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Hazardous natural flows such as snow-slab avalanches, debris flows, pyroclastic flows
and lahars are part of a much wider class of dense gravity-driven granular free-
surface flows that frequently occur in industrial processes as well as in foodstuffs in
our kitchens! This paper investigates the formation of oblique granular shocks, when
the oncoming flow is deflected by a wall or obstacle in such a way as to cause a
rapid change in the flow height and velocity. The theory for non-accelerative slopes
is qualitatively similar to that of gasdynamics. For a given deflection angle there are
three possibilities: a weak shock may form close to the wall; a strong shock may
extend across the chute; or the shock may detach from the tip. Weak shocks have been
observed in both dense granular free-surface flows and granular gases. This paper
shows how strong shocks can be triggered in chute experiments by careful control of
the downstream boundary conditions. The resulting downstream flow height is much
thicker than that of weak shocks and there is a marked decrease in the downstream
velocity. Strong shocks therefore dissipate much more energy than weak shocks. An
exact solution for the angle at which the flow detaches from the wedge is derived and
this is shown to be in excellent agreement with experiment. It therefore provides a
very useful criterion for determining whether the flow will detach. In experimental,
industrial and geophysical flows the avalanche is usually accelerated, or decelerated,
by the net effect of the gravitational acceleration and basal sliding friction as the
slope inclination angle changes. The presence of these source terms necessarily leads
to gradual changes in the flow height and velocity away from the shocks, and this in
turn modifies the local Froude number of the flow. A shock-capturing non-oscillating
central method is used to compute numerical solutions to the full problem. This
shows that the experiments can be matched very closely when the source terms are
included and explains the deviations away from the classical oblique-shock theory.
We show that weak shocks bend towards the wedge on accelerative slopes and away
from it on decelerative slopes. In both cases the presence of the source terms leads to
a gradual increase in the downstream flow thickness along the wedge, which suggests
that defensive dams should increase in height further down the slope, contrary to
current design criteria but in accordance with field observations of snow-avalanche
deposits from a defensive dam in Northwestern Iceland. Movies are available with
the online version of the paper.

1. Introduction
Many geophysical and industrial granular flows occur as dense free-surface

avalanches that are driven downslope under the action of gravity. In geophysics these
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encompass a range of large-scale natural hazards including snow-slab avalanches
(Savage & Hutter 1989), dense pyroclastic flows (Sparks et al. 2002), debris flows
(Iverson 1997) and lahars (Vallance 2000), which are a serious threat to many
populations living in the vicinity of mountains and volcanoes. Granular avalanches
also occur in smaller-scale industrial processes in the bulk-chemical, mining and
pharmaceutical industries. They are found in silos, stockpiles, rotating mixers (Gray
2001) and continuous-feed inclined rotating kilns (Spurling, Davidson & Scott 2001),
used to store, mix or process grains. Shock waves frequently occur in the free-surface
layers and, in combination with the interaction between the surface and the underlying
solid body of grains, leads to novel segregation and mixing effects that are still poorly
understood (Shinbrot & Muzzio 2000).

An interesting feature of granular avalanches is that they exhibit a weak scale
dependence for volumes below 106 m3. Small-scale laboratory experiments can
therefore be used to yield important insight into larger-scale geophysical and industrial
flows. Continuum theories reflect this weak scale dependence and are often constructed
to be scale-invariant. The first models were developed in Russia in the 1960s and 70s
(Grigorian, Eglit & Iakimov 1967; Kulikovskii & Eglit 1973) to calculate the run-out
distance and the associated risk posed by snow-slab avalanches in the Urals. These
models were formulated by direct analogy to shallow-water and hydraulic flows, but
Coulomb friction was introduced to model the resistance to motion as the grains
slide over a rough slope. The basic shallow-water structure of the governing equations
persists today although the theory has been extended to incorporate a simplified
Mohr–Coulomb internal rheology (Savage & Hutter 1989), pore-pressure mobility
(Iverson 1997; Denlinger & Iverson 2001), complex frictional effects at shallow angles
(Pouliquen 1999) and topographic features and obstacles (Gray, Wieland & Hutter
1999b; Wieland, Gray & Hutter 1999; Gray, Tai & Noelle 2003).

The study of flow past obstacles is particularly important because shock waves,
stationary dead zones and grain-free (vacuum) regions are generated, which can be
used to protect both people and infrastructure from natural hazards. Gray et al.
(1999a; 2003) used small-scale experiments to show how a pyramidal obstacle can
generate two oblique shocks, with a sharp increase in the downstream thickness and
a decrease in magnitude and rotation of the velocity, so that the flow is parallel to the
faces of the pyramid. On the lee-side the flow expanded to form a grain-free vacuum
region, which Gray et al. (1999a) used to protect a scale model of the Schneeferner
Haus on the Zugspitze. While this prototype defence was never built, there is now
strong evidence from field observations (Jóhannesson 2001; Cui, Gray & Jóhanneson
2007) that oblique shocks were formed as two snow avalanches were deflected by a
dam, built to protect the small town of Flateyri in Northwestern Iceland. Even though
these flows were in the run-out zone and were being decelerated, they both hit the
dam with a Froude number close to 10 and, downstream of the shock, produced a
thicker stream that flowed parallel to the dam and eventually led to enhanced run-out.
The dams at Flateyri were designed using a very simple point-mass model for the loss
of kinetic energy as a single particle runs up the dam wall (Sigurdsson, Tomasson
& Sandersen 1998), which is not very representative of the underlying physics. It is
therefore of considerable practical interest to understand how oblique shocks develop
in dense granular free-surface flows, what effects can be generated and how well these
agree with classical oblique-shock theory. In particular, it is important to understand
how the presence of source terms due to gravitational and frictional forcing modify
the flow height along the length of the dam, so that the design of defensive dams can
be improved.
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1.1. Hydraulic-type models for granular avalanches

Most theories modelling granular free-surface flows exploit the shallowness of the
avalanche to derive a simplified depth-integrated system of equations for the avalanche
thickness h̃ and the depth-averaged velocity components ũ, ṽ in the downslope and
cross-slope directions x̃, ỹ, respectively. In this paper we use a relatively simple
theory that assumes the flow is incompressible, with an isotropic lithostatic-pressure
distribution through its depth and Coulomb sliding friction at the base (e.g. Grigorian
et al. 1967; Kulikovskii & Eglit 1973; Gray et al. 2003). It is convenient to solve these
equations by introducing non-dimensional variables (without tildes) with the following
scalings:

h̃ = Hh, (x̃, ỹ) = L (x, y), (ũ, ṽ) =
√

Lg (u, v), t̃ =
√

(L/g) t, (1.1)

where H is a typical avalanche thickness, L a typical length and g is the constant of
gravitational acceleration. The non-dimensional mass and momentum conservation
laws become

