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Weakening of Indian Summer 
Monsoon Rainfall due to Changes in 
Land Use Land Cover
Supantha Paul1, Subimal Ghosh1,2, Robert Oglesby3,4, Amey Pathak2, Anita Chandrasekharan2 

& RAAJ Ramsankaran1,2

Weakening of Indian summer monsoon rainfall (ISMR) is traditionally linked with large-scale 

perturbations and circulations. However, the impacts of local changes in land use and land cover (LULC) 

on ISMR have yet to be explored. Here, we analyzed this topic using the regional Weather Research 

and Forecasting model with European Center for Medium range Weather Forecast (ECMWF) reanalysis 

data for the years 2000–2010 as a boundary condition and with LULC data from 1987 and 2005. The 
differences in LULC between 1987 and 2005 showed deforestation with conversion of forest land to 
crop land, though the magnitude of such conversion is uncertain because of the coarse resolution 

of satellite images and use of differential sources and methods for data extraction. We performed 
a sensitivity analysis to understand the impacts of large-scale deforestation in India on monsoon 

precipitation and found such impacts are similar to the observed changes in terms of spatial patterns 

and magnitude. We found that deforestation results in weakening of the ISMR because of the decrease 

in evapotranspiration and subsequent decrease in the recycled component of precipitation.

Indian summer monsoon rainfall (ISMR) contributes 80% of the total annual precipitation in India1,2 and con-
trols the agricultural productivity and economy of the country. �e variability of ISMR at di�erent time scales, 
from intra-seasonal to multi-decadal, impacts the life of more than one billion people2,3. ISMR must be reliably 
simulated and projected for sustainable water resources management, agricultural planning towards adaptation 
to climate change4,5.

Variabilities in ISMR at multiple space-time scales, from intra-seasonal to multi-decadal and from subdivi-
sional to regional, a�ect agricultural productivity in the country and hence the gross domestic product (GDP)3–5. 
Observations indicate that ISMR shows a statistically signi�cant decreasing trend since 19506. Multiple hypothe-
ses have been proposed to explain this decrease. Bollasina et al.7 concluded that Northern India had higher aero-
sol emissions, resulting in cooling over the land mass. �is factor weakened the temperature gradient between the 
Northern and Southern hemispheres, thereby decreasing monsoon rainfall in Central North East India. Another 
hypothesis proposed by Rao et al.8,9 considers warming of the Southern Indian Ocean (SIO) as the key driver 
for the decrease in ISMR. Warming of the SIO weakens the meridional Sea Surface Temperature (SST) gradient 
(∆SST), which in turn weakens the meridional Hadley circulation, thereby reducing ISMR10. In a recent study, 
Roxy et al.11 found that changes in ISMR may be attributed to a warming of Western Indian Ocean and a subse-
quent weakening of the temperature gradient in SST over the Indian Ocean. Interestingly, all of these hypotheses 
are supported by di�erent models, but none of the models considers the recent changes in LULC over India. 
Land surface feedback to the atmosphere plays a major role in climate systems, as reported in various studies12–16. 
Niyogi et al.17 indicated possible reductions to the Indian monsoon from changes in land surface. �ey speculated 
that the agricultural intensi�cation in North India during a pre-monsoon period altered the regional monsoon 
circulation. Precipitation resulting from local land surface Evapotranspiration (ET) is known as recycled pre-
cipitation. Pathak et al.18 found that evapotranspiration from land surface vegetation plays a major role during 
the end of a monsoon. �ey observed that, during the initial phase of a monsoon, oceanic sources play a major 
role, and the soil is recharged with moisture. However, during the latter half of a summer monsoon (August and 
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September), land surface ET increases as recycled precipitation increases, a pattern that is more prominent in the 
Ganga Basin and Northeast India. �is recycled precipitation accounts for approximately 20–25% of the rainfall 
in North India (Ganga Basin) and Northeast India during August and September18. Hence, deforestation asso-
ciated with changes in LULC may a�ect ET and may signi�cantly a�ect monsoon rainfall. Ozturk et al.19 found 
that changes in ET may a�ect drought intensity. �ese results agree with a model-based study by Devaraju et al.20, 
in which modeling of deforestation across the global monsoon region showed an 18% decline in precipitation in 
India. However, these models consider hypothetical scenarios for full deforestation across the entire monsoon 
region; therefore, they cannot quantify the impacts of the recent LULC changes that have taken place in India. 
Regional modeling also reveals the impacts of deforestation on rainfall in Peninsular India and Srilanka21. �ere 
is a compelling need to understand the impacts of recent LULC changes in India on monsoon rainfall. Here, we 
attempt to perform a sensitivity analysis using regional model simulations using weather research and forecast-
ing (WRF), which considers large-scale deforestation in recent decades. We consider the LULC from the 1980s 
(LULC map of 1987) and the 2000s (LULC map of 2005) [details in Methods] in two separate runs [details in 
Methods], each for 2000–2010. As the LULC are obtained for these two time scales using di�erent methods from 
di�erent sources [details in Methods], the detected deforestation may have considerable uncertainty. Here, we 
present these regional runs as a representative experiment to understand the impacts of large-scale deforestation 
on monsoon rainfall. �e di�erences in simulated precipitation between the LULCs of 1987 and 2005 provide an 
estimate of changes in precipitation due to large-scale deforestation in India.

