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Abstract

Based on the idea of constructing a time-changed process, strong subordination is

the operation that evaluates a multivariate Lévy process at a multivariate subordin-

ator. This produces a Lévy process again when the subordinate has independent

components or the subordinator has indistinguishable components, otherwise we

prove that it does not in a wide range of cases. A new operation known as weak

subordination is introduced, acting on multivariate Lévy processes and multivariate

subordinators, to extend this idea in a way that always produces a Lévy process,

even when the subordinate has dependent components. We show that weak sub-

ordination matches strong subordination in law in the previously mentioned cases

where the latter produces a Lévy process. In addition, we give the characteristics

of weak subordination, and prove sample path properties, moment formulas and

marginal component consistency. We also give distributional representations for weak

subordination with ray subordinators, a superposition of independent subordinators,

subordinators having independent components and subordinators having monotonic

components.

The variance generalised gamma convolution class, formed by strongly subordin-

ating Brownian motion with Thorin subordinators, is further extended using weak

subordination. For these weak variance generalised gamma convolutions, we derive

characteristics, including a formula for their Lévy measure in terms of that of a

variance-gamma process, and prove sample path properties.

As an example of a weak variance generalised gamma convolution, we construct

a weak subordination counterpart to the variance-alpha-gamma process of Semeraro.

For these weak variance-alpha-gamma processes, we derive characteristics, show that

they are a superposition of independent variance-gamma processes and compare three

calibration methods: method of moments, maximum likelihood and digital moment

estimation. As the density function is not explicitly known for maximum likelihood,

we derive a Fourier invertibility condition. We show in simulations that maximum

likelihood produces a better fit when this condition holds, while digital moment

estimation is better when it does not. Also, weak variance-alpha-gamma processes
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Abstract v

exhibit a wider range of dependence structures and produces a significantly better

fit than variance-alpha-gamma processes for the log returns of an S&P500-FTSE100

data set, and digital moment estimation has the best fit in this situation.

Lastly, we study the self-decomposability of weak variance generalised gamma

convolutions. Specifically, we prove that a driftless Brownian motion gives rise to a

self-decomposable process, and when some technical conditions on the underlying

Thorin measure are satisfied, that this is also necessary. Our conditions improve and

generalise an earlier result of Grigelionis. These conditions are applied to a variety

of weakly subordinated processes, including the weak variance-alpha-gamma process,

and in the previous fit, a likelihood ratio test fails to reject the self-decomposability

of the log returns.
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Notation

Real and Complex Numbers

Let N = {1, 2, 3, . . . }.

For x, y ∈ R, let x ∧ y := min{x, y} and x ∨ y := max{x, y}. The decomposition

of an extended real number x ∈ [−∞,∞] into its positive and negative parts is

denoted by x = x+ − x−, where x+ = x ∨ 0 and x− = (−x)+ = −(x ∧ 0).

For z ∈ C
n, ℜz is its real part and ℑz is its imaginary part.

Euclidean Space

Let R
n be n-dimensional Euclidean space whose elements are row vectors x =

(x1, . . . , xn), with canonical basis {ek : 1 ≤ k ≤ n}, and let e := (1, . . . , 1) ∈ R
n.

For A ⊆ R
n, let A∗ := A\{0}.

For x,y ∈ R
n and Σ ∈ R

n×n, let x′ and Σ′ denote the transpose of x and Σ,

respectively.

For x,y ∈ R
n and Σ ∈ R

n×n, let 〈x,y〉 = xy′ denote the Euclidean product,

‖x‖ = 〈x,x〉1/2 denote the Euclidean norm and ‖x‖∞ = max1≤k≤n |xk| denote the

infinity norm, and let 〈x,y〉Σ := xΣy′ and ‖x‖2Σ := 〈x,x〉Σ.

Define the Euclidean unit ball D, the Euclidean unit sphere S, and their associated

restrictions by

D := {x ∈ R
n : ‖x‖ ≤ 1},

D
+ := D ∩ [0,∞)n,

S := {s ∈ R
n : ‖s‖ = 1},

S+ := S ∩ [0,∞)n,

S++ := S ∩ (0,∞)n,

S
∗ := S ∩ (R∗)

n.

The meaning of the notations above is understood in the usual way when used in

the context of Rm, m 6= n.
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For ∅ 6= J ⊆ {1, . . . , n}, let πJ : Rn → R
n, x 7→ xπJ :=

∑
j∈J xjej be the

associated projection.

For x = (x1, . . . , xn) ∈ R
n, let

∏
x :=

∏n
k=1 xk.

For A ⊆ R
n, let ∂A denote the boundary of A relative to R

n.

Matrices

A matrix Σ ∈ R
n×n is a covariance matrix, equivalently a nonnegative definite matrix,

if it is symmetric and ‖x‖2Σ ≥ 0 for all x ∈ R
n, and it is an invertible covariance

matrix, equivalently a positive definite matrix, if it is symmetric and ‖x‖2Σ > 0 for

all x ∈ R
n
∗ .

Let A = (Akl) ∈ R
n×n and B = (Bkl) ∈ R

n×n, the Hadamard product of A and

B is defined as A ∗B := (AklBkl) ∈ R
n×n.

For Σ ∈ R
n×n, let diag(Σ) ∈ R

n denote the diagonal of Σ. For x ∈ R
n, let

diag(x) ∈ R
n×n denote the diagonal matrix with diagonal x.

Measures

Let δx denote the Dirac measure at x ∈ R
n.

For x ∈ R
n, let dx denote the Lebesgue measure on R

n, and ds denote the

(n− 1)-dimensional Lebesgue surface measure on S.

Let A ⊆ R
n, B ⊆ R

m. If f : A → B is a measurable function and V is a Borel

measure on A, then V ◦ f−1 denotes the image measure of V under f .

If X is a Borel measure on R
n
∗ and A : Rn → R

m is a linear transformation, then

X ◦ A−1 denotes the Borel measure on R
m
∗ constructed in the following way: extend

X to a Borel measure V on R
n by setting V({0}) := 0, and then let X ◦ A−1 be the

restriction of V ◦ A−1 to R
m
∗ .

For ∅ 6= J ⊆ {1, . . . , n}, let XJ := X ◦ π−1
J be defined as above. If J = ∅, we use

the conventions π∅ ≡ 0, V∅ ≡ 0 and X∅ ≡ 0.

Functions

Let 1A denote the indicator function of A ⊆ R
n. Let I : [0,∞) → [0,∞) and

ln : C\(−∞, 0] → C denote the identity function and the principal branch of the

logarithm, respectively.

A function f : R → R is nonincreasing if f(x) ≥ f(y) for all x < y, and it is

decreasing if f(x) > f(y) for all x < y.

For p > 0, Lp is the space of Borel functions f : Rn → C such that
∫
Rn |f(x)|

p dx <

∞.
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Random Vectors and Stochastic Processes

An n-dimensional random vector is zero if its probability distribution is δ0. An

n-dimensional process X is the zero process if X(t) is zero for all t ≥ 0.

For n-dimensional random vectors X and Y, let X
D
= Y denote that X and Y are

equal in distribution. For n-dimensional processes X and Y, let X
D
= Y denote that

X and Y are equal in law, that is their system of finite dimensional distributions are

equal.

For µ ∈ R
n and a covariance matrix Σ ∈ R

n×n, N(µ,Σ) denotes the multivariate

normal distribution with mean µ and covariance Σ.

For a, b > 0, Γ(a, b) denotes the gamma distribution with shape a and rate b.

For a process X, the jump process ∆X is defined by ∆X(t) := X(t) −X(t−),

t > 0, where X(t−) := lims↑t X(s).

Let C be the name of a class of processes and P be a list of parameters. When we

write X ∼ Cn(P ) without specifying the domain of the parameters P , that means we

define the parameters P in the most general domain for the class of n-dimensional

processes in C.

Abbreviations

We use the following abbreviations.

a.e. almost everywhere

a.s. almost surely

iid independent and identically distributed

DME digital moment estimation

GGC generalised gamma convolution

KS Kolmogorov-Smirnov

ML maximum likelihood

MOM method of moment

SD self-decomposable

V G variance-gamma

V GGn weak variance generalised gamma convolution

V GGn,1 variance univariate generalised gamma convolution

V GGn,n variance multivariate generalised gamma convolution

V AG variance-alpha-gamma

WVAG weak variance-alpha-gamma



Introduction

We study the weak subordination of multivariate Lévy processes, which is a distribu-

tional extension of strong subordination that always produces a Lévy process. We

apply weak subordination to generalise the class of variance generalised gamma con-

volutions and to construct weak variance-alpha-gamma processes, the latter allowing

for more flexible dependence modelling than the corresponding strongly subordinated

process. Lastly, we prove conditions for the self-decomposability of weak variance

generalised gamma convolutions.

Strong Subordination

Let X = (X1, . . . , Xn) and T = (T1, . . . , Tn) be independent n-dimensional Lévy

processes, where T has nondecreasing components. Strong subordination is the

operation that produces the time-changed process X ◦ T defined by

(X ◦T)(t) := (X1(T1(t)), . . . , Xn(Tn(t))), t ≥ 0.

We call X the subordinate and T the subordinator.

There are two important cases where it is known that X◦T is also a Lévy process:

(i) univariate subordination, where T has indistinguishable components;

(ii) multivariate subordination, where X has independent components.

Subordination originated with the work of Bochner [Boc55] in the context of

probability transition semigroups. Univariate subordination was studied by Zolotarev

[Zol58], Rogozin [Rog65] and Feller [Fel71], where the subordinate is univariate.

Modern treatments of the subject can be found in the monographs by Sato [Sat99],

which includes the more general situation where the subordinate is multivariate, and

Barndorff-Nielsen and Shiryaev [BNS10].

More recently, multivariate subordination has been studied by Barndorff-Nielsen,

Pedersen and Sato [BNPS01], who showed that this operation produces Lévy processes

and derived its characteristics.
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Introduction 2

In quantitative finance, subordination acts as a time change that models the flow

of information, measuring time in volume of trade or business time as opposed to real

time. This idea was initiated by Madan and Seneta [MS90] who introduced variance-

gamma processes (V G) for modelling stock prices and option pricing [MCC98]. A

V G process is a Lévy process of the form B ◦ (Ge), where B is an n-dimensional

Brownian motion, G is a univariate gamma subordinator and e = (1, . . . , 1) ∈ R
n.

This is an example of univariate subordination.

Typically, we want the subordinator to have both common and idiosyncratic time

changes to accord with the economic intuition that some factors affect all components

of the multivariate process, while others are localised to one component. However,

V G processes have a time change common to all components but no idiosyncratic

time changes.

This deficiency was addressed by Semeraro [Sem08] by using an alpha-gamma

subordinator (AG), which is an application of the double gamma distribution in

Kotz and Johnson [KJ72]. This subordinator was formed by the superposition

of a univariate gamma subordinator that affects all components of the process to

represent a common time change, and univariate gamma subordinators independently

affecting each component of the process to represent idiosyncratic time changes. A

variance-alpha-gamma process (V AG) is a Lévy process of the form B ◦T, where B

is an n-dimensional Brownian motion with independent components, and T is an

n-dimensional AG subordinator. This is an example of multivariate subordination.

But the dependence structure is still restricted by requiring the Brownian motion to

have independent components.

Other applications of subordination include turbulence modelling. Velocity

in wind fields exhibit semi-heavy tails, symmetry, and intermittency, which gives

rise to models using a univariate normal inverse Gaussian process [BN97, BN98].

Multivariate extensions also exist.

An overview of Lévy processes and strong subordination is given in Chapter 1.

We show that X ◦ T can fail to be a Lévy process when the assumptions (i) and

(ii) above do not hold. While there is not yet a complete characterisation of the

necessary and sufficient conditions for X◦T to be a Lévy process, we show that these

assumptions are necessary in a wide range of cases (Proposition 1.3.6). So based on

the preceding discussion, strong subordination does not always create a Lévy process,

and often imposes a restrictive dependence structure if we wish the result to remain a

Lévy process. Of course there are numerous reasons to work in the framework of Lévy

processes. In particular, they form an important subclass of semimartingales with

characteristics that are deterministic and linear in time, allowing them to provide
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a good approximation for a wide range of random phenomena, backed up by an

extensive theory [App09, Ber96, Sat99]. Furthermore, financial applications of Lévy

processes are also well-developed [CS09, CT04].

Weak Subordination

Motivated by the desire to create an analogous operation to strong subordination

that always produces a Lévy process and to allow for more flexible multivariate

dependence modelling that improves on the V G and V AG processes, we introduce a

new operation known as weak subordination, and its theory is developed in Chapter 2.

For a general n-dimensional Lévy process X, not required to have independent

components, and an n-dimensional subordinatorT, weak subordination is constructed

based on the idea of assigning the distribution of X(t) to the subordinated process

conditional on the subordinator taking the value T(t) = t at time t ≥ 0. This results

in a weakly subordinated Lévy process we denote by X⊙T, whose existence will be

proven (Theorem 2.2.4). Weak subordination always produces a Lévy process, and

when the assumptions (i) or (ii) above are satisfied, weak subordination coincides

with strong subordination in law (Theorem 2.3.5). In this sense, it is an extension of

strong subordination.

For weak subordination, we derive characteristics (Section 2.3.1), marginal com-

ponent consistency (Proposition 2.3.7), sample path properties (Proposition 2.3.21)

and moment formulas (Proposition 2.3.22). We also give results for weak subordina-

tion in the case of a superposition of independent univariate subordinators travelling

along rays (Section 2.3.4). This is a model for common and idiosyncratic time

change, and our results allow for the law of weakly subordinated processes to be

easily determined and understood in this situation. In addition, we show that when

the subordinator has independent components, the weakly subordinated process

does too (Proposition 2.3.18). There are also differences between strong and weak

subordination. For instance, the time marginals of the weakly subordinated process

X⊙T(t), t ≥ 0, coincide with that of the strongly subordinated process X ◦T(t)

when T is assumed to have monotonic components (Proposition 2.3.26), but not

in general. In fact, there may be no Lévy process with time marginals that match

X ◦T(t) in distribution for all t ≥ 0 (Proposition 2.3.29).

Weak Variance Generalised Gamma Convolutions

Our first major application of weak subordination will be to construct the multivariate

class of weak variance generalised gamma convolutions by weakly subordinating
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Brownian motion and Thorin subordinators in Chapter 3.

Generalised gamma convolutions (GGC) were introduced by Thorin [Tho77a,

Tho77b] as a technical tool to prove that the lognormal and Pareto distributions

were infinitely divisible by showing they were in the GGC subclass, a fact with

immediate applications in modelling insurance claims. Since GGC distributions are

infinitely divisible, their associated Lévy processes exist and are known as Thorin

subordinators. In the univariate setting, examples include the gamma subordinator,

the generalised inverse Gaussian subordinator [Hal79] and the CGMY subordinator

[JZ11].

There are several extensions of the GGC class to the multivariate setting

[BNMS06, Bon09, Gri07a]. Here, as introduced by Pérez-Abreu and Stelzer [PAS14],

we define the GGC class on the cone [0,∞)n to be the minimal class of random

vectors of the form Gα, where G is a gamma random variable and α ∈ [0,∞)n,

while being closed under convolution and convergence in distribution. The associated

Thorin subordinators can be parametrised in terms of a drift and a Thorin measure,

and examples include AG subordinators.

A detailed study of GGC distributions and Thorin subordinators is given in

the monograph by Bondesson [Bon92]. The survey from James, Roynette and Yor

[JRY08] summarises their properties and provides examples of Thorin subordinators.

Both GGC distributions and Thorin subordinators have a variety of applications

in the theory of infinite divisibility [BB17, BNMS06, JS13, SvH04], the analysis

of Bernstein functions [SSV10], quantum probability [BNT06], and multivariate

subordination models in quantitative finance [BKMS17].

Using univariate subordination, Grigelionis [Gri07b] introduced the class of

processes of the form B ◦ (Te), where B is an n-dimensional Brownian motion and

T is a univariate Thorin subordinator, and this was named the V GGn,1 class in

[BKMS17]. It includes V G processes, generalised hyperbolic processes [BK01, Ebe01],

CGMY processes [MY08], among others.

Analogously, Buchmann et al. [BKMS17] introduced the V GGn,n class. Using

multivariate subordination, this is the class of processes of the form B ◦T, where

B is an n-dimensional Brownian motion with independent components, and T is

an n-dimensional Thorin subordinator. It includes the V AG process, and all the

multivariate subordination models of Luciano and Semeraro [LS10].

We use weak subordination to unify these two classes into a larger class of

weak variance generalised gamma convolutions (V GGn), defined as processes of the

form B⊙T, where B is an n-dimensional Brownian motion, not required to have

independent components, and T is an n-dimensional Thorin subordinator. Thus,
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V GGn ⊇ V GGn,1 ∪ V GGn,n.

We derive the characteristics of V GGn processes, including a formula for their

Lévy measure in terms of that of a V G process (Theorem 3.2.6), as well as proving

sample path properties (Proposition 3.3.1).

V G // V GGn,1

&&

V AG //

��

V GGn,n // V GGn

WVAG

33

Figure 1: The relations between classes of weakly subordinated processes with arrows
pointing in the direction of generalisation.

Weak Variance-Alpha-Gamma Processes

Our second major application is to construct the weak variance-alpha-gamma process

to allow for more flexible multivariate dependence modelling, improving on the V G

and V AG processes.

In Chapter 4, we study weak variance-alpha-gamma processes (WVAG), which

are Lévy processes of the form B ⊙ T, where B is an n-dimensional Brownian

motion, not required to have independent components, and T is an n-dimensional

AG subordinator.

In particular, WVAG processes are V GGn processes, and we derive its charac-

teristics (Proposition 4.2.2). We show that it has both common and idiosyncratic

time changes with jumps caused by its AG subordinator. In addition, WVAG

processes have V G marginals (Proposition 4.3.1), and their moment formulas (Pro-

position 4.3.3) indicate that they exhibit a wider range of dependence structures

than V AG processes, while still remaining parsimoniously parametrised. Moreover,

a WVAG process decomposes into a superposition of independent V G processes

(Proposition 4.4.2), a fact that is useful for simulation.

In Section 4.6, we study calibration for WVAG processes. Maximum likelihood

(ML) estimation has been used to fit a univariate V G process to financial data in

Madan, Carr and Chang [MCC98] and Finlay and Seneta [FS08], to fit a bivariate

V G process in Fung and Seneta [FS10], to fit a WVAG process in Michaelsen

and Szimayer [MS18], and to fit a factor-based subordinated Brownian motion,

a generalisation of the WVAG process, in Wang [Wan09], Luciano, Marena and
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Semeraro [LMS16], and Michaelsen and Szimayer [MS18]. Since the density function

of the V AG and WVAG distribution is not explicitly known but its characteristic

function is, the density function is computed using Fourier inversion.

We derive a sufficient condition for Fourier invertibility of theWVAG distribution

(Proposition 4.5.4) in terms of its parameters, a problem which to our knowledge has

not been addressed in the literature, and then we compare method of moments, the

ML method of Michaelsen and Szimayer [MS18] and a modification of digital moment

estimation (DME) from Madan [Mad15] in the bivariate setting. To this end, we use

three goodness of fit statistics: the negative log-likelihood, a chi-squared statistic

computed using the Rosenblatt transform [Ros52] and Peacock’s 2-dimensional,

two-sample Kolmogorov-Smirnov statistic [Pea83], the latter not requiring Fourier

inversion to compute.

Using simulations, we find that ML produces a better fit when the Fourier

invertibility condition is satisfied, and that DME is better when it is violated, but

MLE is still surprisingly accurate in the latter case. In addition, we fit both a

WVAG and V AG model to the log returns from an S&P500-FTSE100 data set and

show that the WVAG model fits significantly better, and that DME is the better

parameter estimation method in this situation.

Self-Decomposability of Weak Variance Generalised Gamma

Convolutions

Originally introduced by Lévy [Lév54], self-decomposability was studied in the

multivariate setting by Urbanik [Urb69], who characterised their distributions in

terms of a Lévy-Khintchine representation, while Sato [Sat80] derived a criterion

often used to prove self-decomposability in terms of a representation of the Lévy

density in polar coordinates.

Self-decomposable distributions occur as limits of scaled sums of independent

random vectors, assuming an asymptotic negligibility condition (Theorem 15.3 in

[Sat99]). They also characterise the stationary distributions of multivariate Lévy-

driven Ornstein-Uhlenbeck processes (Theorem 17.5 in [Sat99]).

For these reasons, self-decomposable distributions are often used to model log

returns [Bin06, BK02, CGMY07, Mad18] and stochastic volatility [BNS01].

With the above insights, the question of whether the self-decomposability of

a subordinator is inherited by the subordinated process has practical importance

and has been the subject of considerable research. This motivates our study of the

self-decomposability of V GGn processes in Chapter 5.

Let n = 1 and suppose that the Brownian motion subordinate B has drift µ.
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Halgreen [Hal79] proved that if T is a self-decomposable subordinator and µ = 0, then

B ◦ T is also self-decomposable. If µ 6= 0, then B ◦ T is still self-decomposable when

T is a Thorin subordinator, a particular case of a self-decomposable subordinator.

This shows that all V GGn processes are self-decomposable in the univariate case.

In fact, Sato [Sat01] showed a slightly stronger result for univariate processes, that

B ◦ T is self-decomposable when T is a self-decomposable subordinator, regardless

of the value of µ ∈ R. However, this does not always hold in the multivariate case.

Now let n ≥ 2 and suppose that the Brownian motion subordinate has drift µ.

Grigelionis [Gri07b] proved that a V GGn,1 process is self-decomposable when µ = 0.

If some technical assumptions and a moment condition on the Thorin measure are

satisfied, it is not self-decomposable when µ 6= 0.

More generally, for n ≥ 2, we prove analogous conditions in the context of V GGn

processes. In particular, we show that the sufficient condition is the same (The-

orem 5.2.2), and prove necessary conditions assuming weaker moment conditions than

Grigelionis (Theorem 5.3.3). We apply these results to refine the self-decomposability

conditions for the V GGn,1 class, and to derive self-decomposability conditions for

the V GGn,n class and other weakly subordinated processes (Section 5.5).

For the WVAG process, the self-decomposability condition reduces to a simple

criterion. Assuming that the Brownian motion subordinate has an invertible covari-

ance matrix, self-decomposability is equivalent to µ = 0 (Corollary 5.5.4). Based on

fitting a WVAG process to the S&P500-FTSE100 data set, a likelihood ratio test

fails to reject the self-decomposability of the log returns (Example 5.5.5).

Relatedly, there are two prominent generalisations of self-decomposability which

were introduced by Urbanik. These are operator self-decomposability [Urb72a] and

the L classes of nested operator self-decomposable distributions [Urb72b], which

were further studied in [Sat80, SY85]. Operator self-decomposability allows for the

previously mentioned correspondence with Lévy-driven Ornstein-Uhlenbeck processes

to be generalised to matrix-valued coefficients. Barndorff-Nielsen, Pedersen and

Sato [BNPS01] obtained sufficient conditions for processes formed by multivariate

subordination to be included in these classes.

Structure

The text is structured as follows. Chapter 1 recaps Lévy process preliminaries

and derives conditions under which strong subordination does not produce a Lévy

process. Chapter 2 introduces and develops the theory of weak subordination. In

Chapter 3, we use weak subordination to construct V GGn processes. We derive

their characteristics and sample path properties. In Chapter 4, we construct WVAG
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processes, study its properties and methods for calibration. Chapter 5 studies the

self-decomposability of V GGn processes. The conclusion summarises our results and

suggests possible directions for future research. A variety of useful Bessel function

properties and other miscellaneous results is in Appendix A and the calibration code

is in Appendix B.



Chapter 1

Strong Subordination

This chapter gives the preliminaries we will need regarding multivariate Lévy processes

and the strong subordination of Lévy processes.

In Section 1.1, we review the theory of Lévy processes, characterise their laws us-

ing the Lévy-Khintchine formula and summarise important properties. In Section 1.2,

we provide a new result showing that a Lévy process evaluated at a multivariate

time parameter gives rise to an infinitely divisible distribution. This is an important

technical result with applications throughout. In Section 1.3, we discuss strong

subordination. It is well-known that strong subordination produces a Lévy process

when the subordinate has independent components or the subordinator has indistin-

guishable components. We complement this by proving that strong subordination

is not closed in the sense that it fails to produce a Lévy process in a wide range of

cases where these conditions are not satisfied.

1.1 Lévy Processes

Lévy processes are the main subject of our study, and this section provides an

overview of this theory. The results are primarily drawn from the monographs

[App09, Ber96, Sat99], where additional information can be found.

Definition 1.1.1. A Lévy process X = (X1, . . . , Xn) = (X(t))t≥0 is an n-dimensional

stochastic process with X(0) = 0 a.s., having independent and stationary increments,

that is continuous in probability and having cádlág sample paths a.s.

Definition 1.1.2. An n-dimensional random vector X is infinitely divisible if, for

all m ≥ 1, there exist iid random vectors X1, . . . ,Xm such that X
D
= X1 + · · ·+Xm.

Definition 1.1.3. The characteristic function of an n-dimensional random vector

X is ΦX(θ) = E exp(i〈θ,X〉), where θ ∈ R
n.

9
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The next two propositions connect these definitions. Specifically, there is a

one-to-one correspondence between the laws of Lévy processes, infinitely divisible

distributions, characteristic functions of infinitely divisible distributions, character-

istic exponents and characteristic triplets, with the latter two objects being defined

below. Any one of these can be used to completely and uniquely characterise the

law of a Lévy process.

Proposition 1.1.4. If X is an n-dimensional Lévy process, then X(t), t ≥ 0, is

infinitely divisible. If Y is an infinitely divisible n-dimensional random vector, then

there exists a Lévy process X, unique up to law, such that X(1)
D
= Y.

Proof. See Theorem 7.10 in [Sat99].

Recall that ‖θ‖2Σ := θΣθ′ for θ ∈ R
n, Σ ∈ R

n×n, D := {x ∈ R
n : ‖x‖ ≤ 1} and

A∗ := A\{0} for A ⊆ R
n.

Proposition 1.1.5. Let X be an n-dimensional Lévy process. The law of X is

determined by the characteristic function ΦX := ΦX(1) with

ΦX(t)(θ) = E[exp(i〈θ,X(t)〉)] = exp(tΨX(θ)), θ ∈ R
n, t ≥ 0, (1.1.1)

where

ΨX(θ) = i〈µ,θ〉 −
1

2
‖θ‖2Σ +

∫

Rn
∗

(ei〈θ,x〉 − 1− i〈θ,x〉1D(x))X (dx), (1.1.2)

for some µ ∈ R
n, covariance matrix Σ ∈ R

n×n and nonnegative Borel measure X on

R
n
∗ satisfying

∫

Rn
∗

1 ∧ ‖x‖2 X (dx) <∞. (1.1.3)

Conversely, for any triplet (µ,Σ,X ), where µ ∈ R
n, Σ ∈ R

n×n is a covariance matrix

and X is a nonnegative Borel measure on R
n
∗ satisfying (1.1.3), there exists a Lévy

process X, unique up to law, satisfying (1.1.1) and (1.1.2).

Proof. See Theorems 7.10 and 8.1 in [Sat99].

Definition 1.1.6. In Proposition 1.1.5, ΨX is the characteristic exponent, X is the

Lévy measure and (µ,Σ,X ) is the characteristic triplet. We write X ∼ Ln(µ,Σ,X )

to mean that X is an n-dimensional Lévy process with law determined by the

characteristic triplet (µ,Σ,X ).
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Definition 1.1.7. If X is a Lévy measure on R
n
∗ and absolutely continuous with

respect to a σ-finite measure L on R
n
∗ , then the function (dX/dL)(x), x ∈ R

n
∗ ,

satisfying

X (A) =

∫

A

dX

dL
(x)L(dx)

for all Borel sets A ⊆ R
n
∗ is the Lévy density of X .

Equation (1.1.2) is known as the Lévy-Khintchine formula, and (1.1.3) ensures

the finiteness of the integral in (1.1.2) and the σ-finiteness of the Lévy measure.

Infinitely divisible distributions can also be characterised by their characteristic

exponents and characteristic triplets. These are defined as those of the corresponding

Lévy process as determined by Proposition 1.1.4.

The next result shows that the class of Lévy processes is closed under linear

transformation. In particular, the sum of independent n-dimensional Lévy processes

or the projection of a Lévy process is a Lévy process.

Proposition 1.1.8. For a Lévy process X ∼ Ln(µ,Σ,X ) and a linear transformation

A : Rn → R
m, x 7→ xA, we have XA ∼ Lm(µA,ΣA,XA), where

µA = µA+

∫

Rn
∗

xA(1D(xA)− 1D(x))X (dx),

ΣA = A′ΣA,

XA = X ◦ A−1.

Proof. See Proposition 11.10 in [Sat99].

Formulas for the moments of a Lévy process are given in Proposition 1.1.9.

Proposition 1.1.9. If X ∼ Ln(µ,Σ,X ) is a Lévy process, then for t > 0,

E[X(t)]

t
= µ+

∫

DC

xX (dx),

Cov(X(t))

t
= Σ+

∫

Rn
∗

x′xX (dx)

provided the participating integrals are finite.

Proof. See Example 25.12 in [Sat99].

Next, we introduce finite variation processes and subordinators, the latter being

nondecreasing Lévy processes used to model time change.
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Definition 1.1.10. Let X ∼ Ln(µ,Σ,X ) be a Lévy process. Then X ∼ FV n(d,X )

is of finite variation with drift d := µ−
∫
D∗

xX (dx) ∈ R
n if a.s. the sample paths

of X are of finite variation on every compact interval.

Proposition 1.1.11. Let X ∼ Ln(µ,Σ,X ) be a Lévy process. Then X ∼ FV n(d,X )

if and only if Σ = 0 and

∫

Rn
∗

1 ∧ ‖x‖X (dx) <∞. (1.1.4)

Also, X ∼ FV n(d,X ) if and only if X has characteristic exponent

ΨX(θ) = i〈d,θ〉+

∫

Rn
∗

(
ei〈θ,x〉 − 1

)
X (dx), θ ∈ R

n. (1.1.5)

Proof. See pages 16–17 in [Ber96].

The condition
∫
D∗

‖x‖X (dx) <∞, which is occasionally more convenient to use,

is equivalent to (1.1.4) due to (1.1.3).

Definition 1.1.12. Let T ∼ Ln(µ,Σ, T ) be a Lévy process. Then T ∼ Sn(d, T )

is a subordinator with drift d := µ−
∫
D∗

t T (dt) if a.s. the sample paths of T are

nondecreasing in all components.

It is often convenient to characterise the law of a subordinator using the Laplace

transform and Laplace exponent instead of the characteristic function and character-

istic exponent, which are its respective Fourier transform counterparts.

Definition 1.1.13. Let T ∼ Sn(d, T ) be a subordinator. The Laplace transform of

T is φT := φT(1) with

φT(t)(λ) = E[exp(−〈λ,T(t)〉)] = exp(−tΛT(λ)), λ ∈ [0,∞)n, t ≥ 0,

and ΛT(λ) is the Laplace exponent.

The domain of the Laplace exponent can be extended to {z ∈ C
n : ℜz ∈ [0,∞)n}.

Here, we extend the Euclidean inner product to w, z ∈ C
n by setting 〈w, z〉 :=

∑n
k=1wkzk. Note that there is no conjugation.

Proposition 1.1.14. If T ∼ Sn(d, T ) is a subordinator, then T ∼ FV n(d, T ),

d ∈ [0,∞)n and T is supported on [0,∞)n∗ . In addition, T has characteristic

exponent

ΨT(θ) = i〈d,θ〉+

∫

[0,∞)n∗

(ei〈θ,t〉 − 1) T (dt), θ ∈ R
n, (1.1.6)
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and Laplace exponent

ΛT(z) = 〈d, z〉+

∫

[0,∞)n∗

(1− e−〈z,t〉) T (dt), ℜz ∈ [0,∞)n. (1.1.7)

Proof. The first sentence and (1.1.6) follows from Proposition 1.1.11 above and

Proposition 3.1 in [BNPS01]. The Laplace exponent (1.1.7) is in the proof of

Theorem 3.3 in [BNPS01].

Next, we give some examples of Lévy processes, the most important being

Brownian motion and the gamma subordinator, which will be used throughout.

Definition 1.1.15. An n-dimensional Lévy process B ∼ BMn(µ,Σ) is a Brownian

motion with drift µ and covariance Σ if B ∼ Ln(µ,Σ, 0). If B ∼ BM1(0, 1), then B

is a standard Brownian motion.

Definition 1.1.16. Let a, b > 0. A univariate subordinator G ∼ ΓS(a, b) is a gamma

subordinator or a gamma process with shape a and rate b if G ∼ S1(0,Ga,b) with

Lévy mesaure

Ga,b(dg) := 1(0,∞)(g)ae
−bg dg

g
. (1.1.8)

If a = b, then G is a standard gamma subordinator, and we let ΓS(b) := ΓS(b, b),

Gb := Gb,b.

Remark 1.1.17. Recall that Γ(a, b), a, b > 0, denotes the gamma distribution

with shape a and rate b. The gamma subordinator G can also be defined as the

subordinator with time marginals G(t) ∼ Γ(at, b), t ≥ 0. In particular, E[G(1)] = 1 if

and only ifG is a standard gamma subordinator. Alternatively, G can be characterised

using its Laplace exponent

ΛG(λ) = a ln

(
1 +

λ

b

)
, λ > −b. (1.1.9)

Definition 1.1.18. Let λ > 0 and P be a probability measure on R
n
∗ . An n-

dimensional Lévy process N ∼ FV n(0, λP) is a compound Poisson process with rate

λ and jump size distribution P . If n = 1 and P = δ1, then N is a Poisson process.

1.2 Multivariate Time Parameters

We consider the evaluation of an n-dimensional Lévy process X = (X1, . . . , Xn),

indexed by a univariate time parameter t ≥ 0, at a multivariate time parameter
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t = (t1, . . . , tn) ∈ [0,∞)n. Let

X(t) := (X1(t1), . . . , Xn(tn)).

We will show that this is an n-dimensional infinitely divisible random vector and

give its characteristics. This is an important technical tool for later results.

To provide formulas for these characteristics, we introduce an outer product

operation ⋄. For t = (t1, . . . , tn) ∈ [0,∞)n, µ = (µ1, . . . µn) ∈ R
n and Σ = (Σkl) ∈

R
n×n, let t ⋄ µ ∈ R

n and t ⋄ Σ = ((t ⋄ Σ)kl) ∈ R
n×n be defined by

t ⋄ µ := (t1µ1, . . . , tnµn), (t ⋄ Σ)kl := (tk ∧ tl)Σkl, 1 ≤ k, l ≤ n. (1.2.1)

Choose an ordering t(1) ≤ · · · ≤ t(n) of the components of t with associated permuta-

tion 〈(1), . . . , (n)〉, and define the spacings ∆t(k) := t(k) − t(k−1), 1 ≤ k ≤ n, with

t(0) := 0. Recall that for ∅ 6= J ⊆ {1, . . . , n}, the associated projection πJ is defined

by xπJ :=
∑

j∈J xjej, x ∈ R
n. Let XJ := X ◦ π−1

J be constructed in the usual way.

That is, extend X to a Borel measure V on R
n by setting V({0}) := 0, and then let

X ◦ π−1
J be the restriction of V ◦ π−1

J to R
n
∗ . For a Lévy measure X , let

t ⋄ X :=
n∑

k=1

∆t(k)X{(k),...,(n)}. (1.2.2)

Introduce the compensation term

c := c(t,X ) :=
n∑

k=2

∆t(k)

∫

DC

xπ{(k),...,(n)}1D(xπ{(k),...,(n)})X (dx). (1.2.3)

Note that t ⋄ X and c(t,X ) are well-defined since they are invariant under any

permutation with the same ordering of t. Moreover, the following lemma shows

that c(t,X ) ∈ R
n, t ⋄ Σ is a covariance matrix whenever Σ is, and t ⋄ X is a Lévy

measure.

Lemma 1.2.1. Let t ∈ [0,∞)n. If (µ,Σ,X ) is a characteristic triplet, then so is

(t ⋄ µ+ c, t ⋄ Σ, t ⋄ X ), and

‖c(t,X )‖ ≤ n1/2X (DC)‖t‖. (1.2.4)

Proof. Note that

‖x‖∞ ≤ ‖x‖ ≤ n1/2‖x‖∞, x ∈ R
n, (1.2.5)
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which gives

‖c(t,X )‖∞ =
n∑

k=2

∆t(k)

∫

DC

‖π{(k),...,(n)}(x)‖∞1D(π{(k),...,(n)}(x))X (dx)

≤ (t(n) − t(1))X (DC)

≤ ‖t‖X (DC).

Since X (DC) is finite by (1.1.3), c(t,X ) ∈ R
n and (1.2.4) follows from the above

inequalities. In particular, t ⋄ µ+ c ∈ R
n. Let B ∼ BMn(0,Σ), then Cov(B(t)) =

t ⋄ Σ, so t ⋄ Σ is a covariance matrix. Finally, by Proposition 1.1.8, X{(k),...,(n)},

1 ≤ k ≤ n, is a Lévy measure. This implies, by (1.1.3), that t ⋄ X is also a Lévy

measure.

Proposition 1.2.2. For t ∈ [0,∞)n and X ∼ Ln(µ,Σ,X ), the random vector X(t)

is infinitely divisible with characteristic function

ΦX(t)(θ) = E[exp(i〈θ,X(t)〉)] = exp((t ⋄ΨX)(θ)), θ ∈ R
n,

where

(t ⋄ΨX)(θ) :=
n∑

k=1

∆t(k)ΨX(π{(k),...,(n)}(θ)) (1.2.6)

= i〈t ⋄ µ+ c,θ〉 −
1

2
‖θ‖2t⋄Σ

+

∫

Rn
∗

(ei〈θ,x〉 − 1− i〈θ,x〉1D(x)) (t ⋄ X )(dx).
(1.2.7)

Proof. Let πm := π{(m),...,(n)}, 1 ≤ m ≤ n. For X = (X1, . . . , Xn) ∼ Ln(µ,Σ,X ),

t = (t1, . . . , tn) ∈ [0,∞)n and θ = (θ1, . . . , θn) ∈ R
n, we have

〈θ,X(t)〉 =
n∑

k=1

θ(k)X(k)(t(k)) =
n∑

k=1

k∑

m=1

θ(k)(X(k)(t(m))−X(k)(t(m−1))),

and thus, by interchanging the order of summation on the RHS, we have

〈θ,X(t)〉 =
n∑

m=1

n∑

k=m

θ(k)(X(k)(t(m))−X(k)(t(m−1))).

Combining the above equation with the independent and stationary increment

property of X and using (1.1.1) gives
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E[exp(i〈θ,X(t)〉)] = exp

(
n∑

m=1

∆t(m)ΨX(θπm)

)
, (1.2.8)

which proves (1.2.6). Since projections are self-adjoint, meaning that 〈xπm,y〉 =

〈x,yπm〉, x,y ∈ R
n, using the Lévy-Khintchine formula (1.1.2) gives

ΨX(θπm) = i〈µπm,θ〉 −
1

2
‖θπm‖

2
Σ

+

∫

Rn
∗

(ei〈θ,xπm〉 − 1− i〈θ,xπm〉1D(x))X (dx).
(1.2.9)

Substituting (1.2.9) into (1.2.8) gives

E[exp(i〈θ,X(t)〉)] = exp(I1(θ) + I2(θ) + I3(θ)), (1.2.10)

where

I1(θ) :=
n∑

m=1

∆t(m)〈µπm,θ〉,

I2(θ) :=
n∑

m=1

∆t(m)‖θπm‖
2
Σ,

I3(θ) :=
n∑

m=1

∆t(m)

∫

Rn
∗

(ei〈θ,xπm〉 − 1− i〈θ,xπm〉1D(x))X (dx).

To deal with the first term, note that

I1(θ) =
n∑

m=1

∆t(m)

n∑

k=m

µ(k)θ(k) =
n∑

k=1

µ(k)θ(k)

k∑

m=1

∆t(m) = 〈t ⋄ µ,θ〉,

and likewise the second term becomes

I2(θ) =
n∑

m=1

∆t(m)

n∑

k=m

n∑

l=m

θ(k)θ(l)Σ(k)(l) =
n∑

k=1

n∑

l=1

θ(k)θ(l)Σ(k)(l)

k∧l∑

m=1

∆t(m) = ‖θ‖2t⋄Σ.

By using 1D(x) = 1D(xπm)− 1DC (x)1D(xπm), x ∈ R
n
∗ , and applying the transform-

ation theorem (see Proposition A.3.1), we get

I3(θ) = i

〈
θ,

n∑

m=1

∆t(m)

∫

DC

xπm1D(xπm)X (dx)

〉

+
n∑

m=1

∆t(m)

∫

Rn
∗

(ei〈θ,x〉 − 1− i〈θ,x〉1D(x)) (X ◦ π−1
m )(dx)
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= i〈c,θ〉+

∫

Rn
∗

(ei〈θ,x〉 − 1− i〈θ,x〉1D(x)) (t ⋄ X )(dx),

where the last line is obtained by recalling the definitions in (1.2.2) and (1.2.3).

Finally, substituting these expressions for I1(θ), I2(θ) and I3(θ) into (1.2.10) proves

(1.2.7).

Note that t ⋄ΨX is in the form of (1.1.2) with characteristic triplet (t ⋄ µ+ c,

t ⋄ Σ, t ⋄ X ) in light of Lemma 1.2.1. Therefore, X(t) is infinitely divisible by

Proposition 1.1.4.

By Proposition 1.2.2, for d ∈ [0,∞)n and X ∼ Ln(µ,Σ,X ), X(d) is infinitely

divisible, so it is associated with the Lévy process Y ∼ Ln(d ⋄ µ+ c,d ⋄ Σ,d ⋄ X )

satisfying Y(t)
D
= X(td) for all t ≥ 0.

Example 1.2.3. Let B ∼ BMn(µ,Σ) and t ∈ [0,∞)n. Then

B(t) ∼ N(t ⋄ µ, t ⋄ Σ). (1.2.11)

This is an infinitely divisible random vector with characteristic exponent

t ⋄ΨB(θ) = i〈t ⋄ µ,θ〉 −
1

2
‖θ‖2t⋄Σ, θ ∈ R

n,

so the associated Lévy process is B(t) ∼ BMn(t ⋄ µ, t ⋄ Σ).

1.3 Nonclosure of Strong Subordination

This section studies strong subordination. We recall sufficient conditions for this

operation to produce a Lévy process, and then we find conditions for when it does

not. Due to the latter result, we say that strong subordination is not closed.

Definition 1.3.1. Let X = (X1, . . . , Xn) ∼ Ln(µ,Σ,X ) be a Lévy process and

T = (T1, . . . , Tn) ∼ Sn(d, T ) be a subordinator independent of X. The process X◦T

is the strong subordination of X and T if

(X ◦T)(t) := (X1(T1(t)), . . . , Xn(Tn(t))), t ≥ 0.

If T has indistinguishable components, then X ◦T is the univariate subordination

of X and T. If X has independent components, then X ◦ T is the multivariate

subordination of X and T.
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In the literature, the term “subordination” is often used instead of “strong subor-

dination”. We use the latter to distinguish this traditional notion of subordination

from weak subordination, which is introduced in Chapter 2.

