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Subordinating a multivariate Lévy process, the subordinate, with a univariate subordinator gives rise to a

pathwise construction of a new Lévy process, provided the subordinator and the subordinate are independent

processes. The variance-gamma model in finance was generated accordingly from a Brownian motion and

a gamma process. Alternatively, multivariate subordination can be used to create Lévy processes, but this

requires the subordinate to have independent components. In this paper, we show that there exists another

operation acting on pairs (T ,X) of Lévy processes which creates a Lévy process X ⊙ T . Here, T is a

subordinator, but X is an arbitrary Lévy process with possibly dependent components. We show that this

method is an extension of both univariate and multivariate subordination and provide two applications.

We illustrate our methods giving a weak formulation of the variance-α-gamma process that exhibits a

wider range of dependence than using traditional subordination. Also, the variance generalised gamma

convolution class of Lévy processes formed by subordinating Brownian motion with Thorin subordinators

is further extended using weak subordination.

Keywords: Brownian motion; gamma process; generalised gamma convolutions; Lévy process; marked

point process; subordination; Thorin measure; variance gamma; variance-alpha-gamma

1. Introduction

The subordination of Lévy processes has many important applications. In mathematical finance,

for instance, it acts as a time change that models the flow of information, measuring time in

volume of trade as opposed to real time. This idea was initiated by [16] who introduced the

variance-gamma process for modelling stock prices, where the subordinate is Brownian motion

and the subordinator is a gamma process. Multivariate subordination can be applied to model

dependence across multivariate Lévy processes, where the components may have common and/or

idiosyncratic time changes. We refer the reader to [7] for a thorough discussion of traditional

subordination and its applications.

1350-7265 © 2019 ISI/BS

http://www.bernoulli-society.org/index.php/publications/bernoulli-journal/bernoulli-journal
https://doi.org/10.3150/17-BEJ1004
mailto:Boris.Buchmann@anu.edu.au
mailto:kevin.lu@anu.edu.au
mailto:dbm@rhsmith.umd.edu


Weak subordination of multivariate Lévy processes 743

Let T = (T1, . . . , Tn) be an n-dimensional subordinator, and X = (X1, . . . ,Xn) be another

n-dimensional Lévy process called the subordinate. Subordination is the operation that produces

the n-dimensional process X ◦ T defined by

(X ◦ T )(t) :=
(
X1

(
T1(t)

)
, . . . ,Xn

(
Tn(t)

))
, t ≥ 0.

If T and X are independent, then there are two important special cases where X ◦ T is again a

Lévy process:

• Traditional Bochner subordination, where T1 = T2 = · · · = Tn are indistinguishable [4,20,

21,26].

• T is multivariate but X has independent components X1, . . . ,Xn [3].

Thus, for strictly multivariate subordination, that is n ≥ 2, while T does not have indistinguish-

able components, we have to restrict the class of admissible subordinates X to Lévy processes

with independent components, which is, as we show in Proposition 3.9 below, in some cases

necessary if we are to stay in the class of Lévy processes.

In the present paper, we show that there exists an operation that extends the traditional notion

of subordination by assigning the distribution of a Lévy process X⊙T to the pair (T ,X) of Lévy

processes. The weakly subordinated process X ⊙ T is a general Lévy process, it inherits jumps

from the multivariate subordinator T , which resembles subordination, and our new operation

reduces to subordination when the components of X are independent or the components of T are

indistinguishable.

The remaining parts of the paper are organised as follows. In Section 2, we define weak subor-

dination, show its existence and that there is a stronger pathwise interpretation, based on marked

point processes of jumps, which we call semi-strong subordination. We review some properties of

gamma and variance-gamma processes. Further, we introduce a weakly subordinated version of

the variance-α-gamma process as an extension of the strongly subordinated version in [23]. We

develop this new class in a number of remarks throughout the paper to illustrate our machinery.

Section 3 contains a number of results concerning the relation between traditional subordina-

tion and weak subordination. In particular, we show that weak subordination extends traditional

subordination and is consistent with projecting to marginal distributions, like traditional subordi-

nation. However, there are also differences between both notions. To highlight these, we provide

formulae for the first and second moments and covariances for weakly subordinated processes.

In Section 4, we exemplify the unifying nature of weak subordination as illustrated using

variance generalised gamma convolutions. In [11], a class of processes was introduced by subor-

dinating n-dimensional Brownian motion with univariate subordinators taken from Thorin’s [24,

25] class of generalised gamma convolutions (GGC). This class has been coined V GGn,1 in [7]

who complemented it with their V GGn,n-class, obtained by subordinating n-dimensional Brow-

nian motion with independent components with n-dimensionional GGC-subordinators. Using

weak subordination, we introduce a weak V GGn-class of Lévy processes as a natural superclass

of the V GGn,1 and V GGn,n-classes. Unifying the results in [7], we provide formulae for the

associated characteristic function and Lévy measure.

Section 5 contains technical proofs.
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2. Main results

Let Rn be n-dimensional Euclidean space whose elements are row vectors x = (x1, . . . , xn), with

canonical basis {ek : 1 ≤ k ≤ n}, and let e := (1, . . . ,1) ∈ R
n. Let x′,�′ denote the transpose of

a vector x and a matrix �, respectively. Let 〈x,y〉 = xy′ denote the Euclidean product with Eu-

clidean norm ‖x‖2 = 〈x,x〉 = xx′, and set 〈x,y〉� := x�y′ and ‖x‖2
� := 〈x,x〉� for x,y ∈ R

n

and � ∈ R
n×n. Let D := {x ∈ R

n : ‖x‖ ≤ 1} be the Euclidean unit ball centred at the origin. If

A ⊆ R
n, set A∗ := A\{0} and let 1A(ω) = δω(A) denote the indicator function and the Dirac

measure, respectively. Further, I : [0,∞)n → [0,∞)n and ln :C\(−∞,0] → C denote the iden-

tity function and the principal branch of the logarithm, respectively. The decomposition of an ex-

tended real number x ∈ [−∞,∞] into its positive and negative parts is denoted by x = x+ −x−,

where x+ = x ∨ 0 and x− = (−x)+ = −(x ∧ 0).

If ∅ �= J ⊆ {1, . . . , n}, introduce the associated projection πJ :Rn → R
n by πJ (x) := xπJ :=∑

j∈J xj ej . If V is a Borel measure on R
n, then so is the image (push forward) measure VJ :=

V ◦π−1
J . If X is a Borel measure on R

n
∗ , then so is XJ , which is constructed in the usual way: first

extend X to a Borel measure V on R
n by setting V({0}) := 0, second let XJ be the restriction of

VJ to R
n
∗ . If J =∅, we employ the conventions π∅ ≡ 0, V∅ ≡ 0 and X∅ ≡ 0.

The reader is referred to the monographs [1,5,21] for necessary material on Lévy processes.

Particularly, the law of a Lévy process X = (X1, . . . ,Xn) = (X(t))t≥0 is determined by its char-

acteristic function

�X(t)(θ) := E exp
{
i
〈
θ ,X(t)

〉}
= exp

{
t�X(θ)

}
, t ≥ 0,

with Lévy exponent �X = � where, θ ∈R
n,

�(θ) = i〈µ, θ〉 −
1

2
‖θ‖2

� +

∫

R
n
∗

(
ei〈θ ,x〉 − 1 − i〈θ,x〉1D(x)

)
X (dx). (2.1)

Here, µ = (μ, . . . ,μn) ∈Rn is a row vector, � = (�kl) ∈ Rn×n is a covariance matrix, and X is

a nonnegative Borel measure on R
n
∗ satisfying

∫

R
n
∗

‖x‖2 ∧ 1X (dx) < ∞. (2.2)

We write X ∼ Ln(µ,�,X ), provided X is an n-dimensional Lévy process with canoni-

cal triplet (µ,�,X ). Throughout, B = (B1, . . . ,Bn) ∼ BMn(µ,�) := Ln(µ,�,0) refers to

an n-dimensional Brownian motion B with linear drift E[B(t)] = µt and covariance matrix

Cov(B(t)) = t�, t ≥ 0.

We write X ∼ FV n(d,X ) with d := µ −
∫
D∗

xX (dx) ∈ R
n denoting the drift of X, provided

the paths of X are of (locally) finite variation, equivalently, � = 0 and

∫

D∗

‖x‖X (dx) < ∞. (2.3)

Particularly, T = (T1, . . . , Tn) ∼ Sn(d,T ) refers to an n-dimensional subordinator, that is a Lévy

process with nondecreasing components with drift d ∈ [0,∞)n and Lévy measure T .



Weak subordination of multivariate Lévy processes 745

Next, we revise some properties of gamma and variance-gamma processes. Notation is bor-

rowed from [7].

Gamma subordinator. If a, b > 0, then a subordinator G is a gamma subordinator if and

only if its marginal G(t) ∼ Ŵ(at, b), t ≥ 0 is gamma distributed with shape parameter at and

rate parameter b. A drift-less subordinator G with Lévy measure Ga,b is a gamma subordina-

tor with parameters a, b, provided its Lévy measure satisfies Ga,b(dg) = 1(0,∞)(g)ae−bg dg/g,

in short, G ∼ ŴS(a, b) = S1(0,Ga,b). If G ∼ ŴS(a, b) and λ > −b, its Laplace exponent is

− lnE[exp{−λG(t)}] = at ln{(b + λ)/b}.

If a = b, we refer to G as a standard gamma subordinator, in short, G ∼ ŴS(b) := ŴS(b, b) and

its Lévy measure is denoted by Gb . A gamma subordinator G is a standard gamma subordinator

if and only if E[G(1)] = 1.

Variance-gamma process. Let b > 0, µ ∈ R
n and � ∈ R

n×n be a covariance matrix. For a

Brownian motion B ∼ BMn(µ,�) independent of a gamma subordinator G ∼ ŴS(b), we call V

a variance-gamma (V Gn) process [16] with parameters b,µ,�, if

V
D
= B ◦ (Ge) ∼ V Gn(b,µ,�) = BMn(µ,�) ◦

(
ŴS(b)e

)
.

An n-dimensional Lévy process V is a V Gn(b,µ,�)-process if and only if its characteristic

exponent has the form (see [7], their Formula (2.9))

�V (θ) = −b ln
{(

b − i〈µ, θ〉 + (1/2)‖θ‖2
�

)
/b

}
, θ ∈R

n. (2.4)

Alternatively, a drift-less FV n-process X is a V Gn(b,µ,�)-process if and only if its Lévy

measure satisfies X = Vb,µ,� for some b > 0,µ ∈ R
n, a covariance matrix � ∈ R

n×n and B ∼

BMn(µ,�), where

Vb,µ,�(dy) :=

∫

(0,∞)

P
(
B(g) ∈ dy

)
be−bg dg/g. (2.5)

This follows from the formula of the Lévy measure under univariate subordination (see [21], his

Formula (30.8)).

If, in addition, � is invertible, then Vb,µ,� is absolutely continuous with respect to the

Lebesgue measure dv on R
n
∗ , having Lévy density νb,µ,�(v) := (dVb,µ,�/dv)(v), v ∈R

n
∗ , where

(see [7], their Formula (2.11))

νb,µ,�(v) =
2b exp{〈µ,v〉�−1}

(2π)n/2|�|1/2‖v‖n
�−1

Kn/2

{(
2b + ‖µ‖2

�−1

)1/2
‖v‖�−1

}
, (2.6)

Kρ(r) := rρKρ(r), ρ ≥ 0, r > 0, and Kρ is a modified Bessel function of the second kind (see [7]

and [10], their Equation (2.12) and their Equation (3.471)–9, respectively).