∂h
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+

∂
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where the aspect ratio ε = H/L and ζ is the slope inclination angle. The source terms
S(x) and S(y) on the right-hand side are composed of the downslope component of
gravity, the Coulomb basal friction, which opposes the direction of motion, and the
topography gradients:

S(x) = sin ζ − µ(u/|u|) cos ζ − ε
∂b

∂x
cos ζ, (1.5)

S(y) = −µ(v/|u|) cos ζ − ε
∂b

∂y
cos ζ, (1.6)

where µ is the coefficient of friction and b is the height of the topography normal to
the chute. The equations are non-strictly hyperbolic with characteristic wave speed
c =

√
εh cos ζ and are very closely related to the Euler equations of gasdynamics and

the St Venant or shallow-water equations of hydrodynamics. The ratio of the flow
speed and the wave speed defines the Froude number

Fr = |u|/
√

εh cos ζ . (1.7)

Flows are supercritical if Fr > 1, critical if Fr = 1 and subcritical if Fr < 1. The
hyperbolic structure implies that, in supercritical flows, shock waves can develop with
discontinuities in the flow thickness and velocity along a singular surface. In this case
the smoothness requirements that are normally used to derive the field equations from
the integral conservation laws are no longer satisfied. Instead a limiting procedure
(see e.g. Chadwick 1976) must be used to derive the mass and momentum jump
conditions

[[h(u · n − vn)]] = 0, (1.8)

[[hu(u · n − vn)]] + [[ 1
2
εh2 cos ζ ]]n = 0, (1.9)
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across the singular surface; n is the normal, vn is the normal propagation speed and
the jump bracket is the difference in value of the enclosed variable on either side, i.e.
[[f ]] = f1 − f2, where the subscripts 1 and 2 denote before and after the shock. Note
that the jump conditions at the singular surface are independent of the source terms.

1.2. Granular shock waves in dense chute flows

Savage (1979) and Brennen, Sieck & Paslaski (1983) were the first to observe stationary
granular shocks in dense chute flows that were analogous to hydraulic jumps in
shallow-water theory (e.g. Stoker 1957). More recently, Gray & Hutter (1997, 1998),
Gray & Tai (1998) and Gray et al. (2003) have observed propagating normal shocks
in stratification experiments that are the exact granular equivalent of hydrodynamic
bores. These shock waves form with a wide variety of granular materials, including
polystyrene beads (Savage 1979), mustard seeds (Brennen et al. 1983), non-pareille
sugar grains (hundreds and thousands or Sprinkles) and plastic pellets (Gray et al.
2003), sand, glass balotini (Brennen et al. 1983; Hákonardóttir & Hogg 2005) and
mixtures of different-sized and different-density particles, such as sugar with spherical
iron powder (Gray & Hutter 1997) and sugar and poppy seeds (Gray & Hutter 1998).
The macroscopic properties of the shock appear to be only weakly affected by the
size, shape and density of the particles, because there is sufficient dilatation, in these
high-solid-fraction flows, to allow the grains to move easily relative to one another.
The shocks can be very sharp, occurring over a few grain diameters at high Froude
numbers (Fr > 5), while they can be quite diffuse for Fr ∼ 1 − 2.

This paper focuses on oblique granular shocks in dense free-surface flows, which
have been observed by Gray et al. (1999a), Irmer et al. (1999), Gray et al. (2003)
and Hákonardóttir & Hogg (2005). Oblique shocks also occur in granular gases (e.g.
Rericha et al. 2002; Heil et al. 2004; Amarouchene & Kellay 2006) and these are, in
fact, much closer to the oblique shocks in gasdynamics, where much of the original
theory was formulated, since the discontinuities are in the velocity and density rather
than in the velocity and flow thickness. Figure 1 illustrates the classical oblique-shock
solution from gasdynamics (e.g. Ames Research Staff 1953; Saad 1993; Aksel & Eralp
1994) for polytropic gas constant γ = 2. It is assumed that there is a steady uniform
incoming flow with density ρ1 and velocity u1, which is deflected by an inclined
surface at an angle θ to the oncoming flow to form a straight oblique shock at an
angle β and a steady uniform outgoing flow with density ρ2 and velocity u2 parallel
to the deflector, as shown in the inset diagram. There are essentially three possibilities.
For sufficiently large inflow Mach numbers Ma1 and small deflection angles θ there
are two solutions for a shock angle β . The smaller value is called a weak shock, while
the larger one is termed a strong shock. These are shown using solid lines and short-
dashed lines in figure 1 for various values of Ma1. If, however, the Mach number
decreases or the deflection angle becomes too large then there are no solutions and
the shock detaches from the tip of the inclined surface to form a detached oblique
shock. The long-dashed line in figure 1 marks the transition between weak and strong
shocks and determines the maximum deflection angle θd , while the dot-dashed line
is the sonic line, where the outflow Mach number Ma2 = 1. Strong shocks therefore
always involve a transition from supersonic to subsonic flow, while weak shocks may
be sub- or supersonic after the shock. This is of great importance, as it determines the
appropriate number of boundary conditions that must be imposed in both physical
experiments and numerical simulations in order to realize the shocks. Strong shocks
require significantly increased downstream pressure to form and as a result tend to be
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Figure 1. Shock angle β as a function of the flow-deflection angle θ for inflow Mach numbers
Ma1 = 1.5, 2, 3, 5, ∞. The flow is assumed to be isentropic with polytropic gas constant γ = 2.
Weak shocks are denoted by the solid lines and the strong shocks by the short-dashed lines.
The maximum-deflection-angle line θd (long-dashed) marks the transition between the weak
and strong shocks; it reaches a maximum of 30◦. The sonic line (dot-dashed) corresponds to
an outflow Mach number Ma2 = 1. The inset gives a schematic diagram of the oblique shock,
showing the shock and deflection angles and the states on either side of the shock.

observed in internal flows, within engines and nozzles. Weak shocks, however, tend
to form naturally in external flows.