There are two special cases where strong subordination is known to produce a

Lévy process. Recall that e := (1, . . . , 1) ∈ R
n.

Proposition 1.3.2. Let X ∼ Ln(µ,Σ,X ) and T ∼ Sn(d, T ) be independent. If

(i) T has indistinguishable components with T = Re, R ∼ S1(d,R), or

(ii) X has independent components,

then Y
D
= X ◦T is a Lévy process.

Under (i), Y ∼ Ln(m,Θ,Y), where

m = dµ+

∫

(0,∞)

E[X(r)1D(X(r))]R(dr),

Θ = dΣ,

Y(dx) = dX (dx) +

∫

(0,∞)

P(X(r) ∈ dx)R(dr).

Under (ii), Y ∼ Ln(m,Θ,Y), where

m = d ⋄ µ+

∫

[0,∞)n∗

E[X(t)1D(X(t))] T (dt),

Θ = d ⋄ Σ,

Y(dx) = d ⋄ X (dx) +

∫

[0,∞)n∗

P(X(t) ∈ dx)T (dt). (1.3.1)

Proof. See Theorem 30.1 in [Sat99] and Theorem 3.3 in [BNPS01].

The measure
∫
[0,∞)n∗

P(X(t) ∈ dx)T (dt) is defined by A 7→
∫
[0,∞)n∗

P(X(t) ∈

A) T (dt) for all Borel sets A ⊆ R
n
∗ .

Next, we review one of the most important applications of strong subordination,

the variance-gamma process.

Definition 1.3.3. Let b > 0, µ ∈ R
n and Σ ∈ R

n×n be a covariance matrix.

An n-dimensional Lévy process V ∼ V Gn(b,µ,Σ) is a variance-gamma process if

V
D
= B ◦ (Ge), where B ∼ BMn(µ,Σ) and G ∼ ΓS(b) are independent.

The existence of a Lévy process satisfying this definition is ensured by Propos-

ition 1.3.2. Now we outline some alternative characterisations of a V G process in
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terms of its characteristic triplet and characteristic exponent, and give a formula for

its Lévy density. Let

Kρ(r) := rρKρ(r), ρ ≥ 0, r > 0, (1.3.2)

where Kρ is a modified Bessel function of the second kind (see Section A.1). Recall

that 〈x,y〉Σ := xΣy′ for x,y ∈ R
n and Σ ∈ R

n×n. Recall that dx is the Lebesgue

measure on R
n
∗ .

Proposition 1.3.4. Let b > 0, µ ∈ R
n and Σ ∈ R

n×n be a covariance matrix. The

following are equivalent:

(i) V ∼ V Gn(b,µ,Σ);

(ii) V ∼ FV n(0,Vb,µ,Σ) with Lévy measure

Vb,µ,Σ(dx) =

∫

(0,∞)

P(B(g) ∈ dx)be−bg dg

g
, (1.3.3)

where B ∼ BMn(µ,Σ);

(iii) V is an n-dimensional Lévy process with characteristic exponent

ΨV(θ) = −b ln

(
1−

i〈µ,θ〉

b
+

‖θ‖2Σ
2b

)
, θ ∈ R

n. (1.3.4)

If (i)–(iii) are satisfied and Σ is invertible, then Vb,µ,Σ is absolutely continuous with

respect to dx, having Lévy density

dVb,µ,Σ

dx
(x) =

2b exp(〈µ,x〉Σ−1)

(2π)n/2‖x‖nΣ−1 |Σ|1/2
Kn/2((2b+ ‖µ‖2Σ−1)1/2‖x‖Σ−1), x ∈ R

n
∗ . (1.3.5)

Proof. For (i) ⇔ (ii), see Theorem 30.1 and Equation (30.8) in [Sat99]. For (i) ⇔

(iii), see Equation (2.9) in [BKMS17]. For Lévy density, see Equation (2.11) in

[BKMS17].

The following example shows that the result of strong subordination can fail to

be a Lévy process.

Example 1.3.5. If B is a standard Brownian motion and I is the identity function,

then (I, 2I) is a subordinator and (B,B) is a Lévy process, but Y := (B,B) ◦ (I, 2I)

is not a Lévy process. For instance, Y does not have independent increments since

Cov(Y2(1)− Y2(0), Y1(2)− Y1(1)) = 1 6= 0. While Y is a Gaussian process, it is not

a Brownian motion.
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We now derive necessary conditions for strong subordination to produce a Lévy

process. Proposition 1.3.6 below says that under the usual assumptions of strong

subordination listed in Definition 1.3.1, in addition to any of the assumptions (i)–(iii)

being satisfied, in situations outside of the sufficient conditions of Proposition 1.3.2,

specifically, when T and X are n-dimensional with n ≥ 2, T has nonzero components

that are not indistinguishable and all pairs of components of X are dependent, then

X ◦T cannot be a Lévy process. In this sense, strong subordination is not closed.

Note that the assumptions (i)–(iii) cover a wide range of cases and Example 1.3.5

satisfies all of them.

Proposition 1.3.6. Suppose n ≥ 2. Let T and X be n-dimensional Lévy processes,

where T and X are independent, T is a subordinator and all pairs of components of

X are dependent. Assume that all components of T are nonzero. If X ◦T is a Lévy

process, then T has indistinguishable components provided that one of the following

holds:

(i) X
D
= −X is symmetric;

(ii) T is deterministic;

(iii) T admits a finite first moment, X admits a finite second moment and all pairs

of components of X are correlated.

Proof. Let T = (T1, . . . , Tn) and X = (X1, . . . , Xn). For each hypothesis in this

proposition, the corresponding hypothesis obtained by replacing T andX with (Tk, Tl)

and (Xk, Xl), respectively, for any 1 ≤ k 6= l ≤ n, also holds. If the corresponding

hypotheses for (Tk, Tl) and (Xk, Xl) imply that Tk = Tl are indistinguishable for

1 ≤ k 6= l ≤ n, then T has indistinguishable components. Hence, we can assume

without loss of generality that n = 2.

Let the bivariate subordinator T = (T1, T2) and the bivariate Lévy process

X = (X1, X2) be independent. Let θ = (θ1, θ2) ∈ R
2, r ≥ 0, 0 ≤ s ≤ t. Let

Ψ̂X(θ) := ΨX(θ)−ΨX1(θ1)−ΨX2(θ2), (1.3.6)

A(s, t) := (T1(s) ∧ T2(t))− (T1(s) ∧ T2(s)),

Z(s, t,θ) := T1(s)ΨX1(θ1) + (T2(t)− T2(s))ΨX2(θ2).

Using (1.2.6), we have

(r, t, s) ⋄ΨX1,X2,X2(θ,−θ2)

= 1{r<s}(r, t, s)(rΨX1(θ1) + (t− s)ΨX2(θ2))
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+ 1{s≤r≤t}(r, t, s)(sΨX1(θ1) + (r − s)ΨX(θ) + (t− r)ΨX2(θ2))

+ 1{r>t}(r, t, s)(sΨX1(θ1) + (t− s)ΨX(θ) + (r − t)ΨX1(θ1))

= rΨX1(θ1) + (t− s)ΨX2(θ2) + (r ∧ t− r ∧ s)Ψ̂X(θ),

and thus, by conditioning on T and using Proposition 1.2.2, we have

Φ(X1◦T1(s),X2◦T2(t)−X2◦T2(s))(θ) = E[exp((T1(s), T2(t), T2(s)) ⋄ΨX1,X2,X2(θ,−θ2))]

= E[exp(Z(s, t,θ) + Ψ̂X(θ)A(s, t))].

On the other hand, by noting that X1 ◦ T1(s) and X2 ◦ T2(t) − X2 ◦ T2(s) are

independent as X ◦T is assumed to be a Lévy process, and then conditioning on T,

the LHS above can also be written as

E[E[eiθ1X1◦T1(s)|T1(s)]E[e
iθ2(X2◦T2(t)−X2◦T2(s))|T2(s), T2(t)]]

= E[exp(T1(s)ΨX1(θ1)) exp((T2(t)− T2(s))ΨX2(θ2))]

= E[exp(Z(s, t,θ))].

The second line is obtained using the stationary increment property of X2. To

summarise,

E[exp(Z(s, t,θ))] = E[exp(Z(s, t,θ) + Ψ̂X(θ)A(s, t))], (1.3.7)

for all θ ∈ R
2, r ≥ 0, 0 ≤ s ≤ t.

(i). Assume X
D
= −X. Since X1 and X2 are dependent, there exists θ ∈ R

2

such that Ψ̂X(θ) 6= 0. By symmetry, ΨX(θ), Ψ̂X(θ),ΨXk
(θk) ∈ R, k = 1, 2. Let

t > 0, u > 1. In (1.3.7), we have Z(t, ut,θ) ∈ R, forcing A(t, ut) = 0 a.s., which we

consider in the three cases, T1(t) < T2(t), T2(t) ≤ T1(t) ≤ T2(ut), T1(t) > T2(ut).

As T2 cannot degenerate to a zero process, we must have T2(t) < T2(ut) for some

u > 1, and when A(t, ut) = 0, the case T1(t) > T2(ut) cannot occur. This happens

with probability one because u 7→ A(t, ut) degenerates to a zero process. Thus, by

considering the two remaining cases, we must have T1(t) ≤ T2(t) a.s. Reversing the

role of T1 and T2 completes the proof of Part (i).

(ii). Since X1 and X2 are dependent, there exists θ ∈ R
2 such that Ψ̂X(θ) 6= 0. If

T is deterministic with drift (d1, d2), then (1.3.7) implies Ψ̂X(θ)A(t, (1 + ε)t) ∈ 2πiZ

for all t, ε > 0, which we consider in the three cases, d1 < d2, d2 ≤ d1 ≤ d2(1 + ε),

d1 > d2(1 + ε). As T2 cannot degenerate to a zero process, it is not possible that

Ψ̂X(θ)d2tε ∈ 2πiZ for all t, ε > 0, so the case d1 > d2(1 + ε) cannot occur. Thus, by

considering the two remaining cases, we must have d1 ≤ d2. Reversing the role of T1
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and T2 completes the proof of Part (ii).

(iii). Let t > 0, u > 1. Suppose there exists a sequence θm → 0 as m→ ∞ such

that Ψ̂X(θm) 6= 0, ℜΨ̂X(θm) ≤ 0 and ℜΨXk
(θk) ≤ 0 for all k = 1, 2, m ∈ N. Since

| exp(Z(t, ut,θm))| ≤ 1 and |1− ez| ≤ |z| for ℜz ≤ 0 from Lemma A.3.4, we have

∣∣∣∣∣exp(Z(t, ut,θm))
1− exp(Ψ̂X(θm)A(t, ut))

Ψ̂X(θm)

∣∣∣∣∣ ≤ A(t, ut).

Since T(1) admits a finite first moment, so does A(t, ut). Thus, the dominated

convergence theorem is applicable, giving

lim
m→∞

E

[
exp(Z(t, ut,θm))

1− exp(Ψ̂X(θm)A(t, ut))

Ψ̂X(θm)

]
= E[A(t, ut)].

The LHS is 0 by (1.3.7), so E[A(t, ut)] = 0. Thus, noting that A(t, ut) ≥ 0 a.s. gives

A(t, ut) = 0 a.s.

By assumption, X(1) has a finite second moment. So using a Taylor series

expansion, we have ℜΨ̂X(θ) = −ρθ1θ2 + o(‖θ‖2) and ℜΨXk
(θk) = −σ2

kθ
2
k/2 + o(θ2k),

k = 1, 2, as θ → 0, where ρ := Cov(X1(1), X2(1)) 6= 0 and σ2
k := Var(Xk(1)) 6= 0

by the assumption that X1 and X2 are correlated. Thus, it is always possible to

construct a sequence θm → 0 satisfying the requirements in the previous paragraph.

To summarise, we have A(t, ut) = 0 a.s. for all t > 0, u > 1. Then the proof is

completed as in Part (i).

Remark 1.3.7. Let B be standard Brownian motion and I be the identity function.

Then (B,B) ◦ (I, 0) is a Lévy process. This demonstrates the necessity of assuming

that all components of the subordinator are nonzero in Proposition 1.3.6.

Remark 1.3.8. Let B, B∗ be independent standard Brownian motions and I be

the identity function. Note that (B,B,B∗) has dependent components and (I, I, 2I)

does not have indistinguishable components, but (B,B,B∗) ◦ (I, I, 2I) is a Lévy

process. Thus, the assumption that all pairs of components of X are dependent in

Proposition 1.3.6 cannot be replaced with the assumption that X has dependent

components. However, the assumption can be weakened to having sufficiently many

pairs (Xk, Xl) of dependent components of X such that Tk = Tl for all these pairs

implies that T has indistinguishable components.



Chapter 2

Weak Subordination

The strong subordination of X and T produces a Lévy process X ◦T when the sub-

ordinate X has independent components or the subordinator T has indistinguishable

components. This chapter introduces the weak subordination of X and T, which

extends this notion in a way that always produces a Lévy process X⊙T and matches

strong subordination in law in the previous cases. For increased generality, we work

with the joint process (T,X⊙T).

In Section 2.1, we outline a heuristic construction of weak subordination using

marked Poisson point processes. In Section 2.2, a rigorous proof of the existence of

the Lévy process X⊙T is given. In Section 2.3, we develop some useful properties

of weak subordination, including its characteristics and its consistency with strong

subordination, among others. The chapter ends with a discussion of the case where

the subordinator has monotonic components. Here, the weakly subordinated process

has the property that its distribution matches that of the corresponding strongly

subordinated process at all time points. We show that this property does not hold

in general, and in some cases no Lévy process has this property.

2.1 Construction

We give a brief, heuristic construction of the weak subordination of X ∼ Ln(µ,Σ,X )

and T ∼ Sn(d, T ) based on the idea of assigning the law of X(t) to the weakly

subordinated process conditional on the subordinator taking the value T(t) = t at

time t ≥ 0. Denote the weakly subordinated process by X⊙T. Recall that the jump

process ∆X is defined by ∆X(t) := X(t)−X(t−), t > 0, where X(t−) := lims↑t X(s).

It is always possible to write T = Id+S, where Id is a deterministic subordinator

and S ∼ Sn(0, T ) is a pure-jump subordinator.

Suppose S ≡ 0 and T = Id. A Lévy process Y that has the same distribution as

23
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X(t), when T(t) = t, satisfies Y(t)
D
= X(td) for all t ≥ 0. For this to hold, we must

have Y ∼ Ln(d ⋄µ+ c,d ⋄Σ,d ⋄ X ) due to Proposition 1.2.2. We take X⊙T
D
= Y,

which determines the law of the weakly subordinated Lévy process in the case of

deterministic subordinators.

Now suppose d = 0 and T = S. Let Z = (S,Y) be a 2n-dimensional Lévy

process on [0,∞)n×R
n. Under strong subordination, the jumps of Y are determined

pathwisely by

∆Y(t) = X(T(t))−X(T(t−)), t > 0,

and may not produce a Lévy process. Informally, under weak subordination, we

equate the law of the LHS and RHS, conditional on ∆T(t) = t, so that the jumps of

Y have conditional law

P(∆Y(t) ∈ dx |∆T(t) = t) = P(X(t) ∈ dx), t > 0.

Formally, it will be shown that this turns out to mean that Y has Lévy measure

Y(dx) =

∫

[0,∞)n∗

P(X(t) ∈ dx)T (dt),

where T is the Lévy measure of T (see Proposition 2.3.4). This is a property that

strong subordination also satisfies as seen in (1.3.1).

Now we describe the construction of a Lévy process having this property. The

jumps of the subordinator (t,∆T(t))t>0,∆T(t) 6=0 forms a Poisson point process on

[0,∞)× [0,∞)n∗ with intensity measure dt⊗ T . Now the jumps of the joint process

(t,∆Z(t))t>0,∆Z(t) 6=0 can be formed as the marked Poisson point process with marks on

R
n having law P(X(∆T(t)) ∈ dx) when t > 0 and ∆T(t) 6= 0 that are conditionally

independent given the jumps of the subordinator (t,∆T(t))t>0,∆T(t) 6=0. In this

situation, the marked Poisson point process (t,∆Z(t))t>0,∆Z(t) 6=0 can be associated

to a pure-jump Lévy process Z taking values on [0,∞)n × R
n through its Lévy-Itô

decomposition, which sums up those jumps for t > 0, possibly with a compensation

term. We take (T,X⊙T)
D
= Z, in particular X⊙T

D
= Y, which determines the law

of the weakly subordinated Lévy process in the case of pure-jump subordinators.

For a general subordinator T = Id+S, we take the law of the weakly subordinated

process to be the convolution of the laws of the weakly subordinated process for

the deterministic subordinator Id and the pure-jump subordinator S as determined

above. This is a property also enjoyed by univariate and multivariate subordination

(see Proposition 4.3 in [BKMS17]).
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In general, it is not possible to simply define weak subordination as the Lévy

process Y satisfying Y(t)
D
= X ◦T(t) for all t ≥ 0 as we will see in Example 2.3.28

and Proposition 2.3.29.

2.2 Existence

The discussion in Section 2.1 motivates the definition for weak subordination in terms

of a characteristic triplet. The proof of Theorem 2.2.4 (ii) and Remark 2.2.5 below

will show that this definition is consistent with the construction outlined above.

Let Z = (Z1,Z2) ∼ L2n(m,Σ,Z) be a Lévy process on R
2n for some m ∈ R

2n,

covariance matrix Σ ∈ R
2n×2n and Lévy measure Z on R

2n
∗ . The projected n-

dimensional processes Z1 and Z2 are Lévy processes. Our notation extends from R
n

to R
2n in the usual way. In particular, ‖ · ‖ and D may denote the Euclidean norm

and the Euclidean unit ball in R
n or R2n, respectively.

Definition 2.2.1. Let X ∼ Ln(µ,Σ,X ) and T ∼ Sn(d, T ). A process

Z
D
= (T,X⊙T)

is the weak subordination of X and T if Z = (Z1,Z2) ∼ L2n(m,Θ,Z) is a Lévy

process with characteristic triplet determined by

m = (m1,m2), (2.2.1)

m1 = d+

∫

[0,∞)n∗

tP((t,X(t)) ∈ D) T (dt), (2.2.2)

m2 = c(d,X ) + d ⋄ µ+

∫

[0,∞)n∗

E[X(t)1D(t,X(t))] T (dt), (2.2.3)

Θ =

(
0 0

0 d ⋄ Σ

)
, (2.2.4)

Z(dt, dx) = (δ0 ⊗ (d ⋄ X ))(dt, dx) + 1[0,∞)n∗×Rn(t,x)P(X(t) ∈ dx)T (dt). (2.2.5)

The processX is the subordinate. If Z1 = T are indistinguishable and Z
D
= (T,X⊙T),

then Z is the semi-strong subordination of X and T.

It will be shown in Theorem 2.2.4 that there exists a Lévy process Z determined

by the characteristics in (2.2.1)–(2.2.5). Before we can prove this, Lemma 2.2.2 below

collects some inequalities analogous to Lemma 30.3 in [Sat99], but adapted to deal

with the multivariate time parameter. These inequalities will be used in a similar
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way as in Theorem 3.3 of [BNPS01], to show that (m,Θ,Z) is a valid characteristic

triplet that specifies a Lévy process.

Lemma 2.2.2. If X ∼ Ln(µ,Σ,X ) and θ ∈ R
n, then there exist finite constants

C1 = C1(θ,X), C2 = C2(X) and C3 = C3(X) such that, for all t ∈ [0,∞)n,

|ΦX(t)(θ)− 1| ≤ C1(1 ∧ ‖t‖), (2.2.6)

E[1 ∧ ‖X(t)‖2] ≤ C2(1 ∧ ‖t‖), (2.2.7)

E[1 ∧ ‖X(t)‖] ≤ C
1/2
2 (1 ∧ ‖t‖1/2), (2.2.8)

‖E[X(t)1D(X(t))]‖ ≤ C3(1 ∧ ‖t‖). (2.2.9)

Proof. Let t = (t1, . . . , tn) ∈ [0,∞)n and θ = (θ1, . . . , θn) ∈ R
n.

Proof of (2.2.6). Introduce the Lévy measure N :=
∑

〈(1),...,(n)〉

∑n
k=1 X{(k),...,(n)}

with the outer summation taken over all permutations 〈(1), . . . , (n)〉.

Let z := t⋄ΨX(θ) in (1.2.7). Note that t⋄Σ is a covariance matrix by Lemma 1.2.1,

so that ‖θ‖2t⋄Σ ≥ 0. Now since

ℜ(t ⋄Ψ(θ)) = −
1

2
‖θ‖2t⋄Σ −

∫

Rn
∗

(1− cos〈θ,x〉) (t ⋄ X )(dx) ≤ 0,

Lemma A.3.4 can be applied, giving |ez − 1| ≤ |z|. Further, we have |ℜ(t ⋄Ψ(θ))| ≤

C11‖t‖, where

C11 :=
1

2

n∑

k=1

n∑

l=1

|θkθlΣkl|+

∫

Rn
∗

|1− cos〈θ,x〉|N (dx).

Recalling (1.2.4), we have |ℑ(t ⋄Ψ(θ))| ≤ C12‖t‖, where

C12 := n(‖µ‖+ n1/2X (DC))‖θ‖+

∫

Rn
∗

|〈θ,x〉1D(x)− sin〈θ,x〉|N (dx).

Since N is a Lévy measure, the integrand in the Lévy-Khintchine formula (1.1.2)

with X replaced by N , is integrable, which implies that its real and imaginary

part are also integrable, so the integrals in C11 and C12 are finite (see Remark 8.4

in [Sat99]). Recalling that X (DC) is also finite by (1.1.3), C11 and C12 are finite

constants. Choosing C13 := (C2
11 +C

2
12)

1/2 shows that |ΦX(t)(θ)− 1| ≤ C13‖t‖. Since

characteristic functions are bounded, we also have |ΦX(t)(θ)− 1| ≤ 2. Thus, (2.2.6)

holds with C1 := C13 + 2.

Proof of (2.2.7). Define the Lévy measures Yt and Zt as the restriction of t⋄X to

D
C and D, respectively, that is Yt(A) := (t⋄X )(A∩D

C) and Zt(A) := (t⋄X )(A∩D)
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for Borel sets A ⊆ R
n
∗ . Recalling c = (c1, . . . , cn) = c(t,X ), let Y(t) ∼ Ln(0, 0,Yt)

and Z(t) = (Z
(t)
1 , . . . , Z

(t)
n ) ∼ Ln(t ⋄ µ+ c, t ⋄ Σ,Zt). By Proposition 1.2.2, we may

decompose X(t)
D
= Y(t)(1)+Z(t)(1) into a sum of independent n-dimensional random

vectors.

Note that Y(t) is a compound Poisson process with jumps in norm larger than 1,

and it is determined by a rate parameter λ and a jump size distribution P satisfying

Yt = λP , which implies λ = (t ⋄ X )(DC). Therefore,

P(Y(t)(1) = 0) ≥ P{Y(t) has no jumps in the time interval [0, 1]} = e−λ.

Since (t ⋄ X )(DC) ≤ N (DC)‖t‖ and 1− e−x ≤ x, x ∈ R, we have

P(Y(t)(1) 6= 0) ≤ 1− eλ ≤ N (DC)‖t‖. (2.2.10)

On the other hand, Z(t) has jumps bounded in norm by 1. In particular, Z(t)(1)

has finite moments of all order (see Corollary 25.8 in [Sat99]). By Proposition 1.1.9,

we have

E[Z
(t)
k (1)] = µktk + ck, Var(Z

(t)
k (1)) = Σkktk +

∫

D∗

x2k (t ⋄ X )(dx), 1 ≤ k ≤ n,

Using (x+ y)2 ≤ 2(x2 + y2), x, y ∈ R, and then (1.2.4), we have

n∑

k=1

(E[Z
(t)
k (1)])2 ≤ C21‖t‖

2,
n∑

k=1

Var(Z
(t)
k (1)) ≤ C22‖t‖,

where

C21 := 2‖µ‖2 + 2nX (DC)2, C22 := trace(Σ) +

∫

D∗

‖x‖2 N (dx),

are finite constants, the latter due to N being a Lévy measure.

Combining these last two inequalities and letting C23 := C21 + C22 yields

E[‖Z(t)(1)‖2] ≤ C23(‖t‖+ ‖t‖2). (2.2.11)

Using (2.2.10) and (2.2.11) and letting C24 := N (DC) + C23, we obtain

E[1 ∧ ‖X(t)‖2] ≤ E[(1 ∧ ‖X(t)‖2)1Rn
∗
(Y(t)(1))] + E[(1 ∧ ‖Z(t)(1)‖2)1{0}(Y

(t)(1))]

≤ P(Y(t)(1) 6= 0) + E[‖Z(t)(1)‖2]

≤ C24(‖t‖+ ‖t‖2).
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Since E[1 ∧ ‖X(t)‖2] ≤ 1 and 1 ∧ (x + x2) ≤ 2(1 ∧ x), x ≥ 0, (2.2.7) follows with

C2 := 2(C24 + 1).

Proof of (2.2.8). By the Cauchy-Schwarz inequality, E[1 ∧ ‖X(t)‖] ≤ (E[1 ∧

‖X(t)‖2])1/2. Then applying (2.2.7) yields (2.2.8).

Proof of (2.2.9). Set D∞ := {x ∈ R
n : ‖x‖∞ ≤ 1}. If g(x) := eix − 1, x ∈ R, we

have

‖E[X(t)1D∞(X(t))]‖∞ = max
1≤k≤n

|E[−iXk(tk)1D∞(X(t))]|

≤ max
1≤k≤n

|E[g(Xk(tk))1DC
∞
(X(t))]|+ max

1≤k≤n
|E[(g(Xk(tk))− iXk(tk))1D∞(X(t))]|

+ max
1≤k≤n

|E[g(Xk(tk))]|.

Now we bound each of the three terms. By noting that |g(x)| ≤ 2, x ∈ R, and

1DC
∞
≤ 1 ∧ ‖ · ‖2, we get

|E[g(Xk(tk))1DC
∞
(X(t))]| ≤ 2E[1 ∧ ‖X(t)‖2], 1 ≤ k ≤ n,

and then (2.2.7) can be applied. Next, by noting that |g(x)− ix|2 ≤ x2/2, 0 ≤ x ≤ 1

(see Equation (8.9) in [Sat99]), we get

|E[(g(Xk(tk))− iXk(tk))1D∞(X(t))]| ≤ E[1 ∧X2
k(tk)] ≤ E[1 ∧ ‖X(t)‖2], 1 ≤ k ≤ n,

and then (2.2.7) can be applied. Lastly, we have |E[g(Xk(tk))]| = |ΦX(t)(ek)− 1|, 1 ≤

k ≤ n, and then (2.2.6) can be applied with θ ∈ {e1, . . . , en}. Combining the above

yields

‖E[X(t)1D∞(X(t))]‖∞ ≤ C31(1 ∧ ‖t‖) (2.2.12)

for some finite constant C31.

By using (1.2.5), we get

‖E[X(t)1D∞\D(X(t))]‖ ≤ n1/2
E[‖X(t)‖∞1D∞\D(X(t))] ≤ n1/2

E[1DC (X(t))].

Then noting that 1DC ≤ 1 ∧ ‖ · ‖2 and using (2.2.7), we have

‖E[X(t)1D∞\D(X(t))]‖ ≤ n1/2C2(1 ∧ ‖t‖). (2.2.13)

Finally, by the Euclidean triangle inequality,
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‖E[X(t)1D(X(t))]‖ ≤ n1/2‖E[X(t)1D∞(X(t))]‖∞ + ‖E[X(t)1D∞\D(X(t))]‖,

so combining (2.2.12) and (2.2.13) yields (2.2.9) with the finite constant C3 :=

n1/2(C31 + C2). This completes the proof of the lemma.

Lemma 2.2.3. Let X ∼ Ln(µ,Σ,X ) and T ∼ Sn(d, T ). Then

Z0(dt, dx) := 1[0,∞)n∗×Rn(t,x)P(X(t) ∈ dx)T (dt) (2.2.14)

defines a measure on [0,∞)n × R
n with

∫

([0,∞)n×Rn)∗

1 ∧ ‖(t,x)‖2 Z0(dt, dx) =

∫

[0,∞)n∗

E[1 ∧ ‖(t,X(t))‖2] T (dt). (2.2.15)

Proof. Let θ ∈ R
n. From Proposition 1.2.2, the function t 7→ (t⋄ΨX)(θ) is continuous

with domain [0,∞)n, so for all sequences tm → t as m → ∞ with tm, t ∈ [0,∞)n,

m ∈ N, we have ΦX(tm)(θ) → ΦX(t)(θ) as m→ ∞. By the Lévy continuity theorem,

X(tm)
D
→ X(t) as m→ ∞.

Let C be the family of closed sets on R
n. For all A ∈ C, by the portmanteau

lemma (see Lemma 2.2 in [vdV98]), lim supm→∞ P(X(tm) ∈ A) ≤ P(X(t) ∈ A),

which implies that t 7→ P(X(t) ∈ A) is an upper semi-continuous function for all

t ∈ [0,∞)n, and hence Borel measurable. In addition, σ(C), the σ-field generated by

C, is the family of Borel sets on R
n, and C is closed under intersections. Under these

conditions, Lemma 1.37 in [Kal97] implies that P(X(t) ∈ dx) is a Markov kernel

from [0,∞)n to R
n, and it is also σ-finite (see page 40 in [Çın11]).

We can now apply Chapter I, Theorem 6.11 in [Çın11] to conclude that Z0(dt, dx)

defines a measure on [0,∞)n × R
n satisfying the Fubini-type formula

∫

([0,∞)n×Rn)∗

1 ∧ ‖(t,x)‖2 Z0(dt, dx) =

∫

[0,∞)n∗

∫

Rn

1 ∧ ‖(t,x)‖2 P(X(t) ∈ dx)T (dt),

and then (2.2.15) follows.

The next theorem shows the existence of weak subordination. The main difficulty

is to show that Z is a Lévy measure. In addition, semi-strong subordination is then

always possible on an augmented probability space, and it relies on marking the

Poisson point process associated to the jumps of T.

Theorem 2.2.4. Let X ∼ Ln(µ,Σ,X ) and T ∼ Sn(d, T ).

(i) There exists a Lévy process Z = (Z1,Z2) ∼ L2n(m,Θ,Z) with (m,Θ,Z) as

specified in (2.2.1)–(2.2.5).
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(ii) On an augmentation of the probability space on which T is defined, there

exists an n-dimensional Lévy process Z2 such that (T,Z2) is the semi-strong

subordination of X and T.

Proof. (i). Since d ⋄ Σ is a covariance matrix by Lemma 1.2.1, so is Θ. Next, we

show that Z is a Lévy measure. For t ∈ [0,∞)n, by noting ‖(t, t)‖2 = 2‖t‖2 and

1 ∧ ‖(t, t)‖ ≤ 21/2(1 ∧ ‖t‖), and applying (2.2.7) to the 2n-dimensional Lévy process

(Ie,X) with C2 := C2((Ie,X)), we get

E[1 ∧ ‖(Ie,X)(t, t)‖2] ≤ C2 (1 ∧ ‖(t, t)‖) ≤ 21/2C2 (1 ∧ ‖t‖).

As (1.1.4) holds for T , the RHS is T -integrable. Hence, Z0 defined in (2.2.14) is a

Lévy measure by Lemma 2.2.3 as (2.2.15) is finite.

Let Z1 := δ0 ⊗ (d ⋄ X ). Since d ⋄ X is a Lévy measure by Lemma 1.2.1, it is

σ-finite. Now Fubini’s theorem can be applied to Z1 giving

∫

([0,∞)n×Rn)∗

1 ∧ ‖(t,x)‖2 Z1(dt, dx) =

∫

Rn
∗

1 ∧ ‖x‖2 (d ⋄ X )(dx),

which is finite by Lemma 1.2.1. Thus, Z = Z0 + Z1 is a Lévy measure.

Note that

‖t‖P((t,X(t)) ∈ D) ≤ ‖t‖1D(t), t ∈ [0,∞)n.

Since the RHS is T -integrable by (1.1.4), m1 is finite. Note that

‖E[X(t)1D(t,X(t))]‖ ≤ ‖E[(t,X(t))1D(t,X(t))]‖, t ∈ [0,∞)n.

Then using (2.2.9) applied to the process (Ie,X), followed by (1.1.4), we obtain the

finiteness of the integral in (2.2.3), while the other terms are finite by Lemma 1.2.1.

Thus, m2 is finite. So we have proved that (m,Θ,Z) is a valid characteristic triplet

for a 2n-dimensional Lévy process.

(ii). On a suitable augmentation of (Ω,F ,P) on which T is defined, we find

W ∼ L2n(m,Θ, δ0 ⊗ (d ⋄ X )) and a set ξ = {ξ(t, t) : (t, t) ∈ [0,∞) × [0,∞)n∗} of

independent random vectors satisfying ξ(t, t)
D
= X(t) for (t, t) ∈ [0,∞) × [0,∞)n∗ ,

such that T, W, ξ are independent.

The law of the jumps of T are determined by a Poisson random measure on

[0,∞)× [0,∞)n∗ with intensity measure dt⊗T (see Chapter I, Theorem 1 in [Ber96]).

The set {ξ(t,∆T(t)) : t > 0, ∆T(t) 6= 0} is countable, and the random vectors

ξ(t,∆T(t)) are conditionally independent given (t,∆T(t)) = (t, t) with distribution
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determined by the Markov kernel (t, t, A) 7→ P(X(t) ∈ A) for (t, t) ∈ [0,∞)× [0,∞)n∗

and Borel sets A ⊆ R
n. Thus, applying the marking theorem in Section 5.2 of [Kin93],

we have that

Z0 :=
∑

t>0

δ(t,∆T(t),ξ(t,∆T(t)))

is a Poisson random measure on [0,∞)× [0,∞)n∗ × R
n with intensity measure

P(X(t) ∈ dx)⊗ (dt⊗ T (dt)) = dt⊗Z0

by Fubini’s theorem.

Given the Poisson random measure Z0, a Lévy process Z0 ∼ L2n(0,0,Z0) with

jump measure Z0 can be constructed through its sample paths using the Lévy-

Itô decomposition (see Chapter VII, Theorem 1.29 in [Çın11]). Using the Lévy-

Khintchine formula (1.1.2), we see that Z = (Z1,Z2) := Z0 +W
D
= (T,X⊙T).

Using the Lévy-Itô decomposition gives

Z1(t) =
∑

s∈(0,t]

∆T(s)− t

∫

Rn
∗

tP((t,X(t)) ∈ D) T (dt) + tm1 = T(t), t ≥ 0,

where Z0 contributes the first and second terms of the middle expression, and W

contributes the third term. Thus, Z is the semi-strong subordination of X and T.

Remark 2.2.5. The proof of Theorem 2.2.4 (ii) can also be reframed in terms

of marked Poisson point processes. The process (t,∆T(t))t>0,∆T(t) 6=0 is a Poisson

point process on [0,∞)× [0,∞)n∗ with intensity measure dt⊗ T , {ξ(t,∆T(t)) : t >

0, ∆T(t) 6= 0} is a set of marks on the mark space Rn, and we constructed the Lévy

process Z0, which gives the jumps of the weakly subordinated process Z resulting

from the jumps of T, using the Poisson random measure Z0 that determines the law

of the marked Poisson point process (t,∆Z(t))t>0,∆Z(t) 6=0 on [0,∞)× [0,∞)n∗ × R
n.

Example 2.2.6. Recalling Example 1.3.5, (I, 2I) is a subordinator and (B,B) is a

Lévy process, but (B,B) ◦ (I, 2I) is not. Let B∗ be a standard Brownian motion

independent of B. From (2.2.1)–(2.2.5), the semi-strong subordination of (B,B) and

(I, 2I) is

Z ∼ L4

(
(1, 2, 0, 0),

(
0 0

0 d ⋄ Σ

)
, 0

)
, d ⋄ Σ =

(
1 1

1 2

)
.

Using Proposition 1.1.8 or the Lévy-Khintchine formula (1.1.2), we see that (I, 2I, B,
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B +B∗) is a Lévy process with the same characteristic triplet. Thus,

Z
D
= ((I, 2I), (B,B)⊙ (I, 2I))

D
= (I, 2I, B,B +B∗).

2.3 Properties of Weak Subordination

Now we prove a variety of useful properties of weak subordination.

Throughout this section, unless otherwise stated, we let X = (X1, . . . , Xn) ∼

Ln(µ,Σ,X ) be a subordinate and T = (T1, . . . , Tn) ∼ Sn(d, T ) be a subordinator.

2.3.1 Characteristics

The next proposition gives a formula for the characteristic exponent of weakly

subordinated processes, which can serve as an alternative definition. Recall that

d ⋄ΨX is defined in (1.2.7).

Proposition 2.3.1. A process Z
D
= (T,X⊙T) is the weak subordination of X and

T if and only if Z has characteristic exponent

ΨZ(θ) = i〈d,θ1〉+ (d ⋄ΨX)(θ2) +

∫

[0,∞)n∗

(Φ(t,X(t))(θ)− 1) T (dt) (2.3.1)

for all θ = (θ1,θ2), θ1,θ2 ∈ R
n.

Proof. Let θ = (θ1,θ2), θ1,θ2 ∈ R
n. Clearly, Z

D
= (T,X ⊙ T) if and only if

Z ∼ L2n(m,Θ,Z) has characteristic triplet as specified in (2.2.1)–(2.2.5). Using

the Lévy-Khintchine formula (1.1.2), this occurs if and only if Z has characteristic

exponent

ΨZ(θ) = i〈m,θ〉 −
1

2
‖θ‖2Θ +

∫

Rn
∗

(ei〈θ2,x〉 − 1− i〈θ2,x〉1D(x)) (d ⋄ X )(dx)

+ I(θ),

(2.3.2)

where

I(θ) :=

∫

[0,∞)n∗×Rn

(ei〈θ,(t,x)〉 − 1− i〈θ, (t,x)〉1D(t,x))P(X(t) ∈ dx)T (dt)

= − i

∫

[0,∞)n∗

(〈θ1, t〉P((t,X(t)) ∈ D) + E[〈θ2,X(t)〉1D(t,X(t))]) T (dt)

+

∫

[0,∞)n∗

(Φ(t,X(t))(θ)− 1) T (dt).

(2.3.3)
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Using (2.2.6) and then (1.1.4) yields the T -integrability of t 7→ Φ(t,X(t))(θ) − 1

so that all the terms above are finite. Combining (2.3.2)–(2.3.3) and the identity

‖θ‖2Θ = ‖θ2‖
2
d⋄Σ yields (2.3.1).

Corollary 2.3.2. Let α ∈ [0,∞)n be a deterministic vector and R ∼ S1(d,R) be

a univariate subordinator. If T = Rα, then Z
D
= (T,X ⊙ T) has characteristic

exponent

ΨZ(θ) = id〈α,θ1〉+ d(α ⋄ΨX)(θ2) +

∫

(0,∞)

(Φ(rα,X(rα))(θ)− 1)R(dr) (2.3.4)

for all θ = (θ1,θ2), θ1,θ2 ∈ R
n.

Proof. By Proposition 1.1.8, T ∼ Sn(dα,R◦ (Iα)−1). Then, the result follows from

Proposition 2.3.1 and the transformation theorem (see Proposition A.3.1).

Now we determine the law of the projected process Z2
D
= X⊙T.

Remark 2.3.3. Note that m2 in (2.3.5) below is different from m2 in (2.2.3).

Proposition 2.3.4. If Z = (Z1,Z2)
D
= (T,X⊙T) is the weak subordination of X

and T, then Z1
D
= T and Z2 ∼ Ln(m2,Θ2,Z2) with

m2 = c(d,X ) + d ⋄ µ+

∫

[0,∞)n∗

E[X(t)1D(X(t))] T (dt), (2.3.5)

Θ2 = d ⋄ Σ, (2.3.6)

Z2(dx) = d ⋄ X (dx) +

∫

[0,∞)n∗

P(X(t) ∈ dx)T (dt). (2.3.7)

Proof. Let θ1,θ2 ∈ R
n. Recall that Z ∼ L2n(m,Θ,Z) with (m,Θ,Z) as specified

in (2.2.1)–(2.2.5), and note Remark 2.3.3. We have ΨZ(θ1,0) = ΨT(θ1), where

the LHS is computed using (2.3.1) and the RHS is given by (1.1.6), implying

Z1
D
= T. Likewise, Z2 ∼ Ln(m2,Θ2,Z2) with (m2,Θ2,Z2) as specified in (2.3.5)–

(2.3.7) because ΨZ(0,θ2) = ΨZ2(θ2), where the LHS is computed using (2.3.1) and

the RHS is computed using the Lévy-Khintchine formula (1.1.2).

2.3.2 Consistency with Strong Subordination

Based on Proposition 1.3.2, strong subordination is known to produce a Lévy process

when T has indistinguishable components orX has independent components. We now

show that under these assumptions, their law coincides with that of weak and semi-

strong subordination. Otherwise, based on Proposition 1.3.6, strong subordination
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may not always produce a Lévy process, while weak and semi-strong subordination

always does by definition. In this sense, weak subordination is an extension of strong

subordination.

Theorem 2.3.5. Let X and T be independent. If T has indistinguishable components

or X has independent components, then (T,X ◦T) is the semi-strong subordination

of X and T, that is (T,X ◦T)
D
= (T,X⊙T).

Proof. Let θ = (θ1,θ2), θ1,θ2 ∈ R
n. Since T and X are independent processes,

using Proposition 1.2.2 and conditioning on T, we get

Φ(T,X◦T)(θ) = E[exp(i〈θ1,T(1)〉+ (T(1) ⋄ΨX)(θ2))]. (2.3.8)

The 2n-dimensional Lévy process (Ie,X) has independent components by assumption.

By Proposition 1.1.8, (T,T) is a 2n-dimensional Lévy process, in particular, a subor-

dinator. Thus, (Ie,X) ◦ (T,T) = (T,X ◦T) is a Lévy process by Proposition 1.3.2

(ii), so it suffices to show that Ψ(T,X◦T) = Ψ(T,X⊙T).

Univariate subordination. In this case, T = Re, where R ∼ S1(d,R) and

e = (1, . . . , 1) ∈ R
n. Let z := −i〈θ1, e〉 − (e ⋄ΨX)(θ2), which implies

−zr = i〈θ1, re〉+ ((re) ⋄ΨX)(θ2) (2.3.9)

for r ≥ 0. Thus, (2.3.8) becomes Φ(T,X◦T)(θ) = E[exp(−zR(1))]. By noting that

ℜz ≥ 0 and applying Proposition 1.1.14, we have Ψ(T,X◦T)(θ) = −ΛR(z), where

ΛR(z) = dz +

∫

(0,∞)

(1− e−zr)R(dr).

Now using (2.3.9) and the fact that e−zr = Φ(re,X(r))(θ) for r > 0, which is implied by

(2.3.8), we have that Ψ(T,X◦T)(θ) matches the RHS of (2.3.4) with α = e. Therefore,

by Corollary 2.3.2, (T,X ◦T)
D
= (T,X⊙T) is the semi-strong subordination of X

and T.