Multivariate time parameter. If X,Y ∼ Ln are independent n-dimensional Lévy processes,

then the 2n-dimensional process Z = (X,Y ) ∼ L2n(m,�,Z) is a Lévy process in R
2n, for some

m ∈ R
2n, � ∈ R

2n×2n, and Lévy measure Z on R
2n
∗ . Our notation extends from R

n to R
2n in a

canonical way; in particular, ‖ · ‖ and D may refer to the Euclidean norm and the Euclidean unit

ball in R
n as well as in R

2n, respectively.
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As a first step, we evaluate an n-dimensional Lévy process X = (X1, . . . ,Xn), indexed by

univariate time t , at multivariate time points t = (t1, . . . , tn) ∈ [0,∞)n. The result is an infinitely

divisible row vector X(t) = (X1(t1), . . . ,Xn(tn)). To provide formulae for the associated char-

acteristics, we introduce an operation ⋄ as an outer product.

For t = (t1, . . . , tn) ∈ [0,∞)n, µ = (μ1, . . .μn) ∈R
n and � = (�kl) ∈R

n×n, introduce t⋄µ ∈

R
n and t ⋄ � = (t ⋄ �kl) ∈R

n×n by

t ⋄ µ := (t1μ1, . . . , tnμn), (t ⋄ �)kl := �kl(tk ∧ tl), 1 ≤ k, l ≤ n. (2.7)

Choose an ordering t(1) ≤ . . . ≤ t(n) of the components with associated permutation 〈(1), . . . , (n)〉

and spacings �t(k) := t(k) − t(k−1) for 1 ≤ k ≤ n, t(0) := 0. If X is a Lévy measure, thus a Borel

measure on R
n satisfying (2.2), so is t ⋄X , defined by

t ⋄X :=

n∑

k=1

�t(k)X{(k),...,(n)}. (2.8)

We introduce c(t,X ) ∈R
n by setting

c := c(t,X ) :=

n∑

k=2

�t(k)

∫

DC

π {(k),...,(n)}(x)1D
(
π {(k),...,(n)}(x)

)
X (dx). (2.9)

As (2.2) is satisfied for a Lévy measure X , c(t,X ) is a well-defined n-dimensional row vector,

and it acts as a compensation term.

We provide formulae for the characteristics of X(t) (see Section 5.1 for a proof).

Proposition 2.1. For t = (t1, . . . , tn) ∈ [0,∞)n and X ∼ Ln(µ,�,X ) with � as in (2.1),

the vector X(t) = (X1(t1), . . . ,Xn(tn)) ∈ R
n is infinitely divisible with �X(t)(θ) = E exp(i〈θ ,

X(t)〉) = exp((t ⋄ �)(θ)), θ ∈ R
n, where

(t ⋄ �)(θ) :=

n∑

k=1

�t(k)�
(
π {(k),...,(n)}(θ)

)
(2.10)

= i〈t ⋄ µ + c, θ〉 −
1

2
‖θ‖2

t⋄�

(2.11)

+

∫

R
n
∗

(
ei〈θ ,x〉 − 1 − i〈θ ,x〉1D(x)

)
t ⋄X (dx).

Remark 2.1. If B is a standard Brownian motion and I is the identity function, then (I,2I )

is a subordinator and (B,B) is a Lévy process, but (B,B) ◦ (I,2I ) is not a Lévy process, as

follows from Proposition 3.9(iii) below. Though it is a Gaussian process, (B,B) ◦ (I,2I ) is not

a Brownian motion.

Weak subordination. If T ∼ Sn(d,T ) is a subordinator, then we may write T = Id +S, where

S ∼ Sn(0,T ) is a pure jump subordinator and Id is a deterministic subordinator. Suppose X ∼
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Ln(µ,�,X ) is the candidate for a subordinate. If Y is another Lévy process with Y ∼ Ln(d ⋄

µ + c,d ⋄ �,d ⋄ X ), we get from Proposition 2.1 that X(td)
D
= Y(t) for all fixed t ≥ 0. Any

other Lévy process with this property must have the same characteristics, and in the case of

deterministic subordination the law of weak subordination is determined.

On the other hand, if d = 0 and T = S, we may perceive the subordinated process as a 2n-

dimensional Lévy process Z = (S,Y ) in time–space [0,∞)n × R
n, and the jumps of Y should

have conditional laws (�Y |�T = t) ∼ P(X(t) ∈ ·). This notion is consistent with traditional

subordination (see [3] and [21], their Formula (3.12) and his Formula (30.8), respectively) as

illustrated by (2.5) in the context of V Gn-processes. Equivalently, the jumps of the joint process

Z form a marked point process, with marks in time–space [0,∞)n∗ ×R
n
∗ determined, condition-

ally independently, based on the points of a Poisson point process in time-time [0,∞)×[0,∞)n∗ ,

with intensity measure dt ⊗T . Summing up those jumps along t ≥ 0, possibly with a compensa-

tion term, generates a pure-jump Lévy process Z with values in time–space [0,∞)n ×R
n. Using

pure-jump subordinators, the law of weak subordination is thus determined in time–space.

Traditional subordination is consistent with the superposition of independent subordinators

such as T = Id + S, and the law of strongly subordinated processes, when defined as Lévy

processes, is determined by convolution (see [7], their Proposition 4.1). Together with Proposi-

tion 3.1, this imposes a final and determining constraint on the law of weak subordination.

We are now prepared to introduce subordination in the weak and semi-strong senses.

Definition 2.1. Let X ∼ Ln(µ,�,X ) and T ∼ Sn(d,T ). A process Z is called a subordinator

T subordinating X in the weak sense, meaning that Z
D
= (T ,X ⊙ T ), whenever Z = (Z1,Z2) ∼

L2n(m,�,Z) is a Lévy process with the characteristics determined by m = (m1,m2), m1,m2 ∈

R
n,

m1 = d +

∫

[0,∞)n∗

tP
((

t,X(t)
)
∈D

)
T (dt), (2.12)

m2 = c(d,X ) + d ⋄ µ +

∫

[0,∞)n∗

E
[
X(t)1D

(
t,X(t)

)]
T (dt), (2.13)

� =

(
0 0

0 d ⋄ �

)
, (2.14)

Z(dt, dx) =
(
δ0 ⊗ (d ⋄X )

)
(dt, dx) + 1[0,∞)n∗×RnP

(
X(t) ∈ dx

)
T (dt). (2.15)

We call Z = (Z1,Z2) a subordinator T subordinating X in the semi-strong sense, whenever,

simultaneously, Z1 = T are indistinguishable and Z
D
= (T ,X ⊙ T ).

Such a process Z exists and is a Lévy process whenever the specifying characteristics are

as in (2.12)–(2.15). The main difficulty is to show that P(X(t) ∈ dx)T (dt) is a Lévy measure.

Semi-strong subordination is then always possible on augmented probability spaces, and it relies

on marking the point process associated to the jumps of T (see Section 5.2 for a proof).

Theorem 2.1. Let X and T be as in Definition 2.1.
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(i) There exists a Lévy process Z = (Z1,Z2) ∼ L2n(m,�,Z) with m,�,Z as specified in

(2.12)–(2.15).

(ii) On an augmentation of the probability space carrying T , there exists an n-dimensional

Lévy process Z2 such that (T ,Z2) is a subordinator T subordinating X in the semi-strong sense.

(iii) If both d = 0 and
∫
[0,1]n∗

‖t‖1/2T (dt) < ∞ hold, then Z is a drift-less FV 2n-process.

Remark 2.2. Let B,B∗ be independent standard Brownian motions, and I be the identity func-

tion. (I,2I ) is a subordinator, and (B,B) is a Lévy process, but (B,B) ◦ (I,2I ) is not (see

Remark 2.1). As easily verified from (2.12)–(2.15), the process (I,2I,B,B + B∗) is the subor-

dinator (I,2I ) subordinating (B,B) in the semi-strong sense.

Remark 2.3. Recall e = (1, . . . ,1) ∈R
n. Let G ∼ ŴS(b) = S1(0,Gb). In the traditional notion of

V Gn, G is the sole time change for all the components of an n-dimensional Brownian motion.

Consistent with our notion of multivariate subordination, we replace G with Ge. Note Ge =

(G, . . . ,G) is an n-dimensional drift-less subordinator with indistinguishable components and

Ge ∼ Sn(0,Gb ◦ (Ie)−1).

Remark 2.4. The V Gn-process in [16] uses n-dimensional Brownian motion as its subordinate

and a univariate standard gamma process as its subordinator. The V Gn-model gives a restrictive

dependence structure, where components cannot have idiosyncratic time changes and must have

equal kurtosis. These last two deficiencies have been addressed by Luciano and Semeraro’s [14,

23] variance-α-gamma (V αG) process by the use of an α-gamma subordinator.

α-gamma subordinator. Assume n ≥ 2. Let a, b > 0, α = (α1, . . . , αn) ∈ (0,∞)n such that

b > aαk for k = 1, . . . , n. Introduce βk := (b − aαk)/αk , and let G0, . . . ,Gn be independent

gamma subordinators such that G0 ∼ ŴS(a, b), Gk ∼ ŴS(βk, b/αk), 1 ≤ k ≤ n.

We refer to an n-dimensional subordinator T ∼ αGn(a, b,α), as an α-gamma (αG) subordi-

nator [23], provided

T = (T1, . . . , Tn)
D
= G0α + (G1, . . . ,Gn). (2.16)

As perceived in [23], the components of T are univariate standard gamma subordinators Tk ∼

ŴS(b/αk), 1 ≤ k ≤ n. Further, an n-dimensional drift-less subordinator T with Lévy measure T

is an α-gamma subordinator with parameters a, b,α if and only if, with β1, . . . , βn as above,

T =

∫

(0,∞)

δgαGa,b(dg) +

n∑

k=1

δ
⊗(k−1)
0 ⊗ Gβk,b/αk

⊗ δ
⊗(n−k)
0 . (2.17)

Strong variance-α-gamma processes. Assume n ≥ 2. Let µ = (μ1, . . . ,μn) ∈ Rn and � =

diag(�11, . . . ,�nn) ∈ [0,∞)n×n be a diagonal matrix.

For independent B and T , if Y
D
= B ◦ T , where B ∼ BMn(µ,�) is a Brownian motion with

independent components and T ∼ αGn(a, b,α) is an αG-subordinator, then we call Y a (strong)

variance-α-gamma process [23] with parameters a, b,α,µ,�, in short,

Y
D
= B ◦ T ∼ V αGn(a, b,α,µ,�) = BMn(µ,�) ◦ αGn

S(a, b,α). (2.18)
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Remark 2.5. The Brownian motion subordinate must have independent components, which re-

stricts the dependence structure. In our weak formulation of the V αG-process, the subordinate

is a Brownian motion with possibly correlated components. Our WV αG-process has a wider

range of dependence structures, while being parsimoniously parametrised, each component has

both common and idiosyncratic time changes, it has V G-marginals with independent levels of

kurtosis, with the jump measure having full support.

Weak variance-α-gamma processes. Assume n ≥ 2. Let µ = (μ1, . . . ,μn) ∈ Rn and � =

(�kl) ∈ R
n×n be an arbitrary covariance matrix.

Whenever Y
D
= B ⊙ T , where B ∼ BMn(µ,�) is Brownian motion, and T ∼ αGn(a, b,α)

is an αG-subordinator, then we call Y a weak variance-α-gamma process with parameters

a, b,α,µ,�, in short,

Y
D
= B ⊙ T ∼ WV αGn(a, b,α,µ,�) = BMn(µ,�) ⊙ αGn

S(a, b,α). (2.19)

We derive the joint Lévy measure Z of the pair Z = (T ,B ⊙ T ). Let N(dx|µ,�) be the normal

law with mean µ and covariance matrix �. As B(t) ∼ N(dx|t ⋄ µ, t ⋄ �) for fixed t ∈ [0,∞)n∗ ,

by Proposition 2.1, it follows from (2.15) and (2.17) that for a Borel set A ⊆R
2n
∗ ,

Z(A) =

∫

(0,∞)×Rn

1A(gα,x)N(dx|gα ⋄ µ, gα ⋄ �)Ga,b(dg)

(2.20)

+

n∑

k=1

∫

(0,∞)×R

1A(gek, xkek)N(dxk|gμk, g�kk)Gβk ,b/αk
(dg).

