗(d′) > 0. By the def-

inition of convergence, there exists an M such that for all m ≥ M , D∗(d′) >

σ
(⋃∞

j=mEj

)
. Note that σ

(⋃∞
j=mEj

)
=
∑∞
j=m σ(Ej) =

∑∞
j=mDi(dmaxi) ≥

Dm(dmaxm). For all k ∈ N, Dmax
k is a limit point of {Dk(d)|d ∈ (0,∞)}, there-

fore as εk → 0, Dk(dmaxk) → Dmax
k . Observe that Dm(d′) ≥ D∗(d′) because

limj→∞Qj ⊆ Qm and U \
⋃∞
j=1Ej ⊆ Um. Therefore there exists a sequence

{εi}i∈N such that Dm(dmaxm) ≥ D∗(d′). For this sequence σ
(⋃∞

j=mEj

)
≥

D∗(d′); a contradiction. Thus, there exists {εi}i∈N such that
{
σ
(⋃k

j=1Ej

)}∞
k=1

converges to σ(U).

Let

Z =

∞⋃
j=1

Ψj . (37)
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For some s ∈ N (BZ), consider the generalized reflector R = W (ρsZ) ∈ RC∗
1 (T ).

By construction,

Cx,Ψx,dmaxj [Int(Ej)],∞ ∩Ψx,dmax
j′

[Int(Ej′)] = ∅ (38)

when j 6= j′. Observe that if j′, j ∈ N where j′ > j, then dmaxj 6= dmaxj′

because otherwise Ej′ ⊆ Ej ; thus BR = {Int(Ej) ⊂ S2|j ∈ N}. Thus, by

Lemma 4.5, for all m ∈ B where B ∈ BR, we have α1(m) = x. Then, for any

s ∈ N (BZ), the generalized reflector R = W (ρsZ) ∈ RC∗
1 (T ) is a weak solution

to the generalized reflector problem such that G1({x}) = µg(U).

We can now prove a result where our target set is made up of finitely many

points. First, we prove the following lemma.

Lemma 4.8. Assume that U is an open set in R3+, and T is a finite target

set in R3−. Let R ∈ RU1 (T ) be a generalized reflector and A,B ∈ BR such that

A 6= B. Then the following conditions are equivalent:

1. for all m ∈ A and m′ ∈ B, α1(m) = xA and α1(m′) = xB,

2. CxA,ΨxA,dA [A] ∩ΨxB ,dB [B] = ∅ and CxB ,ΨxB,dB [B] ∩ΨxA,dA [A] = ∅.

Proof. For the case where xA = xB , we have Lemma 4.5. We now consider

the case where xB 6= xB . By Lemma 4.3, for all m ∈ A α1(m) = xA if and

only if y2
R(m) = ∅. By definition, y2

R(m) = ∅ if and only if the line segment

between ΨxA,dA(m) and xA does not intersect R \ {ΨxA,dA(m)}. Similarly,

By Lemma 4.3, for all m′ ∈ B α1(m′) = xB if and only if y2
R(m′) = ∅. By

definition, y2
R(m′) = ∅ if and only if the line segment between ΨxB ,dB (m′) and

x does not intersect R \ {ΨxB ,dB (m′)}. Therefore, statements (1) and (2) are

equivalent.

Theorem 4.2. Let U be an open set in S2
+, δ, z′ > 0, and {x1, . . . , xk} ∈ R3−

where k ≥ 2. Assume we are given a nonnegative g ∈ L1(S2) where g ≡ 0
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outside U . Let f1, f2, . . . , fk be nonnegative real numbers such that

k∑
i=1

fi = µg(U). (39)

Assume that there exists n ≥ k disjoint open sets Bi in U where
⋃
i∈[n]Bi = U .

Also assume that there exists a collection of k subsets of [n], {Ai}i∈[k], such that:

At∩At′ = ∅ where t 6= t′,
⋃
i∈[k]Ai = [n], and µg(

⋃
i∈At Bi) = ft. Suppose that

for all i ∈ [n] there exists ai, bi > 0 where z′ ≤ ai < ai + bi ≤ z′ + δ such that

C bi
Bi

(ai) ∩ C
xj ,C

bj
Bj

(aj)
= ∅ for all j ∈ [n] \ {i}.

Then there exists a generalized reflector in R ∈ RC δ
U (z′)

1 (T ) such that G1({xi}) =

fi for all i ∈ [k].