Multivariate subordination. In this case, X1, . . . , Xn are independent. Recall

that for ∅ 6= J ⊆ {1, . . . , n}, xπJ :=
∑

j∈J xjej, x ∈ R
n, and XJ := X ◦ π−1

J . In

particular, Σ is a diagonal matrix and X =
∑n

k=1 X{k} (see Exercise 12.10 in [Sat99]).

Let

z :=
1

2
θ2(θ2 ⋄ Σ)− i(θ1 + θ2 ⋄ µ)−

n∑

k=1

∫

Rn
∗

(ei〈θ2,x〉 − 1− i〈θ2,x〉1D(x))X{k}(dx)ek.

For ∅ 6= J ⊆ {1, . . . , n}, 1 ≤ k ≤ n, note that c = 0 in (1.2.3) because
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∫

DC

xπJ1D(xπJ)X{k}(dx) = 1J(k)

∫

Rn
∗

1DC (xπ{k})xπ{k}1D(xπ{k})X (dx) = 0.

Let t = (t1, . . . , tn) ∈ [0,∞)n. Recalling that Σ is diagonal, 〈θ2(θ2 ⋄Σ), t〉 = ‖θ2‖
2
t⋄Σ.

If J(m) := {(m), . . . , (n)}, 1 ≤ m ≤ n, then (1.2.2) becomes

t ⋄ X =
n∑

m=1

∆t(m)

(
n∑

k=1

X{k}

)

J(m)

=
n∑

m=1

∆t(m)

(
n∑

k=1

1J(m)
(k)X{k}

)

=
n∑

k=1

(
n∑

m=1

∆t(m)1J(m)
(k)

)
X{k}

=
n∑

k=1

tkX{k}.

Combining the results of the three previous sentences yields

−〈z, t〉 = i〈θ1, t〉+ (t ⋄ΨX)(θ2) (2.3.10)

for t ∈ [0,∞)n. Thus, (2.3.8) becomes Φ(T,X◦T)(θ) = E[exp(−〈z,T(1)〉)]. By noting

that ℜz ∈ [0,∞)n and applying Proposition 1.1.14, we have Ψ(T,X◦T)(θ) = −ΛT(z),

where

ΛT(z) = 〈d, z〉+

∫

[0,∞)n∗

(1− e−〈z,t〉) T (dt).

Now using (2.3.10) and the fact that e−〈z,t〉 = Φ(t,X(t))(θ) for t ∈ [0,∞)n∗ , which is

implied by (2.3.8), we have that Ψ(T,X◦T)(θ) matches the RHS of (2.3.1). Therefore,

by Proposition 2.3.1, (T,X ◦T)
D
= (T,X⊙T) is the semi-strong subordination of X

and T.

2.3.3 Linear Transformations

In this subsection, we discuss how linear transformations affect weakly subordin-

ated processes. In particular, we show that weak subordination, like traditional

subordination, is consistent with projections and permutations.

Proposition 2.3.6. Let A ∈ R
n×n be such that TA is a subordinator. If X(t)A

D
=

(XA)(tA) for all t ∈ [0,∞)n in the support of T , then (TA, (X ⊙ T)A)
D
= (TA,

(XA)⊙ (TA)). If T = Id for some d ∈ [0,∞)n, then the converse also holds.



2.3 Properties of Weak Subordination 36

Proof. Let θ = (θ1,θ2), θ1,θ2 ∈ R
n. We make repeated use of the fact that

〈xA,y〉 = 〈x,yA′〉, x,y ∈ R
n. We have

Ψ(TA,(X⊙T)A)(θ) = Ψ(T,X⊙T)(θ1A
′,θ2A

′)

= i〈d,θ1A
′〉+ (d ⋄ΨX)(θ2A

′)

+

∫

[0,∞)n∗

(Φ(t,X(t))(θ1A
′,θ2A

′)− 1) T (dt),
(2.3.11)

where the first equality follows from (1.1.1) and the second equality is due to (2.3.1).

Sufficiency. The first term of (2.3.11) satisfies i〈d,θ1A
′〉 = i〈dA,θ1〉. The second

term satisfies d ⋄ΨX(θ2A
′) = (dA) ⋄ΨXA(θ2) as a result of Proposition 1.2.2 and

the assumption implying 〈θ2A
′,X(d)〉 = 〈θ2, (XA)(dA)〉. The third term satisfies

∫

[0,∞)n∗

(Φ(t,X(t))(θ1A
′,θ2A

′)− 1) T (dt) =

∫

[0,∞)n∗

(Φ(t,(XA)(t))(θ)− 1) (T ◦ A−1)(dt),

as a result of the transformation theorem (see Proposition A.3.1) and the assumption

implying

〈(θ1A
′,θ2A

′), (t,X(t))〉 = 〈(θ1,θ2), (tA, (XA)(tA))〉

for all t ∈ [0,∞)n in the support of T . Thus, by noting that TA ∼ Sn(dA, T ◦A−1)

as a result of Proposition 1.1.8, (2.3.11) equals Ψ(TA,(XA)⊙(TA))(θ) as determined by

(2.3.1).

Necessity. By assumption, we can equate (2.3.11) with Ψ(TA,(XA)⊙(TA))(θ) to

obtain

i〈d,θ1A
′〉+ (d ⋄ΨX)(θ2A

′) = i〈dA,θ1〉+ (dA) ⋄ΨXA(θ2),

which implies

E[exp(i〈θ2,X(td)A〉)] = E[exp(i〈θ2, (XA)(tdA)〉)], t ≥ 0.

Thus, X(t)A
D
= (XA)(tA) for all t ∈ {td : t ≥ 0} as required.

An immediate corollary is that weak subordination is consistent with projections

and permutations, and satisfies a marginal component consistency property. Let

X⊙T = ((X⊙T)1, . . . , (X⊙T)n), and recall that xπJ :=
∑

j∈J xjej for ∅ 6= J ⊆

{1, . . . , n} with π∅ ≡ 0.
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Corollary 2.3.7. If J ⊆ {1, . . . , n}, then (TπJ , (X ⊙ T)πJ)
D
= (TπJ , (XπJ) ⊙

(TπJ)). In particular, (Tk, (X⊙T)k)
D
= (Tk, Xk ⊙ Tk) for 1 ≤ k ≤ n.

If, in addition, T and X are independent, then (Tk, (X ⊙ T)k)
D
= (Tk, Xk ◦ Tk)

for 1 ≤ k ≤ n.

Proof. The first statement immediately follows from Proposition 2.3.6 with A = πJ

since X(t)πJ
D
= (XπJ)(tπJ) for all t ∈ [0,∞)n. The second statement is the special

case of J = {k}. The last statement follows from Theorem 2.3.5.

Corollary 2.3.8. Let P ∈ R
n×n be a permutation matrix, then (TP, (X⊙T)P )

D
=

(TP, (XP )⊙ (TP )).

Proof. This immediately follows from Proposition 2.3.6 with A = P since X(t)P
D
=

(XP )(tP ) for all t ∈ [0,∞)n.

For A ∈ R
n×n, X ∼ Ln(µ,Σ,X ) and T ∼ Sn(d, T ), it may also be natural to ask

whether the law of (X⊙T)A, is equal to the law of X∗⊙T∗, (XA)⊙T∗ or X∗⊙(TA)

for some subordinate X∗ ∼ Ln(µ∗,Σ∗,X ∗) and subordinator T∗ ∼ Sn(d∗, T ∗). We

address these questions in Remarks 2.3.9–2.3.11, respectively.

Remark 2.3.9. Let A ∈ R
n×n, then (X ⊙ T)A

D
= X∗ ⊙ T∗ holds trivially for the

subordinate X∗ D
= (X ⊙ T)A and the subordinator T∗ = Ie. So every linearly

transformed strongly subordinated process with the subordinate having independent

components, or in fact any Lévy process, is a weakly subordinated process. This

property does not hold in general for strong subordination.

Remark 2.3.10. If A ∈ R
n×n is a projection or permutation matrix, then by

Proposition 2.3.6, (X⊙T)A
D
= (XA)⊙T∗ holds for T∗ D

= TA.

However, there are cases where this fails. Suppose that X ∼ BM2(0,Σ) and

T = Id, where

A = Σ =

(
2 1

1 1

)
, d = (1, 2). (2.3.12)

Since (X⊙T)A has continuous sample paths a.s., in order for (X⊙T)A
D
= (XA)⊙T∗

to hold, we must have T∗ ∼ S2(d∗, 0) for some d∗ = (d∗1, d
∗
2) ∈ [0,∞)2. By equating

the matrix component of the characteristic triplet of (X ⊙ T)A and (XA) ⊙ T∗,

calculated using Propositions 1.1.8 and 2.3.4, we require A′(d ⋄ Σ)A = d∗ ⋄ (A′ΣA).

For the choices in (2.3.12), this implies

d∗1 =
14

13
, d∗2 =

6

5
, d∗1 ∧ d

∗
2 =

9

8
,



2.3 Properties of Weak Subordination 38

which is impossible to satisfy for any d∗ ∈ [0,∞)2. In summary, there does not always

exist X∗ ∼ Ln(µ∗,Σ∗,X ∗) and T∗ ∼ Sn(d∗, T ∗) such that (X⊙T)A
D
= (XA)⊙T∗.

Remark 2.3.11. If A ∈ R
n×n is a projection or permutation matrix, then by

Proposition 2.3.6, (X⊙T)A
D
= X∗ ⊙ (TA) holds for X∗ D

= XA.

However, there are again cases where this fails. Let X ∼ BM2(0,Σ), T ∼

S2(0, δd) with A, Σ, d defined in (2.3.12). For θ ∈ R
n, using (2.3.11), we have

Ψ(X⊙T)A(θ) = ΦX(d)A(θ) − 1. Note that TA ∼ S2(0, δdA), so ΨX∗⊙(TA)(θ) =

ΦX∗(dA)(θ) − 1 using (2.3.1). Now in order for (X ⊙ T)A
D
= X∗ ⊙ (TA) to hold,

we must have ΦX(d)A(θ) = ΦX∗(dA)(θ). In particular, the matrix component of the

characteristic triplet of X(d)A and X∗(dA) must be equal, giving A′(d ⋄ Σ)A =

(dA) ⋄ Σ∗. These values of A, Σ and d imply that

Σ∗ =

(
7/2 3

3 2

)
,

which is not a covariance matrix. In summary, there does not always exist X∗ ∼

Ln(µ∗,Σ∗,X ∗) and T∗ ∼ Sn(d∗, T ∗) such that (X⊙T)A
D
= X∗ ⊙ (TA).

Remark 2.3.12. The converse in Proposition 2.3.6 may fail without the assumption

that T = Id as the counterexample in Remark 2.3.11 demonstrates.

2.3.4 Ray Subordination and Superposition of Subordinat-

ors

If α ∈ [0,∞)n is a deterministic vector and R is a univariate subordinator, then

T = Rα defines an n-dimensional ray subordinator travelling along the deterministic

ray {rα : r ≥ 0}. We refer to subordination with T as ray subordination. A special

case is univariate subordination where the corresponding ray is {re : r ≥ 0} with

e = (1, . . . , 1) ∈ R
n.

Proposition 2.3.13 shows that weak subordination with a ray subordinator can

be viewed as univariate subordination of an augmented process. Proposition 2.3.15

shows that weak subordination with a superposition of independent subordinators

has law coinciding with that of a superposition of independent weakly subordinated

processes.

Proposition 2.3.13. Let α ∈ [0,∞)n be a deterministic vector, R be a univariate

subordinator and Y be a Lévy process with characteristic exponent ΨY = α ⋄ ΨX.

Then (Rα,X⊙ (Rα))
D
= (Iα,Y)⊙ (R(e, e)).

If, in addition, R and Y are independent, then (Rα,X⊙(Rα))
D
= (Rα,Y◦(Re)).
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Proof. Let θ = (θ1,θ2), θ1,θ2 ∈ R
n. Suppose R ∼ S1(d,R) and α = (α1, . . . , αn) ∈

[0,∞)n. Denote the augmented process by W := (Iα,Y). Proposition 1.2.2 implies

that

W(r) = (rα,Y(r))
D
= (rα,X(rα)), r ≥ 0. (2.3.13)

which gives I1(θ) = I2(θ), where

I1(θ) :=

∫

(0,∞)

(Φ(rα,X(rα))(θ)− 1)R(dr),

I2(θ) :=

∫

(0,∞)

(ΦW(r(e,e))(θ)− 1)R(dr).

Using Corollary 2.3.2 and recalling α ⋄ΨX(θ2) = ΨY(θ2), we get

Ψ(Rα,X⊙(Rα))(θ) = id〈α,θ1〉+ dΨY(θ2) + I1(θ).

Next, observe that ΨW⊙(R(e,e))(θ) = Ψ(R(e,e),W⊙(R(e,e)))(0,θ). By Corollary 2.3.2 and

then (2.3.13), the RHS evaluates to

d(e, e) ⋄ΨW(θ) + I2(θ) = id〈α,θ1〉+ dΨY(θ2) + I2(θ).

Thus, Ψ(Rα,X⊙(Rα))(θ) = ΨW⊙(R(e,e))(θ).

If R and Y are independent, then (Rα,X ⊙ (Rα))
D
= (Iα,Y) ◦ (R(e, e)) by

Theorem 2.3.5, from which the last statement follows.

Example 2.3.14. Let B,B∗, N be independent processes, where B,B∗ are standard

Brownian motions and N is a Poisson process with unit rate. From Example 1.2.3,

the Lévy process with characteristic exponent (1, 2) ⋄Ψ(B,B) is (B,B + B∗). Thus,

by Proposition 2.3.13,

((I, 2I), (B,B)⊙ (I, 2I))
D
= (I, 2I, B,B +B∗) ◦ (I, I, I, I),

((N, 2N), (B,B)⊙ (N, 2N))
D
= (I, 2I, B,B +B∗) ◦ (N,N,N,N).

So we can represent these weakly subordinated processes using univariate subordina-

tion.

Proposition 2.3.15. Let d ∈ [0,∞)n and T(1), . . . ,T(m) be independent n-dimensio-

nal driftless subordinators with T
D
= Id+

∑m
k=1 T

(k). Then (T,X⊙T)
D
=
∑m

k=0 A
(k),

where A(0),A(1), . . . ,A(m) are independent Lévy processes with A(0) D
= (Id,X⊙ Id)

and A(k) D
= (T(k),X⊙T(k)), 1 ≤ k ≤ m.
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Proof. Assume that T(1), . . . ,T(m),A(0), . . . ,A(m) are independent processes, where

T(k) ∼ Sn(0, Tk), 1 ≤ k ≤ m, so that T ∼ Sn(d,
∑m

k=1 Tk). By (2.3.1) and the

independence of A(0), . . . ,A(m), we have

Ψ(T,X⊙T)(θ) = i〈d,θ1〉+ (d ⋄ΨX)(θ2) +

∫

[0,∞)n∗

(Φ(t,X(t))(θ)− 1)

(
m∑

k=1

Tk

)
(dt)

=
m∑

k=0

ΨA(k)(θ)

= Ψ∑
m

k=0 A
(k)(θ)

for θ = (θ1,θ2), θ1,θ2 ∈ R
n, as required.

In the context of strong subordination, Proposition 2.3.15 holds without assuming

the subordinators T(1), . . . ,T(m) are driftless (see Proposition 4.3 in [BKMS17]).

However, this does not extend in general to weak subordination as the next example

shows.

Example 2.3.16. Let B,B∗,W,W ∗ be independent standard Brownian motions.

Example 2.2.6 states that (B,B) ⊙ (I, 2I)
D
= (B,B + B∗) and (B,B) ⊙ (2I, I)

D
=

(W + W ∗,W ). Theorem 2.3.5 implies that (B,B) ⊙ (3I, 3I)
D
= (B,B) ◦ (3I, 3I).

However,

(B,B +B∗) + (W +W ∗,W ) ∼ BM2

(
0,

(
3 2

2 3

))
,

(B,B) ◦ (3I, 3I) ∼ BM2

(
0,

(
3 3

3 3

))
.

So the conclusion of Proposition 2.3.15 cannot hold for the subordinate (B,B) and

the subordinators (I, 2I) and (2I, I).

Remark 2.3.17. Subordinators are often formed by a superposition of independent

ray subordinators. Some examples can be found in Section 2.5 of [BKMS17], Section 3

of [LS10] and Section 4.4 here. In these situations, Propositions 2.3.13 and 2.3.15,

can be used to determine the law of weakly subordinated processes.

2.3.5 Subordinators with Independent Components

The next proposition deals with the weak subordination of driftless subordinators

having independent components.
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Proposition 2.3.18. If T is a driftless subordinator with independent components,

then X⊙T also has independent components.

Proof. If T ∼ Sn(0, T ) has independent components T1 ∼ S1(0, T1), . . . , Tn ∼

S1(0, Tn), then

T =
n∑

k=1

δ
⊗(k−1)
0 ⊗ Tk ⊗ δ

⊗(n−k)
0 (2.3.14)

(see Exercise 12.10 in [Sat99]). By combining Corollary 2.3.7 and Proposition 1.3.2,

(X⊙T)k, 1 ≤ k ≤ n, has Lévy measure Yk(dx) =
∫
(0,∞)

P(Xk(t) ∈ dx) Tk(dt). Thus,

by substituting (2.3.14) into (2.3.7) we get,

Z2(dx) =
n∑

k=1

∫

(0,∞)

P(X(tπ{k}) ∈ dx) Tk(dtk) =

(
n∑

k=1

δ
⊗(k−1)
0 ⊗ Yk ⊗ δ

⊗(n−k)
0

)
(dx),

where t = (t1, . . . , tn) ∈ [0,∞)n∗ . Also, in (2.3.6), Θ2 = 0. Hence, X ⊙ T has

independent components.

Remark 2.3.19. In general, the assumption that T is driftless in Proposition 2.3.18

cannot be dropped as that could allow Θ2 = d ⋄ Σ in the proof to be nonzero when

T has nonzero drift d. Then X⊙T cannot have independent components.

Example 2.3.20. Let B,B∗, N,N∗ be independent processes, where B,B∗ are

standard Brownian motions and N,N∗ are Poisson processes with unit rate. While

the subordinate (B,B) has identical components, the weakly subordinated process

(B,B) ⊙ (N,N∗)
D
= (B ◦ N,B∗ ◦ N∗) has independent components by applying

Proposition 2.3.18 and then Theorem 2.3.5 on each component.

2.3.6 Sample Path Properties

The following proposition gives a criterion for a weakly subordinated process to

have finite variation in terms of a q-variation condition on its subordinator. The q-

variation of a Lévy process with Lévy measure X is related to the Blumenthal-Getoor

index infq≥0{
∫
D∗

‖x‖q X (dx) <∞} ∈ [0, 2], which measures the jump activity of the

process [ASJ12, BG61]. When this index is no more than 1, the Lévy process has

finite variation.

Recall D+
∗ := D ∩ [0,∞)n∗ .

Proposition 2.3.21. Let Z
D
= (T,X ⊙ T). If d = 0 and

∫
D
+
∗
‖t‖1/2 T (dt) < ∞,

then Z ∼ FV 2n and driftless.
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Proof. Assuming d = 0, we have Θ = 0, and also the Lévy measure of Z reduces

to Z0 as defined in (2.2.14), so we need to check that
∫
D∗

‖(t,x)‖Z0(dt, dx) < ∞.

This integral is

∫

[0,∞)n∗

∫

Rn

1 ∧ ‖(t,x)‖P(X(t) ∈ dx)T (dt) =

∫

[0,∞)n∗

E[1 ∧ ‖(t,X(t))‖] T (dt)

≤ C
1/2
2

∫

[0,∞)n∗

1 ∧ ‖(t, t)‖1/2 T (dt)

≤ 21/4C
1/2
2

∫

[0,∞)n∗

1 ∧ ‖t‖1/2 T (dt),

where we have used (2.2.8) for the process (Ie,X). The RHS is finite by the

assumption
∫
D
+
∗
‖t‖1/2 T (dt) <∞. Thus, Proposition 1.1.11 tells us that Z ∼ FV 2n.

Its drift is m−
∫
D∗
(t,x)Z0(dt, dx) = 0, where m is given in (2.2.1)–(2.2.3) and the

finiteness of the integral is ensured by Z ∼ FV 2n.

2.3.7 Moments

In this section, we give formulas for the expected values and covariances of weakly

subordinated processes.

Proposition 2.3.22. Let Z
D
= (T,X⊙T). For t > 0,

E[T(t)]

t
= d+

∫

[0,∞)n∗

t T (dt), (2.3.15)

Cov(T(t))

t
=

∫

[0,∞)n∗

t′t T (dt), (2.3.16)

E[X⊙T(t)]

t
= c(d,X ) + d ⋄ µ+

∫

DC

x (d ⋄ X )(dx)

+

∫

[0,∞)n∗

E[X(t)] T (dt),
(2.3.17)

Cov(X⊙T(t))

t
= d ⋄ Σ +

∫

Rn
∗

x′x (d ⋄ X )(dx)

+

∫

[0,∞)n∗

E[X′(t)X(t)] T (dt),

(2.3.18)

Cov(T(t),X⊙T(t))

t
=

∫

[0,∞)n∗

t′E[X(t)] T (dt) (2.3.19)

provided the participating integrals are finite.

Proof. Let t > 0. We apply Proposition 1.1.9 to the Lévy process (T,X ⊙ T) ∼

L2n(m,Θ,Z), where (m,Θ,Z) is defined in (2.2.1)–(2.2.5). The first n components
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of E[(T,X⊙T)(t))]/t give

E[T(t)]

t
= m1 +

∫

[0,∞)n∗

tP((t,X(t)) ∈ D
C) T (dt),

from which (2.3.15) follows, and the last n components give

E[X⊙T(t)]

t
= m2 +

∫

DC

x (d ⋄ X )(dx) +

∫

[0,∞)n∗

E[X(t)1DC (t,X(t))] T (dt),

from which (2.3.17) follows.

The covariance matrix of the 2n-dimensional random vector (T(t),X ⊙ T(t))

satisfies

Cov((T(t),X⊙T(t)))

t
= Θ+

∫

Rn
∗

(0,x)′(0,x) (d ⋄ X )(dx)

+

∫

[0,∞)n∗

E[(t,X(t))′(t,X(t))] T (dt).

Upon taking the top-left, bottom-right and top-right n× n submatrices, we obtain

(2.3.16), (2.3.18) and (2.3.19), respectively.

Remark 2.3.23. Note that (2.3.17) corrects the corresponding formula in Proposi-

tion 3.6 of [BLM17], where the term c(d,X ) is missing.

Example 2.3.24. Consider the case where the subordinate is Brownian motion

B ∼ BMn(µ,Σ) and the subordinator is T ∼ Sn(d, T ). By Proposition 2.3.22 and

noting that c = 0, for 1 ≤ k ≤ n, we have

E[(B⊙T)k(1)] = dkµk +

∫

[0,∞)n∗

µktk T (dt)

= µkE[Tk(1)], (2.3.20)

Var((B⊙T)k(1)) = dkΣkk +

∫

[0,∞)n∗

(tkΣkk + µ2
kt

2
k) T (dt)

= ΣkkE[Tk(1)] + µ2
k Var(Tk(1)). (2.3.21)

Assume 1 ≤ k 6= l ≤ n, u > 0, and let

τk,l(u) := T ({t = (t1, . . . , tn) ∈ [0,∞)n∗ : tk ∧ tl > u}).

By noting that

∫

[0,∞)n∗

tk ∧ tl T (dt) =

∫

[0,∞)n∗

∫

(0,∞)

1(u,∞)(tk)1(u,∞)(tl) duT (dt)
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=

∫

(0,∞)

τk,l(u) du, (2.3.22)

Proposition 2.3.22 implies

Cov((B⊙T)k(1), (B⊙T)l(1))

= (dk ∧ dl)Σkl +

∫

[0,∞)n∗

((tk ∧ tl)Σkl + µkµltktl) T (dt)

=

(
dk ∧ dl +

∫

(0,∞)

τk,l(u) du

)
Σkl + µkµl Cov(Tk(1), Tl(1)). (2.3.23)

2.3.8 Subordinators with Monotonic Components

Strong subordination may not create a Lévy process when the subordinate X

does not have independent components or when the subordinator T does not have

indistinguishable components, however, it may still be possible that the time marginal

distributions of the weakly subordinated process X ⊙ T(t) coincide with that of

the strongly subordinated process X ◦T(t) for all times t ≥ 0. In this section, it is

shown in Proposition 2.3.26 that this holds if T has monotonic components, and

in Proposition 2.3.29 that the assumption of monotonic components is necessary in

some cases.

A closely related question is whether there exists a Lévy process Y, not necessarily

a weakly subordinated process, with time marginal distributions Y(t) matching that

of the strongly subordinated process X ◦T(t) for all t ≥ 0. This is partly answered

in Proposition 2.3.29, where it is shown that in some cases, such a Lévy process Y

cannot exist.

Definition 2.3.25. An n-dimensional subordinator T = (T1, . . . , Tn) has monotonic

components if there exists a permutation 〈(1), . . . , (n)〉 such that T(1) ≤ · · · ≤ T(n).

Proposition 2.3.26. Let X and T be independent. If T has monotonic components,

then (T(t),X ◦T(t))
D
= (T(t),X⊙T(t)) for all t ≥ 0.

Proof. Assume T1 ≤ · · · ≤ Tn. For Σ = (Σij) ∈ R
n×n, let Σk = (Σk,ij) ∈ R

n×n be

defined by Σk,ij := Σij1{i∧j≥k}(i, j) for 1 ≤ k ≤ n, 1 ≤ i, j ≤ n. Let t = (t1, . . . , tn) ∈

[0,∞)n≤, where

[0,∞)n≤ := {t = (t1, . . . , tn) ∈ [0,∞)n : t1 ≤ · · · ≤ tn},

with ∆tk := tk − tk−1, t0 := 0 for 1 ≤ k ≤ n. Introduce the linear bijections

A,D : Rn → R
n, x = (x1, . . . , xn) ∈ R

n,
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xA := (x1, x1 + x2, x1 + x2 + x3, . . . , x1 + x2 + · · ·+ xn),

xD := (x1, x2 − x1, x3 − x2, . . . , xn − xn−1).

Let θ = (θ1,θ2), θ1,θ2 ∈ R
n. Let

z := − iθ1A
′ − i(θ2 ⋄ µ)A

′ + z1 − z2 − z3,

z1 :=
1

2

n∑

k=1

‖θ2‖
2
Σk
ek,

z2 :=
n∑

k=1

∫

Rn
∗

(ei〈θ2,x〉 − 1− i〈θ2,x〉1D(x))X{k,...,n}(dx)ek,

z3 := i
n∑

k=2

∫

DC

〈θ2,xπ{k,...,n}〉1D(xπ{k,...,n})X (dx)ek.

For each term in z, we now compute its Euclidean product with tD. Firstly, note

that A = D−1 implies 〈θ1A
′, tD〉 = 〈θ1, t〉 and 〈(θ2 ⋄ µ)A

′, tD〉 = 〈t ⋄ µ,θ2〉. The

quantities in (1.2.1)–(1.2.3) become

t ⋄ Σ =
n∑

k=1

∆tkΣk,

t ⋄ X =
n∑

k=1

∆tkX{k,...,n},

c =
n∑

k=2

∆tk

∫

DC

xπ{k,...,n}1D(xπ{k,...,n})X (dx),

which respectively imply

〈z1, tD〉 =
1

2
‖θ2‖

2
t⋄Σ,

〈z2, tD〉 =

∫

Rn
∗

(ei〈θ2,x〉 − 1− i〈θ2,x〉1D(x)) (t ⋄ X )(dx),

〈z3, tD〉 = i〈c,θ2〉.

Combining the above results yields

−〈z, tD〉 = i〈θ1, t〉+ (t ⋄ΨX)(θ2). (2.3.24)

Since T and X are independent and T is supported on [0,∞)n≤, (2.3.24) implies

Φ(T(t),X◦T(t))(θ) = E[exp(−〈z,TD(t)〉)]. Applying Theorem 24.11 in [Sat99], each

component of TD is a subordinator since its support is bounded below by 0 due to
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the assumption T1 ≤ . . . ≤ Tn. So by Proposition 1.1.8, TD ∼ Sn(dD, T ◦D−1). By

noting that ℜz ∈ [0,∞)n and applying Proposition 1.1.14, we have Φ(T(t),X◦T(t))(θ) =

exp(−tΛTD(z)), where

ΛTD(z) = 〈dD, z〉+

∫

[0,∞)n∗

(1− e−〈z,tD〉) T (dt)

due to the transformation theorem (see Proposition A.3.1) and T ([0,∞)n∗\[0,∞)n≤) =

0. By noting d ∈ [0,∞)n≤, (2.3.24) and e
−〈z,tD〉 = Φ(t,X(t))(θ) for t ∈ [0,∞)n≤, we have

that −ΛTD(z) matches the RHS of (2.3.1). Thus, Φ(T(t),X◦T(t))(θ) = Φ(T(t),X⊙T(t))(θ),

so (T(t),X ◦T(t))
D
= (T(t),X⊙T(t)) for all t ≥ 0.

Now assume, instead of T1 ≤ · · · ≤ Tn, that there exists a permutation matrix P ∈

R
n×n such that TP satisfies (TP )1 ≤ · · · ≤ (TP )n. Since TP is an n-dimensional

subordinator, we have proved (TP (t),XP ◦ TP (t))
D
= (TP (t),XP ⊙ TP (t)) for

t ≥ 0, which implies

(T(t),X ◦T(t)) = (T(t), (XP ◦TP )P−1(t))
D
= (T(t), (XP ⊙TP )P−1(t))

for t ≥ 0. Then applying Corollary 2.3.8 to the subordinator TP , the Lévy process

XP and the permutation matrix P−1 yields (T(t),X ◦T(t))
D
= (T(t),X⊙T(t)) for

t ≥ 0, which completes the .

Example 2.3.27. Recall Example 2.2.6. The deterministic subordinator (I, 2I)

satisfies I ≤ 2I. By Proposition 2.3.26, Z(t)
D
= (t, 2t, B(t), B(2t)) for all t ≥ 0.

Example 2.3.28. Let B,B∗, N be independent processes, where B,B∗ are standard

Brownian motions and N is a Poisson process with unit rate. The subordinator

(I,N) does not have monotonic components, and (B,B)◦(I,N) is not a Lévy process

because, by conditioning on N ,

E[B(t)B(N(t))] = E[t ∧N(t)] = t(1− e−t), 0 ≤ t ≤ 1,

is a nonlinear function in t, contradicting Proposition 1.1.9. So there can be no Lévy

process matching (B,B) ◦ (I,N) in law at all times t ≥ 0. In contrast,

((I,N), (B,B)⊙ (I,N))
D
= (I,N,B,B∗ ◦N)

using (2.2.1)–(2.2.5).

Let X and T be independent. Example 2.3.28 shows that without the assumption

of monotonic components in Proposition 2.3.26, it is possible that the conclusion
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X ◦ T(t)
D
= X ⊙ T(t) for all t ≥ 0 is violated, and there may be no Lévy process

whose time marginal distributions match that of X ◦ T(t) for all t ≥ 0. This is

developed further in the next proposition, showing the necessity of the monotonic

component assumption in some cases.

Proposition 2.3.29. Suppose n ≥ 2. Let T and X be n-dimensional Lévy processes,

where T and X are independent, T is a subordinator and X has dependent components.

Assume that all components of T are nonzero. If Y is an n-dimensional Lévy process,

then there exists t > 0 violating Y(t)
D
= X ◦T(t) provided that one of the following

holds:

(i) both T and X admit finite second moments, X has correlated components and

T has non-monotonic components;

(ii) Y
D
= X ⊙ T, X

D
= −X is symmetric and T is driftless with independent

components.

Proof. Let T = (T1, . . . , Tn), X = (X1, . . . , Xn) and Y = (Y1, . . . , Yn). For Part (i),

let 1 ≤ k 6= l ≤ n be the index of any two components of X that are correlated

and note that proving the proposition with T, X, Y replaced by (Tk, Tl), (Xk, Xl),

(Yk, Yl), respectively, is sufficient. This reasoning also holds for Part (ii) by letting

1 ≤ k 6= l ≤ n be the index of any two components of X that are dependent and

recalling Corollary 2.3.7. Thus, for the remainder of the proof, we assume without

loss of generality that n = 2.

Let the bivariate subordinator T = (T1, T2) and the bivariate Lévy process

X = (X1, X2) be independent. Let D := T2 − T1 ∼ FV 1(d,D). Let θ = (θ1, θ2) ∈ R
2

and r, s ≥ 0. Recall the notation x+ = x ∨ 0 and x− = −(x ∧ 0), x ∈ R. Using

(1.2.6), we have

(r, s) ⋄ΨX(θ) = (r ∧ s)ΨX(θ) + (s− r)+ΨX2(θ2) + (s− r)−ΨX1(θ1),

and thus, by conditioning on T and using Proposition 1.2.2, we have

ΦX◦T(t)(θ) = E[exp((T1(t) ∧ T2(t))ΨX(θ) +D+(t)ΨX2(θ2)

+D−(t)ΨX1(θ1))].
(2.3.25)

(i). By Definition 2.3.25, T has monotonic components if and only if D or −D

is a subordinator. As we assumed T to have non-monotonic and non-deterministic

components, one of the following exclusive cases holds (see Corollary 24.8 and

Theorem 24.10 in [Sat99]):



2.3 Properties of Weak Subordination 48

(a) D((−∞, 0)) > 0, D((0,∞)) = 0 and d > 0, so that the support of D(1) is

unbounded towards −∞ with d as its supremum;

(b) D((−∞, 0)) = 0, D((0,∞)) > 0 and d < 0, so that the support of D(1) is

unbounded towards ∞ with d as its infimum;

(c) D((−∞, 0)) > 0, D((0,∞)) > 0 and d ∈ R, so that the support of D(1) is

unbounded towards ∞ and −∞.

In all cases, we have P(D(1) > 0) > 0 and P(D(1) < 0) > 0, implying E[D+(1)] > 0

and E[D−(1)] > 0, respectively.

Assume for the purpose of contradiction that E[D+(t)] = tE[D+(1)] for all t ≥ 0

so that E[D+(1)] = E[(D(n)/n)+], n ∈ N. By assumption, T has a second moment,

so D does too, implying E[|D(1)|] = E[D+(1)] + E[D−(1)] <∞. So as n→ ∞,

En :=
D(n)

n
=

1

n

n∑

k=1

(D(k)−D(k − 1))
a.s.
−→ E[D(1)].

by the strong law of large numbers. Then by the dominated convergence theorem,

this also holds in mean, giving E[|En − a|] → 0 as n→ ∞, where a := E[D(1)]. Let

f(x) := x+, x ∈ R, then E[|f(En) − f(a)|] ≤ E[K|En − a|] → 0 as n → ∞, where

K = 1 is the Lipschitz constant of f . Consequently, we have

lim
n→∞

E

[(
D(n)

n

)+
]
= E[E[D(1)]+] = E[D(1)]+.

This leads to the contradiction

E[D+(1)] = E[D(1)]+ = (E[D+(1)]− E[D−(1)])+ < E[D+(1)].

To summarise, t 7→ E[D+(t)], t ≥ 0, cannot be a linear function.

On the RHS of (2.3.25), taking partial derivatives twice with respect to θ under

the expectation and applying dominated convergence when θ → 0, we get

Cov(X1 ◦ T1(t), X2 ◦ T2(t)) = E[X1(1)]E[X2(1)] Cov(T1(t), T2(t))

+ ρE[T1(t) ∧ T2(t)],
(2.3.26)

where ρ := Cov(X1(1), X2(1)). By our assumptions, T and X admit finite second

moments, so that both sides of (2.3.26) are finite.

For purpose of contradiction, assume that Y(t)
D
= X ◦T(t) for all t ≥ 0, where

Y is a bivariate Lévy process. Thus, T and Y are Lévy processes with finite second
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moments. In particular, t 7→ Cov(T1(t), T2(t)) and t 7→ Cov(Y1(t), Y2(t)) are linear

functions, and so is t 7→ E[T1(t) ∧ T2(t)] as we assume ρ 6= 0 in (2.3.26).

Also, t 7→ E[T2(t)] is linear, so noting that E[T1(t) ∧ T2(t)] = E[T2(t)]− E[D+(t)],

t ≥ 0, contradicts the non-linearity of t 7→ E[D+(t)], completing the proof of Part (i).

(ii). If T1, T2 are independent and driftless, the components of X ⊙ T are

independent by Proposition 2.3.18. Then using Theorem 2.3.5 on each component

yields X ⊙ T
D
= (X1 ◦ T1, X

∗
2 ◦ T2) for independent Lévy processes T1, T2, X1, X

∗
2 ,

where X∗
2

D
= X2.

Let θ ∈ R
2. By conditioning on T and noting that X1 ◦ T1 and X∗

2 ◦ T2 are

independent, we have

ΦX⊙T(t)(θ) = E[exp(T1(t)ΨX1(θ1) + T2(t)ΨX2(θ2))]. (2.3.27)

Next, recall the definition of Ψ̂X in (1.3.6). For r, s ≥ 0, z, z1, z2 ∈ C, ẑ := z−z1−z2,

note that

(r ∧ s)z + (s− r)+z2 + (s− r)−z1 = (r ∧ s)ẑ + rz1 + sz2,

so that (2.3.25) becomes

ΦX◦T(t)(θ) = E[exp((T1(t) ∧ T2(t))Ψ̂X(θ) + T1(t)ΨX1(θ1)

+ T2(t)ΨX2(θ2))].
(2.3.28)

Since X1 and X2 are dependent, there exists θ ∈ R
2 such that Ψ̂X(θ) 6= 0.

Further, the symmetry assumption X
D
= −X implies ΨXk

(θk), Ψ̂X(θ) ∈ R, k = 1, 2.

If (2.3.27) matches (2.3.28) for all t > 0, we have

E[exp(T1(t)ΨX1(θ1) + T2(t)ΨX2(θ2))(exp((T1(t) ∧ T2(t))Ψ̂X(θ))− 1)] = 0,

which implies T1(t) ∧ T2(t) = 0 a.s. for all t > 0. In particular, T1 ∧ T2 must be a

zero process, which contradicts T1, T2 being nonzero, completing the proof.

Remark 2.3.30. In Proposition 2.3.29, when assuming (i), the conclusion that there

is no Lévy process Y such that Y(t)
D
= X ◦T(t) for all t ≥ 0 is more general than

X⊙T(t)
D
= X ◦T(t) failing to hold for some time t > 0.

Under the assumptions in (ii), T = (T1, . . . , Tn) ∼ Sn(0, T ) has non-monotonic

components. Suppose the contrary for the purpose of contradiction, so there exists

a permutation matrix P ∈ R
n×n such that (TP )1 ≤ · · · ≤ (TP )n. Introduce

the linear transformation C : [0,∞)n → R
n−1, t = (t1, . . . , tn) ∈ [0,∞)n, tC :=
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(t2− t1, t3− t2, . . . , tn− tn−1). Then S := TPC ∼ Sn−1(0,S) must be a subordinator.

Its Lévy measure is S = T ◦ (PC)−1 due to Proposition 1.1.8. Let 〈(1), . . . (n)〉 be

the permutation associated with P and T(1) be the Lévy measure of T(1). We have

S((−∞, 0]n−1) = T ({t ∈ R
n : t(1) ≤ · · · ≤ t(n)}) ≥ T(1)((0,∞)) > 0,

where the first inequality follows from (2.3.14) by noting that T has independent

components, and the second inequality follows from T(1) being driftless and nonzero.

Therefore, the support of S extends outside of [0,∞)n−1
∗ so that, by Proposition 1.1.14,

S cannot be a subordinator, which is a contradiction.



Chapter 3

Weak Variance Generalised

Gamma Convolutions

Our first major application of weak subordination is to construct the multivariate

class of weak variance generalised gamma convolutions. These are processes formed

by weakly subordinating Brownian motions and Thorin subordinators and unifies

the processes in Grigelionis [Gri07b] and Buchmann et al. [BKMS17] formed by

univariate and multivariate subordination, respectively.

In Section 3.1, we recall definitions and properties of Thorin subordinators and

derive a representation for their Lévy measure. In Section 3.2, we introduce weak

variance generalised gamma convolutions and derive their characteristic triplet,

characteristic function and Lévy density. In Section 3.3, we provide a condition for

the q-variation of these processes to be finite in terms of that of their subordinator

or a moment condition on their Thorin measure, and we also discuss finite variation.

3.1 Thorin Subordinators

The generalised gamma convolution class on the cone [0,∞)n, denoted GGCn, is the

minimal class of random vectors of the formGα, whereG is a gamma random variable,

α ∈ [0,∞)n, while being closed under convolution and convergence in distribution

[PAS14]. Since GGCn distributions are infinitely divisible, their associated Lévy

processes exist and are known as Thorin subordinators. This is a rich class of

subordinators which we use to construct the weak variance generalised gamma

convolutions. Following the exposition in [BKMS17], this section provides a review

of Thorin subordinators. Recall that ln− x = (ln x)−, x > 0.

Definition 3.1.1. An n-dimensional nonnegative Borel measure U on [0,∞)n∗ satis-

fying

51
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∫

[0,∞)n∗

(1 + ln− ‖u‖) ∧ (‖u‖−1)U(du) <∞ (3.1.1)

is a Thorin measure.

Definition 3.1.2. Let d ∈ [0,∞)n and U be an n-dimensional Thorin measure.

An n-dimensional subordinator T ∼ GGCn
S(d,U) is a Thorin subordinator if it has

Laplace exponent

ΛT(λ) = 〈d,λ〉+

∫

[0,∞)n∗

ln

(
1 +

〈λ,u〉

‖u‖2

)
U(du), λ ∈ [0,∞)n. (3.1.2)

From this definition, it is clear that the law of a Thorin subordinator is charac-

terised by the parameters d and U .

Example 3.1.3. If G ∼ ΓS(a, b) is a gamma subordinator, then it is a Thorin

subordinator because G ∼ GGC1
S(0, aδb).

In the lemma below, we give the polar representation of a Thorin measure

and the corresponding Lévy measure. Recall that S := {s ∈ R
n : ‖s‖ = 1} and

S+ = S ∩ [0,∞)n.

Lemma 3.1.4. Let T ∼ GGCn
S(d,U) be a Thorin subordinator with Lévy measure

T . Let A ⊆ [0,∞)n∗ be a Borel set. There exists a finite Borel measure S on S+ and

a Borel transition kernel K from S+ to (0,∞) with

0 <

∫

(0,∞)

(1 + ln− r) ∧ r−1 K(s, dr) <∞

for all s ∈ S+ such that the Thorin measure satisfies

U(A) = (S ⊗ K) ◦ ((s, r) 7→ rs)−1(A) =

∫

S+

∫

(0,∞)

1A(rs)K(s, dr)S(ds). (3.1.3)

In addition, the Lévy measure satisfies

T (A) =

∫

S+

∫

(0,∞)

1A(rs)k(s, r)
dr

r
S(ds), (3.1.4)

k(s, r) :=

∫

(0,∞)

e−rv K(s, dv), r > 0, s ∈ S+. (3.1.5)

Proof. For (3.1.3), see Lemma 4.1 in [BKMS17]. For (3.1.4) and (3.1.5), see Equa-

tions (2.17) and (2.18) in [BKMS17].