In this paper we show for the first time how strong shocks can be triggered in
dense granular chute flows by careful control of the downstream conditions. This
produces a flow with a very large increase in the downstream flow thickness and
a corresponding decrease in velocity, which dissipates much more energy than a
weak shock. In addition, we show how a detached shock can form experimentally,
if the wedge angle is sufficiently large or the Froude number is sufficiently low, and
demonstrate that the detachment angle is in excellent agreement with the values
predicted by classical oblique-shock theory. A shock-capturing numerical method is
then used to solve the full system (1.2)–(1.6), in order to quantify the effect that the
source terms have on the shock angle and the downstream flow thickness for both
accelerative and decelerative slopes. This has important implications for the design
of defensive dams used to divert hazardous geophysical mass flows.

2. Oblique hydraulic jumps in the absence of source terms
The theory of oblique hydraulic jumps differs from that of gasdynamics and is

much less well known. In this section the original solution developed by Rouse
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(1938), Ippen (1949) and Rouse (1949) is reviewed, and new explicit results for
the maximum-deflection-angle curve and the critical line are derived. The classical
solution is only valid when the source terms (1.5) and (1.6) are identically zero in
the field equations, which is only ever approximately satisfied for granular flows.
It is nevertheless a useful approximation for high-Froude-number flows where the
slope is almost non-accelerative and u � v. The classical solution is derived from
the mass-jump condition (1.8) and the tangential and normal components of the
momentum-jump condition (1.9), which are

h1|u1| sinβ = h2|u2| sin(β − θ), (2.1)

h1u2
1 sinβ cos β = h2u2

2 sin(β − θ) cos(β − θ), (2.2)
1
2
εh2

1 cos ζ + h1u2
1 sin2 β = 1

2
εh2

2 cos ζ + h2u2
2 sin2(β − θ). (2.3)

By substituting for |u2| sin(β − θ) from (2.1) into (2.3) and solving for sinβ we obtain

sinβ =
1

Fr1

√
1

2

h2

h1

(
1 +

h2

h1

)
, (2.4)

which Gray et al. (2003) showed to be in very good agreement with measured weak-
shock angles, even on slopes with moderate acceleration. Squaring both sides of (2.4)
and solving the resultant quadratic equation for h2/h1 implies that

h2

h1

=
1

2

(√
1 + 8Fr2

1 sin2 β − 1

)
. (2.5)

An alternative expression for the thickness ratio can be obtained by eliminating
|u2| between (2.1) and (2.2) to show that

h2

h1

=
tan β

tan(β − θ)
. (2.6)

Using the trigonometric identity tan(β − θ) = (tan β − tan θ)/(1 + tan β tan θ), solving
(2.6) for tan θ and substituting for the thickness ratio from (2.5) gives an expression
for the wedge angle θ as a function of the inflow Froude number Fr1 and the shock
angle β:

tan θ =

tan β

(√
1 + 8Fr2

1 sin2 β − 3

)

2 tan2 β − 1 +

√
1 + 8Fr2

1 sin2 β

. (2.7)

This is the classical form of the solution given by Ippen (1949) and is plotted in figure 2.
Qualitatively it is very similar to the textbook shock-angle curve from gasdynamics
illustrated in figure 1. Again there are three possibilities. Provided that the inflow
Froude number Fr1 is large enough, there are two solutions for the shock angle β

for any given deflection angle θ . In the terminology of gasdynamics the lower value
is called a weak shock and the larger angle a strong shock. If the Froude number is
too low, there are no solutions and the shock detaches from the front of the wedge.
There are, however, some marked differences from gasdynamics. As Fr1 −→ ∞ the
weak-shock angle β −→ θ and the strong shock tends to a normal shock, β −→ π/2.
All solutions are therefore contained in the top triangular region of figure 2. In
contrast, figure 1 shows that the strong shock only approaches a normal shock for
θ = 0 and the maximum deflection angle never exceeds 30◦. This is emphasized in
the inset diagram, which shows the Fr1 −→ ∞ curve and the Ma1 −→ ∞ curve on
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Figure 2. The shock angle β is plotted as a function of the wedge or deflection angle θ for
Fr1 = 1.5, 2, 3, 5, 8, 15, 50, 500, ∞. Weak shocks are denoted by the solid lines and strong
shocks by the short-dashed lines. The maximum deflection angle θd marks the transition
between the weak and strong shocks and is denoted by the long-dashed line. The dot-dashed
line denotes the critical line, where Fr2 = 1. The light-grey dot-dashed lines show the values
of Fr2 after the shock. Inset is a plot showing the limiting curves for the granular (solid) and
gasdynamic (dashed) cases as Fr1 −→ ∞ and Ma1 −→ ∞, respectively.

the same scale for comparison. Note that when θ = 0 the weak-shock angle decreases
to βmin = sin−1(1/Fr), which is the granular equivalent of a Mach wave, while the
strong shock strengthens to a normal shock with β = π/2 as in gasdynamics.

Explicit formulae exist in gasdynamics for both θd and the critical curve (e.g. Ames
Research Staff 1953; Saad 1993; Aksel & Eralp 1994) and it is of interest to derive
similar formulae for granular flows. A slightly different form of the shock-angle
relation (2.7), which is more amenable to further manipulation, is obtained using (2.1)
and (2.6) to substitute for h2 and |u2| in (2.3). Gathering the terms multiplied by Fr1

together and dividing through by tan β − tan(β − θ) yields a quadratic equation for
tan(β − θ). An alternative formula for the wedge or deflection angle is therefore given
by the relation

θ = β − tan−1

⎛
⎝1 +

√
1 + 8Fr2

1 sin2 β

2Fr2
1 sin(2β)

⎞
⎠ . (2.8)

An explicit solution for the detachment angle θd can be found by differentiating (2.8)
with respect to β , equating the result to zero and making the substitution ξ = sin2 βd .
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Figure 3. The theoretical detachment Froude number Frd as a function of the deflection
angle θ (solid line). For values of Fr1 > Frd the oblique shock is attached, but it detaches
when Fr1 < Frd . The solid squares and the error bars indicate the experimentally measured
detachment Froude number on a slope inclined at ζ = 38◦ to the horizontal.

After some manipulation this yields a quartic equation for ξ :

16Fr6
1ξ

4 −
(
32Fr6

1 + 6Fr4
1

)
ξ 3 +

(
16Fr6

1 − 12Fr4
1

)
ξ 2 +

(
5Fr2

1 + 10Fr4
1

)
ξ + 1 + 2Fr2

1 = 0.