Proof. For each i ∈ [n], C bi
Bi

(ai) is open and a generalized reflector Ri ∈

R
C
bi
Bi

(ai)

1 ({xi}) is constructed in the exact same way as Theorem 4.1. By our

assumptions, since Ri ⊆ C bi
Bi

(ai), then

(Ri ∩ C bi
Bi

(ai)) ∩ C
xj ,Rj∩C

bj
Bj

(aj)
= ∅ (40)

for all j ∈ [n] \ {i}.

Let F =
⋃
i∈[k]Ri and consider the generalized reflector R = W (ρF ) ∈

RC δ
U (z′)

1 (T ). By construction, for an A,B ∈ BR such that A 6= B, we have

that CxA,ΨxA,dA [A] ∩ ΨxB ,dB [B] = ∅ and CxB ,Ψx,dB [B] ∩ ΨxA,dA [A] = ∅. Thus

by Lemma 4.8, for any B ∈ BR, for all m ∈ B we have α1(m) = xB . Then,

for any s ∈ N (BF ), the generalized reflector R = W (ρsF ) ∈ RC δ
U (z′)

1 (T ) is a

weak solution to the generalized reflector problem such that G1({xi}) = fi for

all i ∈ [k].

We now will use Theorem 4.2 to construct a specific type of generalized

reflector. Note the following definition.

Definition 4.4. Let k ≥ 2, d > 0, ξ ∈ (−1, 0), and t ∈ R. Recall that, given a
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point (x, y, z) ∈ R3, there exists r ∈ [0,∞), φ ∈ [0, π], θ ∈ [0, 2π), such that

x = r cos θ sinφ (41)

y = r sin θ sinφ (42)

z = r cosφ. (43)

Define the set of points T ξk,d(t) as{(
d cos

(
2πj

k
+ t

)
sin (arccos(ξ)) , d sin

(
2πj

k
+ t

)
sin (arccos(ξ)) , dξ

)
|j ∈ I

}
(44)

where I = {0, 1, . . . , k − 1}.

If we are additionally given an i ∈ {0, 1, . . . , k − 1}, we may define the set

Pk,i(t) ⊂ S2, as{(
cos

(
θ +

π(2i− 1)

k
+ t

)
sinφ, sin

(
θ +

π(2i− 1)

k
+ t

)
sinφ, cosφ

)
∣∣∣∣φ ∈ [0, π], θ ∈

[
0,

2π

k

]}
. (45)

If k = 1, define the set of points T ξ1,d(t) = {(0, 0,−d)} and P1,0(t) = S2.

It is good to observe that T ξk,d(t) defines the points of a regular k-gon centered

at the z-axis and that Pk,i(t) defines a spherical wedge.

Theorem 4.3. Let δ, z′ > 0. Consider the open disk U = {m ∈ S2
+|〈(0, 0, 1),m〉 >

c} where 0 < c < 1. Let d1, . . . , dn be a collection of not necessarily distinct

positive numbers. Let k1, . . . , kn be a collection of not necessarily distinct pos-

itive integers. Let ξ1, . . . , ξn be a collection of not necessarily distinct numbers

such that ξi ∈ (−1, 0). Let t′1, . . . , t
′
n be a collection of not necessarily distinct

elements of R. Let us denote Ti = T ξiki,di(t
′
i) and let T =

⋃n
i=1 Ti.

Assume that we a given a nonnegative g ∈ L1(S2
+) that is rotationally sym-

metric about the z-axis such that g ≡ 0 outside U . Let f1, . . . , fn be a collection

of positive numbers such that

µg(U) =

n∑
i=1

fi. (46)
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Then there exists a generalized reflector R ∈ RC δ
U (z′)

1 (T ) such that

G1({x}) =
∑

{j∈[n]|x∈Tj}

fj
kj

(47)

for all x ∈ T.

Proof. By the intermediate value theorem, there exists a collection of numbers

ζ1, . . . , ζn ∈ [c, 1) where ζn = c and µg
(
{m ∈ S2

+|〈(0, 0, 1),m〉 > ζi}
)

=
∑i
j=1 fj .

Define

Bi = {m ∈ S2
+|〈(0, 0, 1),m〉 > ζi} \ {m ∈ S2

+|〈(0, 0, 1),m〉 ≥ ζi−1} (48)

for all i ∈ {2, . . . , n} and B1 = {m ∈ S2
+|〈(0, 0, 1),m〉 > ζ1}. Thus µg(Bi) = fi.