3.2 Characteristics 53

Remark 3.1.5. Note that the measures dx, S, T , U are σ-finite, and the transition

kernel K is locally finite relative to (0,∞) (see Lemma 4.1 in [BKMS17]) so, in

particular, it is σ-finite. Therefore, we can freely interchange integrals involving

these measures using Fubini’s theorem.

The next lemma gives the characteristics of a Thorin subordinator, expressing its

Lévy measure in terms of Gb, the Lévy measure of a standard gamma subordinator

with shape parameter b, given in (1.1.8).

Lemma 3.1.6. If T ∼ GGCn
S(d,U), then T ∼ Sn(d, T ), where

T =

(
U(du)

‖u‖2
⊗ G‖u‖2(dg)

)
◦ ((u, g) 7→ gu)−1. (3.1.6)

Proof. Let A ⊆ [0,∞)n∗ be a Borel set. Evaluating the RHS of (3.1.6) at A gives

∫

[0,∞)n∗

∫

(0,∞)

1A(gu)e
−‖u‖2g dg

g
U(du) =

∫

[0,∞)n∗

∫

(0,∞)

1A

(
ru

‖u‖

)
e−‖u‖r dr

r
U(du)

=

∫

S+

∫

(0,∞)

(∫

(0,∞)

1A(rs)e
−rv dr

r

)
K(s, dr)S(ds)

= T (A),

where the first equality follows by making the substitution g = r/‖u‖, the second

equality follows from using the polar representation (3.1.3) to evaluate the integral

with respect to U , and the third equality follows from (3.1.4) and Remark 3.1.5. This

completes the proof.

3.2 Characteristics

Weak variance generalised gamma convolutions are constructed by taking the weak

subordination of a Brownian motion B and a Thorin subordinator T. In this section,

we derive its characteristics noting that we obtain simplifications due to the Lévy

measure of the Brownian motion being 0.

From now on, we take the weakly subordinated process to be of the form Y
D
=

B⊙T, unless otherwise stated.

Definition 3.2.1. Let d ∈ [0,∞)n, µ ∈ R
n, Σ ∈ R

n×n be a covariance matrix

and U be an n-dimensional Thorin measure. An n-dimensional Lévy process Y ∼

V GGn(d,µ,Σ,U) is a weak variance generalised gamma convolution if Y
D
= B⊙T,

where B ∼ BMn(µ,Σ) and T ∼ GGCn
S(d,U).



3.2 Characteristics 54

Theorem 2.2.4 ensures the existence of Y ∼ V GGn(d,µ,Σ,U).

Definition 3.2.2. Let d ≥ 0, µ ∈ R
n, Σ ∈ R

n×n be a covariance matrix and U be a

univariate Thorin measure. An n-dimensional Lévy process Y ∼ V GGn,1(d,µ,Σ,U)

is a variance univariate generalised gamma convolution if Y
D
= B ◦ (Te), where

B ∼ BMn(µ,Σ) and T ∼ GGC1
S(d,U) are independent.

Definition 3.2.3. Let d ∈ [0,∞)n, µ ∈ R
n, Σ ∈ R

n×n be a diagonal covariance

matrix and U be an n-dimensional Thorin measure. An n-dimensional Lévy process

Y ∼ V GGn,n(d,µ,Σ,U) is a variance multivariate generalised gamma convolution if

Y
D
= B ◦T, where B ∼ BMn(µ,Σ) and T ∼ GGCn

S(d,U) are independent.

The V GGn,1 class was introduced in [Gri07b], though the name came from

[BKMS17], and the V GGn,n class was introduced in [BKMS17]. As a result of

Theorem 2.3.5, we have V GGn ⊇ V GGn,1∪V GGn,n, and the next example explicitly

gives the parametrisation.

Example 3.2.4. We have Y ∼ V GGn,1(d,µ,Σ,U0) if and only if Y ∼ V GGn(de,µ,

Σ,U), where

U =

∫

(0,∞)

δue U0(du).

By Example 3.1.3, V ∼ V Gn(b,µ,Σ) if and only if V ∼ V GGn,1(0,µ,Σ, bδb). Also,

Y ∼ V GGn,n(d,µ,Σ,U) if and only if Y ∼ V GGn(d,µ,Σ,U) and Σ is diagonal.

Remark 3.2.5. In analogy to Theorem 2.5 in [BKMS17], for ∅ 6= J ⊆ {1, . . . , n},

we introduce

CJ := {u = (u1, . . . , un) ∈ [0,∞)n∗ : uj > 0 if j ∈ J , uj = 0 if j /∈ J},

VJ := {v = (v1, . . . , vn) ∈ R
n
∗ : xj 6= 0 if j ∈ J , xj = 0 if j /∈ J},

so that we can partition the spaces [0,∞)n∗ =
⋃

J CJ and R
n
∗ =

⋃
J VJ . Sums and

unions indexed by J are taken over ∅ 6= J ⊆ {1, . . . , n}.

Any Thorin subordinator T ∼ GGCn
S(d,U) can be written as a superposition

of dI and independent driftless Thorin subordinators TJ , ∅ 6= J ⊆ {1, . . . , n}, by

letting

T
D
= dI +

∑

J

TJ , TJ ∼ GGCn
S(0,UJ), UJ(du) := 1CJ

(u)U(du).

This follows from the Laplace exponent in (3.1.2). Note that by (3.1.6), TJ has

Lévy measure TJ(dt) := 1CJ
(t)T (dt), where T is the Lévy measure of T. So we
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obtain the interpretation TJ(t) =
∑

s∈(0,t] 1CJ
(∆T(s))∆T(s), t ≥ 0. Let B ∼

BMn(µ,Σ). Then by Proposition 2.3.15, Y ∼ V GGn(d,µ,Σ,U) can be written as

the superposition of independent V GGn processes YJ , J ⊆ {1, . . . , n}, with

Y
D
= Y∅ +

∑

J

YJ , Y∅
D
= B⊙ (dI), YJ

D
= B⊙TJ .

Here, YJ is supported on at most a #J-dimensional subspace of Rn and has Lévy

measure YJ .

Let u = (u1, . . . , un) ∈ (0,∞)n and recall the notation
∏

u :=
∏n

k=1 uk. Let Σ be

an invertible covariance matrix. Then u ⋄ Σ is a covariance matrix by Lemma 1.2.1,

and it is also invertible because

|u ⋄ Σ| ≥
(∏

u
)
|Σ| > 0 (3.2.1)

due to Lemma A.2.1. If u ∈ CJ and Σ is invertible, the restriction (u ⋄ Σ)J :

R
nπJ → R

nπJ , x 7→ x(u ⋄ Σ)J := x(u ⋄ Σ) is an invertible linear transformation by

a #J-dimensional application of the result in (3.2.1). Thus, (u ⋄ Σ)J has an inverse

denoted (u ⋄ Σ)−1
J and a determinant denoted |u ⋄ Σ|J > 0. In matrix notation,

(u ⋄ Σ)−1
J is the n× n matrix that is 0 everywhere, except the submatrix formed by

keeping only the rows and columns in the index set J is the inverse of the submatrix

of u ⋄ Σ formed by keeping only the rows and columns in the index set J .

We will see in the proof of Theorem 3.2.6 that the above decomposition is required

so that we can apply the V Gn Lévy density formula (1.3.5) for u ∈ [0,∞)n∗\(0,∞)n,

where u ⋄ Σ does not satisfy the invertibility condition but (u ⋄ Σ)J does.

Recall that Vb,µ,Σ, the Lévy measure of a V Gn process, is given in (1.3.3), and

Kρ is defined in (1.3.2). For x = (x1, . . . , xn) ∈ R
n
∗ , let

LJ(dx) :=
n⊗

k=1

(1J(k)dxk + 1{1,...,n}\J(k)δ0(dxk)).

Theorem 3.2.6. Let d ∈ [0,∞)n, µ ∈ R
n, Σ ∈ R

n×n be a covariance matrix and U

be an n-dimensional Thorin measure. The following are equivalent:

(i) Y ∼ V GGn(d,µ,Σ,U);

(ii) Y ∼ Ln(m2,d ⋄ Σ,Y), where

m2 = d ⋄ µ+

∫

D∗

xY(dx), (3.2.2)
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Y(dx) =

∫

[0,∞)n∗

V‖u‖2,u⋄µ,u⋄Σ(dx)
U(du)

‖u‖2
; (3.2.3)

(iii) Y is an n-dimensional Lévy process with characteristic exponent

ΨY(θ) = i〈d ⋄ µ,θ〉 −
1

2
‖θ‖2d⋄Σ

−

∫

[0,∞)n∗

ln

(
1−

i〈u ⋄ µ,θ〉

‖u‖2
+

‖θ‖2u⋄Σ
2‖u‖2

)
U(du), θ ∈ R

n.
(3.2.4)

If (i)–(iii) are satisfied and Σ is invertible, then Y =
∑

J YJ , YJ(R
n
∗\VJ) = 0, where

YJ is a Lévy measure which is absolutely continuous with respect to LJ , having Lévy

density

dYJ

dLJ

(v) =

∫

CJ

νJ(v,u)U(du), (3.2.5)

where

νJ(v,u) := cJ
exp
(
〈v,u ⋄ µ〉(u⋄Σ)−1

J

)

‖v‖#J

(u⋄Σ)−1
J

|u ⋄ Σ|1/2J

× K#J/2

((
2‖u‖2 + ‖u ⋄ µ‖2

(u⋄Σ)−1
J

)1/2
‖v‖(u⋄Σ)−1

J

)
,

(3.2.6)

cJ := 2/(2π)#J/2, v ∈ VJ and u ∈ CJ .

Proof. The statements in Parts (i)–(iii) characterise the law of Y, so it suffices to

prove only one direction.

(i) ⇔ (ii). The formulas of the triplet (m2,d⋄Σ,Y) follow from Proposition 2.3.4.

In particular, by (2.3.5),

m2 = d ⋄ µ+

∫

[0,∞)n∗

E[B(t)1D(B(t))] T (dt).

Using (2.3.7) and the fact that m2 must be finite, we have

∫

[0,∞)n∗

E[B(t)1D(B(t))] T (dt) =

∫

D∗

xY(dx), (3.2.7)

where both integrals are finite. This proves (3.2.2).

Let A ⊆ R
n
∗ be a Borel set. For B ∼ BMn(µ,Σ) and B(u) ∼ BMn(u ⋄ µu ⋄ Σ),

u ∈ [0,∞)n∗ , Proposition 1.2.2 implies B(gu)
D
= B(u)(g), g ≥ 0, and combining this

with (1.3.3) gives
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∫

(0,∞)

P(B(gu) ∈ A)G‖u‖2(dg) = V‖u‖2,u⋄µ,u⋄Σ(A).

Thus, by (2.3.7) and (3.1.6), we have

Y(A) =

∫

[0,∞)n∗

∫

(0,∞)

P(B(gu) ∈ A)G‖u‖2(dg)
U(du)

‖u‖2
(3.2.8)

=

∫

[0,∞)n∗

V‖u‖2,u⋄µ,u⋄Σ(A)
U(du)

‖u‖2
, (3.2.9)

which matches the RHS of (3.2.3) evaluated at A.

(i) ⇔ (iii). Since the integrals in (3.2.7) must be finite, using the Lévy-Khintchine

formula (1.1.2) with the characteristics in Part (i) gives

ΨY(θ) = i〈d ⋄ µ,θ〉 −
1

2
‖θ‖2d⋄Σ + I(θ), (3.2.10)

where using (3.2.3) gives

I(θ) :=

∫

Rn
∗

(ei〈θ,x〉 − 1)Y(dx)

=

∫

[0,∞)n∗

∫

Rn
∗

(ei〈θ,x〉 − 1)V‖u‖2,u⋄µ,u⋄Σ(dx)
U(du)

‖u‖2
. (3.2.11)

Now Proposition 1.3.4 (ii), followed by (1.3.4) implies that

∫

Rn
∗

(ei〈θ,x〉 − 1)V‖u‖2,u⋄µ,u⋄Σ(dx) = ΨV(θ)

= −‖u‖2 ln

(
1−

i〈u ⋄ µ,θ〉

‖u‖2
+

‖θ‖2u⋄Σ
2‖u‖2

)
.

Combining this with (3.2.10) and (3.2.11) completes the proof of (3.2.4).

Lévy density. Let ∅ 6= J = {j1, . . . , jm} ⊆ {1, . . . , n}, u ∈ CJ and A ⊆ R
n
∗ be a

Borel set. Recall that (u ⋄ Σ)−1
J exists and |u ⋄ Σ|J > 0 because Σ is invertible.

As in Remark 3.2.5, let YJ be the Lévy measure of YJ
D
= B⊙TJ . Let π

J : Rn →

R
m, x 7→ xπJ := (〈x, ej〉)j∈J . Let (u ⋄µ)J := (u ⋄µ)πJ ∈ R

m and (u ⋄Σ)J ∈ R
m×m

be the invertible principal submatrix of u ⋄ Σ formed by keeping only the rows and

columns in the index set J . For v = (v1, . . . , vn) ∈ VJ , let v
J := (vj1 , . . . , vjm) and

dvJ be the Lebesgue measure on R
m. Using (1.3.3) followed by (1.3.5), when u ∈ CJ ,

we have

V‖u‖2,u⋄µ,u⋄Σ(A) = V‖u‖2,(u⋄µ)J ,(u⋄Σ)J ((A ∩ VJ)π
J)
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=

∫

Rm
∗

1(A∩VJ )πJ (vJ)
dV‖u‖2,(u⋄µ)J ,(u⋄Σ)J

dvJ
(vJ) dvJ . (3.2.12)

Note that 1(A∩VJ )πJ (vJ) = 1A∩VJ
(v) for all v ∈ VJ and (dV‖u‖2,(u⋄µ)J ,(u⋄Σ)J/dv

J)(vJ)

= ‖u‖2νJ(v,u) for all u ∈ CJ and v ∈ VJ . Therefore, we can write the integral in

(3.2.12) over all components of v as

V‖u‖2,u⋄µ,u⋄Σ(A) =

∫

VJ

1A∩VJ
(v)‖u‖2νJ(v,u)LJ(dv), u ∈ CJ . (3.2.13)

Now using (3.2.9), followed by (3.2.13), we have

YJ(A) =

∫

CJ

V‖u‖2,u⋄µ,u⋄Σ(A)
U(du)

‖u‖2

=

∫

VJ

1A(v)

(∫

CJ

νJ(v,u)U(du)

)
LJ(dv),

which proves the Lévy density formula of YJ with respect to LJ . Also, we see that

YJ(R
n
∗\VJ) = 0. Meanwhile, by the independence of YJ for all ∅ 6= J ⊆ {1, . . . , n},

we have Y(A) =
∑

J YJ(A) as required.

In Theorems 2.3 and 2.5 of [BKMS17], formulas for the characteristic exponents

and Lévy density of V GGn,1 and V GGn,n processes are stated separately, while

Theorem 3.2.6 here unifies both classes as special cases.

3.3 Sample Path Properties

To see how sample path properties such as the q-variation of the Thorin subordinator

is propagated through Brownian motion, we generalise Propositions 2.6 and 2.7 in

[BKMS17], which gave a corresponding result in the context of V GGn,1 and V GGn,n

processes. The q-variation is related to the jump activity of the Lévy process as

noted in Section 2.3.6, where we discussed the sample path properties of weakly

subordinated processes in general.

Recall that D+ := D ∩ [0,∞)n.

Proposition 3.3.1. Let T ∼ GGCn
S(d,U) and Y ∼ V GGn(d,µ,Σ,U) with Lévy

measures T and Y, respectively. Suppose 0 < q < 1.

(i)
∫
DC U(du)/‖u‖q <∞ if and only if

∫
D
+
∗
‖t‖q T (dt) <∞.

(ii) If
∫
DC U(du)/‖u‖q < ∞, then

∫
D∗

‖x‖2q Y(dx) < ∞. If Σ is invertible, then

the converse also holds.
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(iii) If d = 0 and
∫
DC U(du)/‖u‖1/2 <∞, then Y ∼ FV n. If Σ is invertible, then

the converse also holds. Also, if d = 0 and Y ∼ FV n, then Y is driftless.

Proof. (i). See Proposition 2.6 (a) in [BKMS17].

(ii). Let 0 < q < 1. Let B ∼ BMn(µ,Σ), Σ = (Σkl) ∈ R
n×n is a covariance

matrix. For t ∈ [0,∞)n∗ , let ψ(t) := E[‖B(t)‖2q1D∗(B(t))].

Sufficiency. For z = (z1, . . . , zn) ∈ R
n, set |z| := (|z1|, . . . , |zn|). Set |Σ| :=

(|Σkl|) ∈ R
n×n. Let t ∈ [0,∞)n∗ . By the eigendecomposition of symmetric matrices,

we can write t ⋄Σ = UDU ′, where U ∈ R
n×n is an orthogonal matrix and D ∈ R

n×n

is a diagonal matrix. Thus,

‖z(t ⋄ Σ)1/2‖2 = (zUD1/2U ′)(zUD1/2U ′)′

= ‖z‖2t⋄Σ

≤ ‖t‖∞

n∑

k=1

n∑

l=1

|zk||zl||Σkl|

≤ ‖t‖‖|z|‖2|Σ| (3.3.1)

by (1.2.5). Similarly,

‖t ⋄ µ‖ ≤ ‖µ‖‖t‖. (3.3.2)

Let Z := (Z1, . . . , Zn) be standard normal random vector on R
n and note that

ψ(t) ≤ E[‖B(t)‖2q] = E[‖t ⋄ µ+ Z(t ⋄ Σ)1/2‖2q] ≤ E[(‖t ⋄ µ‖+ ‖Z(t ⋄ Σ)1/2‖)2q].

due to Example 1.2.3 and the triangle inequality. Applying the Cr inequality (see

Equation (1) in [vBE65]) with the constant 2(2q−1)+ < 2 to the RHS of the above

display gives

ψ(t) ≤ 2(‖t ⋄ µ‖2q + E[‖Z(t ⋄ Σ)1/2‖2q])

Combining this with (3.3.1) and (3.3.2) yields

ψ(t) ≤ 2(‖µ‖2q‖t‖2q + E[‖|Z|‖2q|Σ|]‖t‖
q)

≤ C1(‖t‖
2q ∨ ‖t‖q).

with the finite constant C1 := 4(‖µ‖2q + E[‖|Z|‖2q|Σ|]). Also, ψ(t) ≤ 1, so that

ψ(t) ≤ (1 + C1)(1 ∧ (‖t‖2q ∨ ‖t‖q)) = (1 + C1)(1 ∧ ‖t‖q), (3.3.3)
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for all t ∈ [0,∞)n∗ .

Finally, by (2.3.7) and then (3.3.3), we have

∫

D∗

‖x‖2q Y(dx) =

∫

[0,∞)n∗

ψ(t) T (dt) (3.3.4)

≤ (1 + C1)

(∫

D∗

‖t‖q T (dt) + T (DC)

)
,

where the first term on the RHS is finite due to Part (i) and second term is finite

due to (1.1.3).

Necessity. The proof is completed provided we can show that

i := inf
t∈D+

∗

ψ(t)

‖t‖q
> 0.

This would imply ψ(t) ≥ i‖t‖q for all t ∈ D
+
∗ , giving

∫

D
+
∗

‖t‖q T (dt) ≤
1

i

∫

D
+
∗

ψ(t) T (dt) ≤
1

i

∫

[0,∞)n∗

ψ(t) T (dt) =
1

i

∫

D∗

‖x‖2q Y(dx),

where the last equality follows from (3.3.4). Since the RHS is finite by assumption,

Part (i) would then imply
∫
DC U(du)/‖u‖q <∞ as required.

Let φ(t) := ψ(t)/‖t‖q, for t ∈ [0,∞)n∗ . There exists a sequence tm → t0

with t0 ∈ D
+, tm ∈ D

+
∗ , m ∈ N, such that φ(tm) → i as m → ∞. Moreover,

sm := tm/‖tm‖ → s0 as m→ ∞ for some s0 ∈ S+ := S ∩ [0,∞)n.

If t0 6= 0, then we find ∅ 6= J ⊆ {1, . . . , n} such that t0 ∈ CJ . Now we have

i = lim
m→∞

ψ(tm)

‖tm‖q
(3.3.5)

≥

(
lim inf
m→∞

ψ(tm)

‖t0‖q

)(
lim inf
m→∞

‖t0‖
q

‖tm‖q

)

=
1

‖t0‖q
lim inf
m→∞

ψ(tm) (3.3.6)

Let ψ∗(t) := E[‖B(t)‖2q1(0,1)(‖B(t)‖)], t ∈ [0,∞)n∗ and note that ψ∗(t) = ψ(t)

because P(‖B(t)‖ = 1) = 0 as the distribution of B(t) is absolutely continuous.

Thus, by Fatou’s lemma (see Lemma A.3.2), we have

lim inf
m→∞

ψ(tm) = lim inf
m→∞

ψ∗(tm)

≥ E

[
lim inf
m→∞

‖B(tm)‖
2q1(0,1)(‖B(tm)‖)

]

≥ ψ∗(t0), (3.3.7)
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where the last line follows since t 7→ ‖B(t)‖2q1(0,1)(‖B(t)‖) is a lower semi-continuous

function at t = t0 as B has continuous sample paths. Recall that B(t0) ∼ N(t0 ⋄

µ, t0 ⋄ Σ) by (1.2.11). Since Σ is invertible, combining Lemma A.2.2 (iii) and t0 6= 0

implies t0 ⋄ Σ 6= 0. Thus, P(0 < ‖B(t0)‖ < 1) > 0, which implies

ψ∗(t0) =

∫

{0<‖x‖<1}

‖x‖2q P(B(t0) ∈ dx) > 0

since the integrand is strictly positive (see Theorem 13.2 in [Bau92]). Finally,

combining this with (3.3.6) and (3.3.7) gives i > 0.

Now if t0 = 0, let B∗ ∼ BMn(0,Σ) and Wm := (‖tm‖
1/2sm) ⋄ µ + B∗(sm),

m ∈ N. Recalling that Z := (Z1, . . . , Zn) is a standard normal random vector on R
n,

we have

B(tm)
D
= tm ⋄ µ+ Z(tm ⋄ Σ)1/2

D
= ‖tm‖

1/2Wm.

By noting (3.3.5) and P(Wm = 0) = 0, this implies

i ≥ lim inf
m→∞

E[‖Wm‖
2q1D(‖tm‖

1/2Wm)] ≥ E

[
lim inf
m→∞

‖Wm‖
2q1D(‖tm‖

1/2Wm)
]

by Fatou’s lemma (see Lemma A.3.2). In addition, as m → ∞, we have Wm
a.s.
−→

B∗(s0) and 1D(‖tm‖
1/2Wm)

a.s.
−→ 1 since t0 = 0. Thus, i ≥ E[‖B∗(s0)‖

2q] > 0, which

completes the proof.

(iii). Sufficiency. Using Part (ii) with q = 1/2,
∫
DC U(du)/‖u‖1/2 <∞ implies

(1.1.4). If d = 0, then d ⋄ Σ = 0 in Theorem 3.2.6 (ii). Thus, Y ∼ FV n by

Proposition 1.1.11.

Necessity. Since Y ∼ FV n, Proposition 1.1.11 implies that d ⋄ Σ = 0. We have

diag(d⋄Σ) = d⋄diag(Σ) = 0, which implies d = 0 because Σkk > 0 for all 1 ≤ k ≤ n

by Lemma A.2.2 (iii) and the invertibility of Σ . For Y ∼ FV n, Proposition 1.1.11

also implies that (1.1.4) holds, which implies by Part (ii), with q = 1/2, and the

invertibility of Σ, that
∫
DC U(du)/‖u‖1/2.

Driftlessness. If d = 0, then the drift of Y is m2 −
∫
D∗

xY(dx) = 0, where m2 is

given in (3.2.2) and the finiteness of the integral is ensured by Y ∼ FV n.



Chapter 4

Weak Variance-Alpha-Gamma

Processes

Our second major application of weak subordination is to construct weak variance-

alpha-gamma processes, a generalisation of the variance-alpha-gamma processes of

Semeraro [Sem08]. The latter is a constructed using multivariate subordination

and a Brownian motion subordinate with independent components. We use weak

subordination to create a weakly subordinated counterpart to this process, which we

call a weak variance-alpha-gamma process. This allows for more flexible dependence

modelling as the Brownian motion may now have dependent components. Several

results in previous chapters are applied to this class of processes.

In Section 4.1, we review the definition of variance-alpha-gamma processes and

introduce weak variance-alpha-gamma processes. In Section 4.2, we show that

weak variance-alpha-gamma processes are V GGn processes and we characterise

their laws. In Section 4.3, we derive some useful properties of weak variance-

alpha-gamma processes, including moment formulas. In Section 4.4, we show that

these processes can be decomposed into a sum of independent variance-gamma

processes. In Section 4.5, a condition for Fourier invertibility is given. This has

important applications in calibrating parameters with maximum likelihood as the

density function is not explicitly known. In Section 4.6, we investigate methods for

calibrating weak variance-alpha-gamma processes to discretely observed data. We

apply method of moments, digital moment estimation and maximum likelihood to

both simulated and financial data, and discuss our findings.

62
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4.1 Construction

Recall that the variance-gamma process V
D
= B◦ (Ge) is constructed using univariate

subordination, where B ∼ BMn(µ,Σ), G ∼ ΓS(b). As such, it has a common time

change, but it cannot have idiosyncratic time changes. The jumps of the subordinator

Ge causes jumps in all components of V provided that all the components of B are

nonzero. This results in a restrictive dependence structure and a process with equal

kurtosis in each component when the skewness parameter µ = 0.

To allow for more flexible multivariate dependence modelling, Semeraro [Sem08]

introduced the alpha-gamma subordinator by taking the superposition of ray subor-

dinators in a way that models both common and idiosyncratic time changes while

maintaining variance-gamma marginal components when subordinated with Brownian

motion. Here, we review some relevant definitions and properties, and then construct

weak variance-alpha-gamma processes as an application of weak subordination to

allow better dependence modelling.

Definition 4.1.1. Let n ≥ 2. Let a > 0, α = (α1, . . . , αn) ∈ (0, 1/a)n and

βk :=
1− aαk

αk

, 1 ≤ k ≤ n. (4.1.1)

Let G0 ∼ ΓS(a, 1), Gk ∼ ΓS(βk, 1/αk), 1 ≤ k ≤ n, be independent. An n-dimensional

subordinator T ∼ AGn(a,α) is an alpha-gamma subordinator if

T = (T1, . . . , Tn)
D
= G0α+ (G1, . . . , Gn). (4.1.2)

Note that T is a Lévy process as it the linear transformation of independent Lévy

processes G0, . . . , Gn, and it is a subordinator as it is nondecreasing. The parameters

in the definition were specified by Semeraro [Sem08] in such a way that the marginal

components of T are standard gamma subordinators

Tk ∼ ΓS(1/αk), 1 ≤ k ≤ n. (4.1.3)

We give the Laplace exponent of an AG subordinator.

Lemma 4.1.2. A subordinator T ∼ AGn(a,α) has Laplace exponent

ΛT(λ) = a ln(1 + 〈λ,α〉) +
n∑

k=1

βk ln(1 + αk〈λ, ek〉), λ ∈ [0,∞)n. (4.1.4)

Proof. Using (4.1.2) and the independence of G0, . . . , Gn, the Laplace transform of

T is
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φT(λ) = E[exp(−〈λ,α〉G0(1))]
n∏

k=1

E[exp(−〈λ, ek〉Gk(1))]

= (1 + 〈λ,α〉)−a

n∏

k=1

(1 + αk〈λ, ek〉)
−βk , λ ∈ [0,∞)n,

where the last line follows from (1.1.9). This implies the Laplace exponent given in

(4.1.4).

Remark 4.1.3. An AG subordinator T is often defined as in (4.1.2) but with

a, b > 0, α = (α1, . . . , αn) ∈ (0, b/a)n, G0 ∼ ΓS(a, b), Gk ∼ ΓS((b− aαk)/αk, b/αk),

1 ≤ k ≤ n (see [LS10, Sem08]). Using the same methods as the proof of Lemma 4.1.2,

such a subordinator, denoted T ∼ AGn(a, b,α), has Laplace exponent

ΛT(λ) = a ln

(
1 +

〈λ,α〉

b

)
+

n∑

k=1

b− aαk

αk

ln

(
1 +

αk〈λ, ek〉

b

)
, λ ∈ [0,∞)n.

However, the laws of AGn(a, b,α) and AGn(a, 1,α/b), for all a, b > 0, α ∈ (0, b/a)n,

are identical as they have the same Laplace exponent. Hence, we can always assume

without loss of generality that b = 1, which explains our choice of parametrisation in

Definition 4.1.1.

Another immediate consequence of Lemma 4.1.2 is that AG subordinators are

Thorin subordinators and we can also determine their Lévy measure. Recall that

Ga,b is defined in Definition 1.1.16.

Proposition 4.1.4. Let a > 0, α = (α1, . . . , αn) ∈ (0, 1/a)n. The following are

equivalent:

(i) T ∼ AGn(a,α);

(ii) T ∼ GGCn
S(0,Ua,α), where

Ua,α := aδα/‖α‖2 +
n∑

k=1

βkδek/αk
; (4.1.5)

(iii) T ∼ Sn(0, Ta,α), where

Ta,α =

∫

(0,∞)

δgα Ga,1(dg) +
n∑

k=1

δ
⊗(k−1)
0 ⊗ Gβk,1/αk

⊗ δ
⊗(n−k)
0 . (4.1.6)

Proof. The statements in Parts (i)–(iii) characterise the law of T, so it suffices to

prove only one direction.
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(i) ⇔ (ii). Note that Ua,α is finitely supported with ‖α/‖α‖2‖, ‖ek/αk‖ > 0,

1 ≤ k ≤ n, so it satisfies (3.1.1) and the definition of a Thorin subordinator.

Substituting d = 0 and the Thorin measure Ua,α into the RHS of (3.1.2), we obtain

the Laplace exponent of T in (4.1.4).

(i) ⇔ (iii). Set a0 := a, b0 := 1, α0 := α, ak := βk, bk := 1/αk, αk := ek,

1 ≤ k ≤ n, then Ua,α =
∑n

k=0 akδbkαk/‖αk‖2 . Using (3.1.6) and (1.1.8), the associated

Lévy measure evaluated at a Borel set A ⊆ R
n
∗ is

Ta,α(A) =
n∑

k=0

ak

∫

(0,∞)

1A

(
g
bkαk

‖αk‖2

)
e−b2

k
g/‖αk‖

2 dg

g

=
n∑

k=0

∫

(0,∞)

1A(gαk)ake
−b2

k
g dg

g

=
n∑

k=0

∫

(0,∞)

δgαk
(A)Gak,bk(dg),

which matches (4.1.6) evaluated at A. Thus, T ∼ Sn(0, Ta,α).

The Lévy measure Ta,α of an AG subordinator can alternatively be derived

using Proposition 1.1.8, or Lemma 2.13 in [BKMS17], which gives the Lévy measure

for a more general class of subordinators, or Equation (2.3) in [LS10] through

its characteristic exponent. Now the variance-alpha-gamma process introduced in

[LS10, Sem08] can be defined.

Definition 4.1.5. Let n ≥ 2. Let a > 0, α ∈ (0, 1/a)n, µ ∈ R
n and Σ ∈ R

n×n be a

diagonal covariance matrix. An n-dimensional Lévy process Y ∼ V AGn(a,α,µ,Σ)

is a variance-alpha-gamma process if Y
D
= B ◦ T, where B ∼ BMn(µ,Σ) and

T ∼ AGn(a,α) are independent.

Clearly, if Y ∼ V AGn(a,α,µ,Σ), then Y ∼ V GGn,n(0,µ,Σ,Ua,α). While the

V AG process incorporates both common and idiosyncratic time changes as a result

of using an AG subordinator, it still has a restrictive dependence structure since

the Brownian motion subordinate has independent components. To address this, we

generalise the V AG process using weak subordination, which allows for the Brownian

motion to have dependent components.

Definition 4.1.6. Let n ≥ 2. Let a > 0, α ∈ (0, 1/a)n, µ ∈ R
n and Σ ∈ R

n×n be

a covariance matrix. An n-dimensional Lévy process Y ∼ WVAGn(a,α,µ,Σ) is

a weak variance-alpha-gamma process if Y
D
= B ⊙ T, where B ∼ BMn(µ,Σ) and

T ∼ AGn(a,α).

It is obvious that V AG processes are a subclass of WVAG processes.
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Lemma 4.1.7. If Y ∼ WVAGn(a,α,µ,Σ) and Σ is diagonal, then Y ∼ V AGn(a,

α,µ,Σ).

Proof. Since Y ∼ WVAGn(a,α,µ,Σ), there exist independent B ∼ BMn(µ,Σ)

and T ∼ AGn(a,α) such that Y
D
= B⊙T

D
= B ◦T, where the last equality follows

from Theorem 2.3.5 and Σ being diagonal. Thus, Y ∼ V AGn(a,α,µ,Σ).

4.2 Characteristics

Throughout this section and the next, we use the following notation. Let a > 0, α =

(α1, . . . , αn) ∈ (0, 1/a)n, µ = (µ1, . . . , µn) ∈ R
n, Σ = (Σkl) ∈ R

n×n be a covariance

matrix. Let B = (B1, . . . , Bn) ∼ BMn(µ,Σ), T = (T1, . . . , Tn) ∼ AGn(a,α),

Y = (Y1, . . . , Yn) ∼ WVAGn(a,α,µ,Σ).

Remark 4.2.1. Occasionally, we will use a setup involving the joint process Z =

(Z1,Z2)
D
= (T,B ⊙ T), which we set to be the semi-strong subordination of B ∼

BMn(µ,Σ) and T ∼ AGn(a,α). So T = Z1, and we set Y = Z2. In particular, this

implies that Y
D
= B ⊙ T is the weak subordination of B and T. We may assume

without loss of generality that Y ∼ WVAGn(a,α,µ,Σ) is constructed and related

to T in this way.

We now determine the characteristics ofWVAG processes by applying the results

of Theorem 3.2.6. This also accounts for V AG processes as a special case when Σ is

diagonal. The next proposition begins by noting that a WVAGn process is a V GGn

process, despite not necessarily being a V GGn,1 or V GGn,n process.

Recall that Ga,b, Kρ, βk, Ua,α and VJ are defined in (1.1.16), (1.3.2), (4.1.1), (4.1.5)

and Remark 3.2.5, respectively.

Proposition 4.2.2. Let n ≥ 2. Let a > 0, α ∈ (0, 1/a)n, µ ∈ R
n and Σ ∈ R

n×n be

a covariance matrix. Let x = (x1, . . . , xn) ∈ R
n
∗ . The following are equivalent:

(i) Y ∼ WVAGn(a,α,µ,Σ);

(ii) Y ∼ V GGn(0,µ,Σ,Ua,α);

(iii) Y ∼ Ln(m2, 0,Y), where

m2 =

∫

D∗

xY(dx), (4.2.1)

Y(dx) =

∫

(0,∞)

P(B(α)(g) ∈ dx)Ga,1(dg) +
n∑

k=1

δ
⊗(k−1)
0

⊗

(∫

(0,∞)

P(Bk(g) ∈ dxk)Gβk,1/αk
(dg)

)
⊗ δ

⊗(n−k)
0 ,

(4.2.2)
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and B(α) ∼ BMn(α ⋄ µ,α ⋄ Σ);

(iv) Y is a Lévy process with characteristic exponent

ΨY(θ) = − a ln

(
1− i〈α ⋄ µ,θ〉+

1

2
‖θ‖2α⋄Σ

)

−
n∑

k=1

βk ln

(
1− iαkµkθk +

1

2
αkΣkkθ

2
k

)
,

(4.2.3)

θ = (θ1, . . . , θn) ∈ R
n.

If (i)–(iv) are satisfied and Σ is invertible, then Y has the Lévy measure

Y(dx) = 1(R∗)n(x)f0(x)dx+
n∑

k=1

1V{k}
(x)(δ

⊗(k−1)
0 ⊗ (fk(xk)dxk)⊗ δ

⊗(n−k)
0 ) (4.2.4)

on R
n
∗ , where the Lévy densities are

f0(v) :=
2a exp(〈v,α ⋄ µ〉(α⋄Σ)−1)

(2π)n/2|α ⋄ Σ|1/2‖v‖n(α⋄Σ)−1

× Kn/2((2 + ‖α ⋄ µ‖2(α⋄Σ)−1)1/2‖v‖(α⋄Σ)−1),

(4.2.5)

fk(v) :=
βk
|v|

exp

(
vα

1/2
k µk − |v|(2Σkk + αkµ

2
k)

1/2

α
1/2
k Σkk

)
(4.2.6)

for v ∈ (R∗)
n, v ∈ R∗.

Proof. The statements in Parts (i)–(iv) characterise the law of Y, so it suffices to

prove only one direction.

(i) ⇔ (ii). Since Y ∼ WVAGn(a,α,µ,Σ), we have Y
D
= B ⊙ T, where B ∼

BMn(µ,Σ) and T ∼ GGCn
S(0,Ua,α) due to Lemma 4.1.4. It follows that Y ∼

V GGn(0,µ,Σ,Ua,α) by definition.

(i) ⇔ (iii). Assume the setup in Remark 4.2.1, and let Z be the Lévy measure

of Z. For all Borel sets A ⊆ ([0,∞)n × R
n)∗, using (2.2.5) and then (4.1.6), we have

Z(A) =

∫

[0,∞)n∗

∫

Rn

1A(t,x)P(B(t) ∈ dx)Ta,α(dt)

=

∫

(0,∞)

∫

Rn

1A(gα,x)P(B(gα) ∈ dx)Ga,1(dg)

+
n∑

k=1

∫

(0,∞)

∫

Rn

1A(gek,x)P(B(gek) ∈ dx)Gβk,1/αk
(dg)
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=

∫

(0,∞)

∫

Rn

1A(gα,x)P(B
(α)(g) ∈ dx)Ga,1(dg)

+
n∑

k=1

∫

(0,∞)

∫

R

1A(gek, xkek)P(Bk(g) ∈ dxk)Gβk,1/αk
(dg),

(4.2.7)

where the last line follows because P(B(gα) ∈ dx) = P(B(α)(g) ∈ dx) and

P(B(gek) ∈ dx) = δ
⊗(k−1)
0 ⊗ P(Bk(g) ∈ dxk)⊗ δ

⊗(n−k)
0 for g > 0 and 1 ≤ k ≤ n.

Applying the projection π{n+1,...,2n} to the Lévy measure Z and using Proposi-

tion 1.1.8, the Lévy measure of Y satisfies

Y(Ã) =

∫

(0,∞)

∫

Rn

1Ã(x)P(B
(α)(g) ∈ dx)Ga,1(dg)

+
n∑

k=1

∫

(0,∞)

∫

R

1Ã(xkek)P(Bk(g) ∈ dxk)Gβk,1/αk
(dg)

for all Borel set Ã ⊆ R
n
∗ , which matches (4.2.2) evaluated at Ã. Then Theorem 3.2.6

(ii) shows that Y ∼ Ln(m2, 0,Y) with m2 given by (4.2.1).

(i) ⇔ (iv). Since Y ∼ V GGn(0,µ,Σ,Ua,α), the characteristic exponent is

obtained by substituting d = 0 and U = Ua,α into (3.2.4).

Lévy density. Recalling the definition of CJ in Remark 3.2.5, the Thorin measure

Ua,α given by (4.1.5) vanishes except on C{1,...,n} and C{k}, 1 ≤ k ≤ n. Assuming

that Σ is invertible, for x ∈ R
n
∗ , the Lévy density formula in Theorem 3.2.6 allows

the Lévy measure Y to be written as

Y(dx) = 1(R∗)n(x)aν{1,...,n}

(
x,

α

‖α‖2

)
dx

+
n∑

k=1

1V{k}
(x)βkν{k}

(
x,

ek

αk

)
(δ

⊗(k−1)
0 ⊗ dxk ⊗ δ

⊗(n−k)
0 ).

Recalling (3.2.6), we have

f0(v) := aν{1,...,n}

(
v,

α

‖α‖2

)
=

2a

(2π)n/2
exp(E0(v))

D0(v)
Kn/2(A0(v)), v ∈ (R∗)

n,

where

A0(v) =

(
2

‖α‖2
+

∥∥∥∥
α

‖α‖2
⋄ µ

∥∥∥∥
2

((α/‖α‖2)⋄Σ)−1

)1/2

‖v‖((α/‖α‖2)⋄Σ)−1

= (2 + ‖α ⋄ µ‖2(α⋄Σ)−1)1/2‖v‖(α⋄Σ)−1 ,
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D0(v) = ‖v‖n((α/‖α‖2)⋄Σ)−1

∣∣∣∣
α

‖α‖2
⋄ Σ

∣∣∣∣
1/2

= ‖v‖n(α⋄Σ)−1 |α ⋄ Σ|1/2,

E0(v) =

〈
v,

α

‖α‖2
⋄ µ

〉

((α/‖α‖2)⋄Σ)−1

= 〈v,α ⋄ µ〉(α⋄Σ)−1 .

Thus, f0(v) matches the RHS of (4.2.5). Likewise, using (A.1.2), for 1 ≤ k ≤ n, we

have

fk(v) := βkν{k}

(
vek,

ek

αk

)
=

(
2

π

)1/2

βk
exp(Ek(v))

Dk(v)
K1/2(Ak(v)), v ∈ R∗,

where

Ak(v) =
|v|(2Σkk + αkµ

2
k)

1/2

α
1/2
k Σkk

, Dk(v) = |v|, Ek(v) =
vµk

Σkk

.

Thus, we find that fk(v) matches the RHS of (4.2.5). Hence, the Lévy measure Y

satisfies (4.2.4).

An alternative proof of the WVAG Lévy measure formula in (4.2.2) can be

obtained using (3.2.3). Assume the setup in Remark 4.2.1. This proof has the

advantage that it obtains the Lévy measure Z in (4.2.7) of the joint process Z, which

can be used to explain how Y ∼ WVAGn(a,α,µ,Σ) jumps based on the jumps of

its subordinator T ∼ AGn(a,α).

Let G0, . . . , Gn be defined as in Definition 4.1.1. Recall the definition of CJ and

VJ from Remark 3.2.5. Let J be the set of all indices j ∈ {1, . . . , n} such that Bj is

a nonzero process, and assume that J 6= ∅.

In (4.2.7), Z({0} × R
n
∗ ) = 0, meaning that if T does not jump, then Y does not

jump. Also, Z(C{1,...,n} × VJ) = ∞ and Z(C{1,...,n} × (Rn\VJ)) = 0, meaning that if

a jump occurs in G0, then a jump occurs in all components of Y where B is nonzero

in the respective component. Thus, the subordinator G0 models a common time

change.

For 1 ≤ k ≤ n, if k ∈ J , then Z(C{k} × V{k}) = ∞ and Z(C{k} × (Rn\V{k})) = 0,

while if k /∈ J , then Z(C{k} × {0}) = ∞ and Z(C{k} × R
n
∗ ) = 0, meaning that

if a jump occurs in Gk, then a jump occurs in Yk, unless Bk is a zero process, in

which case, Yk obviously cannot jump. Thus, the subordinators G1, . . . , Gn model

idiosyncratic time changes.

