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Weakening of Intuitionistic Negation for
Many-valued Paraconsistent da Costa System

Zoran Majkić

Abstract In this paper we propose substructural propositional logic obtained
by da Costa weakening of the intuitionistic negation. We show that the positive
fragment of the da Costa system is distributive lattice logic, and we apply a kind
of da Costa weakening of negation, by preserving, differently from da Costa,
its fundamental properties: antitonicity, inversion, and additivity for distributive
lattices. The other stronger paraconsistent logic with constructive negation is
obtained by adding an axiom for multiplicative property of weak negation. Af-
ter that, we define Kripke-style semantics based on possible worlds and derive
from it many-valued semantics based on truth-functional valuations for these
two paraconsistent logics. Finally, we demonstrate that this model-theoretic in-
ference system is adequate—sound and complete with respect to the axiomatic
da Costa-like systems for these two logics.

1 Introduction

Paraconsistent logics are those logics which reject the classical identification of
contradictoriness and triviality (the fact that such theory entails all possible conse-
quences). Thus, paraconsistency is the study of contradictory yet nontrivial theories.
The big challenge for paraconsistent logics is to avoid allowing contradictory theo-
ries to explode and derive anything else and still to reserve a respectable logic, that
is, a logic capable of drawing reasonable conclusions from contradictory theories.

It should perhaps be mentioned that Tarski himself considered the possibility of
working with inconsistent theories while weakening classical logic so as to avoid
triviality. He was not, however, inclined to consider as acceptable any theory that

Received July 15, 2007; accepted March 15, 2008; printed September 25, 2008
2000 Mathematics Subject Classification: Primary, 03B53
Keywords: paraconsistent logic, many-valued logic, autoreferential Kripke semantics
c© 2008 by University of Notre Dame 10.1215/00294527-2008-020

401

http://www.nd.edu/~ndjfl
http://www.nd.edu


402 Zoran Majkić

contained a contradiction. Such a rigid position has been criticized by other logi-
cians who were more open to normal attitudes of mathematicians concerning con-
tradictions, and they contributed to developing more robust, with respect to classic
logic, paraconsistent systems.

There are different approaches to paraconsistent logics. The da Costa ap-
proach [9] is to maintain positive fragments of classic (or more appropriate, of
intuitionistic) logic and to use weaker forms for non-truth-functional negation. An-
other trend comes from the relevance logics [1] where the focus is on implication
rather than on negation. Adaptive logics ([3], [4]) are also interesting: they are
not so concerned about proving consistency, but assume it instead from the very
start as some kind of default. The most recent abstract consideration of paracon-
sistency occurs in LFI (Logic of Formal Inconsistency) systems [6], in particular,
its many-valued logics [18] based on complete distributive lattices of algebraic
truth-values.

Thus, from my point of view, there are two principal approaches to paracon-
sistent logic. The first is the nonconstructive approach based on abstract logic (as
LFI [6]), where logic connectives and their particular semantics are not considered.
The second is the constructive approach and is divided into two parts: axiomatic
proof-theoretic (cases of da Costa [9] and [1], [3], [4]), and many-valued (case [18])
model theoretic based on truth-functional valuations (that is, it satisfies the truth-
compositionality principle). The best case is when we obtain both proof- and model-
theoretic definitions which are mutually sound and complete.

For the axiomatic da Costa system which is presented below, it has been
proved [2] that none of these logical calculi is characterizable by finite matri-
ces. Therefore, any many-valued semantics used for it must be done by means of a
many-valued system with an infinite number of algebraic truth values. (It has to be
based on an infinite complete distributive lattice as will be shown in this paper.)

One of the main founders with Jaskowski [16], da Costa built his propositional
paraconsistent system Cω in [9] by weakening the logic negation operator ¬ in or-
der to avoid the explosive inconsistency ([6], [8]) of the classic propositional logic,
where the ex falso quodlibet proof rule A, ¬A

B is valid. In fact, in order to avoid this
classic logic rule, he changed the semantics for the negation operator, so that

NdC1 in these calculi the principle of noncontradiction, in the form
¬(A ∧ ¬A), should not be a generally valid schema, but if it does hold
for formula A, it is a well-behaved formula and is denoted by A◦;

NdC2 from two contradictory formulas, A and ¬A, it would not in general be
possible to deduce an arbitrary formula B; that is, it does not hold the
falso quodlibet proof rule A, ¬A

B ;
NdC3 it should be simple to extend these calculi to corresponding predicate

calculi (with or without equality);
NdC4 they should contain most parts of the schemata and rules of classical

propositional calculus which do not interfere with the first conditions.