Consider the set Ti, let

Ti(j) =

(
di cos

(
2πj

ki
+ t′i

)
sin (arccos(ξi)) , di sin

(
2πj

ki
+ t′i

)
sin (arccos(ξi)) , diξi

)
(49)

where j ∈ {0, . . . , ki − 1} if k ≥ 2 and Ti(0) = (0, 0,−di).

Let Pi(j) = Pki,j(t
′
i) where j ∈ {0, . . . , ki−1}, then by construction µg(Bi∩

Pi(j)) = fi
ki

. Let Ui(j) = C
δ
n

Bi∩Int(Pi(j))

(
z′ + (i− 1) δn

)
where j ∈ {0, . . . , ki−1}.

Since Ti(j) ∈ R3−, any given line segment between a point in Ui(j) and the point

Ti(j) will not intersect any set Ui′(j
′) where i′ > i and j′ ∈ {0, . . . , ki′ − 1}.

Therefore CTi(j),Ui(j) ∩ Ui′(j′) = ∅ where i′ > i and j′ ∈ {0, . . . , ki′ − 1}. Also,

since CO,Pi(j),∞ is a convex set and Ui(j), {Ti(j)} are both subsets of CO,Pi(j),∞,

we then have CTi(j),Ui(j) ⊂ CO,Pi(j),∞. Therefore, CTi(j),Ui(j) ∩ Ui(j′) = ∅

where j′ 6= j. Finally, if there exists a line segment between a point in Ui(j)

and Ti(j) that intersects a Ui′(j
′) where i > i′ and j′ ∈ {0, . . . , ki′ − 1}, then it

must intersect CO,{m∈S2+|〈(0,0,1),m〉>ζi−1},∞. However, CTi(j),Ui(j) is disjoint from

CO,{m∈S2+|〈(0,0,1),m〉>ζi−1},∞ and thus CTi(j),Ui(j) ∩Ui′(j′) = ∅ where i > i′ and

j′ ∈ {0, . . . , ki′ − 1}. Therefore, CTi(j),Ui(j) ∩ Ui′(j′) = ∅ when (i, j) 6= (i′, j′).

Therefore, by Theorem 4.2, there exists a generalized reflectorR ∈ RC
δ
U (z′)

1 (T )

such that

G1({x}) =
∑

{j∈[n]|x∈Tj}

fj
kj

(50)
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for all x ∈ T.

5. Interpolated Reflectors

The generalized reflector presented in the previous section might be impos-

sible or, at best, very difficult to construct in the real world. Thus we introduce

the following notion.

Definition 5.1. Assume that we are given an aperture that is a connected open

set D ⊆ S2 and a not necessarily continuous, almost everywhere differentiable

function ρ : D → (0,∞). Then an interpolated reflector is the set R =

∂(CO,S) \ ∂(CO,S,∞) ⊂ R3 where S = {mρ(m)|m ∈ D}.

It is interesting to note that, given an aperture that is a connected open set

D ⊆ S2, a set is a reflector if and only if it is both a generalized reflector and

an interpolated reflector.

The type of interpolated reflector we construct below is a topological surface

(see Chapter 4.36 in [20]) and thus consists of one connected component instead

of countably many. In a practical sense, when designing an interpolated reflector

as opposed to a generalized reflector, new challenges are introduced. Thus, we

settle for finding a necessary and sufficient condition for the existence of an

interpolated reflector.

We will consider the following formulation of the near-field reflector problem

as a weak formulation of equation (4) from [12] and its solutions, weak solutions.

The following formulation only concerns the case where the target set is finite.

5.1. Weak Solutions using Interpolated Reflectors

Consider a connected open set U ⊆ R3+, a corresponding aperture Proj[U ],

and a finite target set T ⊆ R3−. Also, consider the set RU1 (T ) as defined by

(14). We then describe a set of interpolated reflectors

RU2 (T ) =
{
∂(CO,S) \ ∂(CO,S,∞)|S ∈ RU1 (T )

}
. (51)
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It is interesting to note that the interpolated reflectors in RU2 (T ) are all topo-

logical surfaces.

Assume we are given an interpolated reflector R ∈ RU2 (T ). Let us define

BR =
{

Int(Proj[Ed(x) ∩R]) ⊆ S2 |d ∈ (0,∞), x ∈ T, σ(Proj[Ed(x) ∩R]) 6= 0
}
.