Note that the above cases exhaust all possible jump sizes of T. In summary,

the jumps of the AG subordinator are inherited by the WVAG process whenever

possible. This resembles the jump behaviour of strongly subordinated processes.
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If Σ is a diagonal matrix, the characteristics in Proposition 4.2.2 reduce to those

of a V AG process as specified in Theorem 1.1 of [LS10].

4.3 Properties

In this section, earlier results are applied to the WVAG processes to prove some

useful properties. Firstly, we show that their marginal components are V G processes,

and in fact, these are the same marginal components as that of the corresponding

V AG process.

Proposition 4.3.1. If Y ∼ WVAGn(a,α,µ,Σ), then Yk ∼ V G1(1/αk, µk,Σkk),

1 ≤ k ≤ n.

Proof. Assume that B ∼ BMn(µ,Σ) and T ∼ AGn(a,α) are independent. Thus,

Bk ∼ BM1(µk,Σkk) and Tk ∼ ΓS(1/αk), the latter by (4.1.3). Now Y
D
= B⊙T, and

applying Corollary 2.3.7, we have Yk
D
= Bk ◦Tk ∼ V G1(1/αk, µk,Σkk), 1 ≤ k ≤ n.

Next, we show that the sample paths of a WVAG process are of finite variation.

Proposition 4.3.2. If Y ∼ WVAGn(a,α,µ,Σ), then Y ∼ FV n and driftless.

Proof. By Proposition 4.2.2 (ii), Y ∼ V GGn(0,µ,Σ,Ua,α). The finitely supported

Thorin measure Ua,α trivially satisfies
∫
DC Ua,α(du)/‖u‖

1/2 <∞, so the result follows

from Proposition 3.3.1 (iii).

Now we give moment formulas for WVAG processes.

Proposition 4.3.3. Let T and Y be defined as in Remark 4.2.1. For t > 0,

E[T(t)]

t
= e, (4.3.1)

Cov(Tk(t), Tl(t))

t
=




αk if k = l,

aαkαl if k 6= l,
(4.3.2)

E[Y(t)]

t
= µ, (4.3.3)

Cov(Yk(t), Yl(t))

t
=




Σkk + αkµ

2
k if k = l,

a(αk ∧ αl)Σkl + aαkαlµkµl if k 6= l,
(4.3.4)

Cov(Tk(t), Yl(t))

t
=




αkµl if k = l,

aαkαlµl if k 6= l.
(4.3.5)
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Proof. Since the expected value and covariance of a Lévy process are linear functions

in t (see Proposition 1.1.9), it is enough to prove the results for t = 1. Since

Tk ∼ ΓS(1/αk) by (4.1.3), we have E[Tk(1)] = 1, Var(Tk(1)) = αk, 1 ≤ k ≤ n. By

(4.1.2),

Cov(Tk(1), Tl(1)) = αkαl Var(G0(1)) = aαkαl, 1 ≤ k 6= l ≤ n. (4.3.6)

So we have proved (4.3.1) and (4.3.2).

We can apply the results of Example 2.3.24 to Y
D
= B ⊙ T. By (2.3.20) and

(2.3.21), we have

E[Yk(1)] = µk, Var(Yk(1)) = Σkk + αkµ
2
k, 1 ≤ k ≤ n. (4.3.7)

Let 1 ≤ k 6= l ≤ n. By (2.3.22) and (4.1.6), we have

∫

(0,∞)

τk,l(u) du =

∫

(0,∞)

(gαk) ∧ (gαl)Ga,1(dg) = a(αk ∧ αl).

Substituting this and (4.3.6) into (2.3.23) gives the covariance formula

Cov(Yk(1), Yl(1)) = a(αk ∧ αl)Σkl + aαkαlµkµl. (4.3.8)

So we have proved (4.3.3) and (4.3.4).

Let t = (t1, . . . , tn) and 1 ≤ k, l ≤ n. By (2.3.19) and (2.3.16), we have

Cov(Tk(1), Yl(1)) =

∫

[0,∞)n∗

tkE[Bl(tl)] Ta,α(dt) = µl Cov(Tk(1), Tl(1)).

Thus, we obtain (4.3.5) by using (4.3.2).

The moments of the AG subordinator and the V AG process given in Proposi-

tion 4.3.3 match those in [LS10, Sem08]. Due to Proposition 4.3.1, (4.3.7) obviously

matches the moments of a V G1 process (see page 85 in [MCC98]). The moments

in Proposition 4.3.3 as well as higher order moments are listed in Appendix A.1 of

[MS18].

For a V AG process, Σ is diagonal, so (4.3.4) implies Cov(Yk(1), Yl(1)) = aαkαlµkµl

for 1 ≤ k 6= l ≤ n. This gives rise to a restrictive dependence structure, a disadvant-

age that has been noted in [LS10]. In contrast, a WVAG process has additional

flexibility due to having the additional term a(αk ∧ αl)Σkl when using a Brownian

motion with dependent components as the subordinate.

Finally, we show that scaling the time parameter of a WVAG process results
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in a WVAG process with modified parameters. This property has been noted in

Equation (20) of [MS18].

Proposition 4.3.4. Let Y ∼ WVAGn(a,α,µ,Σ) and c > 0. Then (Y(ct))t≥0 ∼

WVAGn(ca,α/c, cµ, cΣ).

Proof. Note that (Y(ct))t≥0 = Y ◦ (cIe), where I is the identity function, so it is a

Lévy process by Proposition 1.3.2. Also, by (4.2.3),

− ac ln

(
1− i

〈α
c
⋄ (cµ),θ

〉
+

1

2
‖θ‖2(α/c)⋄(cΣ)

)

−
n∑

k=1

1− aαk

αk/c
ln

(
1− iαkµkθk +

1

2
αkΣkkθ

2
k

)

is equal to both the characteristic exponents of (Y(ct))t≥0 and the Lévy process with

law WVAGn(ca,α/c, cµ, cΣ).

4.4 Decomposition into Variance-Gamma Proces-

ses

Since an AG subordinator T
D
= G0α+ (G1, . . . , Gn) ∼ AGn(a,α) is a superposition

of independent ray subordinators, we can use the results in Section 2.3.4 to show that

the WVAG process can be written as a superposition of independent V G processes.

Proposition 4.4.1. Let Z be defined as in Remark 4.2.1. Then

Z
D
= (G0α,V0) +

n∑

k=1

(Gkek, Vkek), (4.4.1)

where

V0 := B(α) ◦ (G0e) ∼ V Gn(a, aα ⋄ µ, aα ⋄ Σ),

Vk := B∗
k ◦Gk ∼ V G1(βk, (1− aαk)µk, (1− aαk)Σkk), 1 ≤ k ≤ n,

B(α) ∼ BMn(α ⋄ µ,α ⋄ Σ), B∗ = (B∗
1 , . . . , B

∗
n) ∼ BMn(µ, diag(Σ11, . . . ,Σnn)),

G0, . . . , Gn are defined in Definition 4.1.1 and B(α),B∗, G0, . . . , Gn are independent.

Proof. Recall that Z
D
= (T,B ⊙ T) from Remark 4.2.1, and that T

D
= G0α +

(G1, . . . , Gn) by (4.1.2). Let B(0), . . . ,B(n), G0, . . . , Gn be independent, where B(k) ∼

BMn(µ,Σ), 0 ≤ k ≤ n. Since T is a superposition of independent ray subordinators,

using Proposition 2.3.15 and then Proposition 2.3.13, we have
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Z
D
=

(
G0α+

n∑

k=1

Gkek,B⊙

(
G0α+

n∑

k=1

Gkek

))

D
= (G0α,B

(0) ⊙ (G0α)) +
n∑

k=1

(Gkek,B
(k) ⊙ (Gkek))

D
= (G0α,B

(α) ◦ (G0e)) +
n∑

k=1

(Gkek,B
(ek) ◦ (Gke)), (4.4.2)

whereB(α) ∼ BMn(α⋄µ,α⋄Σ) andB(ek) = (B
(ek)
1 , . . . , B

(ek)
n ) ∼ BMn(ek⋄µ, ek⋄Σ),

1 ≤ k ≤ n, are independent (see Example 1.2.3) and also independent of G0, . . . , Gn.

Note that G0/a ∼ ΓS(a), so V0 := B(α) ◦ (G0e) ∼ V Gn(a, aα ⋄ µ, aα ⋄ Σ).

Let B∗ = (B∗
1 , . . . , B

∗
n) := (B

(e1)
1 , . . . , B

(en)
n ) ∼ BMn(µ, diag(Σ11, . . . ,Σnn)). For

1 ≤ k ≤ n, B(ek) ◦ (Gke) = (B∗
k ◦ Gk)ek since all its components, except possibly

the kth component, are zero. Note that Gk/(1 − aαk) ∼ ΓS(βk), so Vk := B∗
k ◦

Gk ∼ V G1(βk, (1− aαk)µk, (1− aαk)Σkk). Therefore, (4.4.2) is the same as (4.4.1),

completing the proof.

Corollary 4.4.2. If Y ∼ WVAGn(a,α,µ,Σ), then

Y
D
= V0 + (V1, . . . , Vn),

where V0 ∼ V Gn(a, aα ⋄ µ, aα ⋄ Σ), Vk ∼ V G1(βk, (1 − aαk)µk, (1 − aαk)Σkk),

1 ≤ k ≤ n, are independent.

Proof. This immediately follows from Proposition 4.4.1 upon taking the last n

components of (4.4.1).

This result gives an alternative derivation of the characteristic exponent of a

WVAG process and can be used to simulate a WVAG process as explained in

Section 4.6.1.

Remark 4.4.3. By Corollary 4.4.2, it turns out that a WVAGn process is a su-

perposition of an independent V Gn process and independent V G1 processes in the

kth component, 1 ≤ k ≤ n. Other multivariate extensions of V G processes have

been constructed by explicitly superpositioning an independent V Gn process and

independent V G1 processes in the kth component (see [LMS16, Wan09]). In the

former, these are called factor-based subordinated Brownian motions, and it is noted

in [MS18] that they are linear transformations of weakly subordinated processes.
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4.5 Fourier Invertibility

In this section, we derive a condition for the Fourier invertibility of WVAG processes.

Recall that I is the identity function. Let Y ∼ WVAGn(a,α,µ,Σ), and recall

that ΦY(t)(θ) = exp(tΨY(θ)), θ ∈ R
n, t ≥ 0, with ΨY given in (4.2.3).

Proposition 4.5.1. Let R
D
= Iη +Y, η ∈ R

n and Y ∼ WVAGn(a,α,µ,Σ). Let

t ≥ 0. If ΦY(t) ∈ L1, then the density function of R(t) is

fR(t)(r) = (2π)−n

∫

Rn

e−i〈θ,r−η〉ΦY(t)(θ) dθ, r ∈ R
n. (4.5.1)

Proof. See Theorem 1.3.6 in [Sas13].

If ΦY(t) ∈ L1, we say that Y(t) is Fourier invertible and we give a condition for

this in terms of an inequality relating the parameters.

Writing Σ = (Σkl), if we assume that Σkk > 0 for all 1 ≤ k ≤ n or the stronger

condition that Σ is invertible (see Lemma A.2.2 (iii)), then the density function of

R(t), which is needed for maximum likelihood, exists for all t > 0. To see this, note

that in Corollary 4.4.2, (1− aαk)Σkk > 0 implies that Vk(t), 1 ≤ k ≤ n, is absolutely

continuous with some density function fVk(t)(v) (see Equation (2.10) in [BKMS17]).

Hence, (V1(t), . . . , Vn(t)) is also absolutely continuous since it has density function
∏n

k=1 fVk(t)(vk). Thus, R(t) must be absolutely continuous with respect to the

Lebesgue measure because it is a convolution with at least one absolutely continuous

random vector (V1(t), . . . , Vn(t)) (see Appendix F, Equation (2) in [Sas13]). However,

the density function of R(t) is not explicitly known, so it is computed using Fourier

inversion, that is via Proposition 4.5.1.

The next lemma allows us to assume µ = 0 and η = 0 when proving the Fourier

invertibility.

Lemma 4.5.2. Let B ∼ BMn(µ,Σ), B∗ ∼ BMn(0,Σ), T ∼ Sn(0, T ), Y
D
= B⊙T,

Y∗ D
= B∗ ⊙T, R

D
= Iη +Y, η ∈ R

n. For all t ≥ 0 and p > 0, if ΦY∗(t) ∈ Lp, then

ΦR(t) ∈ Lp.

Proof. For all t ≥ 0, ΦR(t)(θ) = eit〈θ,η〉ΦY(t)(θ), θ ∈ R
n, so that |ΦR(t)(θ)| =

exp(tℜΨY(θ)). Using (2.3.1) and then Example 1.2.3, we have

ℜΨY(θ) =

∫

[0,∞)n∗

(ℜΦB(t)(θ)− 1) T (dt)

≤

∫

[0,∞)n∗

(|ΦB(t)(θ)| − 1) T (dt)
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=

∫

[0,∞)n∗

(
exp

(
−
1

2
‖θ‖2t⋄Σ

)
− 1

)
T (dt)

= ℜΨY∗(θ).

Therefore, |ΦR(t)(θ)| ≤ |ΦY∗(t)(θ)|, from which the result follows.

We give a Fourier invertibility condition for V G processes.

Lemma 4.5.3. Let V ∼ V Gn(b,µ,Σ). Assume that Σ is invertible. Let p > 0. If

pb > n/2, then ΦV ∈ Lp.

Proof. By Lemma 4.5.2, we can assume µ = 0. By (1.3.4), V ∼ V Gn(b, 0,Σ) has

characteristic function

ΦV(θ) =

(
1 +

‖θ‖2Σ
2b

)−b

, θ ∈ R
n.

Using the Cholesky decomposition, Σ = U ′U , where U is a triangular matrix

with positive elements on the diagonal. Let p > 0. Making the transformation

θ = (2b)1/2x(U ′)−1, noting that (U ′)−1 exists so that the transformation is injective,

we have

∫

Rn

|ΦV(θ)|
p dθ = |(2b)1/2U−1|

∫

Rn

(
1 + ‖x‖2

)−pb
dx. (4.5.2)

Using the polar decomposition (see Lemma A.3.3) on the RHS of (4.5.2), we have

that ΦV ∈ Lp if and only if

∫ ∞

0

(1 + r2)−pbrn−1 dr <∞,

which is equivalent to pb > n/2.

Recall the definition of βk in (4.1.1). We now present the Fourier invertibility

condition.

Proposition 4.5.4. Let Y ∼ WVAGn(a,α,µ,Σ) and R
D
= Iη + Y, η ∈ R

n.

Assume that Σ is invertible. For t > 0, if

(
a

n
+ min

1≤k≤n
βk

)
t >

1

2
, (4.5.3)

then ΦY(t),ΦR(t) ∈ L1.
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Proof. By Proposition 4.3.4, it suffices to prove the result for t = 1, and by

Lemma 4.5.2, we can assume µ = 0 and η = 0, so that R ∼ WVAGn(a,α,0,Σ).

Let V0 ∼ V Gn(a,0, aα ⋄ Σ), Vk ∼ V G1(βk, 0, (1− aαk)Σkk), 1 ≤ k ≤ n, be

independent, and let V∗ := (V1, . . . , Vn). By Corollary 4.4.2, R has characteristic

function ΦR(θ) = ΦV0(θ)ΦV∗(θ), where ΦV∗(θ) :=
∏n

k=1 ΦVk
(θk). For p

−1+ q−1 = 1,

p, q > 1, Hölder’s inequality gives

∫

Rn

|ΦR(θ)| dθ ≤

(∫

Rn

|ΦV0(θ)|
p dθ

)1/p(∫

Rn

|ΦV∗(θ)|q dθ

)1/q

=

(∫

Rn

|ΦV0(θ)|
p dθ

)1/p n∏

k=1

(∫

R

|ΦVk
(θ)|q dθ

)1/q

.

By Lemma 4.5.3, this integral is finite when pa > n/2, qβk > 1/2 for all 1 ≤ k ≤ n,

with p, q > 1. Thus,

1 =
1

p
+

1

q
< 2

(
a

n
∧
1

2

)
+ 2

(
min
1≤k≤n

βk ∧
1

2

)
,

which is equivalent to (4.5.3).

Remark 4.5.5. Let V ∼ V G1(b, µ,Σ). The condition for V (1) to be Fourier

invertible is identical to the condition for its density function having no singularity,

which is b > 1/2 (see Section 7 in [KT08]).

We see that for sufficiently small t > 0, (4.5.3) will not be satisfied. This means

that using (4.5.1) to compute the density function may not be valid when attempting

parameter estimation for a WVAG process based on observations from a sufficiently

small sampling interval.

4.6 Calibration

In this section, we discuss calibration methods for a bivariate WVAG process using

both simulated and financial data.

The following sets up the model and notation we use throughout this section.

Let n = 2. Recall that I is the identity function. Let

Y = (Y1, Y2) ∼ WVAG2(a,α,µ,Σ), R = (R1, R2)
D
= Iη +Y, η ∈ R

2. (4.6.1)

Let a > 0, α = (α1, α2) ∈ (0, 1/a)2, µ = (µ1, µ2) ∈ R
2, Σ = (Σkl) ∈ R

2×2 be a

covariance matrix. Let (S1, S2) be a bivariate price process following an exponential

Lévy model
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Sk(t) = Sk(0) exp(Rk(t)), t ≥ 0, k = 1, 2. (4.6.2)

For m ∈ N and c > 0, using the independent and stationary increment property of

R, the log returns are iid and given by

R(j) = (R
(j)
1 , R

(j)
2 ) :=

(
ln

S1(jc)

S1((j − 1)c)
, ln

S2(jc)

S2((j − 1)c)

)
D
= R(c), j = 1, . . . ,m.

Let r(j) = (r
(j)
1 , r

(j)
2 ) be the observed value of R(j), j = 1, . . . ,m, so that r(1), . . . , r(m)

represents m equally spaced discrete observations of the log returns with sampling

interval c > 0.

We call this the WVAG model. If Σ12 = 0, we called it the V AG model as Y

reduces to a V AG process by Lemma 4.1.7.

The properties of (R(ct))t≥0 can be determined by noting that (Y(ct))t≥0 is a

WVAG process with modified parameters given in Proposition 4.3.4.

4.6.1 Simulation Method

Corollary 4.4.2 can be used to simulate the Lévy process R under the WVAG model.

To do this, it suffices to know how to simulate a random vector V(1) ∼ V Gn(b,µ,Σ).

By definition V(1) = B ◦ (G(1)e), where B ∼ BMn(µ,Σ) and G ∼ ΓS(b) are

independent. Thus,

V(1) |G(1) ∼ N(G(1)µ, G(1)Σ),

so that to simulate V(1), we first simulate a gamma random variable G(1) ∼ Γ(b),

and then conditional on the value G(1) = g, we simulate a normal random vector

N(gµ, gΣ), which we take to be V(1).

Now we can simulate Y(c) as it is a sum of an independent V Gn random vector

and V G1 random variables as determined by Corollary 4.4.2 and Proposition 4.3.4.

Hence, we can simulate R(c)
D
= cη +Y(c). In addition, using the independent and

stationary increment property of the Lévy process R, we can simulate

R(t) =

j∑

k=0

R(k), t ∈ [jc, (j + 1)c), j = 0, 1, . . . ,m,

where R(0) ≡ 0, R(j) D
= R(c), j = 1, . . . ,m, are independent.

For the sampling intervals c = 1, 0.1 and m = 1000 observations, we make 100

simulations of R, and estimate the parameters from the observations r(1), . . . , r(m)
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with true parameters

a = 1, α = (0.8, 0.6), µ = (0.1,−0.3), Σ =

(
1 0.6

0.6 1.2

)
, η = (−0.1, 0.3).

4.6.2 Calibration Methods

The 10 parameters (a,α,µ,Σ,η) of the WVAG model are estimated from the

observations r(1), . . . , r(m) using method of moments (MOM), which is quick and

easy to implement, maximum likelihood (ML) from [MS18], which may be expected

to be asymptotically optimal under the model, and a modification of digital moment

estimation (DME) from [Mad15], which we expect to be more robust to model

misspecification.

Method of moments. The initial values of µk, αk, Σkk, ηk, k = 1, 2, are obtained

by using least squares on the first four central moments

E[Rk(c)], E[(Rk(c)− E[Rk(c)])
p], p = 2, 3, 4,

with the corresponding sample moments. The initial values of the joint parameters

a, Σ12 are obtained by using least squares on the central comoments

E[(R1(c)− E[R1(c)])
p(R2(c)− E[R2(c)])

p], p = 1, 2,

with the corresponding sample moments. However, the p = 1 case is excluded when

fitting the V AG model as there is one less parameter. Using these initial values,

least squares is solved over all parameters. Note that this last step has no effect if

the above moments can be matched exactly. Formulas for the lower order moments

and the covariance are given in Proposition 4.3.3 while the others can be found in

Appendix A.1 of [MS18].

Maximum likelihood estimation. The density function fR(c) is not explicitly known

so it is numerically computed using Fourier inversion by (4.5.1). The numerical

optimisation needed to implement ML requires initial values. The first initial values

can be obtained by MOM. Using the first initial values, ML is applied to the marginal

component observations r
(1)
k , . . . , r

(m)
k to obtain the second initial values of µk, αk,

Σkk, ηk, k = 1, 2, and using these, to the bivariate observations r(1), . . . , r(m) to

obtain the second initial values of a, Σ12. Finally, using the second initial values, ML

is applied on all parameters. For the V AG model, we apply this method with the

constraint Σ12 = 0.

Digital moment estimation. Let k = 1, 2. Let q be the vector of 10 equally
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spaced points from 0.05 to 0.95 and Pk be the empirical quantiles of the obser-

vations r
(1)
k , . . . , r

(m)
k at the probabilities q. Recall that Rk

D
= Iηk + Yk, Yk ∼

V G1(1/αk, µk,Σkk) by Proposition 4.3.1. Let

pr(µk, αk,Σkk, ηk) := P(Rk(c) ≤ r), r ∈ Pk,

and let qr be the corresponding empirical probability. The marginal parameters

µk, αk,Σkk, ηk are estimated by minimising the error

ek(µk, αk,Σkk, ηk) :=
∑

r∈Pk

(pr(µk, αk,Σkk, ηk)− qr)
2.

With the estimated marginal parameters, let ρ := Σ12

/
(Σ11Σ22)

1/2,

pr(a, ρ) := P(R1(c) ≤ r1, R2(c) ≤ r2) r = (r1, r2),∈ P1 × P2,

and let qr be the corresponding empirical probability. Recall that R
D
= Iη +Y, Y ∼

WVAG2(a,α,µ,Σ). Since directly calculating pr(a, ρ) requires Fourier inversion and

is computationally expensive, it is estimated by the empirical probability over 10000

simulations. The joint parameters a, ρ are estimated by minimising the LOESS

smooth [CGS91] of the error

e0(a, ρ) :=
∑

r∈P1×P2

(pr(a, ρ)− qr)
2.

The predictor variables for the LOESS smooth are 100 equally spaced points on the

feasible set (a, ρ) ∈ (0, (1/α1)∧ (1/α2))× (−1, 1). For the V AG model, we apply the

above method with the constraint ρ = 0.

4.6.3 Goodness of Fit Statistics

To assess the overall goodness of fit of each parameter estimation method, as opposed

to assessing individual parameters, we consider 3 goodness of fit statistics, the negative

log-likelihood (− lnL), a chi-squared (χ2) statistic, and a Kolmogorov-Smirnov (KS)

statistic.

To compute χ2, we apply the Rosenblatt transform [Ros52] of the fitted distribu-

tion to the observations. The Rosenblatt transform T of R(c) is

T(r) = (FR1(c)(r1), FR2(c) |R1(c)(r2 | r1)), r = (r1, r2) ∈ R
2,
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where FR1(c) is the cumulative distribution function of R1(c) and FR2(c) |R1(c) is the

conditional cumulative distribution function of R2(c) given R1(c). This transform

has the property that if the observations R(j) D
= R(c), j = 1, . . . ,m, then T(R(j))

are uniformly distributed on [0, 1]2. Under the WVAG model, R1
D
= Iη1 + Y1,

Y1 ∼ V G1(1/α1, µ1,Σ11).

Since V G1 distributions have a known density function (see Equation (2.10) in

[BKMS17]), we can obtain fR1(c), and hence FR1(c) by integration. In addition,

FR2(c) |R1(c)(r2 | r1) =

∫ r2

−∞

fR(c)(r1, u)

fR1(c)(r1)
du,

where fR(c) was computed by Fourier inversion using (4.5.1). To determine T, both

FR1(c) and FR2(c) |R1(c) are computed using the fitted parameter estimates. Then the

χ2 statistic is

χ2 =
l∑

i=1

(Oi − Ei)
2

Ei

,

where [0, 1]2 is partitioned into are l = 100 equal sized cells, Oi is the number of

transformed observations T(r(1)), . . . ,T(r(m)) in the ith cell, and Ei = m/l is the

expected number of the latter under the uniform distribution.

Since computing − lnL and χ2 requires Fourier inversion, it may not be possible

to compute these statistics accurately when the Fourier invertibility condition does

not hold. Therefore, we also consider the 2-dimensional, two-sample Kolmogorov-

Smirnov statistic introduced by Peacock in [Pea83], and computed using the method

in [Xia17]. This is the statistic for testing the equality of the fitted distribution

and the true distribution based on a sample from the respective distributions, and

therefore does not require the density function fR(c) or Fourier inversion. When

applied to real data in Subsection 4.6.6, we take the average of the KS statistics

computed from the observations and 100 samples from the fitted distribution. When

applied to simulated data in Subsection 4.6.5, the KS statistic is computed from the

observations and a sample from the fitted distribution. All 3 goodness of fit statistics

were averaged over the 100 simulations.

4.6.4 Quantile Choice for DME

Different choices of quantiles for DME are possible. Let q1, q2, q3, q4 be the vectors

of 10 equally spaced points from 0.05 to 0.95, 10 equally spaced points from 0.01 to

0.99, 10 equally spaced points from 0.1 to 0.9, 20 equally spaced points from 0.05 to
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Parameter True value q1 q2 q3 q4

a 1 0.171 0.171 0.182 0.175
α1 0.8 0.127 0.132 0.143 0.128
α2 0.6 0.126 0.145 0.149 0.129
µ1 0.1 0.062 0.066 0.066 0.062
µ2 −0.3 0.121 0.271 0.229 0.188
Σ11 1 0.084 0.083 0.093 0.084
Σ22 1.2 0.113 0.166 0.147 0.123
Σ12 0.6 0.154 0.182 0.172 0.150
η1 −0.1 0.051 0.054 0.053 0.050
η2 0.3 0.110 0.262 0.219 0.179

− lnL 2791.674 2795.826 2794.374 2792.303
χ2 93.848 97.292 96.728 95.078
KS 0.054 0.055 0.054 0.054

Table 4.1: RMSE using DME with quantiles q1, . . . ,q4 for the WVAG model fitted
to simulated data with c = 1.

0.95, respectively. For the sampling interval c = 1, Table 4.1 shows the goodness of

fit for these four choices of quantiles. We find that q = q1 yields the lowest RMSE

for most variables and has the lowest goodness of fit statistics. However, given that

the results are so similar, these quantile choices make only a small difference to the

overall goodness of fit.

4.6.5 Simulated Data Results

For the sampling interval c = 1, the Fourier invertibility condition is satisfied as the

LHS of (4.5.3) is 0.75 > 1/2. The calibration results for the WVAG model with

c = 1 is shown in Table 4.2. Here, we find that ML gives the best fit with the lowest

χ2 statistic. The KS statistic for ML and DME are approximately equal.

For the sampling interval c = 0.1, the Fourier invertibility condition is violated as

the LHS of (4.5.3) is 0.08 < 1/2. The corresponding results are shown in Table 4.3.

Note that the goodness of fit statistics − lnL and χ2 are not displayed in Table 4.3 as

they may be inaccurate due to requiring Fourier inversion to compute. Here, we find

that DME gives the best fit with the lowest KS statistic, however ML still produces

an accurate fit and does not break down. This suggests that the Fourier invertibility

condition holding may not be a requirement for ML to produce accurate parameter

estimates. In both cases, c = 1, 0.1, the RMSEs and goodness of fit statistics are

highest for MOM.
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Parameter True value MOM ML DME

a 1 0.920 (0.424) 0.983 (0.242) 0.902 (0.171)
α1 0.8 0.806 (0.342) 0.824 (0.111) 0.818 (0.127)
α2 0.6 0.589 (0.216) 0.594 (0.094) 0.589 (0.126)
µ1 0.1 0.103 (0.097) 0.103 (0.053) 0.096 (0.062)
µ2 −0.3 −0.310 (0.131) −0.301 (0.083) −0.313 (0.121)
Σ11 1 0.989 (0.078) 1.006 (0.071) 0.993 (0.084)
Σ22 1.2 1.177 (0.088) 1.202 (0.086) 1.179 (0.113)
Σ12 0.6 0.835 (0.335) 0.669 (0.192) 0.639 (0.154)
η1 −0.1 −0.103 (0.089) −0.105 (0.045) −0.097 (0.051)
η2 0.3 0.313 (0.120) 0.302 (0.070) 0.314 (0.110)

− lnL 2802.337 2787.513 2791.674
χ2 119.052 91.268 93.848
KS 0.068 0.054 0.054

Table 4.2: Expected value of estimates and RMSE (in parentheses) for the WVAG
model fitted to simulated data with c = 1.

Parameter True value MOM ML DME

a 1 1.106 (0.507) 0.990 (0.062) 0.896 (0.121)
α1 0.8 0.636 (0.247) 0.782 (0.033) 0.796 (0.057)
α2 0.6 0.504 (0.198) 0.602 (0.026) 0.603 (0.031)
µ1 0.1 0.099 (0.167) 0.114 (0.099) 0.104 (0.170)
µ2 −0.3 −0.347 (0.219) −0.250 (0.123) −0.301 (0.146)
Σ11 1 0.992 (0.136) 1.005 (0.133) 1.013 (0.302)
Σ22 1.2 1.197 (0.166) 1.245 (0.161) 1.234 (0.221)
Σ12 0.6 0.842 (0.353) 0.262 (0.364) 0.564 (0.188)
η1 −0.1 −0.111 (0.128) −0.114 (0.015) −0.100 (0.000)
η2 0.3 0.351 (0.164) 0.288 (0.014) 0.300 (0.001)
KS 0.326 0.222 0.078

Table 4.3: Expected value of estimates and RMSE (in parentheses) for the WVAG
model fitted to simulated data with c = 0.1.

4.6.6 Financial Data Results

Next, we fit the WVAG and V AG models to the S&P500 and FTSE100 indices as

the bivariate price process (S1, S2) in (4.6.2) for a five-year period from 14 February

2011 to 12 February 2016 with daily closing price observations taking c = 1. There

are 1249 bivariate observations. The estimated parameters, goodness of fit statistics

and standard errors, computed using 100 bootstrap samples, are listed in Table 4.4.

Contour plots of the fitted distributions and scatter plots of the bivariate log returns

are shown in Figure 4.1.

For the WVAG and V AG models, the LHS of (4.5.3) using the fitted parameter
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Figure 4.1: Scatterplots of log returns of the S&P500-FTSE100 data set and contour
plots of the fitted distributions using the WVAG model (left) and V AG model
(right) with MOM (top), ML estimation (middle), DME (bottom). The contours in
each plot, from outer to inner, correspond to the values 97+(k−1)681, k = 1, . . . , 15,
respectively. The display is restricted to [−0.04, 0.04]2 though several points are
outside this region.
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estimates are 0.61 and 0.54, respectively, so the Fourier invertibility condition is

satisfied for both models. Based on the χ2, KS statistic and contour plots, the

WVAG model produces a better fit than the V AG model. In addition, for the

WVAG model, DME gives a fit with a lower χ2 and KS statistic than ML and

MOM. This is consistent with the findings of [Mad11], though that is in the context

of univariate calibration.

Assuming that the log returns satisfy the WVAG model, a likelihood ratio test

can be used to test the hypothesis H0 : Σ12 = 0 versus H1 : Σ12 6= 0. The test

statistic D = 514.03 is asymptotically χ2 distributed with 1 degree of freedom. The

p-value is less than 10−4, so the V AG model is rejected. Indeed, the V AG model

is not suited for modelling strong correlation since Cov(Y1(1), Y2(1)) = aα1α2µ1µ2

(4.3.4), which is approximately 0 when µ1µ2 is.



Chapter 5

Self-Decomposability of Weak

Variance Generalised Gamma

Convolutions

Self-decomposable processes are an important subclass of Lévy processes. The

self-decomposability of V GGn,1 processes has been widely studied, most recently by

Grigelionis [Gri07b] who showed that if n ≥ 2, then the Brownian motion subordinate

being driftless implies self-decomposability, and under some moment conditions on the

underlying Thorin measure, this is also necessary. Here, we extend this investigation

to weak variance generalised gamma convolutions, providing necessary conditions as

well as sufficient conditions for self-decomposability.

In Section 5.1, we give a brief introduction to self-decomposable processes. In

Section 5.2, we give sufficient conditions for the self-decomposability of a weak

variance generalised gamma convolution. In Section 5.3, we give necessary conditions.

In Section 5.4, we develop several technical lemmas needed to prove the necessary

conditions. In Section 5.5, we apply these results to various examples of V GGn

processes, including V GGn,n processes and WVAG processes. In addition, we show

that the moment conditions for necessity fail to be satisfied for some other V GGn

processes, including for generalised hyperbolic and CGMY processes.

5.1 Self-Decomposable Processes

We begin with the definition of a self-decomposable process.

Definition 5.1.1. An n-dimensional random vector X is self-decomposable (SD) if

for any 0 < b < 1, there exists an n-dimensional random vector Zb such that

86
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ΦX(θ) = ΦZb
(θ)ΦX(bθ), θ ∈ R

n. (5.1.1)

An n-dimensional Lévy process Y is self-decomposable if Y(1) is.

In this definition, (5.1.1) means that X
D
= bX+Zb for some Zb independent of X.

In addition, SD distributions are a subclass of infinitely divisible distributions and

SD processes are a subclass of Lévy processes. We see in the next lemma that the

class of SD processes is closed under convolution and convergence in distribution.

Recall that I is the identity function.

Lemma 5.1.2. For m ≥ 1, if Y(1), . . . ,Y(m) are independent SD processes, then
∑m

k=1 Y
(m) is a SD process. If Y(k), k ∈ N, are SD processes and Y is a Lévy

process such that Y(k)(1)
D
→ Y(1) as k → ∞, then Y is a SD process. If Y is a SD

process, then Iη + aY, where η ∈ R
n and a > 0, is a SD process.

Proof. See Corollary 2.2 in [Sat80].

Recall that S := {s ∈ R
n : ‖s‖ = 1}. The next proposition is an important and

commonly used characterisation of SD processes.

Lemma 5.1.3. A Lévy process Y ∼ Ln(µ,Σ,Y) is self-decomposible if and only if

there exists a finite measure S on S and a nonnegative function k(s, r), s ∈ S, r > 0,

where s 7→ k(s, r) is measurable for all r > 0 and r 7→ k(s, r) is nonincreasing for all

s ∈ S, such that

Y(A) =

∫

S

∫

(0,∞)

1A(rs)k(s, r)
dr

r
S(ds) (5.1.2)

for all Borel sets A ⊆ R
n
∗ .

Proof. See Theorem 15.10 in [Sat99].

The following example shows that Thorin subordinators are a subclass of SD

processes. Recall that S+ := S ∩ [0,∞)n.

Example 5.1.4. Let T ∼ GGCn
S (d, T ) be a Thorin subordinator. Its Lévy measure

T is given in (3.1.4) in the required form (5.1.2). With k(s, r) given in (3.1.5),

s 7→ k(s, r) is measurable for all r > 0 and it follows from Theorem 3.1.1 in [Bon92]

that r 7→ k(s, r) is nonincreasing for all s ∈ S+. Thus, T ∼ GGCn
S(d, T ) is a SD

process.

It turns out that r 7→ k(s, r) = r(dTs/dx)(r), where dTs/dx is the Lévy density

of some univariate Thorin subordinator, and this function is completely monotone.
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While all Thorin subordinators are SD, we now turn to the question of whether

or not this continues to hold when they are weakly subordinated with Brownian

motion, producing a V GGn process. The self-decomposability of V GGn,1 processes

was investigated by Grigelionis [Gri07b] and we state this result below.

Lemma 5.1.5. Let Y ∼ V GGn,1(d,µ,Σ,U).

(i) If n = 1, or n ≥ 2 and µ = 0, then Y is SD.

(ii) If n = 2, |Σ| 6= 0, µ 6= 0 and 0 <
∫
(0,∞)

(1 + u)2 U(du) < ∞, or if n ≥ 3,

|Σ| 6= 0, µ 6= 0 and 0 <
∫
(0,∞)

(1 + u)U(du) <∞, then Y is not SD.

Proof. See Proposition 3 in [Gri07b].

5.2 Sufficient Conditions

We now prove that V GGn processes are SD when the Brownian motion subordinate

is driftless. This is an analogous result to Lemma 5.1.5 (i).

Lemma 5.2.1. If Y∗ ∼ V GGn(0,0,Σ,U) is SD, then Y ∼ V GGn(d,0,Σ,U) is

SD.

Proof. For Y ∼ V GGn(d,0,Σ,U), we have Y
D
= Y∅ +Y∗ by Remark 3.2.5. Here,

Y∅ ∼ BMn(0,d ⋄ Σ) due to Proposition 2.3.13, and Y∗ ∼ V GGn(0,0,Σ,U). In

addition, Y∅ and Y∗ are independent. Now Y∅, which has Lévy measure 0, is SD

because the conditions in Lemma 5.1.3 are trivially satisfied, while Y∗ is SD by

assumption. Thus, Y is SD by Lemma 5.1.2.

Theorem 5.2.2. Let Y ∼ V GGn(d,µ,Σ,U). If n = 1, or n ≥ 2 and µ = 0, then

Y is SD.

Proof. If n = 1, then by Example 3.2.4, Y ∼ V GG1,1(d, µ,Σ,U), so the result follows

from Lemma 5.1.5 (i). Now assume n ≥ 2 and µ = 0. By Lemma 5.2.1, we also

assume d = 0 without loss of generality.

Finitely supported Thorin measure. Suppose Y ∼ V GGn(0,0,Σ,U), where

U =
∑m

k=1 ukδαk
for some uk ≥ 0, αk ∈ [0,∞)n∗ , 1 ≤ k ≤ m, m ≥ 1. By (3.2.4), we

have

ΨY(θ) = −
m∑

k=1

uk ln

(
1 +

‖θ‖2αk⋄Σ

2‖αk‖2

)
, θ ∈ R

n.

Let Y(1), . . . ,Y(m) be independent with Y(k) ∼ V GGn,1(0,0, (αk ⋄ Σ)/wk, ukδwk
),

where wk := ‖αk‖/‖e‖, 1 ≤ k ≤ m, so that Y(k) is SD by Lemma 5.1.5 (i). Note
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that Y(k) ∼ V GGn(0,0, (αk ⋄ Σ)/wk, ukδwke) by Example 3.2.4, so applying (3.2.4)

yields

ΨY(k)(θ) = −uk ln

(
1 +

‖θ‖2(wke)⋄((αk⋄Σ)/wk)

2‖wke‖2

)

= −uk ln

(
1 +

‖θ‖2αk⋄Σ

2‖αk‖2

)
, θ ∈ R

n,

which implies ΨY =
∑m

k=1 ΨY(k) . In particular, Y
D
=
∑m

k=1 Y
(k) is SD as a superpos-

ition of independent SD processes by Lemma 5.1.2.

Arbitrary Thorin measure. Let Y ∼ V GGn(0,0,Σ,U), where U is an arbitrary

Thorin measure. Let

w(u) := (1 + ln− ‖u‖) ∧ ‖u‖−1, u ∈ [0,∞)n∗ ,

w̃(r) := (1 + ln− r) ∧ r−1, r > 0,

and I :=
∫
[0,∞)n∗

w(u)U(du) ∈ [0,∞) from (3.1.1). If I = 0, then U = 0, so Y is SD.

Otherwise, if I > 0, let U1(du) := w(u)U(du)/I be a Borel probability measure on

[0,∞)n∗ .

By Corollaries 30.5 and 30.9 in [Bau92], there exists a sequence of finitely sup-

ported Borel probability measures (U1
k )k∈N on the locally compact space [0,∞)n∗

with infinitely remote point 0, such that U1
k converges weakly to U1 as k → ∞.

For k ∈ N, let Uk(du) := IU1
k (du)/w(u). By construction, this is a finitely suppor-

ted Thorin measure, so the associated Lévy process Y(k) ∼ V GGn(0,0,Σ,Uk) is

self-decomposable by the first part of this proof.

Let θ ∈ R
n, and define the nonnegative and continuous functions

u 7→ gθ(u) :=
1

w(u)
ln

(
1 +

‖θ‖2u⋄Σ
2‖u‖2

)
, u ∈ [0,∞)n∗ ,

g̃(r) :=
1

w̃(r)
ln

(
1 +

C

r

)
, g̃(0) := 1, r > 0.

Note that C := sups∈S+ ‖θ‖2s⋄Σ/2 is a finite constant because u 7→ ‖θ‖2u⋄Σ, u ∈

[0,∞)n∗ , is a continuous function on the compact set S+ := S∩ [0,∞)n. Thus, we get

gθ(u) =
1

w(u)
ln

(
1 +

‖θ‖2(u/‖u‖)⋄Σ
2‖u‖

)
≤ g̃(‖u‖).

for all u ∈ [0,∞)n∗ . Consider the case r ≥ 1. Here, we have w̃(r) = r−1, so that

g̃(r) = r ln(1 + C/r) ≤ C. Now consider 0 < r < 1. Here, we have w̃(r) = 1− ln(r),



5.3 Necessary Conditions 90

so that g̃(r) → ln(1+C) as r → 1 and g̃(r) → 1 as r ↓ 0, which are both finite limits.

Thus, g̃ is uniformly bounded on [0,∞), and so is gθ on [0,∞)n∗ .

As k → ∞, recalling that U1
k

D
→ U1 and applying the portmanteau lemma (see

Lemma 2.2 in [vdV98]) to the continuous and bounded function gθ, we have

ΨY(k)(θ) = −I

∫

[0,∞)n∗

gθ(u)U
1
k (du) → −I

∫

[0,∞)n∗

gθ(u)U
1(du) = ΨY(θ).

Thus, Y is SD as the class of SD distributions is closed under convergence in

distribution by Lemma 5.1.2.

5.3 Necessary Conditions

This section formulates a converse to Theorem 5.2.2, giving necessary conditions for

a V GGn process to be SD.

Throughout this section, we use the following setup. Assume n ≥ 2 and Y ∼

V GGn(d,µ,Σ,U), where Σ ∈ R
n×n is an invertible covariance matrix. Thus, Y

D
=

B ⊙ T, where B ∼ BMn(µ,Σ) and T ∼ GGCn
S(d, T ). With the notation in

Remark 3.2.5, we let J = {1, . . . , n} and YJ
D
= B⊙TJ ∼ V GGn(0,µ,Σ,UJ) with

Lévy measure YJ supported on VJ = (R∗)
n. Since Σ is invertible, Theorem 3.2.6 says

that YJ has Lévy density dYJ/dx determined by (3.2.5), where dx is the Lebesgue

measure on R
n. Recall that S∗ := S ∩ (R∗)

n. Define

Hs(r) := rn
dYJ

dx
(rs), r > 0, s ∈ S

∗. (5.3.1)

Now we can state the criterion that we will use to prove non-self-decomposability.