Formula (2.20) tells us that T and B ⊙T jump together. As a result, weakly subordinated Brown-

ian motion resembles the jump behaviour of a subordinated Brownian motion. Like strong V αG-

processes in [23], WV αG-processes jump in two different ways: either the components jump in-

dependently of each other together with one of the subordinators G1, . . . ,Gn, or the components

jump together with the subordinator G0.

If, in addition, � is a diagonal matrix, and (2.20) is projected on space we recover the formulae

of the strong variance-α-gamma process B ◦ T , as derived in [14] (see their Theorem 1.1).

3. Properties of weak subordination

Let T ∼ Sn(d,T ) and X ∼ Ln(µ,�,X ) be candidates for a subordinator and subordinate in the

weak or semi-strong subordination of Definition 2.1.

We provide a formula for the characteristic exponent.

Proposition 3.1. Z
D
= (T ,X ⊙ T ) holds in the weak sense if and only if for all θ = (θ1, θ2) with

θ1, θ2 ∈Rn, the characteristic exponent of Z is

�Z(θ) = i〈d, θ1〉 + (d ⋄ �X)(θ2) +

∫

[0,∞)n∗

(
�(t,X(t))(θ) − 1

)
T (dt). (3.1)

Here, (d ⋄ �X)(θ2) is defined as in (2.11), but with (θ , t) replaced by (θ2,d).
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Proof. Let θ = (θ1, θ2) with θ1, θ2 ∈ R
n. Combining (2.3) and Lemma 5.1 below yields

T -integrability of t �→ E exp{i〈θ, (t,X(t))〉} − 1 with

∫

[0,∞)n∗×Rn

(
ei〈θ ,(t,x)〉 − 1 − i

〈
θ, (t,x)

〉
1D(t,x)

)
P
(
X(t) ∈ dx

)
T (dt)

= −i

∫

[0,∞)n∗

(
E

[〈
θ2,X(t)

〉
1D

(
t,X(t)

)]
+ 〈θ1, t〉P

((
t,X(t)

)
∈ D

))
T (dt) (3.2)

+

∫

[0,∞)n∗

(
�(t,X(t))(θ) − 1

)
T (dt).

Plainly, Z
D
= (T ,X ⊙ T ) if and only if Z has characteristic triplet (2.12)–(2.15), and this is true

if and only if (3.1) does, as follows from (3.2). �

Apart from determining the distribution of the time-and-space projected processes, the next

proposition states that, in analogy with traditional subordination [3,21], weak subordination is

consistent with projections.

Proposition 3.2. If Z = (Z1,Z2) is a Lévy process with n-dimensional components Z1 and Z2

such that Z = (Z1,Z2)
D
= (T ,X ⊙T ) holds in the weak sense, then we must have Z1

D
= T as well

as Z2 ∼ Ln(m2,�2,Z2) with

m2 = c(d,X ) + d ⋄ µ +

∫

[0,∞)n∗

E
[
X(t)1D

(
X(t)

)]
T (dt), (3.3)

�2 = d ⋄ � (3.4)

Z2(dx) = d ⋄X (dx) +

∫

[0,∞)n∗

P
(
X(t) ∈ dx

)
T (dt). (3.5)

In addition, if J ⊆ {1, . . . , n}, we have (T πJ , (X ⊙ T )πJ )
D
= (T πJ , (XπJ ) ⊙ (T πJ )) and, par-

ticularly, (Tk, (X ⊙ T )k)
D
= (Tk,Xk ⊙ Tk) for 1 ≤ k ≤ n.

Proof. Let Z = (Z1,Z2) ∼ L2n(m,�,Z) with m = (m1,m2),�,Z as specified in (2.12)–

(2.15). For θ1, θ2 ∈ R
n it is straightforwardly checked that �Z(θ1,0) = �T (θ1) and �Z(0, θ2) =

�Z2
(θ2), giving Z1

D
= T and Z2 ∼ Ln with characteristics matching those in (3.3)–(3.5).

Without loss of generality, assume J �= ∅ and set π := πJ . It suffices to show that, for all

θ1, θ2 ∈ R
n,

�(T π ,(X⊙T )π)(θ1, θ2) = �(T π,(Xπ)⊙(T π))(θ1, θ2). (3.6)

By noting �(T π,(X⊙T )π)(θ1, θ2) = �(T ,X⊙T )(θ1π, θ2π), the LHS in (3.6) matches the RHS

in (3.1), but with (θ1, θ2) replaced with (θ1π , θ2π). The RHS in (3.6) equals the RHS in (3.1)

with (T ,X) replaced with (T π,Xπ). To prove the identity in (3.6), it thus suffices to compare

the three terms occurring on both sides in (3.6), respectively.
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The projected process T π is an n-dimensional subordinator with drift dπ and Lévy measure

T ◦π−1. Consequently, the first term on both sides in (3.6) are equal as 〈θ1π,d〉 = 〈θ1,dπ〉. The

second identity, d⋄�X(θ2π) = (dπ)⋄�Xπ (θ2), follows from Proposition 2.1 as 〈θ2π ,X(d)〉 =

〈θ2, (X(d))π〉 = 〈θ2, (Xπ)(dπ)〉. The third identity follows from the transformation theorem

by recalling that T ◦ π−1 is the Lévy measure of the projected process T π , and by (Xπ)(t) =

(Xπ)(tπ) and 〈(θ1π, θ2π), (t,X(t))〉 = 〈(θ1, θ2), (tπ , (Xπ)(tπ)〉, t ∈ [0,∞)n, as they imply

the crucial identity

∫

[0,∞)n∗

(
�(t,X(t))(θ1π, θ2π) − 1

)
T (dt) =

∫

[0,∞)n∗

(
�(t,(Xπ)(t))(θ) − 1

)
T ◦ π−1(dt).

�

Remark 3.1. Weak subordination is consistent with projections to coordinates by Proposi-

tion 3.2. Suppose Y = (Y1, . . . , Yn)
D
= B ⊙ T ∼ WV αGn(a, b,α,µ,�) in (2.19), where B =

(B1, . . . ,Bn) ∼ BMn(µ,�) and T = (T1, . . . , Tn) ∼ αGn(a, b,α). Assume that B and T are

independent, then Y has V G1-components. Thus, Y has the same marginal distributions as a

strong V αGn(a, b,α,µ,�)-process [23] because

Yk
D
= (B ⊙ T )k

D
= Bk ⊙ Tk

D
= Bk ◦ Tk ∼ V G1(b/αk,μk,�kk), 1 ≤ k ≤ n. (3.7)

Weak and semi-strong subordination extends traditional subordination.

Proposition 3.3. Let T ,X be independent. If either T has indistinguishable components or X

has independent components, then (T ,X ◦ T )
D
= (T ,X ⊙ T ) in the semi-strong sense.

Proof. We extend 〈z,w〉 :=
∑n

k=1 zkwk to z,w ∈C
n. We avoid conjugation.

As we assumed T and X to be independent processes, we get from Proposition 2.1 by condi-

tioning on T that, for θ = (θ1, θ2), θ1, θ2 ∈ R
n,

�(T (1),X(T (1)))(θ) = E exp
{
i
〈
θ1, T (1)

〉
+

(
T (1) ⋄ �X

)
(θ2)

}
. (3.8)

Univariate subordination. T ,X are independent with T = Re with R ∼ S1(d,R) and e =

(1, . . . ,1) ∈ R
n. We have c = 0 in (2.9). Note 〈θ1, T (1)〉 = R(1)〈θ1, e〉 and (T (1) ⋄ �X)(θ2) =

R(1)(e⋄�X(θ2)) in (3.8). Noting ℜz ≥ 0 for z := −i〈θ1, e〉− e⋄�X(θ2), we get from (3.8) that

�(T ,X◦T )(θ) = −�R(z), where �R(z) := dz +
∫
(0,∞)

(1 − e−zr )R(dr). The RHS matches (3.1),

and T subordinates X in the semi-strong sense.

Multivariate subordination. Let T ,X1,X2, . . . ,Xn be independent. Particularly, � is a diago-

nal matrix and X =
∑n

k=1 X{k}. If t = (t1, . . . , tn) ∈ [0,∞)n, J(m) := {(m), . . . , (n)}, 1 ≤ m ≤ n,

then (2.8) becomes t ⋄X =
∑n

k=1 tkX{k} as

n∑

m=1

�t(m)

{
n∑

k=1

X{k}

}

J(m)

=

n∑

k=1

{
n∑

m=1

�t(m)1J(m)
(k)

}
X{k}.
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Note c = 0 in (2.9) because for ∅ �= J ⊆ {1, . . . , n}, 1 ≤ k ≤ n,

∫

DC

xπJ 1D(xπJ )X{k}(dx) = 1J (k)ek

∫

DC

x1D(x)X{k}(dx) = 0.

Recalling the diagonal form of � yields 〈θ2(θ2 ⋄ �), t〉 = ‖θ2‖
2
t⋄� for t ∈ [0,∞)n, θ2 ∈ R

n.

Also, ℜz ∈ [0,∞)n, for θ1, θ2 ∈ Rn and

z :=
1

2
θ2(θ2 ⋄ �) − i(θ1 + θ2 ⋄ µ)

−

n∑

k=1

ek

∫

R
n
∗

(
ei〈θ2,x〉 − 1 − i〈θ2,x〉1D(x)

)
X{k}(dx).

By (3.8), note �(T ,X◦T )(θ) = −�T (z), where �T (z) := 〈z,d〉 +
∫
[0,∞)n∗

(1 − e−〈z,t〉)T (dt). As

RHS matches (3.1), T subordinates X in the semi-strong sense. �

Remark 3.2. Suppose Y
D
= B ⊙T ∼ WV αGn(a, b,α,µ,�) in (2.19). If � is of diagonal form,

then B is a Brownian motion with independent increments. Assume B and T are independent.

Proposition 3.3 states that Y
D
= B ⊙ T

D
= B ◦ T ∼ V αGn(a, b,α,µ,�) in (2.18). Within the

general class of n-dimensional Lévy processes, the WV αG-class is thus a proper extension of

the strong V αG-class.

Monotone case. If its standard assumptions are violated, then traditional subordination may fail

to create Lévy processes. Curiously, weak subordination overcomes this problem in the monotone

case.

Proposition 3.4. Suppose T , X be independent while Z
D
= (T ,X ⊙ T ) in the weak sense. If T

has monotone components T1 ≤ · · · ≤ Tn, then Z(t)
D
= (T (t),X(T (t))) for all fixed t ≥ 0.

Proof. Set [0,∞)n≤ := {t = (t1, . . . , tn) ∈ [0,∞)n : t1 ≤ . . . ≤ tn}. For 1 ≤ k ≤ n, let �k =

(�k,ij ) ∈ R
n×n be defined by �k,ij := �ij 1{i ∧ j ≥ k} for 1 ≤ i, j ≤ n. For t = (t1, . . . , tn) ∈

[0,∞)n≤, 1 ≤ k ≤ n, let �tk := tk − tk−1, t0 := 0. The quantities in (2.7)–(2.9) are t ⋄ � =∑n
k=1 �tk�k , t ⋄X =

∑n
k=1 �tkX{k,...,n} and c =

∑n
k=2 �tk

∫
DC xπ {k,...,n}1D(xπ {k,...,n})X (dx).