(2.9)

This can be solved exactly using the formula of Ferrari and Cardano for quartic
equations (e.g. Abramowitz & Stegun 1970), which for brevity we do not repeat
here. For practical purposes it is easier to use one of the many numerical root-finding
techniques to solve (2.9). The maximum deflection angle is therefore calculated by first
constructing βd = sin−1(ξ 1/2) and substituting the result into either of the deflection-
angle relations (2.7) and (2.8). The solution (θd, βd) is parameterized by the detachment
Froude number Frd and marks the transition between strong and weak shocks. It is
shown on figure 2 as the long-dashed line and connects the points where dθ/dβ =0.
Figure 3 shows the detachment Froude number Frd plotted as a function of the
wedge or deflection angle θ and, for comparison, the experimentally measured angles.
The theoretical and experimental results are in close agreement. The curve is therefore
very useful as, for a given wedge or deflection angle θ , it accurately predicts that the
shock stays attached for Fr1 > Frd and that it detaches when Fr1 < Frd .

An expression for the ratio of the velocity magnitudes before and after the shock
is given by eliminating h2 between (2.1) and (2.6) to give

|u2|
|u1| =

cos β

cos(β − θ)
. (2.10)

It follows that the ratio of the Froude numbers satisfies

Fr2
2

Fr2
1

=
cos3 β sin(β − θ)

sinβ cos3(β − θ)
=

tan(β − θ)(1 + tan2(β − θ))

tan(β)(1 + tan2(β))
. (2.11)
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Figure 4. The shock angle β is plotted as a function of the thickness ratio h2/h1 for
Fr1 = 1.5, 2, 3, 5, 8, 15, 50. Weak shocks are denoted by the solid lines and strong shocks by
the short-dashed lines. The maximum-deflection-angle line, which marks the transition between
the weak and strong shocks, is long-dashed. The dot-dashed line corresponds to Fr2 = 1.

An explicit solution for the critical line, where Fr2 = 1, is found by substituting for
tan(β − θ) from (2.8) and then using trigonometric identities to substitute ξ = sin2 βc.
After some manipulation this yields a cubic equation for ξ :

4Fr6
1ξ

3 −
(
8Fr6

1 + 16Fr4
1

)
ξ 2 +

(
6Fr2

1 + 4Fr6
1 + 8Fr4

1

)
ξ + Fr2

1 + 1 = 0, (2.12)

which can be solved explicitly using Cardano’s formula (e.g. Abramowitz & Stegun
1970). The critical curve is given by calculating βc = sin−1(ξ 1/2) and substituting into
either (2.7) or (2.8) to give θc. The curve (θc, βc) is also parameterized by the Froude
number and is shown in figure 2 as a dot-dashed line. As for the maximum deflection
angle, the endpoints lie at (π/2, 0) and (π/2, π/2) but βc < βd for θ ∈ (0, π/2). It
follows that strong shocks always involve a transition from super- to subcritical flow,
just as in gasdynamics, while weak shocks can be either sub- or supercritical after the
shock.

The same procedure can be used to construct explicit solutions for other values of
Fr2. The general case yields a cubic equation for ξ = sin2 β , i.e.

c3ξ
3 − c2ξ

2 + c1ξ + c0 = 0, (2.13)

where the coefficients are

c3 = 4Fr6
1, c2 = 4Fr2

2Fr4
1 + 8Fr4

2Fr4
1 + 4Fr4

1 + 8Fr6
1,

c1 = 6Fr2
1Fr2

2 + 4Fr2
2Fr4

1 + 4Fr4
1 + 4Fr6

1, c0 = Fr2
2 + Fr2

1.

}
(2.14)

The corresponding solutions are illustrated as light-grey dot-dashed lines on fig-
ure 2. The value of the thickness ratio can be calculated from (2.6) and that of the
velocity-magnitude ratio from (2.10). These are illustrated graphically in figures 4
and 5. Given the Froude number and the deflection angle, two values of β can be
determined from figure 2 and then used in figure 4 to determine the corresponding
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Figure 5. The ratio of the velocity magnitudes |u2|/|u1| is plotted as a function of the wedge
angle θ for Fr1 = 1.5, 2, 3, 5, 8, 15, 50, 500, ∞. Weak shocks are denoted by solid lines and
strong shocks by short-dashed lines. The maximum-deflection-angle line, which marks the
transition between weak and strong shocks, is long-dashed. The dot-dashed line corresponds
to Fr2 = 1.

thickness jump. The thickness jump is significantly larger for strong shocks than for
weak shocks, the magnitude of the jump increasing with increasing Fr1. The height
of a retaining dam or wall must therefore be significantly higher if a strong shock
is generated, to prevent the flow from overtopping. Figure 5 shows that the velocity
jump is also less for weak shocks than for strong shocks, the magnitude of the jump
becoming stronger as the deflection angle increases.

3. Experimental weak, strong and detached oblique granular shocks
Weak oblique shocks have been observed experimentally in dense granular free-

surface flows by Gray et al. (1999a), Gray et al. (2003) and Hákonardóttir & Hogg
(2005), and the measured shock angles are in good agreement with the weak-
shock angles predicted by (2.4) and (2.7) (Irmer et al. 1999; Gray et al. 2003;
Hákonardóttir & Hogg 2005). However, it has not previously been clear how to
generate strong shocks in dense granular free-surface flows. We will describe a simple
procedure by which they can be triggered. We will also show that the simple solution
for the detachment angle θd in (2.9) is in excellent agreement with experimental values
over a wide range of Froude numbers.

All the experiments were performed on a chute 300 mm wide and 450 mm long,
inclined at 38◦ to the horizontal. A large hopper was situated at the top of the chute,
whose exit was controlled by a double gate: the first gate is fixed and is preset to a
given outflow height to control the mass flux, while the second allows easy release.
Once this second gate is raised the particles flow rapidly down the chute, quickly
establishing a steady non-uniform flow in which the avalanche accelerates and the
thickness decreases slowly with downstream distance. The flow velocity is measured
using particle image velocimetry (PIV) equipment and the thickness is measured
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Weak shock Strong shock

Experiment Theory Experiment Theory
h̃2 27 ± 1 mm 28.2 mm 60 ± 1.8 mm 59.1 mm

|ũ2| 1.13 ± 0.01 m s−1 1.15 m s−1 0.18 ± 0.01 m s−1 0.21 m s−1

h2 0.9 ± 0.03 0.94 2.0 ± 0.06 1.97
|u2| 2.1 ± 0.02 2.13 0.35 ± 0.02 0.4
Fr2 2.24 ± 0.06 2.23 0.24 ± 0.02 0.28
β 29◦ ± 1◦ 30.69◦ 78◦ ± 1◦ 86.15◦