This is based on Proposition 1 and analogous to Proposition 3 (ii) in [Gri07b],

though applied in the context of V GGn processes. Recall that ds denotes the

(n− 1)-dimensional Lebesgue surface measure.

Lemma 5.3.1. Let n ≥ 2 and Y ∼ V GGn(d,µ,Σ,U), where |Σ| 6= 0. Then Y is

not SD provided there exists a Borel set B ⊆ S
∗ of strictly positive (n−1)-dimensional

Lebesgue surface measure such that, for all s ∈ B, r 7→ Hs(r) defined in (5.3.1) is

strictly increasing at some r0 ∈ (0,∞).

Proof. By Theorem 3.2.6, then followed by Lemma A.3.3, the Lévy measure of YJ is

YJ(A) =

∫

(R∗)n
1A(x)

dYJ

dx
(x) dx =

∫

S∗

∫

(0,∞)

1A(rs)Hs(r)
dr

r
ds (5.3.2)

for all Borel sets A ⊆ (R∗)
n.
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For the purpose of contradiction, assume Y is SD. Thus, by Lemma 5.1.3, there

exists a finite measure S on S and a nonnegative function k(s, r) such that

Y(Ã) =

∫

S

∫

(0,∞)

1Ã(rs)k(s, r)
dr

r
S(ds), (5.3.3)

for all Borel sets Ã ⊆ R
n
∗ , with r 7→ k(s, r) being nonincreasing for all s ∈ S. Due

to Theorem 3.2.6, YJ(A) = Y(A) for all Borel sets A ⊆ (R∗)
n. So both (5.3.2) and

(5.3.3) give polar decompositions of the restriction of Y to (R∗)
n. However, the

polar decomposition is unique up to scaling by a constant with respect to r (see

Remark 15.12 (ii) in [Sat99]), so there exists a measurable function 0 < c(s) < ∞,

s ∈ S
∗, such that

c(s)k(s, r) = Hs(r),
S(ds)

c(s)
= ds, r > 0, s ∈ S

∗.

Now assume there exists a Borel set B ⊆ S
∗ such that (ds)(B) > 0, and for all s ∈ B,

r 7→ Hs(r) is strictly increasing at some r0 ∈ (0,∞). This implies that S(B) > 0, and

for all s ∈ B, r 7→ k(s, r) is strictly increasing at r0 ∈ (0,∞), which is a contradiction.

Thus, Y cannot be SD.

We will provide a more explicit formula for (5.3.1). Recall that YJ ∼ V GGn(0,µ,

Σ,UJ), µ ∈ R
n, Σ ∈ R

n×n is an invertible covariance matrix and UJ is the Thorin

measure of Y restricted to (0,∞)n. For u ∈ (0,∞)n, x ∈ R
n, y ∈ R

n
∗ , introduce

Aµ,Σ(x,u) := (2‖u‖2 + ‖u ⋄ µ‖2(u⋄Σ)−1)1/2‖x‖(u⋄Σ)−1 , (5.3.4)

DΣ(x,u) := ‖x‖n(u⋄Σ)−1 |u ⋄ Σ|1/2, (5.3.5)

Eµ,Σ(x,u) := 〈x,u ⋄ µ〉(u⋄Σ)−1 , (5.3.6)

UD,y(du) :=
UJ(du)

DΣ(y,u)
. (5.3.7)

As explained in Remark 3.2.5, (u ⋄ Σ)−1 exists, and also DΣ(y,u) 6= 0. The

variable names A, D and E stand for “argument”, “denominator” and “exponent”,

respectively.

Remark 5.3.2. Recall that S++ := S ∩ (0,∞)n. For u ∈ (0,∞)n, u0 := u/‖u‖ ∈

S++. With the definitions in (5.3.5) and (5.3.6), we have

DΣ(x,u) = DΣ(x,u
0), Eµ,Σ(x,u) = Eµ,Σ(x,u

0). (5.3.8)

We also have
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‖u ⋄ µ‖2(u⋄Σ)−1 = ‖u‖‖u0 ⋄ µ‖2(u0⋄Σ)−1 , (5.3.9)

‖x‖2(u⋄Σ)−1 =
‖x‖2(u0⋄Σ)−1

‖u‖
. (5.3.10)

These properties will be used in the proofs below.

Let v ∈ (R∗)
n. Now the Lévy density of YJ given in (3.2.5) and (3.2.6) becomes

dYJ

dx
(v) =

∫

(0,∞)n
νJ(v,u)U(du), (5.3.11)

where

νJ(v,u) = cn
exp(Eµ,Σ(v,u))

DΣ(v,u)
Kn/2(Aµ,Σ(v,u)), (5.3.12)

cn := cJ = 2/(2π)n/2, u ∈ (0,∞)n, v ∈ (R∗)
n and Kn/2 is defined in (1.3.2). Writing

v = rs, s ∈ S
∗, r > 0, we introduce

h(u, s, r) := rnνJ(rs,u)

= cn
exp(rEµ,Σ(s,u))

DΣ(s,u)
Kn/2(rAµ,Σ(s,u)). (5.3.13)

Then Hs(r) from (5.3.1) becomes

Hs(r) =

∫

(0,∞)n
h(u, s, r)U(du)

= cn

∫

(0,∞)n
exp(rEµ,Σ(s,u))Kn/2(rAµ,Σ(s,u))UD,s(du) (5.3.14)

for s ∈ S
∗, r > 0. To summarise, (s, r) 7→ Hs(r), s ∈ S

∗, r > 0, is the Lévy density

of YJ in polar coordinates, and is determined by (5.3.14).

We now state the necessary conditions for self-decomposability. Though the proof

is given here, it relies on technical results proven in Section 5.4. The proof extends

and refines the arguments of Grigelionis [Gri07b], who showed that the function

r 7→ Hs(r) is strictly increasing for V GGn,1 processes, and for sufficiently many s ∈ S,

by computing its derivative. In light of Lemma 5.3.1, under some assumptions, we

show directly without taking derivatives that the function is strictly increasing at

the origin for V GGn processes.

Recall that x− := −(x ∧ 0), x ∈ R, and
∏

u :=
∏n

k=1 uk, u = (u1, . . . , un) ∈

(0,∞)n. Recall that Aµ,Σ, DΣ, Eµ,Σ and UD,s are defined in (5.3.4)–(5.3.7).
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Theorem 5.3.3. Let Y ∼ V GGn(d,µ,Σ,U). If n ≥ 2 and |Σ| 6= 0, then Y is not

SD provided that one of the following holds:

(i) there exists a Borel set B ⊆ S
∗ of strictly positive (n− 1)-dimensional Lebesgue

surface measure such that, for all s ∈ B,

∫

(0,∞)n
Aµ,Σ(s,u)UD,s(du) <∞, (5.3.15)

∫

(0,∞)n
E−
µ,Σ(s,u)UD,s(du) <∞, (5.3.16)

∫

(0,∞)n
Eµ,Σ(s,u)UD,s(du) ∈ (0,∞]; (5.3.17)

(ii) µ 6= 0, U((0,∞)n) > 0 and

∫

(0,∞)n
(1 + ‖u‖1/2)

‖u‖n/2

(
∏

u)1/2
U(du) <∞; (5.3.18)

(iii) µ 6= 0, and there exist some αk ∈ (0,∞)n and univariate Thorin measures Uk,

1 ≤ k ≤ m, m ≥ 1, satisfying

0 <

∫

(0,∞)

(1 + u1/2)Uk(du) <∞ (5.3.19)

such that

U((0,∞)n ∩ A) =
m∑

k=1

∫

(0,∞)

δuαk
(A)Uk(du)

for all Borel sets A ⊆ [0,∞)n∗ .

Proof. (i). Recall the definition of Hs from (5.3.14). We will prove that (5.3.15)–

(5.3.17) being satisfied for s ∈ B implies

lim inf
r↓0

Hs(2r)− Hs(r)

r
∈ (0,∞], (5.3.20)

which shows that r 7→ Hs(r) is increasing at 0. Then all the conditions of Lemma 5.3.1

would be satisfied, completing the proof of Part (i).

Recall that S++ := S ∩ (0,∞)n. For u ∈ (0,∞)n, u0 := u/‖u‖ ∈ S++. Let s ∈ B

and r > 0. Let E(u) := Eµ,Σ(s,u), D(u) := DΣ(s,u) and

A2(u) := A2
µ,Σ(s,u) = (2‖u‖+ ‖u0 ⋄ µ‖2(u0⋄Σ)−1)‖s‖2(u0⋄Σ)−1
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by (5.3.9) and (5.3.10). Let h(u, r) := h(u, s, r) in (5.3.13) and

h∗(u, r) := cn
erE(u)

D(u)
Kn/2(2rA(u)), u ∈ (0,∞)n, r > 0.

Now Lemma 5.4.4 states that

ζ := inf
u0∈S++

‖s‖2(u0⋄Σ)−1 > 0, D := inf
u∈(0,∞)n

D(u) > 0, E := sup
u∈(0,∞)n

|E(u)| <∞.

Note that UD := UD,s satisfies (3.1.1) due to D > 0, so it is a Thorin measure.

Since r 7→ Kn/2(r) is nonnegative and nonincreasing (see Lemma A.1.1 (i)), and

A2(u) ≥ ζ‖u‖, we have

0 ≤ h∗(u, r) ≤ h(u, r) ≤ cn
erE

D
Kn/2(rζ

1/2‖u‖1/2), u ∈ (0,∞)n,

which implies u 7→ h(u, r) and u 7→ h∗(u, r) are U -integrable on (0,∞)n by (A.1.3).

So the integrals

H(r) := Hs(r), H∗(r) :=

∫

(0,∞)n
h∗(u, r)U(du), r > 0,

are finite.

By substituting in the relevant definitions, we have

H(2r)− H∗(r)

r
= cn

∫

(0,∞)n

1

r
(erE(u) − 1)erE(u)Kn/2(2rA(u))UD(du). (5.3.21)

We analyse this integral separately for the cases E(u) ≥ 0 and E(u) < 0. Note that

r 7→ Kn/2(r) has a finite left-hand limit Kn/2(0+) > 0 (see Lemma A.1.1 (iii)). Now

using ex − 1 ≥ x, x ∈ R, and Fatou’s lemma gives

lim inf
r↓0

cn

∫

(0,∞)n∩{E(u)≥0}

1

r
(erE(u) − 1)erE(u)Kn/2(2rA(u))UD(du)

≥ cnKn/2(0+)

∫

(0,∞)n∩{E(u)≥0}

E(u)UD(du), (5.3.22)

where the RHS is possibly infinite. If u ∈ {E(u) < 0}, then again using ex − 1 ≥ x,

x ∈ R, we have

1

r
|erE(u) − 1|erE(u)Kn/2(2rA(u)) ≤ |E(u)|Kn/2(0+) = E−(u)Kn/2(0+).

By (5.3.16), the LHS is UD-integrable, so the dominated convergence theorem applies,
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giving

lim
r↓0

cn

∫

(0,∞)n∩{E(u)<0}

1

r
(erE(u) − 1) erE(u)Kn/2(2rA(u))UD(du)

= cnKn/2(0+)

∫

(0,∞)n∩{E(u)<0}

E(u)UD(du). (5.3.23)

To summarise, (5.3.21)–(5.3.23) gives

lim inf
r↓0

H(2r)− H∗(r)

r
≥ cnKn/2(0+)

∫

(0,∞)n
E(u)UD(du) ∈ (0,∞], (5.3.24)

where the integral is strictly positive or infinite by (5.3.17).

Now we deal with the remaining term. By substituting in the relevant definitions,

we have

H(r)− H∗(r)

r
= cn

∫

(0,∞)n

1

r
erE(u)(Kn/2(rA(u))− Kn/2(2rA(u)))UD(du).

Using (A.1.4), we have

0 ≤
H(r)− H∗(r)

r
≤ cne

rE

∫

(0,∞)n

1

r
(Kn/2(rA(u))− Kn/2(2rA(u)))UD(du)

≤
3

2
cne

rE

∫

(0,∞)n
(rA(u)Kρ(rA(u)))A(u)UD(du), (5.3.25)

where ρ := (n− 2)/2 ≥ 0 as n ≥ 2. By Lemma A.1.1 (xi), D := supr>0 rKρ(r) <∞,

so the integrand in (5.3.25) is dominated by DA(u), which is UD-integrable by the

assumption (5.3.15). Thus, the dominated convergence theorem is applicable, and

noting that rA(u)Kρ(rA(u)) → 0 as r ↓ 0 for all u ∈ (0,∞)n by Lemma A.1.1 (viii),

it gives

lim
r↓0

H(r)− H∗(r)

r
= 0. (5.3.26)

Finally,

lim inf
r↓0

H(2r)− H(r)

r
≥ lim inf

r↓0

H(2r)− H∗(r)

r
+ lim inf

r↓0
−
H(r)− H∗(r)

r

so that combining (5.3.24) and (5.3.26) gives (5.3.20), which completes the proof of

Part (i).

(ii). Here, we find a Borel set B ⊆ S
∗ satisfying the requirements outlined in

Part (i). First, we show that for s ∈ S
∗, (5.3.18) implies (5.3.15).
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For s ∈ S
∗, Lemma 5.4.4 states that

ζ := inf
u∈S++

‖s‖2(u⋄Σ)−1 > 0, ξ := sup
u∈S++

‖u ⋄ µ‖2(u⋄Σ)−1 <∞.

Let u ∈ (0,∞)n and u0 := u/‖u‖. By noting that ‖u‖n|u0 ⋄ Σ| = |u ⋄ Σ| and using

(5.3.9) and (5.3.10), we have

A2
µ,Σ(s,u)

D2
Σ(s,u)

=
2‖u‖+ ‖u0 ⋄ µ‖2(u0⋄Σ)−1

‖s‖2(n−1)

(u0⋄Σ)−1 |u0 ⋄ Σ|
≤

2 + ξ

|Σ|ζn−1

(1 + ‖u‖)‖u‖n∏
u

,

where the last inequality follows by using (5.4.1). Thus, (5.3.15) holds for s ∈ S
∗

due to the assumption of (5.3.18).

Now we find a Borel set B ⊆ S
∗ with strictly positive Lebesgue surface measure,

where both (5.3.16) and (5.3.17) hold. Let µ0 := µ/‖µ‖ ∈ R
n
∗ . As we assumed

µ 6= 0, Proposition 5.4.11 implies that there exists an open neighbourhood U of 0

such that

inf
u∈(0,∞)n

Eµ,Σ(y,u) > 0, y ∈ µ0 + U. (5.3.27)

Consequently, the integral in (5.3.16) vanishes for all s ∈ S
∗ ∩ (µ0 + U).

Let

I(y) :=

∫

(0,∞)n

Eµ,Σ(y,u)

DΣ(y,u)
U(du), y ∈ R

n
∗ .

Using the same arguments as above, we have

E2
µ,Σ(y,u)

D2
Σ(y,u)

≤
E2
µ,Σ(y,u)

‖y‖2n(u⋄Σ)−1 |Σ|

(1 + ‖u‖)‖u‖n∏
u

.

By Parts (i) and (ii) of Lemma 5.4.6, there exists an open neighbourhood W of 0

such that

sup
y∈µ0+W

sup
u∈S++

E2
µ,Σ(y,u)

‖y‖2n(u⋄Σ)−1

<∞.

Thus, noting (5.3.18), the dominated convergence theorem is applicable and implies

that y 7→ I(y) is continuous at y = µ0 (see Lemma 16.1 in [Bau92]). Now I(µ0) > 0

due to (5.3.27) and the assumption that U((0,∞)n) > 0. By continuity, there exists

another open neighbourhood V ⊆ W of 0 such that I(s) > 0 for all s ∈ S
∗∩ (µ0+V).

To summarise, there exists a Borel set B ⊆ S
∗ ∩ (µ0 +U)∩ (µ0 +V) with strictly
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positive Lebesgue surface measure where both (5.3.16) and (5.3.17) holds. Applying

Part (i) completes the proof.

(iii). For 1 ≤ k ≤ m, set uk :=
∏

αk. Note that ‖uαk‖
n = un‖αk‖

n and
∏
(uαk) = unuk, u > 0, so we have

∫

(0,∞)n
(1 + ‖u‖1/2)

‖u‖n/2

(
∏

u)1/2
U(du) =

n∑

k=1

(
‖αk‖

n

uk

)1/2 ∫

(0,∞)

(1 + ‖uαk‖
1/2)Uk(du)

≤
m∑

k=1

(
‖αk‖

n

uk

)1/2

(1 + ‖αk‖
1/2)

∫

(0,∞)

(1 + u1/2)Uk(du)

<∞

by assumption. Thus (5.3.18) holds, so the proof is completed by Part (ii).

We make some remarks about the conditions and proof of the above theorem.

Remark 5.3.4. If µ = 0, then the conditions of Part (i) cannot be satisfied because

the integral in (5.3.17) vanishes. This is consistent with the sufficient conditions

in Theorem 5.2.2. In the proof of Part (i), the arguments still work when s ∈ B is

replaced by v ∈ (R∗)
n. In the proof of Part (ii), we showed that (5.3.18) implies

(5.3.15) for all s ∈ S
∗. In fact, this is true more generally when s ∈ S

∗ is replaced by

y ∈ R
n
∗ .

While (5.3.15)–(5.3.17) in Part (i) shows a delicate dependency between µ, Σ

and s, we use the more robust condition of Parts (ii) and (iii) in the applications of

Section 5.5 below. In Part (iii), the Thorin measure is supported on a finite union of

rays. In particular, this includes all WVAG processes. Other examples include the

VMΓn processes in Section 2.5 of [BKMS17].

By Proposition 3.3.1 (iii), the condition (5.3.19) requires that the V GGn process

have paths of bounded variation.

Example 5.3.5. Let U1, U2 be Borel measures defined by

U1(A) =

∫ 1

0

δ(cos(θ),sin(θ))(A) dθ, U2(A) =

∫ 1

0

δ(cos(θ2),sin(θ2))(A) dθ

for any Borel set A ⊆ [0,∞)2∗. Both of these are Thorin measures as the LHS of

(3.1.1) equals 1. For U1, U2, the integral in (5.3.18) becomes

2

∫ 1

0

(cos(θ) sin(θ))−1/2 dθ <∞, 2

∫ 1

0

(cos(θ2) sin(θ2))−1/2 dθ = ∞,

respectively. Also, U1((0,∞)2) = U2((0,∞)2) = 1. So on the basis of Theorem 5.3.3
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(ii), when µ 6= 0 and |Σ| 6= 0, Y(1) ∼ V GG2(d,µ,Σ,U1) is not SD, while no

conclusion can be drawn for Y(2) ∼ V GG2(d,µ,Σ,U2).

5.4 Technical Results for Proving the Necessary

Conditions

In this section, we gives some technical results that are used to prove the necessary

conditions in Theorem 5.3.3. Broadly, these relate to analysing the various terms

of Hs defined in (5.3.14), and in particular, the terms Aµ,Σ, DΣ, Eµ,Σ defined in

(5.3.4)–(5.3.6).

Throughout this section, Σ = (Σkl) ∈ R
n×n is always assumed to be an invertible

covariance matrix.

5.4.1 Infimums and Supremums of Terms in H

Recall that
∏

u :=
∏n

k=1 uk for u = (u1, . . . , un) ∈ (0,∞)n. If A = (Akl) ∈ R
n×n

and B = (Bkl) ∈ R
n×n, recall that the Hadamard product of A and B is A ∗ B :=

(AklBkl) ∈ R
n×n.

It was shown in Remark 3.2.5 that u ⋄ Σ, u ∈ (0,∞)n, is invertible. The next

lemma is a stronger version of this claim.

Lemma 5.4.1. If u ∈ (0,∞)n, then

0 < |Σ| ≤ inf
u∈(0,∞)n

|u ⋄ Σ|∏
u

≤ sup
u∈(0,∞)n

|u ⋄ Σ|∏
u

≤
n∏

k=1

Σkk <∞. (5.4.1)

Proof. The first inequality is due to the invertibility of Σ. Noting that u ⋄Σ = U ∗Σ,

where U := (uk ∧ ul) ∈ R
n×n, the second and fourth inequalities follow from

Oppenheim’s and Hadamard’s inequalities found in (A.2.1), respectively.

We give a coordinate permutation formula.

Lemma 5.4.2. If P ∈ R
n×n is a permutation matrix, then

〈x,y〉(u⋄Σ)−1 = 〈xP,yP 〉((uP )⋄(P ′ΣP ))−1 (5.4.2)

for all u ∈ (0,∞)n and x,y ∈ R
n.

Proof. Let 〈(1), . . . , (n)〉 be the permutation associated with P , so the (k, l) element

of P ′ΣP is Σ(k)(l). Then
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(uP ) ⋄ (P ′ΣP ) = P ′(u ⋄ Σ)P (5.4.3)

because the (k, l) elements of both sides are (u(k) ∧ u(l))Σ(k)(l). Thus,

〈xP,yP 〉((uP )⋄(P ′ΣP ))−1 = xP ((uP ) ⋄ (P ′ΣP ))−1P ′y′

= xP (P ′(u ⋄ Σ)P )−1P ′y′

= x(u ⋄ Σ)y′,

where the last line matches the LHS of (5.4.2).

Let (0,∞)n≤ := {u = (u1, . . . , un) ∈ (0,∞)n : u1 ≤ · · · ≤ un}. Recall that Eµ,Σ is

defined in (5.3.6). For n ≥ 2, we introduce notation to express u ∈ (0,∞)n≤ and an

invertible covariance matrix Σ ∈ R
n×n with terms of one lower dimension by setting

u = (ũ, u), ũ ∈ (0,∞)n−1
≤ , u ∈ (0,∞),

Σ =

(
Σ̃ σ̃

′

σ̃ σ

)
, Σ̃ ∈ R

(n−1)×(n−1), σ̃ ∈ R
n−1, σ > 0.

Also, let x = (x̃, x), y = (ỹ, y), x̃, ỹ ∈ R
n−1, x, y ∈ R. We call this dimension

reduction notation. Note that Σ̃ ∈ R
(n−1)×(n−1) must be invertible due to Sylvester’s

criterion. Next we give a dimension reduction formula.

Lemma 5.4.3. For n ≥ 2, u ∈ (0,∞)n≤ and x,y ∈ R
n, we have

〈x,y〉(u⋄Σ)−1 = 〈x̃, ỹ〉(ũ⋄Σ̃)−1 +
|ũ ⋄ Σ̃|

|u ⋄ Σ|
(x− E

σ̃,Σ̃(x̃, ũ))(y − E
σ̃,Σ̃(ỹ, ũ)). (5.4.4)

Proof. Since u ∈ (0,∞)n≤, we can write

u ⋄ Σ =

(
ũ ⋄ Σ̃ (ũ ⋄ σ̃)′

ũ ⋄ σ̃ uσ

)
, (u ⋄ Σ)−1 =

(
Ã α̃

′

α̃ a

)
(5.4.5)

for some Ã ∈ R
(n−1)×(n−1), α̃ ∈ R

n−1 and a > 0. Let In ∈ R
n×n be the identity

matrix. Now using (5.4.5) to expand (u ⋄ Σ)(u ⋄ Σ)−1 = In in block matrix form

and taking the top-left (n − 1) × (n − 1) submatrix and the top-right (n − 1) × 1

submatrix of both sides, we get

(ũ ⋄ Σ̃)Ã+ (ũ ⋄ σ̃)′α̃ = In−1, (5.4.6)

(ũ ⋄ Σ̃)α̃′ + a(ũ ⋄ σ̃)′ = 0′. (5.4.7)
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The LHS of (5.4.4) can be written as

〈x,y〉(u⋄Σ)−1 = (x̃, x)

(
Ã α̃

′

α̃ a

)(
ỹ′

y

)
= x̃Ãỹ′ + (yx̃+ xỹ)α̃′ + axy. (5.4.8)

The first term on the RHS of (5.4.8) becomes

x̃Ãỹ′ = x̃((ũ ⋄ Σ̃)−1 − (ũ ⋄ Σ̃)−1(ũ ⋄ σ̃)′α̃)ỹ′

= x̃(ũ ⋄ Σ̃)−1ỹ′ + ax̃(ũ ⋄ Σ̃)−1(ũ ⋄ σ̃)′(ũ ⋄ σ̃)(ũ ⋄ Σ̃)−1ỹ′

= 〈x̃, ỹ〉(ũ⋄Σ̃)−1 + a〈x̃, ũ ⋄ σ̃〉(ũ⋄Σ̃)−1〈ỹ, ũ ⋄ σ̃〉(ũ⋄Σ̃)−1 , (5.4.9)

where the first line was obtained by substituting Ã from (5.4.6), noting that ũ ⋄ Σ̃ is

an invertible covariance matrix since u ⋄ Σ is, and the second line was obtained by

substituting α̃ from (5.4.7). The second term on the RHS of (5.4.8) is

(yx̃+ xỹ)α̃′ = −a(yx̃+ xỹ)(ũ ⋄ Σ̃)−1(ũ ⋄ σ̃)′

= −ay〈x̃, ũ ⋄ σ̃〉(ũ⋄Σ̃)−1 − ax〈ỹ, ũ ⋄ σ̃〉(ũ⋄Σ̃)−1 , (5.4.10)

by substituting α̃
′ from (5.4.7).

Now note that a = |ũ ⋄ Σ̃|/|u ⋄ Σ| by Cramer’s rule for matrix inverses. Thus,

combining (5.4.8)–(5.4.10) gives the RHS of (5.4.4).

Now we can determine the infimums and supremums of the terms found in the

expression for Hs in (5.3.14). Recall that Σ is an invertible covariance matrix, and that

DΣ and Eµ,Σ are defined in (5.3.5) and (5.3.6), respectively. Also, S++ := S∩ (0,∞)n.

The meaning of the notation S and S++ is understood in the usual way when used

in the context of Rm, m 6= n.

Lemma 5.4.4. Let µ,x ∈ R
n, y ∈ R

n
∗ and v ∈ (R∗)

n. Then

inf
u∈S++

‖y‖(u⋄Σ)−1 > 0, (5.4.11)

inf
u∈(0,∞)n

DΣ(v,u) = inf
u∈S++

DΣ(v,u) > 0, (5.4.12)

sup
u∈S++

‖u ⋄ µ‖(u⋄Σ)−1 <∞, (5.4.13)

sup
u∈(0,∞)n

|Eµ,Σ(x,u)| = sup
u∈S++

|Eµ,Σ(x,u)| <∞. (5.4.14)

Proof. Taking the supremum and infimum of DΣ and Eµ,Σ over u ∈ (0,∞)n is the

same as taking it over u ∈ S++ due to (5.3.8).
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Moreover, we can assume without loss of generality that u ∈ S∩(0,∞)n≤ as all the

quantities in the lemma are invariant under permutations as determined by (5.4.2).

To see this invariance forDΣ(v,u), we also need to note that |(uP )⋄(P ′ΣP )| = |u⋄Σ|

by (5.4.3).

Using dimension reduction notation, we have u = (ũ, u) ∈ S ∩ (0,∞)n≤ satisfying

0 < ‖ũ‖ ≤ 1, n−1/2 ≤ u < 1

due to ‖ũ‖2 ≤ ‖u‖2 ≤ nu2 and u ∈ S ∩ (0,∞)n≤. Let ũ
0 := ũ/‖ũ‖ ∈ S ∩ (0,∞)n−1

≤ .

For n ≥ 2, let

C(Σ) :=
|Σ̃|∏n

k=1 Σkk

, D(Σ) :=
n1/2

∏n−1
k=1 Σkk

|Σ|
. (5.4.15)

Using (5.4.1) and noting that n−1/2 ≤ u < 1, we have

0 < C(Σ) <
|Σ̃|

u
∏n

k=1 Σkk

≤
|ũ ⋄ Σ̃|

|u ⋄ Σ|
≤
u
∏n

k=1 Σkk

|Σ̃|
≤ D(Σ) <∞. (5.4.16)

With this setup, we can now prove each inequality using mathematical induction.

Proof of (5.4.11). Let ζy := infu∈S++ ‖y‖2(u⋄Σ)−1 . If n = 1, then u = 1 and ζy =

y2/Σ > 0.

Suppose n ≥ 2. Let y = (ỹ, y) ∈ R
n
∗ . Using (5.4.4), the LHS of (5.4.16), (5.3.10)

and ‖ũ‖ ≤ 1, in this order, we have

‖y‖2(u⋄Σ)−1 ≥ ‖ỹ‖2
(ũ⋄Σ̃)−1 + C(Σ)(y − E

σ̃,Σ̃(ỹ, ũ))
2 (5.4.17)

≥ ‖ỹ‖2
(ũ⋄Σ̃)−1 (5.4.18)

=
‖ỹ‖2

(ũ0⋄Σ̃)−1

‖ũ‖

≥ ‖ỹ‖2
(ũ0⋄Σ̃)−1 (5.4.19)

≥ ζỹ, (5.4.20)

where ζỹ := inf ũ∈S++ ‖ỹ‖2
(ũ⋄Σ̃)−1

> 0 by the inductive hypothesis if ỹ 6= 0. Otherwise,

if ỹ = 0, then y 6= 0, so that (5.4.17) becomes ‖y‖2(u⋄Σ)−1 ≥ C(Σ)y2 > 0. Thus,

ζy > 0 in both cases.

Proof of (5.4.12). Let Dv := infu∈S++ D2
Σ(v,u). If n = 1, then Dv = v2 > 0.

Suppose n ≥ 2. Let v = (ṽ, v) ∈ (R∗)
n using dimension reduction notation. Let

Dṽ := inf ũ∈S++ ‖ṽ‖2(n−1)

(ũ⋄Σ̃)−1
|ũ ⋄ Σ̃|. Recalling the definition of D2

Σ(v,u) in (5.3.5), we

have
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D2
Σ(v,u) ≥

‖v‖2n(u⋄Σ)−1 |u ⋄ Σ|

‖ṽ‖2(n−1)

(ũ0⋄Σ̃)−1
|ũ0 ⋄ Σ̃|

Dṽ

=
‖v‖2n(u⋄Σ)−1 |u ⋄ Σ|

‖ṽ‖2(n−1)

(ũ⋄Σ̃)−1
|ũ ⋄ Σ̃|

Dṽ

≥ ‖ṽ‖2
(ũ⋄Σ̃)−1(D(Σ))−1Dṽ

≥ ζṽ(D(Σ))−1Dṽ

> 0,

where the second line follows from (5.3.8), the third line follows from (5.4.18) and

the reciprocal of the RHS of (5.4.16) and the fourth line follows from (5.4.20). Thus,

by the inductive hypothesis Dv > 0.

Proof of (5.4.13). Let ξµ := supu∈S++
‖u⋄µ‖2(u⋄Σ)−1 . If n = 1, then ξµ = |µ|/Σ <

∞.

Suppose n ≥ 2. Let µ = (µ̃, µ) ∈ R
n using dimension reduction notation. Using

(5.4.4), the RHS of (5.4.16) and noting that (a− b)2 ≤ 2(a2 + b2), a, b ∈ R, we have

‖u ⋄ µ‖2(u⋄Σ)−1 ≤ ‖ũ ⋄ µ̃‖2
(ũ⋄Σ̃)−1 + 2D(Σ)((uµ)2 + E2

σ̃,Σ̃
(ũ ⋄ µ̃, ũ)). (5.4.21)

We deal with each term on the RHS. Firstly, by (5.3.9) and noting that ‖ũ‖ ≤ 1, we

have

‖ũ ⋄ µ̃‖2
(ũ⋄Σ̃)−1 = ‖u‖‖ũ0 ⋄ µ̃‖2

(ũ0⋄Σ̃)−1 ≤ ‖ũ0 ⋄ µ̃‖2
(ũ0⋄Σ̃)−1 ≤ ξµ̃,

where ξµ̃ := supũ∈S++
‖ũ ⋄ µ̃‖2

(ũ⋄Σ̃)−1
. Secondly, (uµ)2 < µ2 as u < 1. Thirdly,

recalling the definition of Eµ,Σ in (5.3.6) and using the Cauchy-Schwarz inequality,

we have

|E
σ̃,Σ̃(ũ ⋄ µ̃, ũ)|2 = |〈ũ ⋄ µ̃, ũ ⋄ σ̃〉(ũ⋄Σ̃)−1 |

2

≤ ‖ũ ⋄ µ̃‖2
(ũ⋄Σ̃)−1‖ũ ⋄ σ̃‖2

(ũ⋄Σ̃)−1

≤ ‖ũ‖2‖ũ0 ⋄ µ̃‖2
(ũ0⋄Σ̃)−1‖ũ

0 ⋄ σ̃‖2
(ũ0⋄Σ̃)−1

≤ ξµ̃ξσ̃ (5.4.22)

To summarise,

‖u ⋄ µ‖2(u⋄Σ)−1 ≤ ξµ̃ + 2D(Σ)(µ2 + ξµ̃ξσ̃) <∞

by the inductive hypothesis. Thus, ξµ <∞.
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Proof of (5.4.14). Let Eµ,x := supu∈S++
|Eµ,Σ(x,u)|. If n = 1, then Eµ,x =

|xµ|/Σ <∞.

Suppose n ≥ 2. Let Eµ̃,x̃ := supũ∈S++
|E

µ̃,Σ̃(x̃, ũ)|. Using (5.4.4) and the RHS of

(5.4.16), we have

|Eµ,Σ(x,u)| = |〈x,u ⋄ µ〉(u⋄Σ)−1 |

≤ |E
µ̃,Σ̃(x̃, ũ)|+D(Σ)|E

σ̃,Σ̃(x̃, ũ)Eσ̃,Σ̃(ũ ⋄ µ̃, ũ)

− uµE
σ̃,Σ̃(x̃, ũ)− xE

σ̃,Σ̃(ũ ⋄ µ̃, ũ) + xuµ|

≤ Eµ̃,x̃ +D(Σ)(Eσ̃,x̃ξ
1/2
µ̃
ξ
1/2
σ̃

+ |µ|Eσ̃,x̃ + |x|ξ1/2
µ̃
ξ
1/2
σ̃

+ |xµ|),

where the last line follows by using (5.4.22) and u < 1. This is finite by the inductive

hypothesis. Thus, Eµ,x <∞.

Remark 5.4.5. For y ∈ R
n
∗ , it is possible that supu∈S++

‖y‖(u⋄Σ)−1 = ∞ and

infu∈S++ DΣ(y,u) = 0. For example, take Σ = I2 ∈ R
2×2 to be the identity matrix

and y = e1 ∈ R
2 to see this.

For x = (x1, . . . , xn) ∈ R
n, let

min*

1≤k≤n
xk := min{xk : xk 6= 0, 1 ≤ k ≤ n}

with the convention min ∅ = −∞. Introduce a family of compact neighbourhoods of

0 in R
n by setting

A(y) :=

(
min*

1≤k≤n
|yk|

)
[−1, 1]n,

indexed by y = (y1, . . . , yn) ∈ R
n
∗ .

Recall that Σ is an invertible covariance matrix. Next, we state uniform versions

of the bounds in Lemma 5.4.4.

Lemma 5.4.6.

(i) If µ,w ∈ R
n, then supx∈w+D supu∈S++

|Eµ,Σ(x,u)| <∞.

(ii) If y ∈ R
n
∗ , then there exist ǫ > 0 such that infx∈y+ǫA(y) infu∈S++ ‖x‖(u⋄Σ)−1 > 0.

Proof. (i). Let µ,w,x ∈ R
n and u ∈ (0,∞)n. Recalling the definition of Eµ,Σ in

(5.3.6) and applying the triangle inequality yields

|Eµ,Σ(x,u)| ≤ |Eµ,Σ(w,u)|+ |Eµ,Σ(x−w,u)|
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Note that |Eµ,Σ(x−w,u)| = |〈x−w, (u⋄µ)(u⋄Σ)−1〉|, so using the Cauchy-Schwarz

inequality gives

|Eµ,Σ(x−w,u)| ≤ ‖x−w‖‖(u ⋄ µ)(u ⋄ Σ)−1‖

= ‖x−w‖

(
n∑

k=1

E2
µ,Σ(ek,u)

)1/2

. (5.4.23)

Combining the above results yields

|Eµ,Σ(x,u)| ≤ |Eµ,Σ(w,u)|+ ‖x−w‖

(
n∑

k=1

E2
µ,Σ(ek,u)

)1/2

.

Therefore, the finiteness of the iterated supremum is implied by (5.4.14).

(ii). Let n ≥ 2. Let ẽ1, . . . , ẽn−1 be the canonical basis vectors of Rn−1, and Pn

be the set of all n× n permutation matrices. For P ∈ Pn, write

ΣP := P ′ΣP =

(
Σ̃P σ̃

′
P

σ̃P σP

)
,

where Σ̃P ∈ R
(n−1)×(n−1), σ̃P ∈ R

n−1 and σP ∈ (0,∞). Define

Mn(Σ) := 2
n−1∑

l=1

max
P∈Pn

sup
ũ∈S++

|E
σ̃P ,Σ̃P

(ẽl, ũ)|. (5.4.24)

By (5.4.14), Mn(Σ) ∈ [0,∞).

Let y = (y1, . . . , yn) ∈ R
n
∗ . We show by mathematical induction that there exist

0 < ǫ < 1, En(Σ) ∈ (0,∞) and Fn(Σ) ∈ [0,∞) such that

‖x‖2(u⋄Σ)−1 ≥ En(Σ)((1− ǫ)2 − ǫ(1 + ǫ)Fn(Σ)) min*

1≤k≤n
y2k, (5.4.25)

(1− ǫ)2 − ǫ(1 + ǫ)Fn(Σ) > 0 (5.4.26)

for all x ∈ y + ǫA(y) and u ∈ S++. If this holds, it implies the iterated infimum is

strictly positive, completing the proof of Part (ii).

If n = 1, note that y 6= 0, u = 1, and x ∈ y + ǫA(y) = [y − ǫ|y|, y + ǫ|y|], which is

the ball centred at y with radius ǫ|y|, 0 < ǫ < 1. Considering the cases y < 0 and

y > 0, this clearly implies

0 < (1− ǫ)|y| ≤ |x| ≤ (1 + ǫ)|y|. (5.4.27)
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In particular, ‖x‖2(u⋄Σ)−1 = x2/Σ ≥ (1 − ǫ)2y2/Σ for x ∈ y + ǫA(y). Thus, the

assertion holds for E1(Σ) = 1/Σ, F1(Σ) = 0.

Next, assume n ≥ 2 and the inductive hypothesis holds for n − 1. We can

assume without loss of generality that u ∈ S∩ (0,∞)n≤ by (5.4.2). We use dimension

reduction notation for u, x, y, Σ. For 1 ≤ k ≤ n, let Σ(k) ∈ R
(n−1)×(n−1) be the

invertible covariance matrix obtained from Σ by deleting its kth row and column.

Set Ẽn(Σ) := min1≤k≤nEn−1(Σ
(k)) and F̃n(Σ) := max1≤k≤n Fn−1(Σ

(k)).

First, assume ỹ 6= 0. Recall that ũ0 = ũ/‖ũ‖. If x ∈ y + ǫA(y), then x̃ ∈

ỹ + ǫA(ỹ). Thus, we have

‖x‖2(u⋄Σ)−1 ≥ ‖x̃‖2
(ũ0⋄Σ̃)−1 ≥ En−1(Σ̃)((1− ǫ)2 − ǫ(1 + ǫ)Fn−1(Σ̃))) min*

1≤k≤n−1
y2k

≥ Ẽn(Σ)((1− ǫ)2 − ǫ(1 + ǫ)F̃n(Σ)) min*

1≤k≤n
y2k,

where we can use (5.4.19), since x 6= 0, to obtain the first inequality, and the inductive

hypothesis to obtain the second inequality. Also, by the inductive hypothesis,

(1− ǫ)2 − ǫ(1 + ǫ)F̃n(Σ) > 0.

Second, assume ỹ = 0, so y 6= 0. If x = (x1, . . . , xn) ∈ y + ǫA(y) = (0, y) +

ǫ|y|[−1, 1]n, 0 < ǫ < 1, then max1≤k≤n−1 |xk| ≤ ǫ|y|, and (5.4.27) also holds. Thus,

it follows from the definition of E
σ̃,Σ̃ in (5.3.6) that

2|E
σ̃,Σ̃(x̃, ũ)| = 2

∣∣∣∣∣

n−1∑

l=1

xkEσ̃,Σ̃(ẽl, ũ)

∣∣∣∣∣

≤

(
max

1≤k≤n−1
|xk|

)
Mn(Σ)

≤Mn(Σ)ǫ|y|, (5.4.28)

with Mn(Σ) from (5.4.24). Recall the definition of C(Σ) from (5.4.15), and set

C̃n(Σ) := min1≤k≤n |Σ
(k)|/

∏n
k=1Σkk. Combining (5.4.17), which is applicable as

x 6= 0, with (a− b)2 ≥ |a|2− 2|a||b|, a, b ∈ R, which is implied by the reverse triangle

inequality, we obtain

‖x‖2(u⋄Σ)−1 ≥ C(Σ)(x− E
σ̃,Σ̃(x̃, ũ))

2

≥ C(Σ)(|x|2 − 2|x||E
σ̃,Σ̃(x̃, ũ)|)

≥ C(Σ)((1− ǫ)2y2 − ǫ(1 + ǫ)Mn(Σ)y
2)

≥ C̃n(Σ)((1− ǫ)2 − ǫ(1 + ǫ)Mn(Σ)) min*

1≤k≤n
y2k,

where the second last line follows by using (5.4.27) and (5.4.28). In addition,
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ǫ(1 + ǫ)Mn(Σ) < (1− ǫ)2 for some sufficiently small 0 < ǫ < 1.

To summarise, assuming the inductive hypothesis, there exists 0 < ǫ < 1,

En(Σ) := Ẽn(Σ) ∧ C̃n(Σ) and Fn(Σ) := F̃n(Σ) ∨ Mn(Σ) such that (5.4.25) and

(5.4.26) hold for all y ∈ R
n
∗ , x ∈ y + ǫA(y) and u ∈ S++. This completes the proof

by mathematical induction.

5.4.2 Uniform Positivity of E

Here, we prove the uniform positivity of Eµ,Σ, in the sense that infu∈(0,∞)n Eµ,Σ(x,

u) > 0 for x in some open set containing µ 6= 0. This result, stated in Proposi-

tion 5.4.11, is important to proving Theorem 5.3.3 (ii).

We can see that this result straightforwardly holds in some limited cases. Recall

that Σ ∈ R
n×n is an invertible covariance matrix. For n = 1, Eµ,Σ(µ, u) = µ2/Σ > 0,

u > 0. For V GGn,1 processes, Eµ,Σ(µ, ue) = ‖µ‖2Σ−1 > 0, u > 0. For V GGn,n

processes, Eµ,Σ(µ,u) = ‖µ‖2Σ−1 > 0, u ∈ (0,∞)n. In each of these cases uniform

positivity holds. However, for WVAGn processes, Eµ,Σ(µ, gα) = 〈µ,α ⋄ µ〉(α⋄Σ)−1 ,

g > 0, and determining whether this is positive is non-trivial.