Introduce linear bijections A,D : Rn →Rn by setting

xA := (x1, x1 + x2, x1 + x2 + x3, . . . , x1 + x2 + · · · + xn),

xD := (x1, x2 − x1, x3 − x2, . . . , xn − xn−1), x = (x1, . . . , xn) ∈ R
n.

As we assumed T1 ≤ · · · ≤ Tn, T D ∼ Sn(dD,T ◦ D−1) is a subordinator (see [21], his Theo-

rem 24.11).
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Let θ = (θ1, θ2), θ1, θ2 ∈R
n. Observe that ℜz ∈ [0,∞)n, where

z := −iθ1A
′ − i(θ2 ⋄ µ)A′ +

1

2

n∑

k=1

‖θ2‖
2
�k

ek

−

n∑

k=1

∫

R
n
∗

(
ei〈θ2,x〉 − 1 − i〈θ2,x〉1D(x)

)
X{k,...,n}(dx)ek

− i

n∑

k=2

∫

DC

〈θ2,xπ {k,...,n}〉1D(xπ {k,...,n})X (dx)ek .

As A = D−1, note i〈θ1, t〉 + t ⋄ �X(θ2) = −〈z, tD〉. Then using the assumption that T

and X are independent, and the facts d ∈ [0,∞)n≤ and T ([0,∞)n∗\[0,∞)n≤) = 0, it follows

that �(T (t),X◦T (t))(θ) = exp{−t�T D(z)} for t ≥ 0, where �T D(z) := 〈z,dD〉 +
∫
[0,∞)n∗

(1 −

e−〈z,tD〉)T (dt) matches (3.1). �

Remark 3.3. Let B,B∗, I be the processes specified in Remark 2.2 so that Z := ((I,2I ),

(B,B) ⊙ (I,2I ))
D
= (I,2I,B,B + B∗). The deterministic subordinator (I,2I ) satisfies I ≤ 2I .

Proposition 3.4 matches Z(t)
D
= (t,2t,B(t),B(2t)) for all fixed t ≥ 0.

Remark 3.4. Suppose B is a standard Brownian motion and N is a Poisson process with unit

rate, independent of B . Note E[B(t)B(N(t))] = E[t ∧ N(t)] = t (1 − e−t ) for 0 ≤ t ≤ 1, which

is a nonlinear function in t . As a result, (B,B) ◦ (I,N) cannot be a Lévy process, and there is no

Lévy process matching (B,B) ◦ (I,N) in law in all fixed time points t ≥ 0. Neither I ≤ N nor

N ≤ I holds for the subordinator (I,N). It is verified from (2.12)–(2.14) that ((I,N), (B,B) ⊙

(I,N))
D
= ((I,N), (B∗,B ◦N)) in the semi-strong sense, where B∗ D

= B is independent of B,N .

Ray-subordination. Recall e = (1, . . . ,1) ∈ R
n, and let (e, e) = (1, . . . ,1) ∈ R

2n. If α ∈

[0,∞)n is a deterministic vector and R is a univariate subordinator, then T := Rα defines an

n-dimensional subordinator travelling along the deterministic ray {rα : r ≥ 0}. We refer to this

kind of subordination as ray-subordination. A special case is strong univariate subordination

where the corresponding ray is given by {re : r ≥ 0}.

Curiously, it is possible to perceive weak subordination along deterministic rays as univariate

subordination of augmented processes.

Proposition 3.5. Let α ∈ [0,∞)n be a deterministic vector and R a univariate subordinator. If

Y is a Lévy process with characteristic exponent �Y = α ⋄ �X , as in (2.11), but with t replaced

by α, then we have (Rα,X ⊙ (Rα))
D
= (Iα, Y ) ⊙ (R(e, e)).

If, in addition, R and Y are independent, then (Rα,X ⊙ (Rα))
D
= (Iα, Y ) ◦ (R(e, e)).

Proof. Let θ = (θ1, θ2), θ1, θ2 ∈ R
n. Suppose R ∼ S1(d,R) and α = (α1, . . . , αn) ∈ [0,∞)n.

Without loss of generality, assume α1 ≤ · · · ≤ αn. Denote the augmented process by W :=



754 B. Buchmann, K.W. Lu and D.B. Madan

(Iα, Y ). Proposition 2.1 states that W(r) = (rα, Y (r))
D
= (rα,X(rα)) for r ≥ 0, thus prov-

ing the identity I1(θ) = I2(θ), where I1(θ) :=
∫
(0,∞)

(�(rα,X(rα))(θ) − 1)R(dr) and I2(θ) :=∫
(0,∞)

(�W(r(e,e))(θ) − 1)R(dr).

Note Rα ∼ Sn(dα,R ◦ (Iα)−1). Proposition 3.1 and the transformation theorem tells us that

�(Rα,X⊙(Rα))(θ) = id〈α, θ1〉 + d�Y (θ2) + I1(θ), also recalling α ⋄ �X(θ2) = �Y (θ2). Next,

observe that R(e, e) ∼ S2n(d(e, e),R◦(I (e, e))−1) and �W⊙(R(e,e))(θ) = �(R(e,e),W⊙(R(e,e)))(0,

θ). By Proposition 3.1 and the transformation theorem, the RHS evaluates to d(e, e) ⋄ �W (θ) +

I2(θ) = id〈α, θ1〉 + d�Y (θ2) + I2(θ) by Proposition 2.1.

The last statement in Proposition 3.5 follows from Proposition 3.3. �

Remark 3.5. Let B,B∗,N be independent processes, where B
D
= B∗ are standard Brownian

motions, and N is a Poisson process with unit rate. By Proposition 3.5, it follows from indepen-

dence that ((I,2I ), (B,B) ⊙ (I,2I ))
D
= (I,2I,B,B + B∗) ◦ (I, I, I, I ) and ((N,2N), (B,B) ⊙

(N,2N))
D
= (I,2I,B,B + B∗) ◦ (N,N,N,N). Thus, we can represent these processes using

strong subordination with the univariate subordinators I and N , respectively.

Moments. We give formulae for expected values and covariances.

Proposition 3.6. If X and T be as in Definition 2.1, then, for t > 0,

E
[
T (t)

]
/t = d +

∫

[0,∞)n∗

tT (dt), Cov
(
T (t)

)
/t =

∫

[0,∞)n∗

t′tT (dt),

E
[
X ⊙ T (t)

]
/t = d ⋄ µ +

∫

DC

x(d ⋄X )(dx) +

∫

[0,∞)n∗

E
[
X(t)

]
T (dt),

Cov
(
X ⊙ T (t)

)
/t = d ⋄ � +

∫

R
n
∗

x′x(d ⋄X )(dx) +

∫

[0,∞)n∗

E
[
X′(t)X(t)

]
T (dt),

Cov
(
X ⊙ T (t), T (t)

)
/t =

∫

[0,∞)n∗

E
[
X′(t)

]
tT (dt),

provided the participating integrals are finite.

Proof. Given the characteristics of Z
D
= (T ,X ⊙ T ) ∼ L2n(m,�,Z) in (2.12)–(2.15), these

follow from the general formulae for moments of Lévy processes (see [21], his Exam-

ple 25.12). �

Remark 3.6. Let Brownian motion B ∼ BMn(µ,�) be the weak subordinate and T ∼ Sn(d,T )

be the subordinator. By Proposition 3.6, for 1 ≤ k ≤ n,

E
[
(B ⊙ T )k(1)

]
= μkE

[
Tk(1)

]
,

Var
(
(B ⊙ T )k(1)

)
= �kkE

[
Tk(1)

]
+ μ2

k Var
(
Tk(1)

)
.
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Assume 1 ≤ k �= l ≤ n,u > 0, and set

τk,l(u) := T
({

t = (t1, . . . , tn) ∈ [0,∞)n∗ : tk ∧ tl > u
})

.

Recall s ∧ t =
∫
(0,∞)

1(u,∞)(s)1(u,∞)(t)du, s, t ≥ 0, and
∫
[0,∞)n∗

tk ∧ tlT (dt) =
∫
(0,∞)

τk,l(u)du.

Proposition 3.6 states that

Cov
(
(B ⊙ T )k(1), (B ⊙ T )l(1)

)
= μkμl Cov

(
Tk(1), Tl(1)

)
+ �kl(dk ∧ dl)

+ �kl

∫

(0,∞)

τk,l(u)du.

Remark 3.7. Let B ⊙ T ∼ WV αGn(a, b,α,µ,�) be as in (2.19). As the components of T =

(T1, . . . , Tn) are standard gamma subordinators Tk ∼ ŴS(b/αk), 1 ≤ k ≤ n, the first and second

moments of an αG-subordinator are determined as follows (see [23]),

E
[
Tk(1)

]
= 1, Var

(
Tk(1)

)
= αk/b, 1 ≤ k ≤ n,

and

Cov
(
Tk(1), Tl(1)

)
= αkαl Var

(
T0(1)

)
= αkαla/b2, 1 ≤ k �= l ≤ n.

It follows from Remark 3.6 that, for 1 ≤ k ≤ n,

E
[
(B ⊙ T )k(1)

]
= μk, Var

(
(B ⊙ T )k(1)

)
=

(
b�kk + μ2

kαk

)
/b,

and these formulae match, not surprisingly, those of univariate V G1-processes in [16] because

of (3.7). If 1 ≤ k �= l ≤ n, observe
∫
(0,∞)

τk,l;a,b,α(u)du = (αk ∧ αl)E[T0(1)] = (αk ∧ αl)a/b,

with covariance given by

Cov
(
(B ⊙ T )k(1), (B ⊙ T )l(1)

)

= �kl(αk ∧ αl)E
[
T0(1)

]
+ μkμl Cov

(
Tk(1), Tl(1)

)
(3.9)

=
(
ab(αk ∧ αl)�kl + aαkαlμkμl

)
/b2.

These moments for the WV αGn-process have also been derived in [18] as well as higher

moments.

For traditional subordination, (3.9) reduces to αkαlμkμl/b
2 (see [23], her Section 4) as � is

diagonal, which was noted as a disadvantage in [12,14]. In contrast, B ⊙ T has an additional

correlation term which includes the correlation of the Brownian motion.

Superposition. If a process X is weakly subordinated by a superposition of several independent

subordinators, then its law equals the sum of independent Lévy processes.

Proposition 3.7. Let X be an n-dimensional Lévy process. Let d ∈ [0,∞)n be a determin-

istic vector. If T1, . . . , Tm are independent n-dimensional drift-less subordinators, then T :=
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Id +
∑m

k=1 Tk is an n-dimensional subordinator with drift d and (T ,X ⊙T )
D
=

∑m
j=0 Aj , where

A0,A1, . . . ,Am are independent Lévy processes with A0
D
= (Id,X ⊙ Id), Ak

D
= (Tk,X ⊙ Tk),

1 ≤ k ≤ m.

Proof. Assume that T1, . . . , Tm,A0, . . . ,Am are independent processes, where Tk ∼ Sn(0,Tk),

A0
D
= (Id,X ⊙ Id) and Ak

D
= (Tk,X ⊙ Tk), 1 ≤ k ≤ m. In particular, note T ∼ Sn(d,

∑m
k=1 Tk),

then by (3.1),

�(T ,X⊙T )(θ) = i〈θ1,d〉 + (d ⋄ �X)(θ2) +

∫

[0,∞)n∗

(
�(t,X(t))(θ) − 1

)
(

m∑

k=1

Tk

)
(dt)

=

m∑

k=0

�Ak
(θ) = �∑m

k=0 Ak
(θ), θ = (θ1, θ2), θ1, θ2 ∈ R

n,

as desired. �

Remark 3.8. In the context of traditional subordination (see [7], their Proposition 4.1), Proposi-

tion 3.7 holds without assuming drift-less subordinators. This is more delicate when dealing with

weak subordination. Let B,B∗,W,W ∗ be independent standard univariate Brownian motions.