In fact, this paraconsistent propositional logic is made up of the unique modus po-
nens inferential rule (MP), A, A ⇒ B ` B, and two axiom subsets. The first one
is for the positive propositional logic (without negation), composed of the following
eight axioms, borrowed from the classic propositional logic of the Kleene L4 sys-
tem and also from the more general propositional intuitionistic system (these two
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systems differ only regarding axioms with the negation operator) which uses three
binary connectives, ∧ for conjunction, ∨ for disjunction, and ⇒ for implication:

(PLA) Positive Logic Axioms
(1) A ⇒ (B ⇒ A),
(2) (A ⇒ B) ⇒ ((A ⇒ (B ⇒ C)) ⇒ (A ⇒ C)),
(3) A ⇒ (B ⇒ (A ∧ B)),
(4) (A ∧ B) ⇒ A,
(5) (A ∧ B) ⇒ B,
(6) A ⇒ (A ∨ B),
(7) B ⇒ (A ∨ B),
(8) (A ⇒ C) ⇒ ((B ⇒ C) ⇒ ((A ∨ B) ⇒ C)).

And change the original axioms for negation of the classic propositional logic by
defining semantics of negation by the following subset of axioms:

(NLA) Logic Axioms for Negation
(9) A ∨ ¬A,

(10) ¬¬A ⇒ A,
(11) B(n)

⇒((A⇒ B)⇒((A⇒¬B)⇒¬A)), (Reductio relativization axiom)
(12) (A(n)

∧ B(n)) ⇒ ((A ∧ B)(n)
∧ (A ∨ B)(n)

∧ (A ⇒ B)(n)),

where B(0)
= B and, recursively, B(n+1)

= (B(n))◦ for 1 ≤ n ≤ ω, and B◦ abbrevi-
ate the formula ¬(B ∧ ¬B).

It is easy to see that axiom (11) relativizes the classic reductio axiom (A ⇒ B)
⇒ ((A ⇒ ¬B) ⇒ ¬A) (which is equivalent to the contraposition axiom
(A ⇒ ¬B) ⇒ (B ⇒ ¬A) and the trivialization axiom ¬(A ⇒ A) ⇒ B),
only for propositions B such that B(n) is valid, and in this way avoids the validity
of the classic ex falso quodlibet proof rule. It provides a qualified form of reductio,
helping to prevent general validity of B(n) in the paraconsistent logic Cn . Axiom
(12) regulates only the propagation of n-consistency. It is easy to verify that n-
consistency also propagates through negation; that is, A(n)

⇒ (¬A)(n) is provable in
Cn . So for any fixed n (from 0 to ω) we obtain a particular da Costa paraconsistent
logic Cn .

One may regard Cω as a kind of syntactic limit [7] of the calculi in the hierarchy.
Each Cn is strictly weaker than any of its predecessors; that is, denoting by Th(S)
the set of theorems of calculus S, we have

Th(C P L) ⊃ Th(C1) ⊃ · · · ⊃ Th(Cn) ⊃ · · · ⊃ Th(Cω).

Thus, we are fundamentally interested in the C1 system which is a paraconsistent
logic closer to the CPL (classic propositional logic); that is, C1 is the paraconsistent
logic of da Costa’s hierarchy obtained by minimal change of CPL.

For this da Costa calculi are not given any truth-compositional model theoretic
semantics. If we consider the semantics based on the classic 2-valued complete dis-
tributive lattice (2, ≤) with the set 2 = {0, 1} of truth values, then the da Costa system
can be represented as a kind of intensional logic (similar, for example, to intuition-
istic logic). But it is still not given any Kripke semantics based on an (infinite) set of
possible worlds W and accessibility relations for its modal operators for implication
and weakened negation. Kripke semantics for intensional logic is still compositional
but relative to possible worlds: the satisfaction of a given formula in a given world
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w ∈ W is defined by the satisfaction of its principal subformulas in other possible
worlds mediated by the defined binary accessibility relation of a Kripke frame.

The non-truth-functional bivaluations (mappings from the set of well-formed for-
mulas of Cn into the set 2) used in [10] and [17] induce the decision procedure for
Cn known as quasi matrices instead. In this method, a negated formula within truth-
tables must branch: if A takes the value 0, then ¬A takes the value 1 (as usual), but
if A takes the value 1, then ¬A can take either the value 0 or the value 1; both possi-
bilities must be considered, as well as the other axioms governing the bivaluations.