Results
Changes in LULC. During the 1980s, the dominant LULC type in India was woody savanna, which was 
mostly forest land, and this type was especially dominant over Central India, the majority of Peninsular India 
and Northeast India (Fig. 1). Because of development and agricultural intensi�cation, these regions were largely 
deforested, and woody savanna was converted to cropland. LULC data from 2005 show that cropland is the dom-
inant LULC type in the country, and it is important to understand the e�ect of this change on monsoon precipita-
tion. For example, in Northeast India, the dominant LULC changed from woody savanna to evergreen broadleaf 
because of increased tea plantations. In general, approximately 20% of leaf area index (LAI) has been reduced in 
the core monsoon zone (Fig. 1(c)). To understand the e�ects of such changes, we simulated the regional monsoon 
with WRF coupled (details in supplementary) with Community Land Model (CLM4.0), forced with di�erent 
LULC types. However, signi�cant uncertainty resides in the estimation of LULC changes, speci�cally because of 
the following (details in Methods):

1. �e historical satellite images are of coarse resolution.
2. �e LULC from the two periods were obtained from two di�erent sources.
3. Di�erences exist in the classi�cation schemes and methods between the data extraction procedures for the 

two periods.

Evaluation of WRF. First, we evaluated WRF simulations for 2000–2010 while imposing 2005 LULC and 
large-scale forcing provided by ECMWF (ERA-Interim) as boundary conditions [details in Methods]. Details of 
the LULC datasets used and their application in the WRF model, along with complete information on the model 
setup, model resolution and rainfall observations used are given in the section ‘Methods’.

Figure 2(a) presents the domain used for the study. We considered a slightly larger domain than the Indian 
subcontinent to ensure that speci�c monsoon features were properly incorporated, speci�cally those associated 
with the variabilities of SST in the Indian Ocean and temperature over the Tibetan plateau. �e meteorologically 
homogeneous regions as mentioned by India Meteorological Department (IMD) are presented in Fig. 2(b).

We performed regional simulations for 2000–2010 with and without spectral nudging to understand whether 
nudging could provide a better simulation of monsoon rainfall. Nudging is not performed at surface level (below 
planetary boundary layer); hence, the low-level variables are not forced to match with those from reanalysis. 
We compared the results with the observed gridded precipitation data from India Meteorological Department 
(IMD) [details in Methods]. Bias in simulated precipitation was reduced when the model was nudged spectrally 

Figure 1. Land Use and Land Cover (LULC) changes in India in recent decades. (a) LULC map for 1987 (b) 
and 2005 (c) Changes (%) in Leaf Area Index in 2005 from 1987. Maps are prepared with ArcGIS10.0 (http://
www.esri.com/so�ware/arcgis/arcgis-for-desktop). �e LULC from 1987 is obtained from AVHRR, and from 
2005 is obtained from MODIS.