Remark 2.2 states that (B,B)⊙ (I,2I )
D
= (B,B +B∗) and (B,B)⊙ (2I, I )

D
= (W +W ∗,W).

Proposition 3.3 states that (B,B) ⊙ (3I,3I )
D
= (B,B) ◦ (3I,3I ). Note (B,B + B∗) + (W +

W ∗,W) ∼ BM2(0, [(3,2), (2,3)]) and (B,B) ◦ (3I,3I ) ∼ BM2(0, [(3,3), (3,3)]). There are

no independent processes Y1, Y2 such that, simultaneously, Y1
D
= (B,B)⊙ (I,2I ), Y2

D
= (B,B)⊙

(2I, I )) and Y1 + Y2
D
= (B,B) ⊙ (3I,3I ).

Remark 3.9. Let B ⊙ T ∼ WV αGn(a, b,α,µ,�) in (2.19). We derive a joint representation

of (T ,B ⊙ T ) in terms of a superposition of gamma processes and variance-gamma processes.

Let B,B(1), . . . ,B(n),W (α),G0, . . . ,Gn be independent, where B(1), . . . ,B(n) are copies of B ∼

BMn(µ,�), G0, . . . ,Gn are as in (2.16) and W (α) ∼ BMn(α ⋄µ,α ⋄�) is a Brownian motion.

Next, standardise bG0/a ∼ ŴS(a) and (b/(b − aαk))Gk ∼ ŴS(βk) to see that V0 := W (α) ◦

(G0e) ∼ V Gn(a, (a/b)(α⋄µ,α⋄�)) and Vk := B
(k)
k ◦Gk ∼ V G1(βk, ((b−aαk)/b)(μk,�kk)),

1 ≤ k ≤ n. Note V0, . . . , Vn are independent.

Plainly, T in (2.16) is the superposition of independent univariate gamma processes travel-

ling along deterministic rays generated by α, e1, . . . , en ∈ [0,∞)n∗ . Combining Propositions 3.7

and 3.5 yields, for Z
D
= (T ,B ⊙ T ),

Z
D
=

(
G0α,B ⊙ (G0α)

)
+

n∑

k=1

(
Gkek,B

(k) ⊙ (Gkek)
)

D
=

(
Iα,W (α)

)
◦

(
G0(e, e)

)
+

n∑

k=1

(
Gkek,

(
B

(k)
k ◦ Gk

)
ek

)
= (G0α,V0) +

n∑

k=1

(Gkek,Vkek).
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Our WV αG-process satisfies Y
D
= B ⊙T

D
= V0 +

∑n
k=1 Vkek as the superposition of independent

V Gn-processes (for the strong formulation, see [7], their Remark 2.17).

Subordinators with independent components. If a drift-less subordinator has independent com-

ponents, then so does any associated weakly subordinated process.

Proposition 3.8. Let X and T be as in Definition 2.1, with drift-less T . If the components of T

are independent, then so are those of X ⊙ T .

Proof. If T = (T1, . . . , Tn) ∼ Sn(0,T ) has independent components T1 ∼ S1(0,T1), . . . , Tn ∼

S1(0,Tn), then T =
∑n

k=1 δ
⊗(k−1)
0 ⊗ Tk ⊗ δ

⊗(n−k)
0 . In (3.4)–(3.5), note d ⋄ � = 0 and Z2 =∑n

k=1 δ
⊗(k−1)
0 ⊗ Yk ⊗ δ

⊗(n−k)
0 , where Z2,Y1, . . . ,Yn are the Lévy measures corresponding to

X ⊙ T ,X1 ⊙ T1, . . . ,Xn ⊙ Tn, as required. �

Remark 3.10. If B,B∗,N,N∗ are independent processes, such that B,B∗ are univariate stan-

dard Brownian motions and N,N∗ are Poisson processes with unit rate, then it is straightfor-

wardly verified from (3.3)–(3.5) and Proposition 3.3 that (B,B) ⊙ (N,N∗)
D
= (B ◦ N,B∗ ◦ N∗)

decomposes into a Lévy process with independent compound Poisson components.

We have previously listed sufficient conditions for strong subordination [3,21] to stay in the

class of Lévy processes. Next, we show that these conditions are necessary in some cases (see

Section 5.3 for a proof).

Proposition 3.9. Let T = (T1, T2) and X = (X1,X2) be independent bivariate Lévy processes,

where T is a subordinator. Suppose neither T1 ≡ 0 nor T2 ≡ 0. If X ◦ T is also a Lévy process,

then T1 = T2 must be indistinguishable, provided one of the following holds in addition:

(i) X
D
= −X is symmetric, and X1,X2 are dependent;

(ii) T is deterministic, and X1,X2 are dependent;

(iii) T admits a finite first moment, and X admits a finite second moment with correlated

components X1,X2.

In Proposition 3.4, we stated monotonicity as a sufficient condition ensuring that the weakly

subordinated process matches the marginal distributions of the strongly subordinated one. Next,

we show that for this purpose, monotonicity is needed in some cases (see Section 5.3 for a proof).

Proposition 3.10. If T = (T1, T2),X = (X1,X2) and Y = (Y1, Y2) are bivariate Lévy processes,

where T ,X are independent and T is a subordinator, while X has dependent components X1,X2,

then there is at least one t ∈ (0,∞) violating X(T (t))
D
= Y(t), provided one of following holds

in addition:

(i) both T ,X admit finite second moments, while X has correlated components and T has

non-monotonic components;
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(ii) Y
D
= X ⊙ T , X is symmetric, while T1, T2 are independent, drift-less and nontrivial sub-

ordinators.

Remark 3.11. In Proposition 3.10(ii), the subordinator has independent and non-deterministic

components, and so is non-monotonic, that is, neither T1 − T2 nor T2 − T1 is a subordinator.

It would be interesting to see whether or not the conditions in Propositions 3.9– 3.10 could be

further weakened. We speculate that this extension is possible based on Dynkin-type formulae

and fluctuation theory for Lévy processes. We have to leave this as an interesting avenue of future

research.

4. Variance generalised gamma convolutions

In this section, the weak subordinate is Brownian motion B ∼ BMn(µ,�), and T ∼ Sn(d,T )

is the subordinator. Since the Lévy measure of B is 0, we get simplifications in (2.8)–(2.15)

and (3.3)–(3.5). The weakly subordinated process is denoted by Y
D
= B ⊙T ∼ Ln(m2,d⋄�,Y).

Thorin [24,25] characterised the class of generalised gamma convolutions (GGC) as the sub-

set of univariate Borel probability measures containing arbitrary finite convolutions of gamma

distributions, while being closed under convergence in distribution (see the survey article [13]

and the monograph [22]). Multivariate extensions of these results and examples have been in-

vestigated in [2,6,19], and these are subclasses of the self-decomposable and, thus, infinitely

divisible distributions. Our subordinators will be taken from this class.

Thorin subordinator. In our exposition, we follow [7]. Recall ln− x = −1(0,1](x) lnx, x > 0.

A nonnegative Borel measure U on [0,∞)n∗ is called an n-dimensional Thorin measure, provided

∫

[0,∞)n∗

(
1 + ln− ‖u‖

)
∧

(
1/‖u‖

)
U(du) < ∞.

If d ∈ [0,∞)n and U is a Thorin measure, we call an n-dimensional subordinator T a Thorin

subordinator, in brief T ∼ GGCn
S (d,U), whenever, for all t ≥ 0,λ ∈ [0,∞)n, it has Laplace

exponent

− lnE exp
{
−

〈
λ, T (t)

〉}
= t〈d,λ〉 + t

∫

[0,∞)n∗

ln
{(

‖u‖2 + 〈λ,u〉
)
/‖u‖2

}
U(du). (4.1)

The distribution of a Thorin subordinator is uniquely determined by d and U .

Let S+ := S ∩ [0,∞)n∗ , where S := {s ∈ R
n : ‖s‖ = 1} is the unit sphere. If T ∼ Sn(d,T ), the

Lévy measure T is derived using a polar-decomposition of its Thorin measure. Specifically, if

A ∈ [0,∞)n∗ is a Borel set, then we may write (see [7], their Lemma 4.1)

U(A) = (S ⊗K) ◦
(
(s, r) �→ rs

)−1
(A) =

∫

S+

∫

(0,∞)

K(s, dr)1A(rs)S(ds).
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Here, S is a finite nonnegative Borel measure on S+ and K is a Thorin kernel, that is a nonnega-

tive Borel kernel with

0 <

∫

(0,∞)

(
1 + ln− r

)
∧ (1/r)K(s, dr) < ∞, s ∈ S+.

Recall Gb is the Lévy measure of a standard gamma subordinator with shape parameter b.

Lemma 4.1. If T ∼ GGCn
S (d,U), then T ∼ Sn(d,T ), where

T =

{
U(du)

‖u‖2
⊗ G‖u‖2(dg)

}
◦

(
(u, g) �→ gu

)−1
. (4.2)

Proof. If T ∼ GGCn
S (d,U), then T ∼ Sn(d,T ) in polar coordinates is (see [7], their Equations

(2.17)–(2.18))

T (A) =

∫

S+

∫

(0,∞)

1A(rs)k(s, r)
dr

r
S(ds), A ⊆ [0,∞)n∗ Borel, (4.3)

k(s, r) =

∫

(0,∞)

e−rvK(s, dv), r > 0, s ∈ S+.

If A ⊆ [0,∞)n is Borel, by using (4.3) and making the substitution g = r/‖u‖, we get that

T (A) =

∫

[0,∞)n∗

{
‖u‖2

∫

(0,∞)

1A(gu)e−g‖u‖2 dg

g

}
U(du)

‖u‖2
.

Here, the RHS matches the RHS of (4.2) when evaluated at A. �

Remark 4.1. If T ∼ αGn(a, b,α) in (2.16), then T is determined as the superposition of in-

dependent gamma subordinators G0, . . . ,Gn, travelling along rays generated by α, e1, . . . , en,

respectively. Recall βk := (b − aαk)/αk , 1 ≤ k ≤ n. If λ ∈ [0,∞)n∗ , then

− lnE exp
{
−

〈
λ, T (t)

〉}

= − lnE
[
exp

{
−G0(t)〈λ,α〉

}]
−

n∑

k=1

lnE
[
exp

{
−Gk(t)〈λ, ek〉

}]

= at ln
{(

b + 〈λ,α〉
)
/b

}
+

n∑

k=1

βkt ln
{(

(b/αk) + 〈λ, ek〉
)
/(b/αk)

}
.

Here, we used independence and the Laplace exponent of the underlying gamma subordinators.

The RHS matches (4.1) for d = 0 and Ua,b,α := aδbα/‖α‖2 +
∑n

k=1 βkδbek/αk
. Therefore, Ua,b,α

defines a finitely supported Thorin measure, and T ∼ GGCn
S (0,Ua,b,α) is a drift-less Thorin

subordinator.

Using Ua,b,α and (4.2), it is possible to give an alternative derivation of the Lévy measure

Ta,b,α in (2.17) (see [7] and [14], their Lemma 2.13 and their Theorem 1.1, respectively).



760 B. Buchmann, K.W. Lu and D.B. Madan

Variance generalised gamma convolutions. For the parameters of this model, we assume an

n-dimensional Thorin measure U , µ ∈ R
n, d ∈ [0,∞)n and a covariance matrix � ∈ R

n×n. Let

B ∼ BMn(µ,�) be a Brownian motion. Let T ∼ GGCn
S (d,U). Given such B and T , we call a

Lévy process of the form Y
D
= B ⊙T an n-dimensional variance generalised gamma convolution

(V GGn) process with parameters d,µ,�,U . We write this as

Y ∼ V GGn(d,µ,�,U) := BMn(µ,�) ⊙ GGCn
S (d,U).

