Weak-values Technique for Velocity Measurements

Gerardo Viza, Julian Martinez-Rincon, Gregory A. Howland, Hadas Frostig, Itay Shomroni, Barak Dayan and John Howell

G. I. Viza et al. Opt Let 38 16 2949 (2013)

Why are velocity measurements important?

- Y. Yeh and H. Z. Cummins (1964)
 - 40 um/s
- Laser Doppler Anemometry
 - In-vivo medical imaging
 - Quality control vibrometry
- N. Brunner and C. Simmon PRL 105, 010405
 (2010)
 - Measuring longitudinal phase with frequency-domain analysis

Preparation of State

- Use long temporal Gaussian pulses
- Michelson Interferometer

$$I(t) = I_0(t) \exp\left(\frac{-t^2}{2\tau^2}\right)$$

Observations

- Time Domain: no change
- Frequency Domain: One pulse is red or blue detuned

$$f_d = \pm 2 \frac{v}{c} f_0$$

 Technologically difficult to measure frequency and much easier to measure arrival time.

Observations 2

- Phase:
 - Point by point interference
 - Mirror is imparting a phase within the coherence length of the laser
- Pulse:
 - Pulse length >> Coherence length of the laser >> ϕ

Weak-values

- Coupled velocity/frequency to time
- Pre-selection: temporal Gaussian pulse
- Small interaction:
 - Tiny velocity disturbing the frequency domain
- Post-selection: angle close to destructive interference
- Result: A shift in arrival time

Limitations

■ <u>Cramer-Rao Bound</u>; the lowest bound of the variance over an unbiased estimator. When achieved, the estimator is efficient. = 1/F

$$P(t; \delta t) = \frac{1}{\sqrt{2\pi\tau^2}} \exp\left(\frac{-(t-\delta t)^2}{2\tau^2}\right)$$

Fisher Information

$$F = \int dt P(t; \delta t) \left[\frac{d}{d\delta t} \ln(P(t; \delta t)) \right]^{2}$$

• Fisher Information:

$$N\sin^2(\varphi)\int dt P(t;\delta t) \left[\frac{d}{dt}\ln P(t;\delta t)\right]^2$$

$$pprox rac{N\varphi^2}{ au^2}$$

- Uncertainty of δt is bounded by: $\Delta(\delta t) \ge \frac{\tau}{\varphi \sqrt{N}}$
- Error in estimating velocity is bounded by:

$$\Delta v_{CRB} = \frac{\Delta(\delta t)\varphi}{2k\tau^2} = \frac{1}{2k\tau\sqrt{N}}$$

Smallest resolvable velocity

$$P(t; \delta t) = \frac{1}{\sqrt{2\pi\tau^2}} \exp\left(\frac{-(t-\delta t)^2}{2\tau^2}\right)$$

 Our Signal-to-Noise ratio is straight forward for a Gaussian: time shift divided by the uncertainty of the time shift

• SNR =
$$\frac{\delta t}{\tau} \varphi \sqrt{N} = \frac{v}{\Delta v}$$

Starling, et al. PRA 82, 063822 (2010)

Results

$$\delta t = \frac{2kv\tau^2}{\varphi}$$

$$\tau = \{1.7 - 833\} ms$$
$$\varphi \approx 0.3 rad$$

$$v = 60 \pm 11 \, \frac{pm}{s}$$

Uncertainty Results

- Estimator is efficient
- There is not better estimator to produce smaller uncertainties.

Sub picometer/second

$$\delta t = \frac{2kv\tau^2}{\varphi}$$

- What tricks can we do to achieve sub picometer/second?
 - post-selecting angel smaller
 - pulses longer

Results 2

• Our estimator changed from Gaussian to only the tip. Only the top 12% peak to peak intensity variation.

V_pp [mV]	Φ [rad]	v [pm/s]
2.0	0.275	1.4±0.5
1.0	0.276	0.6±0.4
0.5	0.279	0.4±0.4

Conclusion and Remarks

- The new estimator is not efficient but it helped us resolve slower velocities.
- Instability of the interferometer limited our integration time. The path length was constant for less than 15mins at a time.
- A weak-values technique allowed us to reach a CRB for velocity measurements.
- Achieved 400fm/s with a $\tau = 50s$.
 - In each run we took (10min) the mirror moved the distance of about 2 hydrogen atoms!

Thank you

- John Howell
- Julian Martinez-Rincon
- Gregory A. Howland
- And contributions from Israel
 - Hadas Frostig
 - Itay Shomroni
 - Barak Dayan
- Army Research Office