http://www.esri.com/software/arcgis/arcgis-for-desktop
http://www.esri.com/software/arcgis/arcgis-for-desktop
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(Fig. 2(c,d)), speci�cally in regions of high precipitation such as Northeast India and the West Coast region. �is 
pattern was also evident from the scatter plots for all of India as well for its homogeneous regions (Fig. 2(e–l)). 
Each point in the scatter plot represents a grid point with its mean observed or simulated precipitation during the 
summer monsoon from 2000 to 2010. North and Northeast India showed better agreement. Spatially averaged 
seasonal precipitations (JJAS) for all of India and its homogeneous regions, as simulated by WRF with nudg-
ing, have higher correlations with observed JJAS than WRF without nudging, except in Jammu and Kashmir 
(Supplementary Fig. S1). �is �nding also indicates that WRF with nudging improves the simulation of inter-
annual variation of monsoon precipitation. We also evaluated the regional runs in terms of spatial variability, 
represented by Probability Density Functions (PDF). PDFs show better agreement for nudged simulations with 
respect to the free runs when evaluated with observed data in the entire country as well as for di�erent regions, 
speci�cally North India, Western India, and the northeastern hills (Supplementary Fig. S2).

Impacts of Changes in LULC on Monsoon Rainfall. We performed WRF-CLM simulations with nudg-
ing and imposed LULC for both the 1980s (1987) and the 2000s (2005). �e duration of the run was 2000–2010. 
�e mean monsoon rainfall (JJAS) obtained with both the LULCs is presented in Fig. 3(a,b), with their di�er-
ences shown in Fig. 3(d). �e di�erences are negative when the 1980s LULC run is subtracted from the 2000s 
LULC run. Negative di�erences denote the changes in monsoon rainfall due to large-scale conversion of woody 
savannah to crop land as obtained from remote sensing images from the 1980s and the 2000s. �ese negative 
di�erences are larger and more prevalent in Northeast India and the Ganga Basin, where Pathak et al.18 found 
higher contributions of recycled precipitation to monsoons. We also plotted the observed di�erence in mon-
soon rainfall between the 2000s and the 1980s (Fig. 3(c)). �e observed data show a strong decline in monsoon 
rainfall in Northeast India, the Ganga Basin and some regions of Central India. Hence, similarities are observed 
between the observed changes and the di�erences obtained from the LULC runs. �is observation indicates that 
the e�ects of an experimental large-scale LULC change in India—speci�cally, the change from forest land to crop 
land—may lead to a signi�cant decline in ISMR, similar in extent to the observed changes. We further plotted the 
PDF representing the spatial variability of observed changes and WRF simulated changes in India as well as its 

Figure 2. Evaluation of regional simulations by Weather Research and Forecasting (WRF) model.  
(a) �e domain considered for WRF simulations, (b) IMD meteorologically homogeneous regions, (c) Bias in 
regional model simulation without nudging and (d) with spectral nudging. (e–l) �e scatter plots between WRF 
simulations (with and without nudging) and observed precipitation for all India and its di�erent homogeneous 
regions (e–l). �e period considered here is 2000–2010, and the LULC considered is for 2005. Maps are 
prepared with MATLAB R2012b (http://in.mathworks.com/products/new_products/release2012b.html). �e 
observed precipitation data are obtained from the India Meteorological Department.

http://in.mathworks.com/products/new_products/release2012b.html
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regions due to deforestation (Fig. 3(e–l)). �e similarities in the PDFs showing changes between the “observed” 
and “simulated LULC e�ects” for Northeast India may indicate that the role of deforestation on precipitation will 
be similar to observed changes in the high-recycling precipitation zone. For all regions, except the northeast-
ern hills and Central India, the PDFs agreed closely. We also tested the statistical signi�cance of the similarities 
between the PDFs. It is very unlikely that the changes in observed and simulated precipitation (due to LULC 
change) will follow exactly the same distribution; hence, the Kolmogorov-Smirnov test fails. We also performed 
a t-test to determine whether both of the changes have a similar mean and standard deviation. We found that 
the similarities in changes between the “observed” and “simulated LULC e�ects” are statistically signi�cant for 
Northeast India, South India and North India. �e signi�cance level is 0.05. �is further strengthens our hypoth-
eses that changes in LULC play a major role in the changing patterns of Indian monsoons and that the impacts of 
large-scale deforestation are similar in extent to the observed recent decline in monsoons. Poor agreement in the 
northeastern hills can be attributed to: �rst, the poor quality of gridded data because the region lacks stations, and 
second, the model is unable to produce the �ne-resolution precipitation required for hilly regions. �e resolution 
considered here is 36 km, which is not su�cient to simulate the spatial variability of precipitation in mountainous 
regions. However, the simulated di�erences do not explain the changes in monsoon precipitation fully, and sig-
ni�cant uncertainty is associated with the detected LULC changes. �e unexplained parts of the monsoon decline 
are due to changes in SST, aerosol emissions and other large-scale circulations.