Theorem 2.1 ensures the existence of Y ∼ V GGn(d,µ,�,U).

Characteristics. We derive formulae of the characteristic exponent and the Lévy measure,

valid within the V GGn-class. If ∅ �= J ⊆ {1, . . . , n}, introduce CJ ⊆ VJ ⊆ R
n, where u =

(u1, . . . , un) ∈ CJ and y = (y1, . . . , yn) ∈ VJ if and only if uj > 0 for all j ∈ J and yj �= 0 for all

j ∈ J , respectively. If u ∈ CJ , while � is invertible, the restriction (u ⋄ �)J : RnπJ → R
nπJ ,

x �→ x(u ⋄ �)J := x(u ⋄ �) is an invertible linear mapping, thus having inverse (u ⋄ �)−1
J and

determinant |u ⋄ �|J .

Theorem 4.1. If Y ∼ V GGn(d,µ,�,U), then Y ∼ Ln(m2,d ⋄ �,Y), where m2 = d ⋄ µ +∫
D∗

yY(dy), V is the quantity in (2.5) and

Y =

{
U(du)

‖u‖2
⊗ V‖u‖2,u⋄µ,u⋄�(dy)

}
◦

(
(u,y) �→ y

)−1
, (4.4)

and, for θ ∈ R
n,

�Y (θ) = i〈d ⋄ µ, θ〉 −
1

2
‖θ‖2

d⋄�

(4.5)

−

∫

[0,∞)n∗

ln

{(
‖u‖2 − i〈u ⋄ µ, θ〉 +

1

2
‖θ‖2

u⋄�

)
/‖u‖2

}
U(du).

If, in addition, � is invertible, then Y =
∑

∅ �=J⊆{1,...,n} YJ , YJ (RJ \VJ ) = 0, where YJ is ab-

solutely continuous with respect to dy ◦ π−1
J having density vJ (y) =

∫
CJ

νJ (u,y)U(du), where

u ∈ CJ , y ∈ VJ , cJ := 2/(2π)#J/2, and

νJ (u,y) = cJK#J/2

{
[‖y‖

(u⋄�)−1
J

(
2‖u‖2 + ‖u ⋄ µ‖2

(u⋄�)−1
J

)1/2}

× exp
{
〈y,u ⋄ µ〉

(u⋄�)−1
J

}
/
{
|u ⋄ �|

1/2
J ‖y‖n

(u⋄�)−1
J

}
.

Proof. The formulae of the triplet (m2,d ⋄ �,Y) follow from Proposition 3.2. To see this,

let A ⊆ R
n
∗ be a Borel set. Combining (2.5) with Proposition 2.1 yields

∫
(0,∞)

P(B(gu) ∈

A)G‖u‖2(dg) = V‖u‖2,u⋄µ,u⋄�(A). In particular, we get from (3.5) and (4.2) that

Y(A) =

∫

[0,∞)n∗

∫

(0,∞)

P
(
B(gu) ∈ A

)
G‖u‖2(dg)

U(du)

‖u‖2
,

where the RHS matches the RHS in (4.4) when evaluated at A.
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As t �→ E[B(t)1D∗
(B(t))] is T -integrable by (2.3) and (5.4), y �→ y1D∗

(y) is Y(dy) =

P(B(t) ∈ dy)T (dt)-integrable by the transformation theorem. In particular, the linear term un-

der the integral in (2.1) cancels. By combining (2.4) and (4.4), we see that
∫
R

n
∗
ei〈θ ,y〉 − 1Y(dy)

matches the integral in (4.5).

In view of (2.6) and (4.4), the Lévy density formula follows straightforwardly. �

Remark 4.2. Strong univariate subordination of an arbitrary Brownian motion with an inde-

pendent univariate Thorin subordinator was investigated in [11]. The corresponding class of

Lévy processes was called V GGn,1 in [7]. Using our notation, we have V GGn,1(d,µ,�,U0) :=

V GGn(de,µ,�,
∫
(0,∞)

δueU0(du)), where µ ∈ Rn, d ∈ [0,∞), while � ∈ Rn×n is an arbitrary

covariance matrix and U0 is a univariate Thorin measure. The V Gn-process [16] provides us

with an example of a V GGn,1-process.

The V GGn,n-class was introduced in [7] to complement the V GGn,1-class and contains pro-

cesses formed by strong multivariate subordination of an independent-component Brownian mo-

tion with a Thorin subordinator. More specifically, V GGn,n(d,µ,�,U) := V GGn(d,µ,�,U)

where d ∈ [0,∞)n, µ ∈ R
n, while � is a covariance matrix of diagonal form and U is an n-

dimensional Thorin measure. The strong V αG-process [23] is an example of a V GGn,n-process.

In [7] (see Part (i) of their Theorems 2.3 and 2.5), formulae of the characteristic exponents of

V GGn,1 ∪ V GGn,n-processes are stated separately, while our Theorem 4.1 unifies both classes

as special cases.

Remark 4.3. Though it does not need to be an element of the V GGn,1 ∪ V GGn,n-class, a

WV αG-process always belongs to the V GGn-class.

If Y
D
= B ⊙ T ∼ WV αGn(a, b,α,µ,�) in (2.19), then Y is also a V GGn-process. More

specifically, with Ua,b,α as in Remark 4.1, we have

Y
D
= B ⊙ T ∼ BMn(µ,�) ⊙ GGCn

S (0,Ua,b,α) = V GGn(0,µ,�,Ua,b,α).

In particular, it follows from Theorem 4.1 that, θ = (θ1, . . . , θn) ∈R
n,

�Y (θ) = �B⊙T (θ)

= −a ln

{(
b − i〈α ⋄ µ, θ〉 +

1

2
‖θ‖2

α⋄�

) /
b

}

−

n∑

k=1

βk ln

{(
b − iαkμkθk +

1

2
αkθ

2
k �kk

) /
b

}
.

If, in addition, � is invertible, then combining Theorem 4.1 and (2.6), and recalling K1/2(r) =

π1/2e−r(2r)−1/2, r > 0, (see [10], their Equation (8.469)–3), we find that Y has Lévy measure

Y given by

Y(dy) = f0(y)dy +

n∑

k=1

δ
⊗(k−1)
0 ⊗

(
fk(yk)dyk

)
⊗ δ

⊗(n−k)
0 ,
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where y = (y1, . . . , yn) ∈ R
n
∗ ,

f0(y) =
2a exp{〈y,α ⋄ µ〉(α⋄�)−1}

(2π)n/2|α ⋄ �|1/2‖y‖n
(α⋄�)−1

Kn/2

{
‖y‖(α⋄�)−1

(
2b + ‖α ⋄ µ‖2

(α⋄�)−1

)1/2}
,

and 1 ≤ k ≤ n, y ∈R∗,

fk(y) =
βk

|y|
exp

{(
α

1/2
k μky − |y|

(
2b�kk + αkμ

2
k

)1/2)
/
(
α

1/2
k �kk

)}
.

Alternatively, this decomposition could be derived from Remark 3.9.

Sample Paths. To see how sample path properties such as q-variation of the Thorin subordi-

nator is propagated through Brownian motion, we generalise the corresponding result in [7] (see

their Propositions 2.1–2.2; see Section 5.4 for a proof).

Proposition 4.1. Let T ∼ GGCn
S (d,U) and Y ∼ V GGn(d,µ,�,U) with Lévy measures T and

Y , respectively. Suppose 0 < q < 1.

(i)
∫
D

C
∗
U(du)/‖u‖q is finite if and only if

∫
D∗

‖t‖qT (dt) is.

(ii) If
∫
DC U(du)/‖u‖q is finite, then

∫
D∗

‖y‖2qY(dy) is finite. If � is invertible, then also the

converse holds.

(iii) If d = 0 and
∫
DC U(du)/‖u‖1/2 is finite, then Y is a drift-less FV n-process. If, in addition,

� is invertible, then Y ∼ FV n implies d = 0 and the finiteness of
∫
DC U(du)/‖u‖1/2.

Remark 4.4. In [7] (see their Remarks 2.8–2.9), examples are found of drift-less multivariate

Thorin subordinators subordinating Brownian motion in the strong sense, with the associated

V GGn,1 ∪ V GGn,n-process having sample paths of unbounded variation. Proposition 4.1 states

that those examples have counterparts in the weak sense.

Remark 4.5. If U is a finitely supported nonnegative measure on [0,∞)n∗ , then U is in particular

a Thorin measure, and any associated drift-less V GGn-process must be a FV n-process as is

straightforwardly derived from Proposition 4.1(iii). In particular, see Remark 4.1, weak variance-

α-gamma processes are drift-less FV n-processes.

Remark 4.6. Weak subordination has applications in financial modelling. In [18], log returns of

multiple dependent prices and V G-marginals were modelled using a WV αGn-process. In [17],

the log returns were modelled using a weakly subordinated process where the subordinator, in-

terpreted as an information flow process, has jump dependence specified by a Lévy copula while

its marginals may be chosen arbitrarily. In [15], WV αGn-processes were applied to instanta-

neous portfolio theory. In our future work, we will consider statistical inference for WV αGn-

processes [8], and conditions for the self-decomposability within the weak V GGn-class [9].
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5. Proofs

5.1. Proof of Proposition 2.1

For t = (t1, . . . , tn) ∈ [0,∞)n recall that 〈(1), . . . , (n)〉 denotes the associated permutation of

the ordering t(1) ≤ · · · ≤ t(n) and �t(k) correspond to its kth spacing. For 1 ≤ m ≤ n, let

πm := π {(m),...,(n)} : Rn → R
n, θ �→ θπm. Let X ∼ Ln(µ,�,X ) with � as in (2.1). For

θ = (θ1, . . . , θn) ∈ R
n, we have

n∑

k=1

θkXk(tk) =

n∑

k=1

θ(k)X(k)(t(k)) =

n∑

k=1

k∑

m=1

θ(k)

(
X(k)(t(m)) − X(k)(t(m−1))

)
,

and thus, by interchanging the order of summation on the RHS,

n∑

k=1

θkXk(tk) =

n∑

m=1

n∑

k=m

θ(k)

(
X(k)(t(m)) − X(k)(t(m−1))

)
,

giving E exp(i〈θ ,X(t)〉) = exp{
∑n

m=1 �t(m)�(θπm)} which matches (2.10).

Since projections are self-adjoint, we must have

�(θπm) = i〈µπm, θ〉 −
1

2
‖θπm‖2

� +

∫

R
n
∗

(
ei〈θ ,xπm〉 − 1 − i〈θ ,xπm〉1D(x)

)
X (dx).

As 〈t ⋄ µ, θ〉 =
∑n

m=1 �t(m)〈µπm, θ〉 and ‖θ‖2
t⋄� =

∑n
m=1 �t(m)‖θπm‖2

� , we get by recall-

ing (2.8) and 1D ◦ πm − 1D = (1DC )(1D ◦ πm) that

n∑

m=1

�t(m)

∫

R
n
∗

(
exp

{
i
〈
θ,πm(x)

〉}
− 1 − i

〈
θ ,πm(x)

〉
1D(x)

)
X (dx)

= i
〈
c(t,X ), θ

〉
+

∫

R
n
∗

(
exp

{
i〈θ ,x〉

}
− 1 − i〈θ ,x〉1D(x)

)
(t ⋄X )(dx).

By combining the above, (2.11) follows from (2.10), completing the proof.