Table 1. Comparison of the experimental and predicted flow thicknesses, velocities, Froude
numbers and shock angles for the weak and strong oblique shocks illustrated in figure 6. The
predicted values are for a wedge angle θ = 20◦, chute angle ζ = 38◦, inflow velocity magnitude
|ũ1| = 1.32 m s−1 and thickness h̃1 = 9 mm, giving Fr1 = 5. These values are equivalent to
a non-dimensional thickness h1 = 0.30 and velocity |u1| = 2.43 with scalings H = L = 3 cm.
The experimental and predicted non-dimensional thicknesses and velocities are shown in the
middle two rows.

using a scale along the transparent sidewall. The flow is deflected by a wedge of
length 240 mm placed 225 mm downstream, which can be inclined at any angle θ .
The avalanche itself is composed of roughly spherical 1 mm diameter red-and-white
non-pareille sugar grains, commonly known as ‘hundreds and thousands’ or Sprinkles,
which can be obtained from Werner’s Dragéefabrik, Tornesch, Germany. These grains
produce very sharp, clearly defined, shocks even at moderate Froude numbers.

3.1. Weak shocks

An example of a weak shock is shown in the perspective and overhead photographs
in the top panels of figure 6. At the tip of the wedge the avalanche is 9 mm thick
and moves at approximately 1.32 m s−1. Using the scalings (1.1) with equal vertical
and horizontal length scales H = L = 3 cm, non-dimensional thickness h1 is 0.3 and
the velocity magnitude |u1| is 2.43, which implies that the incoming Froude number
Fr1 equals 5, by (1.7). A weak oblique shock forms naturally in this configuration
and lies at an angle of approximately 29◦ to the downstream direction. The streak
lines show that the flow is approximately parallel to the wedge after the shock. The
avalanche thickness jumps to approximately 27 mm, while the velocity magnitude
decreases to 1.13 m s−1. In non-dimensional units, h2 = 0.9 and |u2| =2.1. Using a
wedge angle θ =20◦ and incoming Froude number Fr1 = 5, (2.6), (2.7) and (2.10)
predict that the downstream thickness h2 = 0.94, the velocity magnitude |u2| = 2.13
and the shock angle β = 30.69◦, i.e. h̃2 = 28.2 mm and |ũ2| =1.15 m s−1. The flow
variables are summarized in table 1. The measured thickness, velocity magnitude and
shock angle are within 6% of those predicted by the theory. This is exceptionally good
agreement considering that source terms have been neglected and that an accuracy
of 10% is often the best that can be expected for fluid flows.

3.2. Strong shocks

Strong shocks have not been observed before in granular avalanches, and even in
hydraulics they seem to be a rare event. Just as in gasdynamics, there must be an
increased downstream pressure in order for them to be triggered. To achieve this, a
second double gate was placed across the chute at the end of the wedge. The height
of the fixed gate was varied by trial and error to obtain the correct outflow mass
flux, while the second blocking gate was initially shut at the start of the experiment.
Once the avalanche is released from the hopper it flows rapidly downslope to create a
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Figure 6. Perspective (on the left) and overhead (on the right) photographs showing that
weak (top), strong (middle) and detached (bottom) oblique shocks are formed in dry granular
avalanches composed of non-pareille sugar grains (commonly known as ‘hundreds and
thousands’ or Sprinkles). A shutter speed of 1/25 second is used to produce streaks that indicate
both the direction of flow and the relative speed of the grains before and after the shock.
The downslope direction is from left to right in the overhead photos and the chute is inclined
at an angle ζ = 38◦ to the horizontal. The Froude number Fr1 just before the wedge is equal
to 5 and the wedge angle θ = 20◦ for both the weak and strong shocks. The detached shock
is generated with Fr1 = 4 and θ = 44◦, which lies above the detachment angle θd = 40.57◦

predicted by the classical theory. The cross-slope width of the overhead panels on the right-hand
side is 13.5 cm. Three movies showing the formation of the weak, strong and detached shocks
are available with the online version of the paper.

weak oblique shock along the wedge, before hitting the gate and stopping to produce
an upslope-travelling strong shock. As the top of the strong shock nears the tip of
the wedge the second blocking gate is released and a steady-state strong oblique
shock is quickly formed, as shown in the middle panels of figure 6. A movie showing
the formation of the strong shock is available with the online version of the paper.
Although the inflow conditions are the same as for the weak shock, the strong shock
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is much steeper, lying at an angle of approximately 78◦ right across the chute and
intersecting with the far sidewall. On the downstream side of the shock the avalanche
increases dramatically in thickness to around 60 mm and the velocity decreases to
0.18 m s−1. These correspond to h2 = 2 and |u2| = 0.35 in non-dimensional units. The
strong shock for Fr1 = 5 and θ = 20◦ is predicted to lie at an angle β = 86.15◦; the
downstream thickness h2 is 1.97 and the velocity magnitude |u2| is 0.4 non-dimensional
units, which, correspond to h̃2 = 59.1 mm and |ũ2| = 0.21 m s−1. The predicted and
measured thicknesses are within 2% of one another, the velocity magnitudes are within
16% and the shock angles are 10% apart. The oblique-hydraulic-shock relations in § 2
therefore still provide useful approximations even in the case of a strong shock. The
flow variables and predictions are summarized in table 1. Crucially for dam-height
design, the predicted strong-shock thickness is very close to the observed value.

3.3. Detached oblique shocks

Detached oblique shocks are much easier to generate and the second set of gates can
be discarded. All that is required is either to reduce the incoming Froude number or to
increase the wedge angle so that the flow conditions lie to the right of the detachment-
Froude-number curve Frd in figure 3. A combination of these two changes is achieved
by increasing the wedge deflection angle to θ = 44◦ and moving it upstream to a
point where the inflow thickness increases to 10.5 mm and the velocity magnitude
decreases to 1.13 m s−1, so that Fr1 = 4. The corresponding non-dimensional values
are h1 = 0.35 and |u1| = 2.1. For an inflow Froude number Fr1 = 4, (2.8) and (2.9)
predict that the shock detaches at θd = 40.57◦, as shown in figure 3. For a wedge
angle θ > θd the shock should be, and is, detached, as shown in the bottom panels of
figure 6. An oblique shock starts out as a normal shock located about 19 mm (0.63
non-dimensional units) upstream of the wedge and the particles immediately behind
it are almost stationary. The shock angle slowly decreases with downstream distance
and bends towards the wedge. By successively moving the position of the wedge on
the slope and varying the deflection angle it is possible to determine the detachment
angle θd experimentally for a range of inflow Froude numbers. The solid squares
and error bars in figure 3 show that the experimental detachment angles are in very
close agreement with those predicted by the theory. The curve lies slightly below
the measured values, which may either be an effect of the source terms or evidence
for a non-isotropic pressure distribution (e.g. Savage & Hutter 1989; Iverson 1997;
Denlinger & Iverson 2001). However, these deviations are relatively small and within,
or close to, the experimental error bars over much of the range.