We also computed monthly changes or differences in precipitation during monsoon months separately 
(Supplementary Fig. S3). The observed monthly changes in precipitation are not uniform across months 
(Supplementary Fig. S3(a–d)) and show greater decline during August, when the amount of recycled precipitation 
is higher18. �e di�erences in rainfall due to changes in LULC are greatest during August and September, with 
the WRF simulations when ERA-interim reanalysis (from ECMWF) is used. We also test our hypothesis with 
WRF simulations forced with CFSR reanalysis and �nd decline in monsoon precipitation due to LULC changes 
(Supplementary Fig. S3(i–l)).

We further investigated the mechanism through which the changes in LULC a�ected monsoon precipita-
tion. We found decrease in ET (Fig. 4(a)) due to deforestation and conversion of woody savanna to crop land. 
Compared to cropland, woody savanna has higher root depth; hence, it also has higher water intake resulting 
in higher ET. To understand the impacts of ET, we applied Dynamic Recycling Model (DRM)22 to quantify the 

Figure 3. Changes in Monsoon Precipitation due to changes in LULC and their consistency with the 
declining patterns of ISMR. Simulated average monsoon precipitation with (a) 1987 and (b) 2005 LULC and 
(d) their di�erences, which are consistent with observed changes in ISMR (c) from the 1980s to the 2000s. PDFs 
representing the spatial variability of changes or di�erences with di�erent LULC are presented for all India and 
its di�erent homogeneous regions (e–l). Maps are prepared with MATLAB R2012b (http://in.mathworks.com/
products/new_products/release2012b.html).

http://in.mathworks.com/products/new_products/release2012b.html
http://in.mathworks.com/products/new_products/release2012b.html
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amount of precipitation ET generated. DRM is applied to both the WRF simulations with 1980s and 2005 LULC. 
�e di�erences in recycled precipitation as obtained from the two simulations (2005 LULC- 1980 LULC) are 
presented in Fig. 4(b), and the results are consistent with those of ET, as expected. �e results show a decrease in 
recycled precipitation due to a decrease in ET. We also found that this decrease is higher at the Ganga Basin and 
Northeast India as expected, where the observed recycling ratio (ratio of recycled to total precipitation) is also 
high18. �is higher decrease of recycled precipitation is consistent with the overall decline of the Indian monsoon. 
We also computed the convective available potential energy (CAPE) from both the simulations and found a very 
modest decrease in the number of days with CAPE>0 (Fig. 4(c)). A decrease in convective precipitation suggests 
an increase in atmospheric stability, a �nding that is consistent with reduced total precipitation. Low CAPE is 
presumably due to a reduced supply of moisture, which is due to a decline in ET because of the LULC changes. 
�e decline of ET and recycled precipitation is larger during the end of a monsoon (Supplementary Fig. S4),  
and this is consistent with overall declines in precipitation during August and September. We also present the 
simulated di�erences in wind �elds and surface temperature (Fig. 4(e,f)). We �nd that impact of changes in 
LULC over surface temperature is prominent in Central and some part of Northern India (Fig. 4(f)). �e sim-
ulated changes in wind �eld show a slight weakening of both south westerlies from the Arabian Sea to central 
India and winds from the Bay of Bengal to the Ganga Basin. Such changes result into lower moisture �uxes from 
moisture sources to sinks with weakening monsoon precipitation. However, the observed changes in wind �elds 
as obtained from ERA-interim (Supplementary Fig. S5) shows a strengthening of westerlies from the Arabian 
Sea to west-central India but a declining of the same to South India. �e observed data show the weakening of 
the wind from the Bay of Bengal to North India and the Ganga Basin. �e simulated temperature remains unal-
tered over the Ganga Basin and Northeast India with the changes in LULC, where maximum changes in recycled 
precipitation are simulated. We also compute the tropospheric temperature gradient (∆TT) to understand the 
synoptic scale processes. �e tropospheric temperature (TT) is de�ned as the average of temperature vertically 
between 200 hPa and 700 hPa. ∆TT is de�ned as the di�erence between TT spatially averaged over two boxes: 
64°E-108° E, 10°N-35°N and 64°E-108° E, 7.8°S-10°N. �e extent of the boxes is limited by the extent of WRF 
domain. No signi�cant changes (Fig. 4(g)) are observed in simulated ∆TT due to LULC changes. �is is expected 
and consistent with our conclusion, suggesting that changes in LULC lead to a decrease in recycled precipitation; 
however, the large-scale circulation a�ecting moisture transport from distant oceanic moisture sources remains 
the same. ∆TT is a proxy for large-scale circulation, which does not change when LULC changes. We also plotted 
the ∆TT from ERA-interim reanalysis dataset. Signi�cant di�erences are observed between the simulated and 
reanalyzed ∆TT (Fig. 4(g)). In spectral nudging23,24, the nudging term is spectrally expanded in both the zonal 
and meridional directions over the entire domain for the waves under selected wave numbers (in our case 3). All 
the other waves are �ltered out. �e deviation of ∆TT as simulated from reanalysis probably originates from the 
selection of the threshold wave number. Further decrease in the threshold wave number would probably result in 
merging simulated ∆TT to the reanalysis.