5.2. Proof of Theorem 2.1

We collect some useful estimates into a lemma. Its proof and purpose follow [21] (see his Lemma

30.3) and [3] (see the proof of their Theorem 3.2). However, we have to adapt these results to

deal with the multivariate time parameter.

Lemma 5.1. If X ∼ Ln(µ,�,X ) and θ ∈ R
n, then there exist finite C1 = C1(θ ,X), C2 = C2(X)

and C3 = C3(X) such that, for t ∈ [0,∞)n,

|�X(t)(θ) − 1| ≤ C1

(
1 ∧ ‖t‖

)
, (5.1)
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E
[
1 ∧

∥∥X(t)
∥∥2]

≤ C2

(
1 ∧ ‖t‖

)
, (5.2)

E
[
1 ∧

∥∥X(t)
∥∥]

≤ C
1/2
2

(
1 ∧ ‖t‖1/2

)
, (5.3)

∥∥E
[
X(t)1D

(
X(t)

)]∥∥ ≤ C3

(
1 ∧ ‖t‖

)
. (5.4)

Proof. Let t = (t1, . . . , tn) ∈ [0,∞)n and θ = (θ1, . . . , θn) ∈ R
n, and introduce a Lévy mea-

sure N :=
∑

〈(1),...,(n)〉

∑n
k=1 X{(k),...,(n)} with the first summation taken over all permutations

〈(1), . . . , (n)〉.

Recall |ez −1| ≤ |z|, holds for z ∈C with ℜz ≤ 0, and, in particular, for z := t⋄�(θ) in (2.11).

Further, we have |ℜ(t ⋄ �(θ))| ≤ C11‖t‖, where

C11 :=
1

2

n∑

k,l=1

|θkθl�kl | +

∫

R
n
∗

∣∣1 − cos〈θ ,x〉
∣∣N (dx).

In (2.9), note ‖c(t,X )‖ ≤ nX (DC)‖t‖, giving |ℑ(t ⋄ �(θ))| ≤ C12‖t‖, where

C12 := n
(
‖µ‖ + nX

(
D

C
))

‖θ‖ +

∫

R
n
∗

|〈θ ,x〉1D(x) − sin〈θ ,x〉|N (dx).

Plainly, C11 and C12 are finite constants in view of by (2.2). Choosing C2
13 := C2

13(θ) := C2
11 +

C2
12 shows |�X(t)(θ) − 1| ≤ C13‖t‖, so that (5.1) holds for some finite C1 = C1(θ).

Setting Yt(A) := (t ⋄X )(A ∩D
C) and Zt(A) := (t ⋄X )(A ∩D), A ⊆ R

n
∗ Borel, yields Lévy

measures Yt and Zt on R
n
∗ with disjoint supports and associated independent Lévy processes

Y (t) ∼ Ln(0,0,Yt) and Z(t) = (Z
(t)
1 , . . . ,Z

(t)
n ) ∼ Ln(t ⋄ µ + c(t,X ), t ⋄ �,Zt), respectively.

By Proposition 2.1, we may decompose X(t)
D
= Y (t)(1) + Z(t)(1) into a sum of independent

n-dimensional random vectors.

Note Y (t) is a compound Poisson process with jumps in ‖ · ‖-modulus larger than 1. In partic-

ular, {Y (t) has no jumps in time interval [0,1]} ⊆ {Y (t)(1) = 0}, giving the bound

P
(
Y (t)(1) �= 0

)
≤ 1 − P

(
Y (t) has no jumps in time interval [0,1]

)
= 1 − exp

(
−(t ⋄X )

(
D

C
))

.

Since (t ⋄X )(DC) ≤ ‖t‖N (DC) and 1 − e−x ≤ x, x ∈R, we have

P
(
Y (t)(1) �= 0

)
≤ N

(
D

C
)
‖t‖. (5.5)

On the other hand, Z(t) has jumps bounded in norm by 1. In particular, Z(t)(1) has finite moments

of all order. Recall E[Z
(t)
k (1)] = μktk + ck(t,X ) and Var(Z

(t)
k (1)) = �kktk +

∫
D∗

x2
k (t ⋄X )(dx)

for 1 ≤ k ≤ n (see [21], his Example 25.12).

By (2.2), C21 := 2‖µ‖2 + 2n2X (DC)2 + trace(�) +
∫
D∗

‖x‖2N (dx)} is a finite constant, in

addition satisfying

E
[∥∥Z(t)(1)

∥∥2]
≤ C21

(
‖t‖ + ‖t‖2

)
. (5.6)
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By (5.5)–(5.6), E[1 ∧ ‖X(t)‖2] ≤ C22(‖t‖ + ‖t‖2) holds with the choice C22 := N (DC) + C21,

by noting E[1 ∧ ‖X(t)‖2] ≤ P(Y (t)(1) �= 0) + E[‖Z(t)(1)‖2]. This completes the proof of (5.2),

while (5.3) is implied by (5.2) and the Cauchy–Schwarz inequality.

Recall ‖z‖2
∞ := max1≤k≤n |zk|

2 ≤ ‖z‖ := zz′, z = (z1, . . . , zn) ∈ C
n, and set D∞ := {x ∈ R

n :

‖x‖∞ ≤ 1}. If g(x) := eix − 1, x ∈ R, we have

∥∥E
[
X(t)1D∞

(
X(t)

)]∥∥
∞

≤ max
1≤j≤n

∣∣E
[
g
(
Xj (t)

)
1
D

C
∞

(
X(t)

)]∣∣

+ max
1≤j≤n

∣∣E
[(

g
(
Xj (t)

)
− iXj (t)

)
1D∞

(
X(t)

)]∣∣

+ max
1≤j≤n

∣∣E
[
g
(
Xj (t)

)]∣∣.

By noting 1
D

C
∞

≤ 1DC ≤ 1 ∧ ‖ · ‖2, we get

∣∣E
[
g
(
Xj (t)

)
1
D

C
∞

(
X(t)

)]∣∣ ≤ 2E
[
1
D

C
∞

(
X(t)

)]
≤ 2E

[
1 ∧

∥∥X(t)
∥∥2]

, 1 ≤ j ≤ n,

and then (5.2) can be applied. Next, by noting 4|g(x) − ix|2 ≤ x4 + x6, x ∈R, we get

∣∣E
[(

g
(
Xj (t)

)
− iXj (t)

)
1D∞

(
X(t)

)]∣∣ ≤ E
[
1 ∧ X2

j (t)
]
≤ E

[
1 ∧

∥∥X(t)
∥∥2]

, 1 ≤ j ≤ n,

and then (5.2) can be applied. Lastly, we get |E[g(Xj (t))]| = |�X(t)(ej ) − 1|,1 ≤ j ≤ n, and

then (5.1) can be applied with θ ∈ {e1, . . . , en}.

Combining the above yields ‖E[X(t)1D∞
(X(t))]‖∞ ≤ C31(1 ∧ ‖t‖) for some finite constant

C31. Applying the Euclidean triangle inequality and ‖ · ‖ ≤ n1/2‖ · ‖∞ yields

∥∥E
[
X(t)1D

(
X(t)

)]∥∥ ≤ n1/2
∥∥E

[
X(t)1D∞

(
X(t)

)]∥∥
∞

+
∥∥E

[
X(t)1D∞\D

(
X(t)

)]∥∥.

The second term on the RHS is bounded from above by n1/2
E[1D(X(t))], and we found this to

be bounded from above by n1/2
E[1 ∧ ‖X(t)‖2], to which (5.2) was applicable. This completes

the proof of the lemma. �

Proof of Theorem 2.1(i). Plainly, � in (2.14) is a valid covariance matrix as d ⋄ � is the

covariance matrix of B(d) with B ∼ BMn(0,�). It remains to validate that Z in (2.15) is a

Lévy measure. By (2.11), if θ ∈ R
n, then t �→ (t ⋄ �)(θ) is a continuous function with domain

t ∈ [0,∞)n. In particular, the family of probability measures {P(X(t) ∈ dx) : t ∈ [0,∞)n} is

weakly continuous, and P(X(t) ∈ dx) is a Markov kernel from [0,∞)n to R
n, and Z0(dt, dx) :=

1[0,∞)n∗×Rn(t,x)P(X(t) ∈ dx)T (dt) is a well-defined σ -finite Borel measure on the punctured

product ([0,∞)n ×Rn)∗, for which we note

∫

([0,∞)n×Rn)∗

1 ∧
∥∥(t,x)

∥∥2
Z0(dt, dx) =

∫

[0,∞)n∗

E
[
1 ∧

∥∥(Ie,X)(t)
∥∥2]

T (dt), (5.7)

where e = (1, . . . ,1) ∈R
n and (Ie,X) is an augmented 2n-dimensional Lévy process.
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For t ∈ [0,∞)n, by noting ‖(t, t)‖2 = 2‖t‖2 and 1 ∧ ‖(t, t)‖ ≤ 21/2(1 ∧ ‖t‖), t ∈ [0,∞)n, and

applying (5.2) with C2 := C2((Ie,X)), we get

E
[
1 ∧

∥∥(Ie,X)(t)
∥∥2]

≤ C2

(
1 ∧

∥∥(t, t)
∥∥)

≤ 21/2C2

(
1 ∧ ‖t‖

)
.

As (2.3) holds for T , the RHS in the last display is T -integrable, hence Z0 and Z in (2.15) are

Lévy measures by (5.7).

Note ‖t‖P((t,X(t)) ∈D) ≤ ‖t‖1D(t) for all t ∈ [0,∞)n. As the RHS is T -integrable by (2.3),

so is the LHS, and then (2.12) is well-defined. The RHS of (2.13) is well-defined as an implication

of (5.4), applied to the augmented process (Ie,X).

Proof of Theorem 2.1(ii) On a suitable augmentation of (�,F,P), where T lives, we find

W ∼ L2n(m,�, δ0 ⊗ (d ⋄ X )), m = (m1,m2) with m1, m2 and � as in (2.12)– (2.14), and

a family ξ = {ξ(t, t) : (t, t) ∈ [0,∞) × [0,∞)n∗} of independent random vectors, satisfying

ξ(t, t)
D
= X(t) for (t, t) ∈ [0,∞) × [0,∞)n∗ , such that T , ξ,W are independent. Introduce a

marked Poisson point process

Z0 :=
∑

t>0

δ(t,T (t)−T (t−),ξ(t,T (t)−T (t−))),

thus being a Poisson point process with intensity dt ⊗ Z0, where Z0 is the Lévy measure in

Part (i). Particularly, Z0 is the point measure of jumps of a Lévy process Z0 ∼ L2n(0,0,Z0) via

its Lévy-Itô decomposition. As Z1 = T , Z = (Z1,Z2) := Z0 + W
D
= (T ,X ⊙ T ) is T subordi-

nating X in the semi-strong sense.

Proof of Theorem 2.1(iii) If, in addition,
∫
[0,1]n∗

‖t‖1/2T (dt) is finite, then (2.3) holds. This

follows similarly as in (5.7), but using (5.3) instead of (5.2). �

5.3. Proof of Propositions 3.9 and 3.10

Let T = (T1, T2) ∼ S2 and X = (X1,X2) ∼ L2 be independent. For θ = (θ1, θ2) ∈R
2, t ≥ s ≥ 0,

introduce �̂X(θ) := �X(θ) − �X1
(θ1) − �X2

(θ2).

Proof of Propositions 3.9. For θ = (θ1, θ2) ∈ R
2, t ≥ s ≥ 0, introduce A(s, t) := (T1(s) ∧

T2(t)) − (T1(s) ∧ T2(s)) and Z(s, t, θ) := T1(s)�X1
(θ1) + (T2(t) − T2(s))�X2

(θ2).