(52)

The geometry of the ellipsoid and the definition of BR imply that there

exists an s ∈ N (BR), unique u ∈ UT (B) and unique v ∈ V (B) such that

∂(CO,W (ρsZ))\∂(CO,W (ρsZ),∞) = R where Z =
⋃
B∈BR

Ψu(B),v(B)[B]. Therefore,

for every interpolated reflector R ∈ RU2 (T ), we may define a unique BR ∈ B(U)

such that for each B ∈ BR there are unique xB ∈ T and dB ∈ (0,∞) such

that, for some s ∈ N (BR), R = ∂(CO,W (ρsZ)) \ ∂(CO,W (ρsZ),∞) where Z =⋃
B∈BR

ΨxB ,dB [B].

Therefore, given a interpolated reflector R ∈ RU2 (T ), we obtain a cor-

responding BR; for each B ∈ BR we define unique xB and dB . We also

obtain an sR ∈ N (BR) and a unique ZR =
⋃
B∈BR

ΨxB ,dB [B] such that

R = ∂(CO,S) \ ∂(CO,S,∞) where S = W (ρsRZR).

Given an interpolated reflector R ∈ RU2 (T ), let

M(m) = xB ∈ T (53)

where mρsRZR(m) = ΨxB ,dB (m). Let y2
R(m) be the points of intersection between

R \ {mρsRZR(m)} and the line segment connecting mρsRZR(m) to M(m).

Given an interpolated reflector R ∈ RU2 (T ), the map α2 : Proj[U ]→ T ∪R,

α2(m) =

M(m) if y2
R(m) = ∅

y2
R(m) if y2

R(m) 6= ∅
(54)

is called the interpolated reflector map. Physically speaking, a ray of light of

direction m originating from O can only reach the target set if y2
R(m) is empty.

As before, we denote by g ∈ L1(S2) the energy density of the source O. Let

us define for all Borel X ⊆ S2

µg(X) =

∫
X

g(m)dσ(m) (55)
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where σ denotes the standard measure on S2. Assume that g is a nonnegative

function where g ≡ 0 outside of Proj[U ]. Physically speaking, g is the radiance

distribution of the source at O

In order to formulate and solve the interpolated reflector problem (in the

framework of weak solutions to be defined below), we need to define a measure

representing the energy generated by g and redistributed by an interpolated

reflector R ∈ RU2 (T ).

Given a interpolated reflector R ∈ RU2 (T ) and a set ω ⊆ T we define the

visibility set of ω as

V U2 (ω) =
⋃
A∈A

A \ {m ∈ Proj[U ]|α2(m) = y2
R(m)} (56)

where A = {B ∈ BR|xB ∈ ω}. We now need to show that V U2 (ω) is measurable.

Proposition 5.1. Let R be a interpolated reflector in RU2 (T ). For any set

ω ⊆ T , the visibility set V U2 (ω) is Borel.

Proof. We make use of the fact that sets formed from Borel sets through the

operations of countable union, countable intersection, and relative complement

are Borel. Recall that we obtain a sR ∈ N (BR). Note that by the definition of

an interpolated reflector in RU1 (T ), R =
⋃
B∈BR

ΨxB ,dB [B′] ∪ SR where B′ =

{m ∈ B|mρsRZR = ΨxB ,dB (m)} = B \
⋃
K∈K K where K = {A ∈ BR|sR(A) <

sR(B)} and SR = R \
⋃
B∈BR

ΨxB ,dB [B′]. Note that B′ is clearly Borel and

B ⊆ B′ ⊆ B.

For B ∈ BR, we have that CxB ,ΨxB,dB [B′] and CO,ΨxB,dB [B′] are Borel sets

by Lemmas 4.2 and 4.1 respectively. Note that R is Borel as it is a boundary of

an open set minus the boundary of another open set. Since BR is countable and

functions of the form ΨxB ,dB are continuous and bijective,
⋃
B∈BR

ΨxB ,dB [B′]

is Borel. Therefore SR is also Borel. Thus for all B ∈ BR, the set QB =

CxB ,ΨxB,dB [B′]∩(R\ΨxB ,dB [B′]) is Borel and therefore the set LB = CxB ,QB ,∞∩

ΨxB ,dB [B′] is Borel. Thus Proj[LB ] is Borel, as it is the preimage of LB under

29



ΨxB ,dB . Since

{m ∈ Proj[U ]|α2(m) = y2
R(m)} =

⋃
B∈BR

Proj[LB ], (57)

we have that {m ∈ Proj[U ]|α2(m) = y2
R(m)} is Borel and thus V U2 (ω) is Borel.