4. Numerical method
Gray et al. (2003) developed a numerical scheme to compute the flow past pyramidal

obstacles with sloped sides. The presence of the obstacle was included in the source
terms (1.5), (1.6) by using gradients of the obstacle height b normal to the inclined
reference plane. This approach has the advantage that it allows the flow past complex
obstacles to be computed on a simple rectangular grid. However, the method cannot
be used for obstacles with walls that are normal to the plane of the chute. The
simplest way to compute the flow past the wedge is to introduce a body-fitted
coordinate system (e.g. Anderson 1982), such as the one illustrated in figure 7. The
advantage of body-fitted coordinates is that they allow the wall boundary conditions
to be applied easily and that the grid resolution can be enhanced near the obstacle.
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Figure 7. A sketch of the H-grid used in the computation. The bottom right shaded region
denotes the wedge. The lateral width of the inflow is Wi and of the outflow is Wo.

4.1. Body-fitted coordinates

Introducing conservative variables h, m = hu and n = hv, the conservation laws
(1.2)–(1.4) are first written in vector form, as

∂U

∂t
+

∂E

∂x
+

∂F

∂y
= S, (4.1)

where the fluxes and source terms are

U = (h, m, n)T ,

E = (m, m2/h + 1
2
εh2 cos ζ, mn/h)T ,

F = (n, mn/h, n2/h + 1
2
εh2 cos ζ )T ,

S = (0, hS(x), hS(y))
T ,

(4.2)

and the superscript T denotes the transpose. The chute-coordinate system Oxy is
mapped to the body-fitted coordinate system Oξη by the transformation

ξ = ξ (x, y), η = η(x, y), τ = t, (4.3)

so that the upper sidewall, as well as the combination of the lower sidewall and
wedge, lie along η = constant coordinate lines. The mapped system of equations can
once again be written in conservative form,

∂Û

∂τ
+

∂Ê

∂ξ
+

∂F̂

∂η
= Ŝ, (4.4)

by defining the fluxes and the source terms as

Û = J −1U, Ê = J −1(ξxE + ξyF ), F̂ = J −1(ηxE + ηyF ), Ŝ = J −1S, (4.5)

where the subscripts denote differentiation with respect to that subscript and the
Jacobian J is given by ξxηy − ξyηx = (xξyη − xηyξ )

−1.

4.2. NT schemes and implementation of the boundary conditions

The transformed system (4.4) is solved in the computational domain using an
explicit two-dimensional non-staggered non-oscillating central scheme developed by
Jiang et al. (1998). These high-resolution methods are known as NT schemes, after
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Boundary type Number of conditions Prescribed variables

supercritical inflow 3 h, u, v
supercritical outflow 0 none
subcritical outflow 1 m = hu
wall boundary 1 hu · n = 0

Table 2. A summary of the applied boundary conditions.

Nessyahu & Tadmor (1990), who first devised them. They have the advantage that
they provide a simple Riemann-solver-free recipe that has superior resolution to
upwinded methods. Gray et al. (2003) used a two-dimensional staggered NT scheme
(Jiang & Tadmor 1998; Lie & Noelle 2003) to compute the granular free-surface
flow past a pyramidal obstacle. While this method produces excellent results, it is
not as convenient for flows with complex wall boundaries since the scheme alternates
between two staggered grids every other time step. The method of Jiang et al. (1998)
avoids this by providing a procedure to convert staggered schemes to a fixed non-
staggered grid.

The boundary conditions closely parallel the experimental set-up. At the left-
hand boundary of the computational domain there is a supercritical inflow, where the
thickness and velocity are prescribed. Along the sidewalls and the wedge a no-normal-
flux condition hu · n = 0 is applied, while at the outflow on the right the number of
boundary conditions depends on whether the flow is sub- or supercritical (e.g. Weiyan
1992). For most simulations the outflow is supercritical and no boundary conditions
need to be prescribed, but to simulate a strong shock the outflow conditions need to
mirror the blocking procedure used in the experiments. Initially the flow is blocked
completely by setting m = hu = 0, so that a normal shock forms and propagates
upslope. As the normal shock approaches the tip of the wedge the outflow is opened,
at time topen. For a steady state to be established, the total inflow mass flux must
balance the total outflow mass flux. Assuming that the inflow and outflow mass fluxes
mi and mo are uniformly distributed across the chute, the appropriate downstream
conditions are

mo =

{
0, t < topen,

Wimi/Wo, t � topen,
(4.6)

where Wi and Wo are the inflow and outflow chute widths, shown in figure 7. The
boundary conditions are summarized in table 2. The numerical method has been
tested against the exact solutions in the absence of source terms and accurately
reproduces the shock angles and the jumps in thickness and velocity given by (2.7),
(2.6) and (2.10).

5. Numerical results with non-zero source terms
The classical oblique-shock solutions in § 2 assume that the source terms are

identically zero and hence that the states on either side of the shocks are constant.
In real granular flows the source terms (1.5), (1.6) are never identically zero over the
whole domain, and they necessarily induce gradients in the thickness and velocity
that in turn modify the local upstream Froude number and the position of the shocks.
In this section we use the numerical method described above to show that the full
system of equations (1.2)–(1.6) can accurately predict the experimental position of
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the weak, strong and detached oblique shocks discussed in § 3, and therefore that the
source terms can explain the discrepancies from classical oblique-shock theory.