In view of (2.10), for θ = (θ1, θ2) ∈R
2, r ≥ 0, t ≥ s ≥ 0, note

(r, t, s) ⋄ �X1,X2,X2
(θ ,−θ2) = r�X1

(θ1) + (t − s)�X2
(θ2) + �̂X(θ)(r ∧ t − r ∧ s),

and thus, by conditioning on T ,

�(X1(T1(s)),X2(T2(t))−X2(T2(s)))(θ) = E exp
{
Z(s, t, θ) + �̂X(θ)A(s, t)

}
.

As X◦T is assumed to be a Lévy process, both T and X◦T , have independent increments across

the components. Conditioning the LHS of the last display on T shows the following identity, for

θ = (θ1, θ2) ∈R
2, t ≥ s ≥ 0,

E exp
{
Z(s, t, θ)

}
= E exp

{
Z(s, t, θ) + �̂X(θ)A(s, t)

}
. (5.8)
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(i) Assume X
D
= −X. Since X1 and X2 are dependent, there exist θ = (θ1, θ2) ∈R

2 such that

�̂X(θ) �= 0. By symmetry, �X(θ), �̂X(θ),�Xj
(θj ) ∈ R, j = 1,2. Let t > 0, u ≥ 1. In (5.8) we

have Z(t, ut, θ) ∈ R, forcing A(t,ut) = 0 almost surely. In particular, u �→ A(t,ut) degenerates

to the null process. As T2 cannot degenerate to the null process, we must have T2(t) < T2(ut) for

some u > 1 with probability one, and thus, T1(t) ≤ T2(t) almost surely. Reversing the role of T1

and T2 completes the proof of Part (i).

(ii) As X1,X2 are dependent we have �̂X(θ) �= 0 for some θ ∈ R
2. If T is deterministic with

drift (d1, d2), then �̂X(θ)A(t, (1 + ε)t) ∈ 2π iZ for t, ε > 0, as an implication of (5.8), giving

d1 ≤ d2, with the argument being completed as in (i).

(iii) Assume T (1), and thus A(t,2t) for all t ≥ 0, admits a finite first moment. In addition,

suppose there exists a sequence θn → 0 as n → ∞ such that �̂(θn) �= 0 and ℜ�̂(θn) ≤ 0 for

all n. As |1 − ez| ≤ |z| for ℜz ≤ 0, note |Z(t,2t, θn)(1 − exp{A(t,2t)�̂X(θn)})/�̂(θn)| ≤

A(t,2t), and dominated convergence is applicable to (5.8), giving A(t,2t) = 0 almost surely,

since

0 = lim
n→∞

E
[
Z(t,2t, θn)

(
1 − exp

{
A(t,2t)�̂X(θn)

})
/�̂X(θn)

]
= E

[
A(t,2t)

]
.

If X(1) admits a finite second moment, then �̂X(θ) = −ρθ1θ2 + o(‖θ‖2) as θ → 0, where ρ =

Cov(X1(1),X2(1)), the existence of sequence as required in the previous paragraph is obvious,

provided ρ �= 0. �

Proof of Proposition 3.10. Introduce D := T2 − T1 ∼ FV 1(d,D). If θ = (θ1, θ2) ∈ R
2, note

(r, s) ⋄ �X(θ) = (r ∧ s)�X(θ) + (s − r)+�X2
(θ2) + (s − r)−�X1

(θ1), r, s ≥ 0, so that, by con-

ditioning on T ,

�X(T (t))(θ) = E
[
exp

{(
T1(t) ∧ T2(t)

)
�X(θ) + D+(t)�X2

(θ2) + D−(t)�X1
(θ1)

}]
. (5.9)

(i) Recall T is monotonic if and only if either D or −D is a subordinator. As we assumed T

to have non-monotonic and non-deterministic components, one of the following exclusive cases

holds (see [21], his Corollary 24.8 and his Theorem 24.10):

(a) D(−∞,0) > 0, D(0,∞) = 0 and d > 0, so that the support of the distribution of D(1) is

unbounded towards −∞ with d as its supremum;

(b) D(−∞,0) = 0, D(0,∞) > 0 and d < 0, so that the support of D(1) is unbounded towards

∞ with d as its infimum;

(c) D(−∞,0) > 0 and D(0,∞) > 0 (d ∈ R is arbitrary), so that the support of D(1) is un-

bounded towards ∞ and −∞.

In all cases, we have P(D(1) > 0) > 0 and P(D(1) < 0) > 0, implying E[D+(1)] > 0 and

E[D−(1)] > 0, respectively. We assumed a finite second moment for T , so that the second mo-

ment of D is finite, implying E[|D(1)|] = E[D+(1)] +E[D−(1)] < ∞.

Assume E[D+(t)] = tE[D+(1)], t ≥ 0, so that E[D+(1)] = E[(D(n)/n)+], n = 1,2,3, . . . .

Consequently, we have limn→∞ E[(D(n)/n)+] = E[E[D(1)]+] = E[D(1)]+, as convergence

in mean holds in the context of the strong law of large numbers for independent and identically

distributed integrable random variables. This leads to the contradiction E[D+(1)] = E[D(1)]+ =
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(E[D+(1)] −E[D−(1)])+ < E[D+(1)]. To summarise, t �→ E[D+(t)], t ≥ 0 cannot be a linear

function.

On the RHS of (5.9), taking partial derivatives twice with respect to θ = (θ1, θ2) under the

expectation and applying dominated convergence to θ → 0, we derive the Wald-type identity

Cov
(
X1

(
T1(t)

)
,X2

(
T2(t)

))
= E

[
X1(1)

]
E

[
X2(1)

]
Cov

(
T1(t), T2(t)

)

+ ρE
[
T1(t) ∧ T2(t)

]
.

(5.10)

By our assumptions, T and X admit finite second moments, so that both sides of (5.10) are finite.

Contradicting the hypothesis, assume X(T (t))
D
= Y(t), for all t ≥ 0, where Y is a given bi-

variate Lévy process. Plainly, T and Y are Lévy processes with finite second moments. In

particular, t �→ Cov(T1(t), T2(t)) and t �→ Cov(Y1(t), Y2(t)) are linear functions, and so is

t �→ E[T1(t) ∧ T2(t)], as we assumed ρ �= 0 in (5.10).

Also, t �→ E[T2(t)] is linear, so that noting E[T1(t) ∧ T2(t)] = E[T2(t)] − E[D+(t)], t ≥ 0,

contradicts the non-linearity of t �→ E[D+(t)], completing the proof of (i).

(ii) If T1, T2 are independent and drift-less, the components of X ⊙ T are independent by

Proposition 3.8. Then using Proposition 3.3 on each component yields X⊙T
D
= (X1 ◦T1,X

∗
2 ◦T2)

for independent Lévy processes T1, T2,X1,X
∗
2 , where X∗

2

D
= X2. To summarise, we have

�X⊙T (t)(θ) = E
[
exp

{
T1(t)�X1

(θ1) + T2(t)�X2
(θ2)

}]
, θ = (θ1, θ2) ∈R

2. (5.11)

Next, note (r ∧ s)z + (s − r)+z2 + (s − r)−z1 = (r ∧ s)̂z + (rz1 + sz2), r, s ≥ 0, z, z1, z2, ẑ :=

z − z1 − z2 ∈ C.

As we assume that X1,X2 are dependent, there exists θ∗ ∈ R
2 such that �̂X(θ∗) �= 0. Fur-

ther, �Xj
(θ∗

j ) ≤ 0, j = 1,2, �̂X(θ∗) ∈ R by our symmetry assumption X
D
= −X. If for all

t > 0, (5.11) matches (5.9), we have

E
[
exp

{
T1(t)�X1

(
θ∗

1

)
+ T2(t)�X2

(
θ∗

2

)}(
exp

{(
T1(t) ∧ T2(t)

)
�̂X

(
θ∗

)}
− 1

)]
= 0,

with the implication T1(t) ∧ T2(t) = 0, a.s., for all t > 0. In particular, the null process and

T1 ∧T2 must be indistinguishable as processes, which is a contradiction to T1, T2 being nontrivial

subordinators, completing the proof. �

5.4. Proof of Proposition 4.1

(i) See [7], Part (a) of their Proposition 2.1.

(ii) Let 0 < q < 1 and B ∼ BMn(µ,�). If t ∈ [0,∞)n∗ , set ψ(t) := E[‖B(t)‖2q1D∗
(B(t))].

‘⇒’: Note ψ(t) ≤ 1 for t ∈ [0,∞)n, and introduce |�| := (|�kl |) ∈ R
n×n, |Z| := (|Z1|, . . . ,

|Zn|) for a standard normal vector (Z1, . . . ,Zn) ∈ R
n and Q := 2(2q)∨1(‖µ‖2q +E[‖|Z|‖

2q
|�|]). If

t ∈ [0,∞)n∗ , we have ψ(t) ≤ E[‖B(t)‖2q ] ≤ Q(‖t‖q ∨‖t‖2q) and thus ψ(t) ≤ (1∨Q)(1∧‖t‖q).

As Y(dy) = P(B(t) ∈ dy)T (dt) in (3.5), sufficiency follows from this and Part (i).

‘⇐’: Assume an invertible �. Set D+
∗ := D ∩ [0,∞)n∗ . The proof is completed, provided we

can show that i := inft∈D+
∗

ψ(t)/‖t‖q > 0. If t ∈ [0,∞)n∗ , then set φ(t) := ψ(t)/‖t‖q . Plainly,
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we have tm → t0, sm := tm/‖tm‖ → s0 and φ(tm) → i as m → ∞ for some t0 ∈ D, s0 ∈ S+,

tm ∈D∗, m ≥ 1.

If t0 �= 0, then we find ∅ �= J ⊆ {1, . . . , n} such that t0 ∈ CJ := {
∑

j∈J xj ej : xj > 0

for all j ∈ J }. Note t0 ⋄ µ ∈ R
nπJ , while t0 ⋄ � : RnπJ → R

nπJ is invertible. Particu-

larly, P(B(t) �= 0) = 1, P(0 < ‖B(t)‖ < 1) > 0 and ψ∗(t) := E[‖B(t)‖2q1(0,1)(‖B(t)‖)] > 0.

As desired, we get from Fatou’s lemma and the continuity of the sample paths of B that

i = ‖t0‖
−q lim infm→∞ ψ(tm) ≥ ‖t0‖

−qψ∗(t0) > 0.

If t0 = 0, let B∗ ∼ BMn(0,�), and recall ‖tm‖− 1
2 B(tm)

D
= µ⋄(‖tm‖

1
2 sm)+B∗(sm) =: Wm →

B∗(s0) and 1D∗
(‖t‖1/2Wm) = 1D(‖t‖1/2Wm) → 1, almost surely, as m → ∞, by continuity of

the sample paths of B∗. The proof of the necessity is completed by Fatou’s lemma as

i ≥ lim inf
m→∞

E
[
‖Wm‖2q1D∗

(
‖t‖1/2Wm

)]
≥ E

[∥∥B∗(s0)
∥∥2q]

> 0.

(iii) Let Y ∼ V GGn(d,µ,�,U). To have Y ∼ FV n for an invertible �, we cannot allow for

a non-trivial Brownian component in (4.5), thus forcing d = 0. The Lévy measure of an FV n-

process obeys (2.3), and the necessity part of Proposition 4.1(ii) forces
∫
DC U(du)/‖u‖1/2 to be

finite for invertible �. If d = 0 then Y in (4.5) has no Brownian component. If
∫
DC U(du)/‖u‖1/2

is finite, then so is (2.3) for Y , as an implication of Proposition 4.1 for q = 1. If d = 0

and
∫
DC U(du)/‖u‖1/2 < ∞ hold simultaneously with no invertibility assumptions on �, then

so does Y ∼ FV n.
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