Discussions and Conclusion. Here, we performed a sensitivity analysis to quantify the impacts of 
large-scale conversion from woody savannah to crop land in India on monsoon precipitation. We found such a 
change results in decreased ET and subsequently a decrease in recycled precipitation leading to a decline in mon-
soon precipitation. �is decline is similar in extent to the observed recent decadal weakening of monsoon precip-
itation. However, other reasons may account for this observed weakening, such as the warming of Indian Ocean 

Figure 4. Di�erences in (a) ET, (b) recycled precipitation, (c) number of days with CAPE>0, and (d) convective 
precipitation between the regional simulations with 1987 and 2005 LULC, during the period 2000–10. Maps are 
prepared with MATLAB R2012b (http://in.mathworks.com/products/new_products/release2012b.html).

http://in.mathworks.com/products/new_products/release2012b.html
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SST. We further experimented with WRF simulations, in which we conducted regional runs forced with 1980s 
SST and 2000s SST data with the same LULC (Supplementary Fig. S6). When WRF is forced with ERA-Interim 
SST, the decline in precipitation is limited to peninsular India (Supplementary Fig. S6(c)). However, when WRF 
is forced with CFSR SST, the area-wide decline in precipitation is quite prominent. �is is possibly because the 
warming of WIO and SIO is not as prominent in ERA-Interim when compared to CFSR. �is also agrees with 
�ndings obtained by Roxy et al.11 and Rao et al.8,9 that warming of SIO and WIO resulted in a decline in monsoon 
precipitation. �e future scope of this present work is to perform detection and attribution studies for potential 
declines of Indian monsoons with model runs forced with SST warming only, aerosol forcing only, LULC changes 
only and all controlling factors together.

�e limitations of the study are as follows:

1. �e LULC map for 1987, as obtained from the University of Maryland (UMD), presents the dominant 
LULC of a selected grid25; hence, the �nal LULC map may have resulted in a small number of misclassi�ca-
tions due to merged classes. Some of the misclassi�cations may be attributed to noisy pixels, inconsistency 
in the ancillary data sources during training and improper choice of the metrics during classi�cation26. 
However, the overall accuracy of the �nal LULC map was approximately 81%26, and it is widely used in var-
ious similar studies for analyzing changes in vegetation patterns and biophysical properties27–29, projecting 
global water resources30, and global data assimilation systems31.

2. �e LULC map of 2005, as obtained from MODIS, may have misclassi�ed some land types such as savan-
nahs and woody savannahs, open shrub lands and grasslands due to similar biophysical and spectro-ther-
mal properties32.