Define for any interpolated reflector R ∈ RU2 (T ),

G2(ω) = µg(V
U
2 (ω)) (58)

which we will deem the energy function of interpolated reflector problem.

Let F be a nonnegative, finite measure on the finite set T . We say that an

interpolated reflector R ∈ RU2 (T ) is a weak solution to the interpolated reflector

problem if the interpolated reflector map α2 determined by R is such that

F (ω) = G2(ω) for any Borel set ω ⊆ T. (59)

5.2. Main Results

Here we prove a necessary and sufficient condition for the existence of weak

solutions to the interpolated reflector problem. We proceed with the following

lemma.

Lemma 5.1. Assume that U is an open set in R3+, and T is a finite target

set in R3−. Assume we are given a nonnegative g ∈ L1(S2) such that g ≡ 0

outside Proj[U ] and g > 0 inside Proj[U ]. Let R ∈ RU1 (T ) be a generalized

reflector, then we define the set Bx
R = {B ∈ BR|x = xB} for x ∈ T. Then for

any z, y ∈ T the following conditions are equivalent:

1. for all m ∈
⋃
A∈Bz

R
A and m′ ∈

⋃
B∈By

R
B, α1(m) = z and α1(m′) = y,

2. Cz,Ψz,dA [A]∩Ψy,dB [B] = ∅ and Cy,Ψy,dB [B]∩Ψz,dA [A] = ∅ for all A ∈ Bz
R

and B ∈ By
R where A 6= B,

3. CxA,ΨxA,dA [A]∩ΨxB ,dB [B] = ∅ and CxB ,ΨxB,dB [B]∩ΨxA,dA [A] = ∅ for all

A,B ∈ BR where A 6= B,
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4. G1({x}) = µg(
⋃
A∈Bx

R
A) and G1({y}) = µg(

⋃
B∈By

R
B).

Proof. (1)⇔ (2) by Lemma 4.8, clearly (3)⇔ (2), and (1) trivially implies (4).

We only need to prove that (4) implies (2); we prove the contrapositive.

Assume that there exists an A ∈ Bx
R and a B′ ∈ By

R such that, without loss of

generality, Cz,Ψz,dA [A] ∩Ψy,dB′ [B
′] 6= ∅. Let Q = Cz,Ψz,dA [A] ∩Ψy,dB′ [B

′]. Note

that Cz,Ψz,dA [A],∞ ∩ Cz,Ψy,d
B′

[B′],∞ = Cz,Q,∞. Since Cz,Ψz,dA [A],∞ \ {O} and

Cz,Ψy,d
B′

[B′],∞\{O} are open, Cz,Q,∞\{O} is open; thus Cz,Q,∞∩EdB (y) is open

in EdB (y). Thus Proj[Q] ⊆ B is open and, since g > 0 in U , µg(Proj[Q]) > 0,

and thus G1({y}) ≤ µg(
⋃
B∈By

R
B)− µg(Proj[Q]).

Note the following definition.

Definition 5.2. Let K be a subset of Rn where n ≥ 2 such that K is compact.

The complement U = Rn \ K is an open set. For sufficiently large R > 0,

the set V = {x|R < |x|} is contained in U . Since V is connected, there exists

a connected component of U that contains V . This is the unique unbounded

connected component of U .

We define the exterior boundary of K as the boundary of the unbounded

connected component of Rn \K. We denote this as ∂E(K).

The following result gives a condition that is necessary and sufficient for the

existence of weak solutions to the interpolated reflector problem.

Theorem 5.1. Let U ⊂ R3+ be a simply connected open set such that U ⊂ R3+,

and T ⊂ R3− be a finite set. Assume we are given a nonegative g ∈ L1(S2) such

that g ≡ 0 outside Proj[U ] and g > 0 inside Proj[U ]. Let F be a measure over

T such that

F (T ) = µg(Proj[U ]). (60)

Then there exists an interpolated reflector R2 ∈ RU2 (T ) that is a weak solu-

tion to the interpolated reflector problem as defined in (59) if and only if there

exists a generalized reflector R1 ∈ RU1 (T ) that is a weak solution to the gen-

eralized reflector problem as defined in (22) where R1 is a subset of a simply
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connected subset of

U ∩ ∂E

CO,R1 ∪
⋃

B∈BR1

CxB ,ΨxB,dB [B]

 . (61)

Proof. It is clear that if R2 ∈ RU2 (T ) that is a weak solution to the interpolated

reflector problem as defined in (59), then, for any s ∈ N (BR2), R1 = W (ρsF )

where F =
⋃
B∈BR2

ΨxB ,dB [B] is a weak solution to the generalized reflector

problem as defined in (22). Note that this implies that BR1
= BR2

. Since

g is positive in Proj[U ], for our reflector R1, by Lemma 5.1, for all distinct

A,B ∈ BR1 , CxA,ΨxA,dA [A]∩ΨxB ,dB [B] = ∅ and CxB ,ΨxB,dB [B]∩ΨxA,dA [A] = ∅.