We begin by proving some lemmas. If n = 1, set Ξn(x) ≡ 2, x ∈ R. Otherwise, if

n ≥ 2, let Ξn(x) = (Ξn,kl) ∈ R
n×n, x = (x1, . . . , xn−1) ∈ R

n−1, be defined by

Ξn,kl(x) :=





2 if k = l,

xk if 1 ≤ k < n and l 6= k,

1 if k = n and l ≤ l < n.

(5.4.29)

Recall that ∂A denotes the boundary of A ⊆ R
n relative to R

n.

Lemma 5.4.7. For n ≥ 1, infx∈[0,1]n |Ξn+1(x)| = 2 + n and supx∈[0,1]n |Ξn+1(x)| =

2n+1.

Proof. If n = 1, then the result is trivial. Otherwise, assume n ≥ 2.

Let hn(x) := |Ξn+1(x)|, x = (x1, . . . , xn) ∈ R
n, which is a polynomial of degree

n in the variables x1, . . . , xn. Expanding the determinant along its first row yields

hn(x) = 2hn−1(x̃) + x1rn−1(x̃), x = (x1, x̃), where x1 ∈ R, x̃ = (x2, . . . , xn) ∈ R
n−1,

and x̃ 7→ rn−1(x̃) is a remainder polynomial .

Note that x1 7→ hn(x1, x̃) is an affine function in its first variable, so that

∂2x1
hn(x1, x̃) ≡ 0. Also, hn is invariant under coordinate permutations so that

hn(xP ) = hn(x) for any permutation matrix P ∈ R
n×n. Thus, hn is a harmonic

function, meaning that div(hn) ≡ 0.
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The maximum principle for harmonic functions (see Section 1.I.4 in [Doo01])

states that

inf
x∈[0,1]n

hn(x) = min
x∈∂[0,1]n

hn(x), sup
x∈[0,1]n

hn(x) = max
x∈∂[0,1]n

hn(x).

Due to the permutation invariance, to determine the infimum and supremum of hn,

we only need to check its value on the boundary points

Fn := {0, e} ∪
⋃

1≤k<n

{x = (x1, . . . , xn) : x1 = · · · = xk = 0, xk+1 = · · · = xn = 1}.

Obviously, hn(0) = 2n+1, while hn(e) = 2 + n (see Theorem 8.4.4 in [Gra83]). For

1 ≤ k < n, we have hn(x) = 2khn−k(1, . . . , 1) = 2k(2 + n− k) when x = (x1, . . . , xn),

x1 = · · · = xk = 0, xk+1 = · · · = xn = 1. Thus,

inf
x∈[0,1]n

hn(x) = min
x∈Fn

hn(x) = 2 + n, sup
x∈[0,1]n

hn(x) = max
x∈Fn

hn(x) = 2n+1,

which completes the proof.

Remark 5.4.8. The matrix Ξn+1(e) is the covariance matrix of some n+ 1 equicor-

related random variables.

For n ≥ 2 and w = (w1, . . . wn−1) ∈ R
n−1, define the symmetric matrix Υn(w) :=

(Υn,kl(w)) ∈ R
n×n by setting

Υn,kl(w) :=




2 if k = l,

1 +
∏

k≤m<l wm if 1 ≤ k < l ≤ n,

Υn,lk(w) := Υn,kl(w), 1 ≤ k < l ≤ n.

(5.4.30)

Lemma 5.4.9. If n ≥ 2 and w ∈ [0, 1]n−1, then Υn(w) is nonnegative definite.

Proof. We perform the following three operations on Υn(w) for k = 1 to k = n− 1.

All three operations are completed before moving to the next iteration of k. Firstly,

multiply its (k+1)th column by wk and subtract this from its kth column. Secondly,

multiply its (k + 1)th row by wk and subtract this from its kth row. Thirdly, factor

out xk := 1− wk from the kth column if xk ∈ (0, 1].

If xk ∈ (0, 1] for all 1 ≤ k < n, this yields |Υn(w)| = |Ξn(x)|
∏

1≤k<n xk, where

Ξn(x) ∈ R
n×n is defined in (5.4.29). Thus, by Lemma 5.4.7, we have |Υn(w)| > 0,

w ∈ [0, 1]n−1. Otherwise, if there exists some xk = 0 for 1 ≤ k < n, then the kth

column is zero, so that |Υn(w)| = 0, w ∈ [0, 1]n−1.
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Every other principal submatrix of Υn(w), formed by keeping the rows and

columns in the index set {j1, . . . jm}, 1 ≤ j1 < · · · < jm ≤ n, 1 ≤ m ≤ n − 1 and

deleting the rest, is 2 if m = 1, otherwise it is given by Υm(w), where

w :=




j2−1∏

k=j1

wk, . . . ,

jm−1∏

k=jm−1

wk


 ∈ [0, 1]m−1.

Repeating the above argument on Υm(w) shows that |Υm(w)| ≥ 0. Hence, Υn(w) is

nonnegative definite for all w ∈ [0, 1]n−1 by Sylvester’s criterion.

For n ≥ 2 and w = (w1, . . . , wn−1) ∈ R
n−1, define the matrix ∆n(w) :=

(∆n,kl(w)) ∈ R
n×n by setting

∆n,kl(w) :=





∏
k≤m<l wm if 1 ≤ k < l ≤ n,

1 if 1 ≤ l ≤ k ≤ n.
(5.4.31)

Recall that Σ = (Σkl) ∈ R
n×n an invertible covariance matrix and ∗ denotes the

Hadamard product.

Lemma 5.4.10. If n ≥ 2 and w ∈ [0, 1]n−1, then ∆n(w) ∗ Σ is invertible.

Proof. Recall that (0,∞)n≤ := {u = (u1, . . . , un) ∈ (0,∞)n : u1 ≤ · · · ≤ un}. The

mapping

u = (u1, . . . , un) 7→ w = (u1/u2, . . . , un−1/un) (5.4.32)

defines a bijection from S ∩ (0,∞)n≤ to (0, 1]n−1 with inverse w−1 : (0, 1]n−1 →

S ∩ (0,∞)n≤. Note that ∆n(w) ∗ Σ = (u ⋄ Σ) diag(1/u), where diag(1/u) :=

diag(1/u1, . . . , 1/un). Thus, ∆n(w) ∗ Σ is invertible for all w ∈ (0, 1]n−1 because

(u ⋄ Σ) diag(1/u) is invertible due to (5.4.1).

It remains to show invertibility for w ∈ En, where

En :=
n−1⋃

k=1

{w = (w1, . . . , wn−1) ∈ ∂[0, 1]n−1 : wk = 0}. (5.4.33)

We use mathematical induction. If n = 2, note that En = {0}, so that

∆2(w) ∗ Σ = ∆2(0) ∗ Σ =

(
Σ11 0

Σ12, Σ22

)
,
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which is invertible as the product of the diagonal is strictly positive. Next, assume

n ≥ 3 and w ∈ En. If w1 = 0, then,

∆n(w) ∗ Σ =

(
Σ11 0

σ̃
′ ∆n−1(w2, . . . , wn−1) ∗ Σ̃

)
, Σ =

(
Σ11 σ̃

σ̃
′ Σ̃

)
.

If wn−1 = 0, then

∆n(w) ∗ Σ =

(
∆n−1(w1, . . . , wn−2) ∗ Σ̃ 0′

σ̃ Σnn

)
, Σ =

(
Σ̃ σ̃

′

σ̃ Σnn

)
.

Otherwise, there exists a 1 < k < n− 1 such that wk = 0, and we have

∆n(w) ∗ Σ =

(
∆k(w1, . . . , wk−1) ∗ Σ̃11 0

Σ̃21 ∆n−k(wk+1, . . . , wn−1) ∗ Σ̃22

)
,

Σ =

(
Σ̃11 Σ̃12

Σ̃21 Σ̃22

)
,

where Σ̃11 ∈ R
k×k, Σ̃22 ∈ R

(n−k)×(n−k). In all these cases, ∆n(w) ∗ Σ is invertible as

the product of the determinants of the block diagonal is strictly positive due to the

inductive hypothesis and Σ being positive definite. This completes the proof.

Now we introduce the set of points V+
µ,Σ where uniform positivity of Eµ,Σ holds.

Let

V
+
µ,Σ :=

{
x ∈ R

n : inf
u∈(0,∞)n

Eµ,Σ(x,u) > 0

}
. (5.4.34)

We show that this set is nonempty and open.

For a matrix A ∈ R
n×n, let sym(A) := (A + A′)/2 ∈ R

n×n denote the symmet-

risation of A. In particular, sym(A) is always a symmetric matrix.

Proposition 5.4.11. Let µ ∈ R
n. The set V+

µ,Σ is an open convex cone of Rn. If

µ 6= 0, then µ ∈ V
+
µ,Σ 6= ∅.

Proof. Open convex cone. If a, b > 0 and x,y ∈ V
+
µ,Σ, then it immediately follows

that ax+ by ∈ V
+
µ,Σ, so V

+
µ,Σ is a convex cone.

For all x,y ∈ R
n and u ∈ (0,∞)n, (5.4.23) gives

|Eµ,Σ(x,u)− Eµ,Σ(y,u)| ≤ C‖x− y‖, C := 1 +

(
n∑

k=1

sup
u∈(0,∞)n

E2
µ,Σ(ek,u)

)1/2

,
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where C is a finite constant due to (5.4.14), and it is positive due to the addition of

1. Now choose x ∈ V
+
µ,Σ so that E := infu∈(0,∞)n Eµ,Σ(x,u) > 0, and choose y ∈ R

n

satisfying ‖x− y‖ ≤ E/(2C). With these choices, we have

Eµ,Σ(y,u) ≥ Eµ,Σ(x,u)− C‖x− y‖ ≥
E

2
.

Thus, infu∈(0,∞)n Eµ,Σ(y,u) ≥ E/2, so y ∈ V
+
µ,Σ. This shows that V

+
µ,Σ is open.

Positivity. For the remainder of the proof, assume that µ 6= 0. We show

that Eµ,Σ(µ,u) > 0, u ∈ (0,∞)n. Recall that S++ := S ∩ (0,∞)n. By (5.3.8),

Eµ,Σ(x,u) = Eµ,Σ(x,u
0), where u0 := u/‖u‖ and u ∈ (0,∞)n, so we assume without

loss of generality that u ∈ S++.

Let Σs(u,Σ) := sym((u⋄Σ) diag(1/u)), where diag(1/u) := diag(1/u1, . . . , 1/un).

We have

Eµ,Σ(µ,u) = µ(u ⋄ Σ)−1 diag(u)µ′ (5.4.35)

= ‖µ((u ⋄ Σ) diag(1/u))−1‖2(u⋄Σ) diag(1/u)

= ‖µ((u ⋄ Σ) diag(1/u))−1‖2Σs(u,Σ), (5.4.36)

where the last line follows from Lemma A.2.3. Thus, Eµ,Σ(µ,u) > 0 provided that

Σs(u,Σ) is positive definite.

Introduce g(u) := (1 ∧ u) + (1 ∧ (1/u)) ∈ (1, 2], u > 0, and the symmetric matrix

Θn(u) := (Θn,kl(u)) defined by Θn,kl(u) := g(uk/ul), 1 ≤ k, l ≤ n, u ∈ S++. We now

prove that Θn(u) is nonnegative definite. For n = 1, this is clear as |Θ1(u)| ≡ 2.

For n ≥ 2, note that Θn(uP ) = P ′Θn(u)P , u ∈ S++, for any permutation matrix

P ∈ R
n×n as the (k, l) elements of both sides are g(u(k)/u(l)), where 〈(1), . . . , (n)〉 is

the permutation associated with P . Thus, we can assume u ∈ S ∩ (0,∞)n≤ without

loss of generality as proving that Θn(u) is nonnegative definite for u ∈ S ∩ (0,∞)n≤

implies it for all u ∈ S++. This follows from the definition of a nonnegative definite

matrix. Now with w ∈ (0, 1]n−1 determined by the bijection in (5.4.32), we have

Θn(u) = Υn(w), where Υn(w) is defined in (5.4.30) and nonnegative definite by

Lemma 5.4.9.

Finally, note that 2Σs(u,Σ) = Θn(u) ∗ Σ, u ∈ S++. Since Σ is positive definite

by assumption and Θn(u) is nonnegative definite with positive diagonal elements

Θn,kk(u) ≡ 2, 1 ≤ k ≤ n, Oppenheim’s inequality (see the LHS of (A.2.1)) imme-

diately implies that every leading principal minor of Θn(u) ∗ Σ is positive. Thus,

Σs(u,Σ) is positive definite, proving that Eµ,Σ(µ,u) > 0, u ∈ (0,∞)n.

Uniform positivity. Now we show that µ ∈ V
+
µ,Σ. If n = 1, the result is obvious
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as Eµ,Σ(µ, u) ≡ µ2/Σ. Now assume n ≥ 2. Let E := infu∈(0,∞)n Eµ,Σ(µ,u) and note

that E = infu∈S++ Eµ,Σ(µ,u) by (5.3.8).

Clearly, there exists a sequence (um)m∈N ⊆ S++ such that limm→∞ Eµ,Σ(µ,um) =

E. Without loss of generality, by choosing a suitable subsequence if necessary, we

may assume that um → u0 for some u0 ∈ S+ as m→ ∞, where S+ := S ∩ [0,∞)n.

If u0 ∈ S++, then E = Eµ,Σ(µ,u0) > 0 follows from the positivity result we

have proven. Otherwise, assume that u0 ∈ S+\S++. Without loss of generality, we

can further assume that (um)m∈N ⊆ (0,∞)n≤ due to (5.4.2). By selecting a suitable

subsequence if necessary, and with the bijection in (5.4.32), we may assume that

wm := w(um) → w0 ∈ En since u0 ∈ S+\S++, where En in is defined in (5.4.33).

Since um ∈ (0,∞)n≤, we have ∆n(wm) ∗ Σ = (um ⋄ Σ) diag(1/um), where

∆n(wm) is defined by (5.4.31). Thus, using (5.4.35), we obtain Eµ,Σ(µ,um) =

µ(∆n(wm) ∗ Σ)
−1µ′. Now note that w 7→ ∆n(w) ∗ Σ is a continuous mapping from

R
n−1 to R

n×n. Since taking the inverse of matrices is a continuous operation, by

applying Lemma 5.4.10, we have

Eµ,Σ(µ,um) = µ(∆n(wm) ∗ Σ)
−1µ′ → µ(∆n(w0) ∗ Σ)

−1µ′, m→ ∞,

so that

E = µ(∆n(w0) ∗ Σ)
−1µ′ = ‖µ(∆n(w0) ∗ Σ)

−1‖2sym(∆n(w0)∗Σ),

where the last equality follows by using the same argument as in (5.4.36). Finally,

note that 2 sym(∆n(w0) ∗Σ) = Υn(w0) ∗Σ. By Lemma 5.4.9, Υn(w0) is nonnegative

definite since w0 ∈ [0, 1]n−1. Thus, using the same Oppenheim’s inequality argument

as above, sym(∆n(w0) ∗ Σ) is positive definite, implying E > 0. This completes the

proof.

5.5 Applications of Self-Decomposability Condi-

tions

In this section, we apply the conditions for self-decomposability in Theorem 5.2.2

and non-self-decomposability in Theorem 5.3.3 to various classes of V GGn processes.

We begin with V GGn,1 processes.

Corollary 5.5.1. Assume that Y ∼ V GGn,1(d,µ,Σ,U).

(i) If n = 1, or n ≥ 2 and µ = 0, then Y is SD.
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(ii) If n ≥ 2, |Σ| 6= 0, µ 6= 0 and 0 <
∫
(0,∞)

(1 + u1/2)U(du) < ∞, then Y is

not SD.

Proof. By Example 3.2.4, Y ∼ V GGn(de,µ,Σ,
∫
(0,∞)

δue U(du)). So Part (i) follows

from Theorem 5.2.2. Part (ii) follows by applying Theorem 5.3.3 (iii).

This gives a refinement of Lemma 5.1.5. Note that if the moment condition

in Corollary 5.5.1, 0 <
∫
(0,∞)

(1 + u1/2)U(du) < ∞, is satisfied, then the moment

condition of Lemma 5.1.5 (ii), 0 <
∫
(0,∞)

(1 + u)2 U(du) < ∞ when n = 2, or

0 <
∫
(0,∞)

(1 + u)U(du) <∞ when n ≥ 3, is also satisfied. So we have improved the

non-self-decomposability conditions in Proposition 3 of [Gri07b].

For V G processes, we get the following simple conditions for self-decomposability.

Corollary 5.5.2. Assume that V ∼ V Gn(b,µ,Σ).

(i) If n = 1, or n ≥ 2 and µ = 0, then V is SD.

(ii) If n ≥ 2, |Σ| 6= 0, µ 6= 0, then V is not SD.

Proof. Since V ∼ V GGn,1(0,µ,Σ, bδb) by Example 3.2.4, this follows from Corol-

lary 5.5.1, with the integral condition being trivially satisfied.

For V GGn,n processes, we obtain the following self-decomposability conditions.

Corollary 5.5.3. Assume that Y ∼ V GGn,n(d,µ,Σ,U).

(i) If n = 1, or n ≥ 2 and µ = 0, then Y is SD.

(ii) If n ≥ 2, |Σ| 6= 0, µ 6= 0, U((0,∞)n) > 0 and (5.3.18) holds, then Y is not

SD.

Proof. By Example 3.2.4, Y ∼ V GGn(d,µ,Σ,U). So Parts (i) and (ii) follow from

Theorem 5.2.2 and Theorem 5.3.3 (ii), respectively.

Next, we apply the self-decomposability conditions to WVAG processes. Note

that these are only defined for n ≥ 2.

Corollary 5.5.4. Assume that Y ∼ WVAGn(a,α,µ,Σ).

(i) If µ = 0, then Y is SD.

(ii) If |Σ| 6= 0 and µ 6= 0, then Y is not SD.

Proof. By Proposition 4.2.2, Y ∼ V GGn(0,µ,Σ,Ua,α) with Ua,α defined in (4.1.5).

So Part (i) follows from Theorem 5.2.2. Since Ua,α((0,∞)n ∩ A) = aδα/‖α‖2(A) for

all Borel sets A ⊆ [0,∞)n∗ , Part (ii) follows by applying Theorem 5.3.3 (iii).
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Example 5.5.5. It has been argued that log returns should be SD [Bin06, BK02,

CGMY07]. Returning to the WVAG model fitted to the bivariate S&P500 and

FTSE100 data set in Section 4.6.6, we can apply the self-decomposability condition

of Corollary 5.5.4 to test this claim. The log return process R
D
= Iη +Y is given

in (4.6.1). With the notation specified there, note that R is SD if and only if

Y ∼ WVAGn(a,α,µ,Σ) is SD due to the last statement in Lemma 5.1.2. This

means that despite the addition of the drift term Iη, Corollary 5.5.4 is still applicable

to R.

Using ML, we obtain the parameter estimate µ = (−0.0004,−0.0008) from

Table 4.4, which is very close to 0, suggesting that R is likely SD. Assuming that

the log returns satisfies the WVAG model, a likelihood ratio test can be used to

test the hypothesis H0 : µ = 0 versus H1 : µ 6= 0. The test statistic D = 4.11 is

asymptotically χ2 distributed with 2 degrees of freedom. The p-value is 0.128, so at

a 5% significance level we cannot reject that the log return process R is SD.

We now apply these self-decomposability conditions to other V GGn processes

that have not been previously discussed.

VMΓn processes. For n ≥ 2, VMΓn processes are defined in Section 2.5 of

[BKMS17]. A Lévy process Y
D
= B ◦T is a VMΓn process if B ∼ BMn(µ,Σ) and

T
D
= (G1, . . . , Gm)A, where B and Gk ∼ ΓS(bk), 1 ≤ k ≤ m, m ≥ 1, are independent,

and A ∈ R
m×n has no zero rows and all its elements are nonnegative.

Example 5.5.6. Weakly subordinated VMΓn processes, which have the form

Y
D
= B⊙T, are SD when µ = 0, and not SD when |Σ| 6= 0 and µ 6= 0. We can see

this immediately in the same way as Corollary 5.5.4 because the subordinator T has

a finitely supported Thorin measure.

V GGn processes from beta distributions of the second kind. Let a, b > 0. A random

variable V (a, b)
D
= G1/G2, where G1 ∼ Γ(a, 1) and G2 ∼ Γ(b, 1) are independent, is

a beta random variable of the second kind. Consider the univariate subordinator

T ∼ GGC1
S(0,Ua,b), where Ua,b is the probability measure of V (a, b), so that

Ua,b(du) = fa,b(u)du, fa,b(u) := Ca,bu
a−1(1 + u)−a−b,

where Ca,b is a normalising constant (see Equation (2.2.5) [Bon92]). Note that

(1 − ln(u))fa,b(u) ∼ Ca,b(1 − ln(u))ua−1 as u ↓ 0, which is integrable for all a > 0,

and u−1fa,b(u) ∼ Ca,bu
−b−2 as x→ ∞, which is integrable for all b > 0, so Ua,b is a

Thorin measure.

Let Tk ∼ GGC1
S(0,Uak,bk), ak > 0, bk > 0, 1 ≤ k ≤ m, m ≥ 1, be independent.
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Consider a V GGn process of the form Y
D
= B ⊙ T, where B ∼ BMn(µ,Σ), T

D
=

∑m
k=1 Tkαk and αk ∈ [0,∞)n∗ , 1 ≤ k ≤ m.

Example 5.5.7. We impose the additional assumption that b > 1/2. Note that

(1 + u1/2)fa,b(u) is eventually bounded by (1− ln(u))fa,b(u) as u ↓ 0, and the latter

is integrable as Ua,b is a Thorin measure. Also, (1 + u1/2)fa,b(u) ∼ Ca,bu
−b−1/2 as

u→ ∞, which is integrable for all b > 1/2. Thus, we have
∫∞

0
(1+u1/2)Ua,b(du) <∞.

By Theorem 5.2.2, Y is SD when n = 1, or n ≥ 2 and µ = 0. By Theorem 5.3.3

(iii), Y is not SD when n ≥ 2, |Σ| 6= 0, bk > 1/2, 1 ≤ k ≤ m and µ 6= 0. The latter

is an improvement on the non-self-decomposability condition in Lemma 5.1.5, which

requires m = 1, α1 = e and b1 > 1.

CGMY processes. Let c, g,m > 0 and y ∈ (0, 2). A univariate Lévy process

Y ∼ CGMY (c, g,m, y) is a CGMY process if it has characteristic exponent

ΨY (θ) = cΓ(−y)((m− iθ)y −my + (g − iθ)y − gy), θ ∈ R.

This process was introduced in [CGMY02] and it is a subordinated Brownian motion

of the form Y
D
= B ◦T , where B ∼ BM1((g−m)/2, 1) and the CGMY subordinator

T are independent (see Section 3 in [MY08]). We describe T below.

We assume that c = 1. It has been shown in Example 8.2 of [JZ11] that

the associated CCMY subordinator is a Thorin subordinator, and hence CGMY

processes are V GG1 processes. Here, we specify its Thorin measure. Introduce

a := 2y/2/Γ(y), a1 := 2mg, a2 := (g +m)2/8, where Γ is the gamma function. Let

U1(du) := auy/2−1 du and U2 be the probability measure of a1+a2V (y/2, 1/2), where

V (y/2, 1/2) is a beta random variable of the second kind. Combining Equation (8.2)

in [JZ11] and Theorem 3.1.1 in [Bon92], the former giving the Lévy density of T , the

latter giving a formula connecting it to its Thorin measure U , we have

∫

(0,∞)

e−tu U(du) = aΓ
(y
2

)
t−y/2

E[exp(−t(a1 + a2V (y/2, 1/2)))]

=

∫

(0,∞)

e−tu U1(du)

∫

(0,∞)

e−tu U2(du), t ≥ 0.

Recognising that this is the Laplace transform of a convolution of measures, the

associated CGMY subordinator is T ∼ GGC1
S(0,U1 ⋆ U2), where ⋆ denotes the

convolution of measures.

For n ≥ 2, consider a multivariate CGMY process Y = (Y1, . . . , Yn)
D
= B ◦ (Te),

where B ∼ BM(µ,Σ) is independent of T , µ = ((g −m)/2)e, diag(Σ) = e, so that

Yk ∼ CGMY (1, g,m, y).
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Example 5.5.8. Since
∫∞

0
(1 + (u+ v)1/2)uy/2−1 du = ∞ for all v > 0 and y ∈ (0, 2),

the integral condition in Corollary 5.5.1 (ii) is not satisfied. The same is true of the

integral condition in Lemma 5.1.5 (ii). Thus, we are unable to conclude whether or

not Y is self-decomposable for µ 6= 0, and similarly for the multivariate CGMY

process outlined in Section 3.4 of [LS10].

Generalised hyperbolic processes. Let (α, β, γ) ∈ R× (0,∞)2 ∪ (0,∞)2 × {0} ∪

(−∞, 0)×{0}×(0,∞). A univariate subordinator T ∼ GIGS(α, β, γ) is a generalised

inverse Gaussian subordinator if T ∼ GGC1
S(0,Uα,β,γ), where

Uα,β,γ(du) : = α+δβ(du) + 2γ1(β,∞)(u)g|α|(4γ(u− β)) du,

gρ(u) : = 2(π2u(J2
ρ (u

1/2) + Y 2
ρ (u

1/2)))−1, ρ ≥ 0, (5.5.1)

and Jρ and Yρ are Bessel functions of the first and second kind, respectively. GIG

subordinators were originally characterised as Thorin subordinators in [Hal79] though

the representation above is taken from Example 1 in [Gri07b] and Remark 2.8 in

[BKMS17]. If γ = 0, then the GIG subordinator reduces to a gamma subordinator

T ∼ ΓS(α, β). A Lévy process Y ∼ GHn(α, β, γ,µ,Σ) is a generalised hyperbolic

process if Y
D
= B ◦ (Te), where B ∼ BMn(µ,Σ) and T ∼ GIGS(α, β, γ) are

independent.

Example 5.5.9. Assume that n ≥ 2 and |Σ| 6= 0. As noted in Example 1 of [Gri07b],

gρ(u) ∼ cu−1/2, ρ ≥ 0, as u→ ∞ for some constant c > 0, so the integral condition

in Corollary 5.5.1 (ii), although less stringent than the condition in Lemma 5.1.5

(ii), is not satisfied unless γ = 0. Thus, as in [Gri07b], no conclusion about the

self-decomposability of Y can be drawn when γ 6= 0, µ 6= 0.

However, we can numerically examine the function Hs(r) defined in (5.3.14) for

particular parameter values. For s ∈ S
∗, we have

Hs(r) =
2

(2π)n/2
exp(r〈s,µ〉Σ−1)

‖s‖nΣ−1 |Σ|1/2

(
α+Kn/2(r(2nβ + ‖µ‖Σ−1)1/2‖s‖Σ−1)

+ 2γ

∫

(β,∞)

Kn/2(r(2nu+ ‖µ‖Σ−1)1/2‖s‖Σ−1)g|α|(4γ(u− β)) du

)
,

where Kn/2 is defined in (1.3.2) and g|α| is defined in (5.5.1). Recall that due to

Lemma 5.3.1, the proof of Theorem 5.3.3 proceeds by showing that r 7→ Hs(r) is

increasing at the origin on a Borel set B ⊆ S
∗ of positive Lebesgue surface measure.

Suppose that Y ∼ GH3(−1, 2, 0.5, (−5, 0, 0), diag(0.05, 1, 1)). A plot of r 7→ Hs(r)

at s = (−1, 0, 0) is given in Figure 5.1. This numerical experiment suggests that Hs

may be decreasing at the origin but strictly increasing at an alternative point. If
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this behaviour extends to a set s ∈ S
∗ of strictly positive Lebesgue surface measure,

then Y cannot be self-decomposable.
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Figure 5.1: Plot of r 7→ Hs(r) for GH
3(−1, 2, 0.5, (−5, 0, 0), diag(0.05, 1, 1)) at s =

(−1, 0, 0).

As these examples demonstrate, the non-self-decomposability conditions in The-

orem 5.3.3 can be easily applied to WVAG processes and processes with finitely

supported Thorin measure. However, they fail to be applicable for many high activity

V GGn processes, despite improving on the conditions in Lemma 5.1.5 (ii).

In addition, Example 5.5.9 and Figure 5.1 suggests that proving or disproving

the conjecture that µ = 0 is equivalent to self-decomposability for V GGn processes

will likely require methods that consider the function r 7→ Hs(r) on its entire domain,

not just near the origin, and that relax the moment conditions on the underlying

Thorin measure.



Concluding Remarks

While it is widely known that strong subordination produces Lévy processes when the

subordinate has independent components or the subordinator has indistinguishable

components, we have proved that these conditions are necessary in a wide range of

cases. Our main contribution is the introduction of weak subordination, an operation

that always creates a Lévy process, while extending strong subordination by matching

it in law in the aforementioned cases. Numerous properties of weak subordination

have been derived.

We have used weak subordination to generalise the class of V GGn,1 and V GGn,n

processes with the superclass of V GGn processes, and characterised the laws of

the latter. In particular, we focused on WVAG processes, and we studied Fourier

invertibility and calibration methods for these. Based on moment formulas and a fit

of the models to an S&P500-FTSE100 data set, we found that WVAG processes

exhibit a wider range of dependence and produces a significantly better fit than

V AG processes constructed by strong subordination.

In addition, we have proved sufficient conditions as well as necessary conditions

for the self-decomposability of V GGn processes, extending and improving the work

of Grigelionis [Gri07b], who obtained analogous results for V GGn,1 processes.

Outside of our applications, weak subordination has been used in financial mod-

elling. In Michaelsen and Szimayer [MS18], various marginal consistent dependence

models have been constructed by weak subordination. In Madan [Mad18], log returns

modelled using WVAG processes were applied in instantaneous portfolio theory.

There are a variety of research directions for weak subordination. On the

theoretical side, there are several open questions regarding the connection between

strong and weak subordination. Weakening the assumptions of Proposition 1.3.6

and 2.3.29 is of interest to more completely determine the necessary and sufficient

conditions for strong subordination to create a Lévy process, and when it is possible

for a weakly subordinated process, or any Lévy process, to have time marginals that

match those of a strongly subordinated process. It is also not known if weak and

strong subordination coincide in law in all the cases where strong subordination
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produces a Lévy process, though in light of the construction in Section 2.1, we

conjecture that this is true.

Furthermore, whether or not the self-decomposability of a V GGn process is

equivalent to its Brownian motion subordinate being driftless remains open. Related

to this, it would be useful to relax the moment conditions on the Thorin measure

in the necessary conditions of Theorem 5.3.3. Another future direction could be

to extend these results about V GGn processes to operator self-decomposability

and to find conditions for their inclusion in Urbanik’s L classes. In the context of

multivariate subordination, sufficient conditions for this were derived in [BNPS01].

Studying the consistency and asymptotics of the estimators for WVAG processes is

another potential area of research.

On the practical side, additional weakly subordinated models, such as extending

the multivariate GH and CGMY processes, could be explored. Other possibilities

include using subordinates other than Brownian motion, such as stable processes, or

subordinators that do not arise via ray subordination. The latter has been considered

in Michaelsen [Mic18], where subordinators with arbitrary marginal components and

dependence specified by a Lévy copula were studied.

Given that the assumption of iid log returns required for the WVAG model in

Section 4.6 may be unrealistic in practice, we could alternatively consider related

models with autocorrelation for future research. Recall that in Example 5.5.5, we fail

to reject that the log returns of the S&P500-FTSE100 dataset are self-decomposable.

This suggests models using the one-to-one correspondence between self-decomposable

distributions and Lévy-driven Ornstein-Uhlenbeck processes may be appropriate. To

be precise, log returns could be modelled using a multivariate Lévy-driven Ornstein-

Uhlenbeck process with a self-decomposable WVAG stationary distribution and

having exponentially decaying autocorrelation. However, more research following on

from [BNS01] would be needed regarding parameter estimation for these processes,

which is complicated by the fact that the log returns are no longer independent.



Appendix A

Miscellaneous Results

A.1 Modified Bessel Functions of the Second Kind

This section revises some properties of the modified Bessel function Kρ of the second

kind of order ρ ≥ 0. We define

Kρ(r) := rρKρ(r) = 2ρ−1

∫ ∞

0

xρ−1 exp

(
−x−

r2

4x

)
dx, ρ ≥ 0, r > 0. (A.1.1)

(see Equation (3.471)–9 in [GR15]). In particular, K1/2(r) = (π/2)1/2e−rr−1/2, r > 0,

(see Equation (8.469)–3 in [GR15]) so that

K1/2(r) =
(π
2

)1/2
e−r, r > 0. (A.1.2)

We use the following facts regarding Bessel functions.

Lemma A.1.1.

(i) For ρ ≥ 0, r 7→ Kρ(r) is nonnegative and nonincreasing.

(ii) We have, K0(r) ∼ − ln(r) as r ↓ 0.

(iii) For ρ > 0, Kρ is uniformly bounded by Kρ(0+) = 2ρ−1Γ(ρ).

(iv) For ρ ≥ 0, Kρ(r) ∼ K1/2(r) = (π/2)1/2e−rr−1/2 as r → ∞.

(v) For ρ ≥ 0, a, θ > 0 and any n-dimensional Thorin measure U , we have

∫

(0,∞)n
Kρ(a‖u‖

θ)U(du) <∞. (A.1.3)

(vi) For ρ ≥ 1, (d/dr)Kρ(r) = −rKρ−1(r), r > 0.
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(vii) For ρ = (n− 2)/2, n ≥ 2, we have

0 ≤ Kn/2(r)− Kn/2(2r) ≤
3

2
r2Kρ(r), r > 0. (A.1.4)

(viii) For ρ ≥ 0, limr↓0 rKρ(r) = 0.

(ix) For ρ ≥ 0, supr>0 rKρ(r) <∞.

Proof. (i). This follows immediately from (A.1.1).

(ii)–(iii). See Equation (A.3) in [Gau14]. For an alternative proof of Part (iii),

note that (A.1.1) implies Kρ(r) = 2ρ−1Γ(ρ)E[exp(−r2/(4G))], r > 0, where G ∼

Γ(ρ, 1) and Γ is the gamma function (see Equation (1.l) in [PY81]).

(iv). See Equation (8.451)–6 in [GR15].

(v). By Parts (ii) and (iii), Kρ(ar
θ) is eventually bounded by c(1− ln(r)) as r ↓ 0

for some constant c > 0. By Part (iv), Kρ(ar
θ) is eventually bounded by 1/r as

r → ∞. So noting (3.1.1), the integral is bounded.

(vi). See Equation (A.13) in [Gau14].

(vii). Let r > 0. The first inequality follows from s 7→ Kρ(s) being nonincreasing.

For the second inequality, note that (d/dr)Kn/2(r) = −rKρ(r) by Part (vi). Now

using the fundamental theorem of calculus, followed by the nonincreasingness of

s 7→ Kρ(s), we get

Kn/2(r)− Kn/2(2r) =

∫ 2r

r

sKρ(s) ds ≤ Kρ(r)

∫ 2r

r

s ds =
3

2
r2Kρ(r).

(viii). For ρ = 0, this follows from Part (ii). For ρ > 0, this follows from Part (iii).

(ix). By Part (viii), limr↓0 rKρ(r) = 0. By Part (iv), limr→∞ rKρ(r) = 0. Since

r 7→ rKρ(r), r > 0, is a continuous function, it must have a finite supremum.

A.2 Linear Algebra

Recall that ∗ denotes the Hadamard product of matrices. The following two inequal-

ities are known as Oppenheim’s and Hadamard’s inequalities, respectively, and are

critical for proving conditions for the non-self-decomposability of V GGn processes in

Sections 5.3 and 5.4.

Lemma A.2.1. For covariance matrices A = (Akl) ∈ R
n×n and B = (Bkl) ∈ R

n×n,

we have (
n∏

k=1

Akk

)
|B| ≤ |A ∗B| ≤

n∏

k=1

AkkBkk. (A.2.1)
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Proof. See Theorems 3.6.3 and 3.7.5 in [BR97].

The condition that a covariance matrix Σ = (Σkl) ∈ R
n×n is invertible is invoked

in several places throughout the text. The next lemma gives some useful results for

this situation. It implies that no component of B ∼ BMn(µ,Σ) can degenerate to a

zero process.

Lemma A.2.2. Let Σ ∈ R
n×n be a covariance matrix. Then

(i) Σ is invertible if and only if |Σ| > 0;

(ii) Σ is invertible if and only if Σ is positive definite;

(iii) If Σ is invertible then Σkk > 0 for all 1 ≤ k ≤ n.

Proof. (i). Since Σ is a covariance matrix, |Σ| ≥ 0. Since Σ is invertible, |Σ| 6= 0.

Conversely, |Σ| > 0 implies that Σ is invertible.

(ii). By Part (i), we have 0 < |Σ| =
∏n

k=1 λk, where λ1, . . . λn are the eigenvalues

of Σ, and they must be nonnegative since Σ is nonnegative definite. For this to hold,

we must have λk > 0 for all 1 ≤ k ≤ n, and hence Σ is positive definite. Conversely,

all positive definite matrices are invertible.

(iii). By Part (i) and Hadamard’s inequality (see Lemma A.2.1), we have

0 < |Σ| ≤
∏n

k=1Σkk. This inequality would be violated unless Σkk > 0 for all

1 ≤ k ≤ n.

For a matrix A ∈ R
n×n, let sym(A) := (A + A′)/2 ∈ R

n×n denote the symmet-

risation of A.

Lemma A.2.3. If x ∈ R
n and A ∈ R

n×n, then ‖x‖2A = ‖x‖2sym(A)

Proof. We have A = (A − A′)/2 + sym(A), and substituting this into xAx′ gives

x sym(A)x′, which completes the proof.

A.3 Analysis and Measure Theory

We state the transformation theorem below.

Proposition A.3.1. Let X and Y be measure spaces, X be a measure on X, f :

X → Y and g : Y → R be measurable functions, where g is nonnegative, then

∫

Y

g(y) (X ◦ f−1)(dy) =

∫

X

g(f(x))X (dx).

In particular, g is (X ◦ f−1)-integrable if and only if g ◦ f is X -integrable.
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Proof. See Theorem 19.1 and Corollary 19.2 in [Bau92].

The following statement is Fatou’s lemma for random variables.

Lemma A.3.2. For random variables Xm ≥ 0, m ≥ 1, we have

lim inf
m→∞

E[Xm] ≥ E

[
lim inf
m→∞

Xm

]
.

Proof. See Theorem 9.1 (e) in [JP04].

The next lemma is the polar decomposition of the Lebesgue measure.

Lemma A.3.3. If f : Rn → R is Borel measurable and Lebesgue integrable, then

∫

Rn

f(x) dx =

∫

S

∫

(0,∞)

rnf(rs)
dr

r
ds.

Proof. See Equation (4) in [Gri07b].

Lastly, we have an elementary and useful complex number inequality.

Lemma A.3.4. If z ∈ C and ℜz ≤ 0, then |ez − 1| ≤ |z|.

Proof. Using 1− e−x ≤ x, 1− cos x ≤ x2/2, x ∈ R, and assuming ℜz ≤ 0, we have

|ez − 1|2 = (1− eℜz)2 + 2eℜz(1− cos(ℑz)) ≤ (ℜz)2 + (ℑz)2 = |z|2,

which implies the result.



Appendix B

Calibration Code

This appendix reproduces some illustrative portions of the code that was used

to implement the calibration methods outlined in Section 4.6. This includes the

simulation of WVAG processes and the estimation of their parameters using ML,

DME and MOM. We also include the computation of the KS and χ2 statistic, while

the computation of the − lnL statistic is not included as it simply involves evaluating

the objective function in the ML code.

The code is written in the programming language R.