3. Changes in LULC might have resulted in changes in emissions of absorbing and scattering aerosols33. �ese 
changes would have a�ected the monsoon circulation, which has not been considered here.

4. �e land surface model considered here uses natural hydrological processes without human interventions, 
such as irrigation through ground water pumping and reservoir operation, which may have signi�cant 
feedback to monsoon circulation.

5. �e dynamic recycling model considered here is based on the assumption of well-mixed atmospheric 
conditions.

Nevertheless, our �ndings highlight the need to consider changes in LULC in climate model projections for 
the Indian monsoon, because such changes have a signi�cant role in precipitation trends. We also argue that land 
surface representation in climate models used for simulation of monsoon at di�erent scales needs to be improved 
to consider the signi�cant role of LULC and land surface ET on the changing behavior of the Indian monsoon.

Methods
Identifying Land Use Land Cover (LULC). Here we use land use and land cover (LULC) maps for 1987 
and 2005 representing land use patterns for two decades: (a) 1980–1989 and (b) 2000–2009, respectively. �e 
1-km UMD map is prepared based on satellite imagery collected by AVHRR from 1981 to 1994 (1987 Map). �e 
LULC map has 14 classes and is available in three spatial scales: 1 degree (~110 km), 8 km and 1 km. We used the 
1km LULC map. �e classi�cation procedure used in the map was based on red, infrared and thermal bands in 
conjunction with various metrics like NDVI25.

�e MODIS land cover product is available at a 500-m spatial resolution and a 0.05° low spatial resolution for 
climate modeling studies. It was prepared using supervised classi�cation and consists of maps produced for �ve 
di�erent LULC classi�cation schemes: a 17-class International Geosphere–Biosphere Programme classi�cation 
(IGBP); a 14-class University of Maryland classi�cation (UMD); a 10-class system used by the MODIS LAI/FPAR 
algorithm; an 8-biome classi�cation; and a 12-class plant functional type. Here we used the LULC map of 500 m 
resolution.

In this study, both the land cover maps are resampled to 1 km. �e land cover classes have been reclassi�ed 
with respect to the WRF pre-de�ned classes for analysis (Supplementary Table 1). �e land use map from 1987 
does not have urban classes. In the 1987 LULC-map, snow and ice are classi�ed as barren lands, accounting for 
a small fraction of land in North India over the Jammu and Kashmir regions25. Further, snow and ice classes are 
more important for winter precipitation, whereas here we focus on summer monsoon precipitation. �e number 
of urban grids in 1987 was very small compared to the number of crop-land grids and forest grids; hence, we 
assume the e�ects of such grids will not be signi�cant on a mesoscale precipitation pattern.

�e aforementioned methodology involves steps such as resampling and reclassi�cation along with the use of 
data products from multiple sources, all of which is associated with signi�cant uncertainty and may result in devi-
ation from the real LULC changes. However, LULC maps are not available for both periods from the same source, 
so we had no other options for performing this analysis. �e dominant land cover in 1987, as obtained from 
UMD, was “wooded grassland”. However, this class does not exist in the WRF LULC schemes (nor in MODIS). 
�e spectral properties of wooded grassland and woodland are similar; hence, we grouped them together as 
“woody savanna”, a classi�cation that is consistent with WRF input LULC schemes. �e other limitation of 
this method is the use of coarse resolution remotely sensed data for tree cover classi�cation, which has always 
remained a major challenge. However, a number of studies have shown that coarse resolution satellite data can 
be used in characterizing land cover [De Fries et al.25; Malingreau et al.34; Loveland and Belward35; Xie et al.36].  
Xie et al.36 enlists all the available satellite sensors and their applications and discusses the use of coarse resolution 
data like AVHRR and MODIS for global and continental mapping of vegetation and land cover. De Fries et al.25 
developed a methodology for using AVHRR 1-km data to obtain tree-cover percentage. �e Global Land Cover 
Characterization (GLCC) Database, generated from AVHRR 1 km data in 1992, is still widely used. In 2001, 
NASA released land cover products based on monthly data collected by the MODIS sensor. At a continental 
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scale, Mayaux et al.37 mapped the vegetation cover of Central Africa using the AVHRR LAC and GAC data. �ese 
limitations lead to inconsistencies in the estimates of LULC and changes within the literature. Yamashima et al.38 
showed that cropland was the dominant LULC in India during 1992. Hansen et al.39 showed minimal changes 
in the forestland in India from 2000 to 2012. In another study, Hansen et al.26 showed that the major land use 
types in India during 1992 was wooded grassland/open shrubland, using a 1-km spatial resolution data from the 
Advanced Very High Resolution Radiometer (AVHRR). Masson et al.40 and Myneni et al.41 have shown that the 
dominant land cover for India in the 1990s was wooded grassland/savannah, a �nding that directly contradicts 
Yamashima et al.38 and agrees with our input to WRF.