5.1. Weak and strong oblique shocks

Figure 8 shows the variation in the computed thickness, velocity and Froude number
for the case of the experimental weak and strong shocks described in § 3. The
contoured domains are exactly equivalent to the overhead photographs shown in
the right-hand panels of figure 6. Since the slope induces a net acceleration of
the flow, there is a steady increase in the velocity and a decrease in the thickness
upstream of both shocks. The weak shock is almost straight and lies at an angle of
approximately 28◦ to the direction of flow, which compares well with the measured
angle of 29◦ ± 1◦ as well as the angle in the absence of source terms. Immediately
after the shock the thickness jumps to 0.9 non-dimensional units, which is precisely
the value measured in experiments, and then continues to increase slowly in height as
the wedge is approached. This slow increase can also be seen in the perspective view
of the experiments in figure 8. The velocity vectors lie almost parallel to the wedge
after the shock and the velocity magnitude and hence the Froude number increase
slowly with downstream distance along the wedge in response to the net acceleration
provided by the source terms.

For exactly the same inflow conditions, careful control of the downstream gate
enables a strong shock that lies across the entire chute to be triggered. To achieve this
the second gate must be opened at time topen = 27.0 non-dimensional time units in the
computation, which corresponds to 1.49 seconds. This compares favourably with the
experimental opening time of 1.60 ± 0.04 seconds or 28.9 ± 0.72 non-dimensional time
units. The numerical solutions are computed on the complete domain shown in figure
7 but only a small section of the solution, which corresponds to the experimental
domain in figure 6, is illustrated. When viewed over the whole domain the strong
shock is almost linear and inclined at an angle of approximately 77◦ to the direction of
flow, but close to the wedge there are some significant variations. These arise because
the outflow conditions have an upstream influence on the position of the shock, and,
close to the wedge, the wall condition produces a shock angle slightly different from
the constant-outflow condition along the rest of the domain. The computed strong-
shock angle is very close to the experimental value of 78◦ ± 1◦, which is significantly
better than the value of 86.15◦ predicted by the theory in the absence of source terms.
The jump in thickness to 2.0 non-dimensional units immediately after the shock
is once again exactly the same as that measured in the experiments. However, the
thickness continues to increases significantly in height as the second blocking gate is
approached, and the pressure gradients that this induces are sufficient to continue to
slow the flow down, even though the slope naturally provides a net acceleration. The
thickness increase after the shock is very significant and, if strong shocks are to be
used as a control measure, then the dam height must also increase with downstream
distance.

5.2. Energy dissipation

If strong shocks can be induced by dams in the field then they have the potential
to provide significantly greater protection from hazardous geophysical flows than
deflecting dams that induce weak shocks, because they dissipate far larger amounts
of energy. To make this explicit, the depth-integrated energy balance (e.g. Johnson
1997) necessarily implies that to leading order the energy jump E across a
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Figure 8. The top three pairs of panels show non-dimensional contour plots of the flow
thickness h, the velocity magnitude |u| and the Froude number Fr for a weak shock (left) and
a strong shock (right) with source terms. The bottom pair of panels shows the corresponding
velocity vectors. The x-axis and downslope direction are along the abscissa and the cross-slope
y-axis lies along the ordinate. The tip of the wedge lies at x = 7.5 and is inclined an angle
of 20◦ to the downstream direction. In both cases the local Froude number at the wedge, Fr
equals 5, and the local thickness and velocity are equal to h = 0.3 and u = 2.43, respectively.
The chute is inclined at ζ = 38◦ to the horizontal and the basal angle of friction δ = 23◦. The
dashed lines in the top pair of panels indicate the position of the weak (left) and strong (right)
shocks in the absence of source terms.
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two-dimensional shock is

E =
[[
(u · n)

(
1
2
h|u|2 + εh2 cos ζ

)]]
− vn

[[
1
2
h|u|2 + 1

2
εh cos ζ

]]
. (5.1)

It follows that for a steady oblique shock the energy loss is given by

E =
[[
(u · n)

(
1
2
h|u|2 + εh2 cos ζ

)]]
> 0. (5.2)

The steady-mass jump condition (1.8) provides a natural definition for the normal
mass flux Mn across a steady shock, i.e.

Mn = h1(u1 · n) = h2(u2 · n), (5.3)

where the subscript 1 indicates a position just upstream of the shock and the
subscript 2 a position just downstream of it. Using these definitions and that [[ |u|2]] =
(u1 + u2) · (u1 − u2), (5.2) can be rewritten as

E =
1

2
(u1 + u2) · [[hu(u · n)]] + εMn[[h]] cos ζ. (5.4)

Since the steady-momentum jump condition (1.9) implies

[[hu(u · n)]] = − 1
2
ε cos ζ [[h2]]n,

the energy loss across a steady oblique shock reduces to

E =
Mnε cos ζ

4h1h2

(h2 − h1)
3. (5.5)

This expression is similar to the energy loss across a hydraulic jump (e.g. Stoker 1957;
Johnson 1997) since there is a dependence on the cube of the thickness difference
between the two sides, but it also depends on the slope inclination angle and the
normal mass flux Mn, defined in (5.3). Strong shocks dissipate much more energy than
weak shocks, for two reasons; firstly there is a much larger jump in thickness and
secondly the incoming velocity u1 and the normal n are closely aligned, so there is a
much greater mass flux Mn across the shock. As a result, for the experiments in § 3,
the strong shock dissipates over 20 times more energy than the weak shock. The only
disadvantages of the strong-shock set-up are that the wedge has to be significantly
higher to prevent overtopping and the downstream conditions have to be carefully
controlled.

5.3. Detached oblique shocks

When the deflection angle of the wedge is increased to θ = 44◦ and the incoming
Froude number is decreased to Fr1 = 4, the shock detaches from the wedge tip to
produce a detached oblique shock, as predicted by the exact solution in figure 3. The
left-hand panels in figure 9 show the computed solution in the absence of source
terms. The shock initially starts off as a normal shock about 0.5 non-dimensional
units upstream of the tip and then slowly bends towards the wedge with increasing
downstream distance. Even in the absence of source terms and with a uniform
upstream state the downstream thickness and velocity are not constant. The initial
normal shock produces the largest jump in thickness and decrease with velocity,
and, as one moves along the wedge, the thickness slowly decreases and the velocity
increases. The right-hand panels of figure 9 show the effect of including source terms
and are directly comparable with the bottom right overhead experimental photo in
figure 6. The shock is once again detached, so the curve in figure 3 gives useful
approximations for the detachment angle even with the presence of source terms.
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Figure 9. The top three pairs of panels show non-dimensional contour plots of the flow
thickness h, the velocity magnitude |u| and the Froude number Fr for a detached oblique
shock in the absence of source terms (left) and with source terms (right). The bottom pair of
panels show the corresponding velocity vectors. The x-axis and downslope direction are along
the abscissa and the cross-slope y-axis is along the ordinate. The tip of the wedge lies at x = 5
and is inclined at θ = 44◦ to the downstream direction. The undisturbed incoming flow has
a local Froude number Fr = 4 at x = 5 and the thickness and velocity are h = 0.35 and
u = 2.10, respectively. The chute is inclined at ζ = 38◦ to the horizontal and the basal angle
of friction δ = 23◦ in the plots on the right.
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The computed shock detaches about 0.35 non-dimensional units above the tip, which
compares very well with the observed length and lies slightly downstream of the
position in the absence of source terms. The key effect is to bend the shock around
towards the wedge much more rapidly, so that it lies much closer to it. This is in
excellent agreement with the experiments. As one moves normally from the shock
towards the wedge the thickness slowly increases, which can also be seen in the
perspective profile in the bottom left photograph in figure 6. Similarly, as one moves
towards the wedge the flow velocity decreases. Detached oblique shocks produce large
thickness jumps and big deflection angles, so they dissipate significant amounts of
energy along their length. They may therefore be very useful for protective measures
as they do not require a complicated triggering mechanism to allow them to form.