Functions

#Libraries

library(VarianceGamma)

library(pracma)

library(MASS)

library(Peacock.test)

#Functions

sim.vag <- function(a,alpha1,alpha2,mu1,mu2,S11,S22,rho,t.max=1000){

S12 <- rho*sqrt(S11*S22)

if(a >= min(1/c(alpha1,alpha2))){

return(NA)

}

adjustedmu <- c(mu1,mu2)

Sigma <- array(c(S11,S12,S12,S22),c(2,2))

adjustedmu.list <- Sigma.list <- list()

#V0

S0 <- rgamma(n=t.max,shape=a,rate=a)

adjustedmu0 <- a*c(alpha1,alpha2)*adjustedmu

Sigma0 <- a*outer(c(alpha1,alpha2),c(alpha1,alpha2),pmin)*Sigma

N0 <- t(mvrnorm(n=t.max,mu=c(0,0),Sigma=Sigma0))

V0 <- rbind(sqrt(S0)*N0[1,]+S0*adjustedmu0[1],sqrt(S0)*N0[2,]+S0*adjustedmu0[2])

#V1

S1 <- rgamma(n=t.max,shape=(1-a*alpha1)/alpha1,rate=(1-a*alpha1)/alpha1)

adjustedmu1 <- S1*(1-a*alpha1)*mu1

Sigma1 <- S1*(1-a*alpha1)*S11
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V1 <- rnorm(n=t.max,mean=adjustedmu1,sd=sqrt(Sigma1))

#V2

S2 <- rgamma(n=t.max,shape=(1-a*alpha2)/alpha2,rate=(1-a*alpha2)/alpha2)

adjustedmu2 <- S2*(1-a*alpha2)*mu2

Sigma2 <- S2*(1-a*alpha2)*S22

V2 <- rnorm(n=t.max,mean=adjustedmu2,sd=sqrt(Sigma2))

returns <- t(V0)+cbind(V1,V2)

colnames(returns) <- c("R1","R2")

return(returns)

}

pvg.2 <- function(y,theta,sigma,nu,vgC){

const <- 2/(sigma*sqrt(2*pi)*nu^(1/nu)*gamma(1/nu))*(1/sqrt(2*sigma^2/nu+theta^2))^(1/nu-1/2)

vg.f <- function(x){

if(x==0){

x <- 1e-8

rv1 <- const*exp(theta*(x-vgC)/sigma^2)*abs(x-vgC)^(1/nu-1/2)*

besselK((abs(x-vgC)*sqrt(2*sigma^2/nu+theta^2))/sigma^2 ,1/nu-1/2)

x <- -1e-8

rv2 <- const*exp(theta*(x-vgC)/sigma^2)*abs(x-vgC)^(1/nu-1/2)*

besselK((abs(x-vgC)*sqrt(2*sigma^2/nu+theta^2))/sigma^2 ,1/nu-1/2)

rv <- (rv1+rv2)/2

}else{

rv <- const*exp(theta*(x-vgC)/sigma^2)*abs(x-vgC)^(1/nu-1/2)*

besselK((abs(x-vgC)*sqrt(2*sigma^2/nu+theta^2))/sigma^2 ,1/nu-1/2)

}

return(rv)

}

integrate(Vectorize(vg.f),lower=-Inf,upper=y)$val

}

obj.fn <- function(x,q,k){

e.x2 <- exp(x[2])

e.x3 <- exp(x[3])

f <- numeric(n.qu)

for(j in 1:n.qu){

tmp <- try(pvg(k[j],theta=x[1],sigma=e.x2,nu=e.x3,vgC=x[4])-q[j])

if(is.numeric(tmp)==TRUE){

f[j] <- tmp

}else{

tmp2 <- try(pvg.2(k[j],theta=x[1],sigma=e.x2,nu=e.x3,vgC=x[4])-q[j])

if(is.numeric(tmp2)==TRUE){

f[j] <- tmp2

}else{

return(Inf)

}

}

}

wt <- 1

return(sum(wt*f^2))

}

obj.fn.2d <- function(a.est,rho.est,alpha1.est,alpha2.est,mu1.est,mu2.est,

S11.est,S22.est,eta1.est,eta2.est,quan.q,k1,k2){

vag <- sim.vag(a=a.est,rho=rho.est,

alpha1=alpha1.est,alpha2=alpha2.est,mu1=mu1.est,mu2=mu2.est,S11=S11.est,

S22=S22.est,t.max=n.est)

if(sum(is.na(vag))>0){

return(NA)

}
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R1.est <- vag[,1]+eta1.est

R2.est <- vag[,2]+eta2.est

quan.q.est <- array(NA,c(length(k1),length(k2)))

for(i in 1:length(k1)){

for(j in 1:length(k2)){

k.tmp <- trans.mat%*%c(k1[i],k2[j])

quan.q.est[i,j] <- sum(R1.est<=k.tmp[1,] & R2.est<=k.tmp[2,])/n.est

}

}

wt <- 1

error <- sum(wt*(quan.q.est-quan.q)^2)

rm(R1.est,R2.est)

gc()

return(error)

}

obj.fn.2d <- Vectorize(obj.fn.2d,vectorize.args=c("a.est","rho.est"))

get.to.min <- function(x,loess.fit=l2){

loess.df2 <- data.frame(grid1=x[1],grid2=x[2])

loess.pred <- predict(loess.fit,newdata=loess.df2)

return(as.numeric(loess.pred))

}

scale <- 1

delta <- 1

Method of Moments

n.sim <- 100

set.seed(46473448)

boot.par.init <- array(NA,c(n.sim,10))

boot.par <- array(NA,c(n.sim,10))

optim.list <- list()

tol.val <- 1e-4

for(i.sim in 1:n.sim){

return.process <- sim.vag(a.true,alpha1.true,alpha2.true,mu1.true,mu2.true,S11.true,S22.true

,rho.true,t.max=1000)

R1 <- return.process[,1]+eta1.true

R2 <- return.process[,2]+eta2.true

STARTINGVAL1 = 1

STARTINGVAL21 = var(R1)

STARTINGVAL22 = var(R2)

# Marginal paramters 1

est.m <- mean(R1)

est.v <- var(R1)

est.s <- mean((R1-mean(R1))^3)

est.k <- mean((R1-mean(R1))^4)

mom.eq <- function(x){

alpha1 <- x[1]

S11 <- x[2]

mu1 <- x[3]

eta1 <- x[4]

component1 <- mu1+eta1 - est.m

component2 <- S11+alpha1*mu1^2 - est.v

component3 <- 3*alpha1*S11*mu1+2*alpha1^2*mu1^3 - est.s

component4 <- 3*S11^2+3*alpha1*(S11^2+2*S11*mu1^2)+3*alpha1^2*(4*S11*mu1^2+mu1^4)+6*alpha1^3

*mu1^4 - est.k

return(c(component1,component2,component3,component4))
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}

soln1 <- try(fsolve(mom.eq,c(STARTINGVAL1,STARTINGVAL21,0,0),maxiter=10000)$x)

if(is.character(soln1)==FALSE){

alpha1 <- soln1[1]

S11 <- soln1[2]

mu1 <- soln1[3]

eta1 <- soln1[4]

tol <- sum(fsolve(mom.eq,c(STARTINGVAL1,STARTINGVAL21,0,0),maxiter=10000)$fval^2)

if(alpha1 <= 0 | S11 <= 0 | tol > tol.val){

mom.eq <- function(x){

alpha1 <- exp(x[1])

S11 <- exp(x[2])

mu1 <- x[3]

eta1 <- x[4]

component1 <- mu1+eta1 - est.m

component2 <- S11+alpha1*mu1^2 - est.v

component3 <- 3*alpha1*S11*mu1+2*alpha1^2*mu1^3 - est.s

component4 <- 3*S11^2+3*alpha1*(S11^2+2*S11*mu1^2)+3*alpha1^2*(4*S11*mu1^2+mu1^4)+6*

alpha1^3*mu1^4 - est.k

return(sum(c(component1,component2,component3,component4)^2))

}

soln1 <- optim(c(log(STARTINGVAL1),log(STARTINGVAL21),0,0),mom.eq,

control=list(maxit=1e4))$par

alpha1 <- exp(soln1[1]); S11 <- exp(soln1[2]); mu1 <- soln1[3]; eta1 <- soln1[4]

}

}else{

mom.eq <- function(x){

alpha1 <- exp(x[1])

S11 <- exp(x[2])

mu1 <- x[3]

eta1 <- x[4]

component1 <- mu1+eta1 - est.m

component2 <- S11+alpha1*mu1^2 - est.v

component3 <- 3*alpha1*S11*mu1+2*alpha1^2*mu1^3 - est.s

component4 <- 3*S11^2+3*alpha1*(S11^2+2*S11*mu1^2)+3*alpha1^2*(4*S11*mu1^2+mu1^4)+6*

alpha1^3*mu1^4 - est.k

return(sum(c(component1,component2,component3,component4)^2))

}

soln1 <- optim(c(log(STARTINGVAL1),log(STARTINGVAL21),0,0),

mom.eq,control=list(maxit=1e4))$par

alpha1 <- exp(soln1[1]); S11 <- exp(soln1[2]); mu1 <- soln1[3]; eta1 <- soln1[4]

}

# Marginal paramters 2

est.m <- mean(R2)

est.v <- var(R2)

est.s <- mean((R2-mean(R2))^3)

est.k <- mean((R2-mean(R2))^4)

mom.eq <- function(x){

alpha2 <- x[1]

S22 <- x[2]

mu2 <- x[3]

eta2 <- x[4]

component1 <- mu2+eta2 - est.m

component2 <- S22+alpha2*mu2^2 - est.v

component3 <- 3*alpha2*S22*mu2+2*alpha2^2*mu2^3 - est.s

component4 <- 3*S22^2+3*alpha2*(S22^2+2*S22*mu2^2)+3*alpha2^2*(4*S22*mu2^2+mu2^4)+6*

alpha2^3*mu2^4 - est.k
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return(c(component1,component2,component3,component4))

}

soln2 <- try(fsolve(mom.eq,c(STARTINGVAL1,STARTINGVAL22,0,0),maxiter=10000)$x)

if(is.character(soln2)==FALSE){

alpha2 <- soln2[1]

S22 <- soln2[2]

mu2 <- soln2[3]

eta2 <- soln2[4]

tol <- sum(fsolve(mom.eq,c(STARTINGVAL1,STARTINGVAL22,0,0),maxiter=10000)$fval^2)

if(alpha2 <= 0 | S22 <= 0 | tol > tol.val){

mom.eq <- function(x){

alpha2 <- exp(x[1])

S22 <- exp(x[2])

mu2 <- x[3]

eta2 <- x[4]

component1 <- mu2+eta2 - est.m

component2 <- S22+alpha2*mu2^2 - est.v

component3 <- 3*alpha2*S22*mu2+2*alpha2^2*mu2^3 - est.s

component4 <- 3*S22^2+3*alpha2*(S22^2+2*S22*mu2^2)+3*alpha2^2*(4*S22*mu2^2+mu2^4)+6*

alpha2^3*mu2^4 - est.k

return(sum(c(component1,component2,component3,component4)^2))

}

soln2 <- optim(c(log(STARTINGVAL1),log(STARTINGVAL22),0,0),mom.eq,

control=list(maxit=1e4))$par

alpha2 <- exp(soln2[1]); S22 <- exp(soln2[2]); mu2 <- soln2[3]; eta2 <- soln2[4]

}

}else{

mom.eq <- function(x){

alpha2 <- exp(x[1])

S22 <- exp(x[2])

mu2 <- x[3]

eta2 <- x[4]

component1 <- mu2+eta2 - est.m

component2 <- S22+alpha2*mu2^2 - est.v

component3 <- 3*alpha2*S22*mu2+2*alpha2^2*mu2^3 - est.s

component4 <- 3*S22^2+3*alpha2*(S22^2+2*S22*mu2^2)+3*alpha2^2*(4*S22*mu2^2+mu2^4)+6*

alpha2^3*mu2^4 - est.k

return(sum(c(component1,component2,component3,component4)^2))

}

soln2 <- optim(c(log(STARTINGVAL1),log(STARTINGVAL22),0,0),mom.eq,

control=list(maxit=1e4))$par

alpha2 <- exp(soln2[1]); S22 <- exp(soln2[2]); mu2 <- soln2[3]; eta2 <- soln2[4]

}

STARTINGVAL23 = cov(R1,R2)

# Joint parameters

est.cv <- cov(R1,R2)

est.ck <- mean((R1-mean(R1))^2*(R2-mean(R2))^2)

mom.eq <- function(x){

a <- x[1]

S12 <- x[2]

cokurt.formula <- 2*a^2*(min(alpha1,alpha2)^2*S12^2+2*alpha1*alpha2*min(alpha1,alpha2)*

S12*mu1*mu2+alpha1^2*alpha2^2*mu1^2*mu2^2)+

2*a*(min(alpha1,alpha2)^2*S12^2+4*alpha1*alpha2*min(alpha1,alpha2)*S12*mu1*mu2+3*

alpha1^2*alpha2^2*mu1^2*mu2^2+

alpha1^2*alpha2*S22*mu1^2+alpha1*alpha2^2*S11*mu2^2+0.5*alpha1*alpha2*S11*S22)+

alpha1*alpha2*mu1^2*mu2^2+alpha1*S22*mu1^2+alpha2*S11*mu2^2+S11*S22

component1 <- a*(min(alpha1,alpha2)*S12+alpha1*alpha2*mu1*mu2) - est.cv
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component2 <- cokurt.formula - est.ck

return(c(component1,component2))

}

soln3 <- try(fsolve(mom.eq,c(STARTINGVAL1,STARTINGVAL23),maxiter=10000)$x)

if(is.character(soln3)==FALSE){

a <- soln3[1]

S12 <- soln3[2]

tol <- sum(fsolve(mom.eq,c(STARTINGVAL1,STARTINGVAL23),maxiter=10000)$fval^2)

if(!(0 <a & a<min(1/alpha1,1/alpha2)) | !(abs(S12/sqrt(S11*S22))<1) | tol > tol.val){

mom.eq <- function(x){

a <- x[1]

S12 <- x[2]

if(!(0<a & a<min(1/alpha1,1/alpha2) & abs(S12/sqrt(abs(S11*S22)))<1)){

return(Inf)

}

cokurt.formula <- 2*a^2*(min(alpha1,alpha2)^2*S12^2+2*alpha1*alpha2*min(alpha1,

alpha2)*S12*mu1*mu2+alpha1^2*alpha2^2*mu1^2*mu2^2)+

2*a*(min(alpha1,alpha2)^2*S12^2+4*alpha1*alpha2*min(alpha1,alpha2)*S12*mu1*mu2+3*

alpha1^2*alpha2^2*mu1^2*mu2^2+

alpha1^2*alpha2*S22*mu1^2+alpha1*alpha2^2*S11*mu2^2+0.5*alpha1*alpha2*S11*S22)+

alpha1*alpha2*mu1^2*mu2^2+alpha1*S22*mu1^2+alpha2*S11*mu2^2+S11*S22

component1 <- a*(min(alpha1,alpha2)*S12+alpha1*alpha2*mu1*mu2) - est.cv

component2 <- cokurt.formula - est.ck

return(sum(c(component1,component2)^2))

}

if(!(-sqrt(S11*S22) < STARTINGVAL23 & STARTINGVAL23 < sqrt(S11*S22))){

STARTINGVAL23 <- 0

}

soln3 <- optim(c(min(1/alpha1,1/alpha2)/2,STARTINGVAL23),mom.eq,

control=list(maxit=1e4))$par

a <- soln3[1]; S12 <- soln3[2]

}

}else{

mom.eq <- function(x){

a <- x[1]

S12 <- x[2]

if(!(0<a & a<min(1/alpha1,1/alpha2) & abs(S12/sqrt(abs(S11*S22)))<1)){

return(Inf)

}

cokurt.formula <- 2*a^2*(min(alpha1,alpha2)^2*S12^2+2*alpha1*alpha2*min(alpha1,alpha2)*

S12*mu1*mu2+alpha1^2*alpha2^2*mu1^2*mu2^2)+

2*a*(min(alpha1,alpha2)^2*S12^2+4*alpha1*alpha2*min(alpha1,alpha2)*S12*mu1*mu2+3*

alpha1^2*alpha2^2*mu1^2*mu2^2+

alpha1^2*alpha2*S22*mu1^2+alpha1*alpha2^2*S11*mu2^2+0.5*alpha1*alpha2*S11*S22)+

alpha1*alpha2*mu1^2*mu2^2+alpha1*S22*mu1^2+alpha2*S11*mu2^2+S11*S22

component1 <- a*(min(alpha1,alpha2)*S12+alpha1*alpha2*mu1*mu2) - est.cv

component2 <- cokurt.formula - est.ck

return(sum(c(component1,component2)^2))

}

if(!(-sqrt(S11*S22) < STARTINGVAL23 & STARTINGVAL23 < sqrt(S11*S22))){

STARTINGVAL23 <- 0

}

soln3 <- optim(c(min(1/alpha1,1/alpha2)/2,STARTINGVAL23),mom.eq,control=list(maxit=1e4))$par

a <- soln3[1]; S12 <- soln3[2]

}

boot.par.init[i.sim,] <- c(a,alpha1,alpha2,mu1,mu2,S11,S22,S12,eta1,eta2)
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est.mu1 <- mean(R1)

est.v1 <- var(R1)

est.s1 <- mean((R1-mean(R1))^3)

est.k1 <- mean((R1-mean(R1))^4)

est.mu2 <- mean(R2)

est.v2 <- var(R2)

est.s2 <- mean((R2-mean(R2))^3)

est.k2 <- mean((R2-mean(R2))^4)

est.cv <- cov(R1,R2)

est.ck <- mean((R1-mean(R1))^2*(R2-mean(R2))^2)

mom.eq <- function(x){

x <- x/parscale

a <- x[1]

alpha1 <- x[2]

alpha2 <- x[3]

mu1 <- x[4]

mu2 <- x[5]

S11 <- x[6]

S22 <- x[7]

S12 <- x[8]

eta1 <- x[9]

eta2 <- x[10]

if(!(0<a & a<min(1/alpha1,1/alpha2) & alpha1>0 & alpha2>0 & S11>0 & S22>0 &

abs(S12/sqrt(abs(S11*S22)))<1)){

return(Inf)

}

cokurt.formula <- 2*a^2*(min(alpha1,alpha2)^2*S12^2+2*alpha1*alpha2*min(alpha1,alpha2)*

S12*mu1*mu2+alpha1^2*alpha2^2*mu1^2*mu2^2)+

2*a*(min(alpha1,alpha2)^2*S12^2+4*alpha1*alpha2*min(alpha1,alpha2)*S12*mu1*mu2+3*

alpha1^2*alpha2^2*mu1^2*mu2^2+

alpha1^2*alpha2*S22*mu1^2+alpha1*alpha2^2*S11*mu2^2+0.5*alpha1*alpha2*S11*S22)+

alpha1*alpha2*mu1^2*mu2^2+alpha1*S22*mu1^2+alpha2*S11*mu2^2+S11*S22

component11 <- mu1+eta1 - est.mu1

component21 <- S11+alpha1*mu1^2 - est.v1

component31 <- 3*alpha1*S11*mu1+2*alpha1^2*mu1^3 - est.s1

component41 <- 3*S11^2+3*alpha1*(S11^2+2*S11*mu1^2)+3*alpha1^2*(4*S11*mu1^2+mu1^4)+6*

alpha1^3*mu1^4 - est.k1

component12 <- mu2+eta2 - est.mu2

component22 <- S22+alpha2*mu2^2 - est.v2

component32 <- 3*alpha2*S22*mu2+2*alpha2^2*mu2^3 - est.s2

component42 <- 3*S22^2+3*alpha2*(S22^2+2*S22*mu2^2)+3*alpha2^2*(4*S22*mu2^2+mu2^4)+6*

alpha2^3*mu2^4 - est.k2

component13 <- a*(min(alpha1,alpha2)*S12+alpha1*alpha2*mu1*mu2) - est.cv

component23 <- cokurt.formula - est.ck

rv <- sum(c(component11,component21,component31,component41,component12,component22,

component32,component42,component13,component23)^2)

return(rv)

}

# Estimate all parameters together

par <- c(a,alpha1,alpha2,mu1,mu2,S11,S22,S12,eta1,eta2)

parscale <- 1/c(scale,1/scale,1/scale,scale,scale,scale,scale,scale,scale,scale)

par.optim <- optim(par*parscale,mom.eq,method="Nelder-Mead",control=list(maxit=1e4))

a.mom <- a <- (par.optim$par/parscale)[1]

alpha1.mom <- alpha1 <- (par.optim$par/parscale)[2]

alpha2.mom <- alpha2 <- (par.optim$par/parscale)[3]

mu1.mom <- mu1 <- (par.optim$par/parscale)[4]

mu2.mom <- mu2 <- (par.optim$par/parscale)[5]
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S11.mom <- S11 <- (par.optim$par/parscale)[6]

S22.mom <- S22 <- (par.optim$par/parscale)[7]

S12.mom <- S12 <- (par.optim$par/parscale)[8]

eta1.mom <- eta1 <- (par.optim$par/parscale)[9]

eta2.mom <- eta2 <- (par.optim$par/parscale)[10]

boot.par[i.sim,] <- c(a,alpha1,alpha2,mu1,mu2,S11,S22,S12,eta1,eta2)

}

Maximum Likelihood

marg.pdf.type <- "explicit"

n.sim <- 100

set.seed(46473448)

boot.par.init <- array(NA,c(n.sim,11))

boot.par <- array(NA,c(n.sim,10))

optim.list <- list()

tol.val <- 1e-4

for(i.sim in 1:n.sim){

print(i.sim)

return.process <- sim.vag(a.true,alpha1.true,alpha2.true,mu1.true,mu2.true,S11.true,

S22.true,rho.true,t.max=1000)

R1 <- return.process[,1]+eta1.true

R2 <- return.process[,2]+eta2.true

# Intial values from MOM

a <- a.mom; alpha1 <- alpha1.mom; alpha2<- alpha2.mom; mu1 <- mu1.mom; mu2 <- mu2.mom;

S11 <- S11.mom; S22 <- S22.mom; S12 <- S12.mom; eta1 <- eta1.mom; eta2 <- eta2.mom

# MLE Marginal 1

alphaVG.llf.mar1 <- function(par){

par <- par/parscale

alpha1 <- par[1]

mu1 <- par[2]

S11 <- par[3]

eta1 <- par[4]

if(!(alpha1>0 & S11>0)){

return(Inf)

}

if(marg.pdf.type=="fourier"){

v1 <- alpha1*mu1^2+S11

Grid.n <- 2^11

Grid.v <- 0.01*sqrt(v1)

Grid.s <- 1/(Grid.n*Grid.v)

Grid.x <- Grid.v[1]*((-Grid.n/2):(Grid.n/2-1))

Grid.z <- 2*pi*Grid.s[1]*((-Grid.n/2):(Grid.n/2-1))

Grid.x <- Grid.x+eta1

Z1 <- Grid.z

sgn <- (-1)^(0:(Grid.n-1))

charfn <- (1+alpha1*(-1i*mu1*Z1+S11*Z1^2/2))^(-1/alpha1*delta)*sgn

P <- Re(fft(charfn))

P <- P*sgn*Grid.s

unit.area <- median(diff(Grid.x))

P[P<0] <- 0

P <- P/(sum(P)*unit.area)

eval.pdf <- function(R.obs){

x.ind.le <- which(pdf$xy<R.obs)
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if(length(x.ind.le)!=0){

x.ind <- max(x.ind.le)

}else{

x.ind <- 1

}

rv <- pdf$pdf[x.ind]

return(rv)

}

R.obs <- R1

evaluated.pdf.val <- Vectorize(eval.pdf)(R.obs)

}else if(marg.pdf.type=="explicit"){

R.obs <- R1

evaluated.pdf.val <- dvg(R.obs,vgC=eta1,sigma=sqrt(S11),theta=mu1,nu=alpha1)

}

log.lik.fn <- -sum(log(evaluated.pdf.val))

return(log.lik.fn)

}

par <- c(alpha1,mu1,S11,eta1)

parscale <- 1/c(1/scale,scale,scale,scale)

if(is.finite(alphaVG.llf.mar1(par*parscale))){

ok1 <- 1

}else{

ok1 <- 2

par <- par.before.all[c(2,4,6,9)]

}

if(marg.pdf.type=="fourier"){

par.optim <- optim(par*parscale,alphaVG.llf.mar1,method="Nelder-Mead",

control=list(maxit=1e4))

}else if(marg.pdf.type=="explicit"){

par.optim <- optim(par*parscale,alphaVG.llf.mar1,method="Nelder-Mead",

control=list(maxit=1e4))

for(rep.optim in 1:3){

par.optim <- optim(par.optim$par,alphaVG.llf.mar1,method="Nelder-Mead",

control=list(maxit=1e4))

}

}

alpha1 <- (par.optim$par/parscale)[1]

mu1 <- (par.optim$par/parscale)[2]

S11 <- (par.optim$par/parscale)[3]

eta1 <- (par.optim$par/parscale)[4]

d1 <- rbind(par,par.optim$par)

# MLE Marginal 2

alphaVG.llf.mar2 <- function(par){

par <- par/parscale

alpha2 <- par[1]

mu2 <- par[2]

S22 <- par[3]

eta2 <- par[4]

if(!(alpha2>0 & S22>0)){

return(Inf)

}

if(marg.pdf.type=="fourier"){

v2 <- alpha2*mu2^2+S22

Grid.n <- 2^11

Grid.v <- 0.01 *sqrt(v2)

Grid.s <- 1/(Grid.n*Grid.v)

Grid.x <- Grid.v[1]*((-Grid.n/2):(Grid.n/2-1))



132

Grid.z <- 2*pi*Grid.s[1]*((-Grid.n/2):(Grid.n/2-1))

Grid.x <- Grid.x+eta2

Z2 <- Grid.z

sgn <- (-1)^(0:(Grid.n-1))

charfn <- (1+alpha2*(-1i*mu2*Z2+S22*Z2^2/2))^(-1/alpha2*delta)*sgn

P <- Re(fft(charfn))

P <- P*sgn*Grid.s

unit.area <- median(diff(Grid.x))

P[P<0] <- 0

P <- P/(sum(P)*unit.area)

pdf <- list(xy=Grid.x,pdf=P)

eval.pdf <- function(R.obs){

x.ind.le <- which(pdf$xy<R.obs)

if(length(x.ind.le)!=0){

x.ind <- max(x.ind.le)

}else{

x.ind <- 1

}

rv <- pdf$pdf[x.ind]

return(rv)

}

R.obs <- R2

evaluated.pdf.val <- Vectorize(eval.pdf)(R.obs)

}else if(marg.pdf.type=="explicit"){

R.obs <- R2

evaluated.pdf.val <- dvg(R.obs,vgC=eta2,sigma=sqrt(S22),theta=mu2,nu=alpha2)

}

log.lik.fn <- -sum(log(evaluated.pdf.val))

return(log.lik.fn)

}

par <- c(alpha2,mu2,S22,eta2)

parscale <- 1/c(1/scale,scale,scale,scale)

if(is.finite(alphaVG.llf.mar2(par*parscale))){

ok2 <- 1

}else{

ok2 <- 2

par <- par.before.all[c(3,5,7,10)]

}

if(marg.pdf.type=="fourier"){

par.optim <- optim(par*parscale,alphaVG.llf.mar2,method="Nelder-Mead",

control=list(maxit=1e4))

}else if(marg.pdf.type=="explicit"){

par.optim <- optim(par*parscale,alphaVG.llf.mar2,method="Nelder-Mead",

control=list(maxit=1e4))

for(rep.optim in 1:3){

par.optim <- optim(par.optim$par,alphaVG.llf.mar2,method="Nelder-Mead",

control=list(maxit=1e4))

}

}

alpha2 <- (par.optim$par/parscale)[1]

mu2 <- (par.optim$par/parscale)[2]

S22 <- (par.optim$par/parscale)[3]

eta2 <- (par.optim$par/parscale)[4]

d2 <- rbind(par,par.optim$par)

# Joint parameters

alphaVG.llf <- function(par){

par <- par/parscale
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if(length(par)==2){

a <- par[1]

rho <- par[2]

S12 <- rho*sqrt(S11*S22)

}else{

a <- par[1]

alpha1 <- par[2]

alpha2 <- par[3]

mu1 <- par[4]

mu2 <- par[5]

S11 <- par[6]

S22 <- par[7]

S12 <- par[8]

eta1 <- par[9]

eta2 <- par[10]

}

v1 <- alpha1*mu1^2+S11

v2 <- alpha2*mu2^2+S22

Grid.n <- 2^11

Grid.v <- 0.01*sqrt(c(v1,v2))

Grid.s <- 1/(Grid.n*Grid.v)

Grid.x <- rbind(Grid.v[1]*((-Grid.n/2):(Grid.n/2-1)),Grid.v[2]*((-Grid.n/2):(Grid.n/2-1)))

Grid.z <- 2*pi*rbind(Grid.s[1]*((-Grid.n/2):(Grid.n/2-1)),Grid.s[2]*

((-Grid.n/2):(Grid.n/2-1)))

Grid.x <- Grid.x+array(c(eta1,eta2),c(2,Grid.n))

Z1 <- array(Grid.z[1,],c(Grid.n,Grid.n))

Z2 <- t(array(Grid.z[2,],c(Grid.n,Grid.n)))

sgn <- 2*repmat(diag(2),Grid.n/2)-1

charfn <- (1+alpha1*(-1i*mu1*Z1+S11*Z1^2/2))^((a-1/alpha1)*delta)*

(1+alpha2*(-1i*mu2*Z2+S22*Z2^2/2))^((a-1/alpha2)*delta)*

(1+alpha1*(-1i*mu1*Z1+S11*Z1^2/2)+alpha2*(-1i*mu2*Z2+S22*Z2^2/2)+min(alpha1,alpha2)*

S12*Z1*Z2)^(-a*delta)*sgn

P <- Re(fft(charfn))

P <- P*sgn*Grid.s[1]*Grid.s[2]

unit.area <- median(diff(Grid.x[1,]))*median(diff(Grid.x[2,]))

P[P<0] <- 0

P <- P/(sum(P)*unit.area)

pdf <- list(xy=Grid.x,pdf=P)

eval.pdf <- function(R.obs){

x.ind.le <- which(pdf$xy[1,]<R.obs[1])

if(length(x.ind.le)!=0){

x.ind <- max(x.ind.le)

}else{

x.ind <- 1

}

y.ind.le <- which(pdf$xy[2,]<R.obs[2])

if(length(y.ind.le)!=0){

y.ind <- max(y.ind.le)

}else{

y.ind <- 1

}

rv <- pdf$pdf[x.ind,y.ind]

return(rv)

}

R.obs <- rbind(R1,R2)

R.obs.list <- split(R.obs,rep(1:ncol(R.obs), each = nrow(R.obs)))

evaluated.pdf.val <- unlist(lapply(R.obs.list,eval.pdf))
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log.lik.fn <- -sum(log(evaluated.pdf.val))

return(log.lik.fn)

}

par <- c(a,S12/sqrt(S11*S22))

parscale <- c(scale,scale)

if(is.finite(alphaVG.llf(par*parscale))){

ok3 <- 1

}else{

ok3 <- 2

par <- c(par.before.all[1],par.before.all[8]/sqrt(par.before.all[6]*par.before.all[7]))

if(is.finite(alphaVG.llf(par*parscale))){

}else{

ok3 <- 3

par <- c(min(1/alpha1,1/alpha2)/2,0)

if(is.finite(alphaVG.llf(par*parscale))){

}else{

ok3 <- 4

}

}

}

par.optim.sub <- optim(par*parscale,alphaVG.llf,method="Nelder-Mead",control=list(maxit=1e4))

a <- (par.optim.sub$par/parscale)[1]

rho <- (par.optim.sub$par/parscale)[2]

S12 <- rho*sqrt(S11*S22)

boot.par.init[i.sim,] <- c(a,alpha1,alpha2,mu1,mu2,S11,S22,S12,eta1,eta2,100*ok1+10*ok2+ok3)

eps <- 1e-6

if(a < eps){

a <- eps

}else if(a > min(1/alpha1,1/alpha2)-eps){

a <- min(1/alpha1,1/alpha2)-eps

}

if(S12/sqrt(S11*S22) > 1-eps){

rho <- 1-eps

S12 <- rho*sqrt(S11*S22)

}else if(S12/sqrt(S11*S22) < -1+eps){

rho <- -1+eps

S12 <- rho*sqrt(S11*S22)

}

# Estimate all parameters together

par <- c(a,alpha1,alpha2,mu1,mu2,S11,S22,S12,eta1,eta2)

parscale <- 1/c(scale,1/scale,1/scale,scale,scale,scale,scale,scale,scale,scale)

par.optim <- optim(par*parscale,alphaVG.llf,method="Nelder-Mead",control=list(maxit=1e4))

a <- (par.optim$par/parscale)[1]

alpha1 <- (par.optim$par/parscale)[2]

alpha2 <- (par.optim$par/parscale)[3]

mu1 <- (par.optim$par/parscale)[4]

mu2 <- (par.optim$par/parscale)[5]

S11 <- (par.optim$par/parscale)[6]

S22 <- (par.optim$par/parscale)[7]

S12 <- (par.optim$par/parscale)[8]

eta1 <- (par.optim$par/parscale)[9]

eta2 <- (par.optim$par/parscale)[10]

boot.par[i.sim,] <- c(a,alpha1,alpha2,mu1,mu2,S11,S22,S12,eta1,eta2)

optim.list[[i.sim]] <- par.optim

}
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Digital Moment Estimation

n <- length(R1)

q <- seq(0.05,0.95,len=10)

n.qu <- length(q)

k <- numeric(n.qu)

n.est <- 10000

make.plot <- FALSE

eps <- 1e-6

n.points <- 10

trans.mat <- diag(c(1,1))

dme.est <- function(type,i.sim=i.sim,data=NULL){

if(type=="mse"){

R1 <- all.R[[i.sim]][,1]

R2 <- all.R[[i.sim]][,2]

}else if(type=="est"){

R1 <- data[,1]

R2 <- data[,2]

}

k1 <- quantile(R1,prob=q)

k2 <- quantile(R2,prob=q)

# Marginal Parameters

k <- k1

q.tmp <- q

for(i in 1:length(k)){

q.tmp[i] <- sum(R1<=k[i])/n

}

solved <- optim(c(0,log(sqrt(var(R1))),log(1),0),obj.fn,control=list(maxit=1e4),q=q.tmp,k=k)

marg.par.1 <- c(solved$par[1],exp(solved$par[2])^2,exp(solved$par[3]),solved$par[4])

k <- k2

q.tmp <- q

for(i in 1:length(k)){

q.tmp[i] <- sum(R2<=k[i])/n

}

solved <- optim(c(0,log(sqrt(var(R2))),log(1),0),obj.fn,control=list(maxit=1e4),q=q.tmp,k=k)

marg.par.2 <- c(solved$par[1],exp(solved$par[2])^2,exp(solved$par[3]),solved$par[4])

alpha1 <- alpha1.est <- marg.par.1[3]

alpha2 <- alpha2.est <- marg.par.2[3]

mu1 <- mu1.est <- marg.par.1[1]

mu2 <- mu2.est <- marg.par.2[1]

S11 <- S11.est <- marg.par.1[2]

S22 <- S22.est <- marg.par.2[2]

eta1 <- eta1.est <- marg.par.1[4]

eta2 <- eta2.est <- marg.par.2[4]

quan.q <- array(NA,c(length(k1),length(k2)))

for(i in 1:length(k1)){

for(j in 1:length(k2)){

k.tmp <- trans.mat%*%c(k1[i],k2[j])

quan.q[i,j] <- sum(R1<=k.tmp[1,] & R2<=k.tmp[2,])/n

}

}

a.lowerbound <- 0; a.upperbound <- min(1/alpha1,1/alpha2)

rho.lowerbound <- -1; rho.upperbound <- 1

a.est.points <- seq(a.lowerbound+eps,a.upperbound-eps,len=n.points)

rho.est.points <- seq(rho.lowerbound+eps,rho.upperbound-eps,len=n.points)

par.surface <- outer(X=a.est.points,Y=rho.est.points,FUN=obj.fn.2d,



136

alpha1.est=alpha1.est,alpha2.est=alpha2.est,

mu1.est=mu1.est,mu2.est=mu2.est,S11.est=S11.est,S22.est=S22.est,

eta1.est=eta1.est,eta2.est=eta2.est,quan.q=quan.q,k1=k1,k2=k2)

grid <- expand.grid(a.est.points,rho.est.points)

loess.df <- data.frame(surface=c(par.surface),grid1=grid[,1],grid2=grid[,2])

l2 <- loess(surface~grid1+grid2,data=loess.df)

l2.fit <- array(predict(l2),c(n.points,n.points))

a.est <- grid[which(l2.fit==min(l2.fit)),1]

rho.est <- grid[which(l2.fit==min(l2.fit)),2]

loess.min <- optim(c(a.est,rho.est),get.to.min,method="L-BFGS-B",control=list(maxit=1e4),

lower=c(a.lowerbound,rho.lowerbound)+eps,

upper=c(a.upperbound,rho.upperbound)-eps,loess.fit=l2)

a.est <- loess.min$par[1]

rho.est <- loess.min$par[2]

min.a.rho <- loess.min$value

if(make.plot==TRUE){

pmat <- persp(a.est.points,rho.est.points,l2.fit,

theta=30, phi=20, ticktype=’detailed’,

zlim=c(min(par.surface),max(par.surface)),

xlab="a", ylab="rho", zlab="error",

main=paste("a = ",round(a.est,4),", rho = ",round(rho.est,4),sep=""))

points(trans3d(grid[,1],grid[,2],c(par.surface),pmat), pch=20)

points(trans3d(a.est,rho.est,min.a.rho,pmat), pch=20,col="red",cex=2.5)

}

rm(R1,R2)

return(c(marg.par.1,marg.par.2,c(a.est,rho.est)))

}

data <- cbind(R1,R2)

set.seed(46473448)

n.sim <- 100

all.R <- list()

for(i in 1:n.sim){

return.process <- sim.vag(a.true,alpha1.true,alpha2.true,mu1.true,mu2.true,S11.true,S22.true,

rho.true,t.max=1000)

R1 <- return.process[,1]+eta1.true

R2 <- return.process[,2]+eta2.true

all.R[[i]] <- cbind(R1,R2)

}

set.seed(3444)

random.seeds <- sample(1:1e6,size=n.sim)

boot.par <- array(NA,c(n.sim,10))

tt <- proc.time()

for(i.sim in 1:n.sim){

print(i.sim)

set.seed(random.seeds[i.sim])

boot.par[i.sim,] <- dme.est(type="mse",i.sim=i.sim)

}

Kolmogorov-Smirnov and Chi-Squared Statistics

# KS statistic

type.method <- "DME"

set.seed(46473448)

all.R <- list()
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for(i in 1:n.sim){

return.process <- sim.vag(a.true,alpha1.true,alpha2.true,mu1.true,mu2.true,S11.true,S22.true,

rho.true,t.max=1000)

R1 <- return.process[,1]+eta1.true

R2 <- return.process[,2]+eta2.true

all.R[[i]] <- cbind(R1,R2)

}

set.seed(83180)

gof.stats <- rep(NA,n.sim)

for(i in 1:n.sim){

print(i)

if(type.method %in% c("MLE","MOM")){

a <- boot.par[i,1]; alpha1 <- boot.par[i,2]; alpha2 <- boot.par[i,3]; mu1 <- boot.par[i,4]

mu2 <- boot.par[i,5]; S11 <- boot.par[i,6]; S22 <- boot.par[i,7]; S12 <- boot.par[i,8]

eta1 <- boot.par[i,9]; eta2 <- boot.par[i,10]; rho <- S12/sqrt(S11*S22)

}else if(type.method=="DME"){

marg.par.1 <- boot.par[i,1:4]; marg.par.2 <- boot.par[i,5:8]; a <- boot.par[i,9]

rho <- boot.par[i,10]; alpha1 <- marg.par.1[3]; alpha2 <- marg.par.2[3];

mu1 <- marg.par.1[1]; mu2 <- marg.par.2[1]; S11 <- marg.par.1[2]; S22 <- marg.par.2[2]

eta1 <- marg.par.1[4]; eta2 <- marg.par.2[4]; S12 <- rho*sqrt(S11*S22)

}

return.process <- sim.vag(a,alpha1,alpha2,mu1,mu2,S11,S22,rho,t.max=1000)

R1.fit <- return.process[,1]+eta1

R2.fit <- return.process[,2]+eta2

ret.ori <- all.R[[i]]

ret.fit <- cbind(R1.fit,R2.fit)

gof.stats[i] <- peacock2(ret.fit,ret.ori)

}

mean(gof.stats)

round(mean(gof.stats),3)

# Chi-sq statistic

type.method <- "DME"

set.seed(46473448)

gof.stats <- rep(NA,n.sim)

for(i in 1:n.sim){

print(i)

if(type.method %in% c("MLE","MOM")){

a <- boot.par[i,1]; alpha1 <- boot.par[i,2]; alpha2 <- boot.par[i,3]; mu1 <- boot.par[i,4]

mu2 <- boot.par[i,5]; S11 <- boot.par[i,6]; S22 <- boot.par[i,7]; S12 <- boot.par[i,8]

eta1 <- boot.par[i,9]; eta2 <- boot.par[i,10]; rho <- S12/sqrt(S11*S22)

}else if(type.method=="DME"){

marg.par.1 <- boot.par[i,1:4]; marg.par.2 <- boot.par[i,5:8]; a <- boot.par[i,9]

rho <- boot.par[i,10]; alpha1 <- marg.par.1[3]; alpha2 <- marg.par.2[3];

mu1 <- marg.par.1[1]; mu2 <- marg.par.2[1]; S11 <- marg.par.1[2]; S22 <- marg.par.2[2]

eta1 <- marg.par.1[4]; eta2 <- marg.par.2[4]; S12 <- rho*sqrt(S11*S22)

}

x1 <- Grid.x[1,]

x2 <- Grid.x[2,]

joint <- P

n <- length(R1)

X1 <- R1

X2 <- R2

mg.cdf.1 <- function(x1){

rv <- try(pvg(x1, vgC=eta1, sigma=sqrt(S11), theta=mu1, nu=alpha1))

if(is.character(rv)==FALSE){

return(rv)
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}else{

integrand <- function(x){

dvg(x, vgC=eta1, sigma=sqrt(S11), theta=mu1, nu=alpha1)

}

rv <- try(integrate(integrand,lower=-Inf,upper=x1)$val)

if(is.numeric(rv)){

return(rv)

}

}

}

mg.pdf.1 <- function(x1){

rv <- try(dvg(x1, vgC=eta1, sigma=sqrt(S11), theta=mu1, nu=alpha1))

if(is.numeric(rv)){

return(rv)

}

}

pdf.1 <- mg.pdf.1(x1)

get.ind <- function(R.obs){

x.ind.le <- which(x1<R.obs[1])

if(length(x.ind.le)!=0){

x.ind <- max(x.ind.le)

}else{

x.ind <- 1

}

y.ind.le <- which(x2<R.obs[2])

if(length(y.ind.le)!=0){

y.ind <- max(y.ind.le)

}else{

y.ind <- 1

}

rv <- c(x.ind,y.ind)

return(rv)

}

rosenblatt.trans <- function(X1.val,X2.val){

X.ind <- get.ind(c(X1.val,X2.val))

Z1 <- mg.cdf.1(x1[X.ind[1]])

cond.dens <- joint[X.ind[1],1:X.ind[2]]/pdf.1[X.ind[1]]

cond.prob <- diff(x2)[1]*sum(cond.dens)

Z2 <- cond.prob

return(c(Z1,Z2))

}

rosenblatt.trans <- Vectorize(rosenblatt.trans)

unif.sq <- rosenblatt.trans(X1,X2)

xy <- t(unif.sq)

nbins <- 10

x.bin <- y.bin <- seq(1/nbins,1-1/nbins,length=nbins-1)

freq <- as.data.frame(table(findInterval(xy[,1], x.bin),findInterval(xy[,2], y.bin)))

freq[,1] <- as.numeric(as.character(freq[,1]))+1

freq[,2] <- as.numeric(as.character(freq[,2]))+1

freq2D <- diag(nbins)*0

freq2D[cbind(freq[,1], freq[,2])] <- freq[,3]

obsv <- freq2D

expd <- n/nbins^2

chi.sq <- sum((obsv-expd)^2/expd)

1-pchisq(chi.sq,df=nbins^2-1)

gof.stats[i] <- chi.sq

}
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mean(gof.stats)

round(mean(gof.stats),3)
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divisibility and Lévy processes. In M. Schuermann and U. Franz, editors,

Quantum Independent Increment Processes II, pages 33–159. Springer-

Verlag, Berlin, 2006.

https://www.e-publications.org/ims/submission/BEJ/user/submissionFile/31967?confirm=225c9cd1
https://www.e-publications.org/ims/submission/BEJ/user/submissionFile/31967?confirm=225c9cd1
https://doi.org/10.1007/s11009-018-9655-y
https://arxiv.org/abs/1712.03640
https://arxiv.org/abs/1712.03640


Bibliography 142

[Boc55] S. Bochner. Harmonic Analysis and the Theory of Probability. University

of California Press, Berkeley and Los Angeles, 1955.

[Bon92] L. Bondesson. Generalized gamma convolutions and related classes of

distributions and densities. Springer-Verlag, New York, 1992.

[Bon09] L. Bondesson. On univariate and bivariate generalized gamma convolu-

tions. J. Stat. Plan. Infer., 139(11):3759–3765, 2009.

[BR97] R.B. Bapat and T.E.S. Raghavan. Nonnegative Matrices & Applications.

Cambridge University Press, Cambridge, 1997.

[CGMY02] P. Carr, H. Geman, D.B. Madan, and M. Yor. The fine structure of asset

returns: An empirical investigation. J. Bus., 75(2):305–332, 2002.

[CGMY07] P. Carr, H. Geman, D.B. Madan, and M. Yor. Self-decomposability and

option pricing. Math. Financ., 17(1):305–332, 2007.

[CGS91] W. S. Cleveland, E. Grosse, and W. M. Shyu. Local regression models.

In J. M. Chambers and T. J. Hastie, editors, Statistical Models in S,

pages 309–376. Chapman & Hall/CRC, Boca Raton, 1991.
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[Sat99] K. Sato. Lévy Processes and Infinitely Divisible Distributions. Cambridge

University Press, Cambridge, 1999.

[Sat01] K. Sato. Subordination and self-decomposability. Stat. Probabil. Lett.,

53(3):317–324, 2001.

[Sem08] P. Semeraro. A multivariate variance gamma model for financial applic-

ations. Int. J. Theor. Appl. Finan., 11(1):1–18, 2008.

[SSV10] R. L. Schilling, R. Song, and Z. Vondraček. Bernstein Functions. Walter
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