Using LULC and Vegetation Data in WRF-CLM. CLM recognizes land cover type based on a PFT clas-
si�cation approach where ‘the WRF input land cover (LULC) types’ are translated into the CLM4 PFTs as per 
Supplementary Table S2. In CLM, the surface is represented by �ve primary subgrid land cover types (glacier, 
lake, wetland, urban, vegetated) in each grid cell. �e vegetated portion of a grid cell is further divided into 
patches of up to 4 of 16 plant functional types, each with its own leaf and stem area index and canopy height. 
�e dominant LULC in India during 1987 was woody savannah; during 2005, it was cropland. Woody savannah 
consists of 80% evergreen shrub and 20% bare ground, whereas cropland is 85% crop and 15% bare ground42. Leaf 
and stem area indices (m2 leaf area/m2 ground area) are updated in CLM-WRF daily by interpolating between 
monthly values linearly.

�e monthly values (for JJAS) of LAI as observed in MODIS image and as used in WRF through consideration 
of PFTs are plotted in Supplementary Fig. S7. �e plots show that the PFT-based LAI has a seasonal pattern with 
lower values of LAI during June, which increases with the progress of a monsoon. �ese data are similar to those 
observed in MODIS. However, the PFT-based approach consistently overestimates the LAI values when com-
pared to observations. Furthermore, the PFT-based LAI starts reducing in September, whereas the observed data 
show similar LAI values for both August and September. �ese are the limitations of the PFT-based approach, 
which at present is considered in the state-of-the-art Community Land Surface Model.

Forcing Data and Model set up. Here, we used a Weather Research and Forecasting (WRF) model (ver-
sion 3.6) in non-hydrostatic mode, coupled with a Community Land Surface Model (CLM) for understand-
ing land surface feedback44 [Details in Supplementary Text]. �e simulations were performed over the selected 
domain, which covers the entire Indian subcontinent with horizontal grid resolutions of 36 km (Fig. 2(a)). Lateral 
boundary conditions are provided by the European Centre for Medium-range Weather Forecasts (ECMWF) 
reanalysis data or ERA-I data43 with 6-hourly outputs (00, 06, 12, 18 UTC) at a 0.75° × 0.75° horizontal resolution 
over 30 pressure levels. We also used NCEP Climate Forecast System Reanalysis (CFSR) data45 at a 0.50° × 0.50° 
spatial resolution for two selected decades, 1979–1989 and 2000–2010, with the same model con�guration. �e 
model was run from May to October each year, and the analysis was performed for the Indian Summer Monsoon 
(June-July-August-September, JJAS) months, thus allowing for one month of spin-up (May) time each year. 
Model runs are compared with India Meteorological Department (IMD) gridded rainfall data at a 0.25° × 0.25° 
resolution46.

�e consistency between the two LULC types with those used for WRF-CLM simulations is presented in 
Supplementary Table S1. �e model simulations are performed with spectral nudging to eliminate spurious in�u-
ence of the boundaries on large-scale circulation inside the regional model domain. To assess the impacts of 
changes in Land Use Land Cover (LULC) we performed the following simulations:

(a) 2000–2010 with LULC Map of 1987.
(b) 2000–2010 with LULC Map of 2005
Similarly, impacts of changes in SST on monsoon rainfall, given the constant LULC, are estimated with the fol-
lowing simulations:
(c) 1979–1989 with LULC Map of 1987.
(d) 2000–2010 with LULC Map of 1987.