5.4. Accelerative and decelerative slopes

The classical shock-deflection-angle curves provide useful approximations for the
shock angles in most situations. However, it is also possible to produce significant
deviations from them at low Froude numbers. Figure 10 shows two sets of weak-
shock solutions for inflow Froude number Fr1 = 4.15, non-dimensional thickness
h1 = 0.1 and basal angle of friction δ = 23◦. The panels on the left correspond to
a slightly decelerative slope with ζ = 21◦, while the panels on the right correspond
to an accelerative slope with ζ = 30◦. The wedge deflection angle θ is 20◦ in both
cases, so the classical shock-deflection-angle relation (2.7) predicts a common shock
angle of β = 33.39◦. On the decelerative slope the shock slowly bends away from
the classical angle to approximately 36◦ by the end of the domain, while on the
accelerative slope it bends towards the wedge and attains an angle of 27.5◦. For a
weak shock, much of this deviation can be explained by the variation in the incoming
Froude number, Fr1, along its length. On the decelerative slope the Froude number
decreases from 4.15 to about 3.5 by the end of the chute. Assuming that the flow
is parallel to the wedge after the shock, the classical shock-deflection-angle relation
(2.7) predicts that the shock angle should continuously increase from 33.39◦ to 36.59◦.
An approximation for the weak-shock position may therefore be made by solving the
ordinary differential equation

dy

dx
= tan β(Fr1(x)), (5.6)

from the tip of the wedge using the actual variation in the Froude number with
x to calculate the changes in the local shock angle β using (2.7). This shows that
the shock is actually slightly concave, bending away from the wedge with increasing
downstream distance as observed in the computations. Similarly, when the shock is
on an accelerative slope the Froude number increases from 4.15 to about 6.5, which
produces a corresponding decrease in angle from β = 33.39◦ to 27.87◦. Solving (5.6)
in this case results in a slightly convex curve that accounts for about half the observed
decrease in angle. The remaining difference is due to variations in the velocity on
the downstream side of the shock, so that it is not exactly parallel to the wedge
immediately after it, as assumed in the classical result (2.7).

6. Conclusions
In this paper we have shown that weak, strong and detached oblique shocks may

be generated when granular free-surface flows are deflected by a wedge or obstacle.
The classical hydraulic shock-deflection-angle relation (2.7) provides a good first
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Figure 10. The top three pairs of panels show non-dimensional contour plots of the flow
thickness h, the velocity magnitude |u| and the Froude number Fr for a weak shock on a
decelerative slope with ζ = 21◦ (left) and on an accelerative slope with ζ = 30◦ (right). The
bottom pair of panels show the corresponding velocity vectors. The x-axis and downslope
direction are along the abscissa and the cross-slope y-axis lies along the ordinate. The tip of
the wedge lies at x = 7.5 and is inclined at an angle of 20◦ to the downstream direction, and
the basal angle of friction δ equals 23◦. The local Froude number at the wedge, Fr equals
4.15, and the thickness h is 0.1. This implies that the velocity u = 1.27 for the 21◦ slope and
1.22 for 30◦. The dashed lines in the top pair of panels indicate the position of the weak shock
in the absence of source terms and lies at 33.39◦ for both cases.
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approximation for the angles of the observed weak and strong shocks. Weak shocks
form naturally during flows past wedges, provided that the Froude number is high
enough and the deflection angle is not too large, and produce a narrow region close
to the wedge with increased flow thickness and decreased velocity. The generation
of strong shocks, however, requires careful control of the downstream conditions.
Strong shocks produce much larger increases in the thickness and decreases in the
velocity, and the shock extends across the chute. Equation (5.5) shows that both these
effects imply that strong shocks dissipate much more energy than weak shocks and
they may therefore provide a useful defence mechanism against large-scale hazardous
geophysical flows.

A new exact solution (2.9) for the detachment Froude number Frd provides a useful
criterion to predict whether the flow will form a detached oblique shock, even on
slopes where the source terms play a significant role. Detached shocks also dissipate
large amounts of energy, because they necessarily involve large shock angles and
jumps in thickness. As the key design control is simply the wedge angle θ , these may
provide a more easily realizable defensive strategy although they do not provide as
much dissipation as strong shocks.

The effects of gravitational acceleration and Coulomb basal friction, which enter
primarily through the source terms on the right-hand side of (1.3) and (1.4), have been
investigated using shock-capturing numerical methods. These show that the full system
of governing equations (1.2)–(1.6) provides a very accurate model for computing the
actual positions of weak, strong and detached shocks and the variations in the flow
thickness and velocity. The simulations indicate that the largest deviations from
the classical shock-deflection angle (2.7) occur at low incoming Froude numbers
on strongly accelerative or decelerative slopes. On accelerative slopes weak shocks
bend towards the wedge, while on decelerative slopes they bend away from it. An
approximation for the modified position of a weak shock is obtained by solving (5.6)
as a function of the variation in the local upstream Froude number with downstream
distance. In both cases, the thickness of the downstream flow increases with increasing
downstream distance along the dam. This is contrary to current design criteria for
defensive dams (e.g. Sigurdsson, Tomasson & Sandersen 1998), which suggest lower
heights further down the run-out zone, but is in accordance with observed snow-
avalanche deposits along the dam at Flateyri in Northwestern Iceland (Jóhannesson
2001; Cui et al. 2007).
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