Therefore, for all A ∈ BR1
, ΨxA,dA [A]∩Int

(
CO,R1

∪
⋃
B∈BR1

CxB ,ΨxB,dB [B]

)
=

∅. Also observe that for all A ∈ BR1
, (CO,ΨxA,dA [A],∞ \ CO,ΨxA,dA [A]) ∩

Int
(
CO,R1 ∪

⋃
B∈BR1

CxB ,ΨxB,dB [B]

)
= ∅.

Therefore, R1 is a subset of a simply connected subset of

∂E

CO,R1 ∪
⋃

B∈BR1

CxB ,ΨxB,dB [B]

 . (62)

Since the interpolated reflector must be contained in U , we obtain (61).

Conversely, if there exists a reflector R1 ∈ RU1 (T ) that is a weak solution of

the generalized reflector problem as defined in (22) where R1 ⊂ Q such that Q

is a simply connected subset of (61), then R2 = ∂(CO,R1
) \ ∂(CO,R1,∞) is also

a subset of Q.

6. Discussion

In this note, with respect to the near-field reflector problem with spatial

restrictions, we defined two different kinds of weak solutions. For the first weak

solution, we proved, under certain assumptions, the existence of a generalized

reflector where the target set is multiple points. A possible avenue for further

research is to attempt to expand Theorem 4.3 for different target sets, apertures,

and spatial restrictions. Another idea might be to try to come up with designs

such that the generalized reflectors have finitely many connected components
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instead of countably many. The author believes that the following statement is

true.

Conjecture 6.1. Let U be an open set in S2
+, δ, z′ > 0, and {x1, . . . , xk} ∈ R3−

where k ≥ 2. Assume we are given a positive g ∈ L1(S2) where g ≡ 0 outside

U . Let f1, f2, . . . , fk be nonnegative real numbers such that

k∑
i=1

fi = µg(U). (63)

Then there exists a generalized reflector R ∈ RC δ
U (z′)

1 (T ) such that G1({xi}) = fi

for all i ∈ [k].

For the second weak solution, we proved a theorem that detailed a necessary

and sufficient condition for the existence of an interpolated reflector. The ad-

vantage of our interpolated reflectors, as opposed to our generalized reflectors,

is that our interpolated reflector design is a topological surface; thus it is easier

to construct from an engineering perspective. An obvious avenue for further

work would be to create some practically useful interpolated reflectors; using

Theorem 4.2 might be useful in this regard. In fact, it would be very useful if

the following conjecture is true.

Conjecture 6.2. Let U be a simply connected open set in S2
+, δ, z′ > 0, and

{x1, . . . , xk} ∈ R3−. Assume we are given a nonnegative g ∈ L1(S2) where g ≡ 0

outside U . Let f1, f2, . . . , fk be nonnegative real numbers such that

k∑
i=1

fi = µg(U). (64)

Then there exists an interpolated reflector in R ∈ RC δ
U (z′)

2 (T ) such that

G2({xi}) = fi for all i ∈ [k].

Another fruitful avenue of research might be to somehow expand these def-

initions of weak solutions to account for cases where the target set is not finite.

Then, proving the existence of generalized and interpolated reflectors with con-

tinuous irradiance distributions.
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As the reader might have noticed, we make no attempt to address the near-

field reflector problem with spatial conditions with a reflector. Instead, we

exclusively use generalized or interpolated reflectors. While it may be interesting

to research reflectors in order to get a ‘stronger’ solution, it is the author’s

view that, in general, it is not possible to construct a reflector under spatial

conditions. For example, if the target set is a single point, the solution to the

near-field reflector problem is an ellipsoid. However, if given spatial restrictions,

a single ellipsoid, in general, cannot fit those restrictions; this is demonstrated

in Theorem 4.1. If no reflector exists for a single point, the prospects for more

complicated target sets and irradiance distributions appear limited.
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