Spectral Nudging in regional climate model. In the present study, large-scale forcing—zonal wind (U), 
meridional wind (V) and Temperature (T)—nudged above the Planetary Boundary Layer (PBL). Here, we use 
a relaxation time of 3333s (or about one hour), which would correspond to guv and gt (nudging coe�cient for 
U and V and for T, respectively) values of 0.0003, with x-wavenumber and y-wavenumber (top wave number 
to nudge in x and y direction) equal to three to nudge features with wavelengths of approximately 1500 km and 
upward.

Dynamic Recycling Model. We used a dynamic recycling model22, which is based on a Lagrangian 
approach, to track the moisture to compute the recycled precipitation. �is model assumes a well-mixed atmos-
pheric condition. In this study, we used an extended version of the dynamic recycling model22 to quantify the 
impact of atmospheric transport of water vapor from di�erent evaporative sources on the Indian summer mon-
soon rainfall. �e spatial extent of a selected domain D, comprising 13 di�erent regions, are shown in supplemen-
tary Fig. S8.

�e recycling ratio, or fraction of moisture evaporated from a region 1 that precipitates back to same region 
(i.e. region 1), is represented by
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Here, R1 represents the fraction of moisture along the trajectory between time t = τ and t = 0, whereas ε/ω rep-
resents the ratio of evaporation to the precipitable water along the same trajectory. Equation 1 is used to develop 
the generalized expression for calculating the moisture fraction contribution from each source region along the 
trajectory of the water vapor.

�e fraction of precipitation generated from two adjoining regions, 1 and 5, (see Supplementary Fig. S8), can 
be calculated by following the trajectory of the water vapor backward in time from its current location (x(t), y(t)) 
to the location at the border of region 1(x(τ1), y(τ1)), and from (x(τ1), y(τ1)) to the location in region 5(x(τ2), 
y(τ2)). �e evaporation over these regions (1 and 5) supplies moisture to the air column along the trajectory, 
which is used as precipitation over the sink region. �erefore, the fraction of atmospheric water present in the 
trajectory between the points (x(t), y(t)) to the (x(τ2), y(τ2)) resulting from evaporation in 1 and 5 is given by
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and

α χ ξ χ ξ= −t R t( , , ) 1 ( , , ), (5)1 1

where, R1 and R5 represent the fraction of evaporated moisture collected from two regions (1 and 5) along the 
water vapor trajectory between the points(x(t), y(t))to the (x(τ2), y(τ2)). In addition, α1 represents the fraction of 
evaporated moisture from region 5 along the trajectory that is not lost (via precipitation) in the intermediate part 
of the trajectory in region 1. Similarly, the net moisture contributions from di�erent sources along the trajectory 
of the water vapor can be quanti�ed by calculating the moisture fraction corresponding to each source region.

For a domain D which consists of 13 di�erent evaporative sources, the fraction of moisture collected from N 
di�erent source regions 1, 2, 3, ……, 13 is represented by R1, R2, R3, ………, R13, respectively. �erefore, the total 
contribution at sink (χ, ξ, t) from all the segments within the source region ′SRk′, and along the trajectory of the 
water vapor are grouped as

∑ ∏α χ ξ α χ ξ χ ξ= .∈ =
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(6)SR S SR j
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1
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Here, Si represents the ith segment. Similarly, the total contributions from all the segments, including those that 
are within the source region along the trajectory can calculated by adding contribution from all segments of the 
trajectory. �erefore, the fraction of moisture at the sink location (χ, ξ, t) that originated as evaporation within 
the domain D is given by

∑χ ξ α χ ξ= .∈R t t( , , ) ( , , ) (7)SR D SR1

�e spatially averaged contribution in terms of precipitation Pr from source region SR1 to the sink region SN1, 
for any day t = d can be calculated by
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where Pr(SR1, SN1, 1) represents the precipitation generated over ′SN1′ as a result of evaporation ′SR1′. Here, P(χ, ξ, t)  
represents the total precipitation over the point (χ, ξ) for ‘t’ day, and δA(χ, ξ) represents the area of each grid cell.

Regions selected for this study are shown in Supplementary Fig. S8.
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