Consequently, the da Costa system still needs a kind of (relative) compositional
model-theoretic semantics. In this paper we will explain some weak properties of its
proposed weakening for a negation operator, so we will not address this problem of
compositional model-theoretic semantics for Cn system. Instead, we will do it for
the more appropriate da Costa weakening of negations, where fundamental negation
properties such as antitonicity and truth inversion are preserved.

The plan of this paper is the following. After a short introduction to complete
lattices and modal truth-functional algebraic logics based on Galois connections for
modal operators in Section 2, we will define an algebra for the positive fragment of
the da Costa System and show that it is distributive lattice logic. In Section 3 we will
define the new weakening of negation for such distributive lattice logic, which, dif-
ferently from da Costa negation, preserves antitonicity and additivity properties. We
will define also another stronger paraconsistent da Costa logic, where weak negation
is constructive, that is, self-adjoint for distributive lattice. In Section 4 we will define
the Kripke possible world semantics for these two paraconsistent logics and based
on it, the many-valued semantics based on functional hereditary distributive lattice
of algebraic truth-values. Finally, in Section 5 we will show that this many-valued
(and Kripke) semantics, based on model-theoretic entailment, is adequate, that is,
sound and complete with respect to the proof-theoretic da Costa axiomatic systems
of these two paraconsistent logics.

1.1 Introduction into lattice algebras and their extensions Posets and lattices
(posets such that for all elements x and y, the set {x, y} has both a join (lub—least
upper bound) and a meet (glb—greatest lower bound)) with a partial order ≤ play
an important role in what follows. A bounded lattice has a greatest (top) and least
(bottom) element, denoted, by convention, by 1 and 0. Finite meets in a poset will
be written as 1, ∧, and finite joins as 0, ∨. A lattice (poset) X is complete if each
(also infinite) subset S ⊆ X (or S ∈ P (X) where P is the symbol for powerset and
∅ ∈ P (X) denotes the empty set) has the least upper bound (supremum) denoted by∨

S ∈ X (when S has only two elements the supremum corresponds to the join oper-
ator ∨). Each finite bounded lattice is a complete lattice. Each subset S has the great-
est lower bound (infimum) denoted by

∧
S ∈ X , given as

∨
{x ∈ X | ∀y ∈ S.x ≤ y}.

The complete lattice is bounded and has the bottom element, 0 =
∧

X ∈ X , and the
top element, 1 =

∨
X ∈ X .

A function l : X → Y between posets X, Y is monotone if x ≤ x ′ implies
l(x) ≤ l(x ′) for all x, x ′

∈ X . The function l : X → Y is said to have a right (or
upper) adjoint if there is a function r : Y → X in the reverse direction such that
l(x) ≤ y if and only if x ≤ r(y) for all x ∈ X, y ∈ Y . Such a situation forms a Ga-
lois connection and will often be denoted by l a r . Then l is called the left (or lower)
adjoint of r . If X, Y are complete lattices (posets) then l : X → Y has a right adjoint
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if and only if l preserves all joins. (It is additive; that is, l(x ∨ y) = l(x) ∨ l(y) and
l(0X ) = 0Y , where 0X , 0Y are bottom elements in complete lattices X and Y , respec-
tively.) The right adjoint is then r(y) =

∨
{z ∈ X | l(z) ≤ y}. Similarly, a monotone

function r : Y → X is a right adjoint (it is multiplicative, i.e., has a left adjoint) if
and only if r preserves all meets; the left adjoint is then l(x) =

∧
{z ∈ Y | x ≤ r(z)}.

Each monotone function l : X → Y on a complete lattice (poset) X has both a
least fixed point µl ∈ X and greatest fixed point νl ∈ X . These can be described
explicitly as

µl =
∧

{x ∈ X | l(x) ≤ x} and νl =
∨

{x ∈ X | x ≤ l(x)}.

In what follows we denote by y < x if and only if (y ≤ x and not x ≤ y), and we
denote by x FG y two unrelated elements in X (so that not (x ≤ y or y ≤ x)). An
element in a lattice x ∈ X is a join-irreducible element if and only if x = a ∨ b
implies x = a or x = b for any a, b ∈ X . An element in a lattice x ∈ X is an atom
if and only if x > 0 and @y.(x > y > 0).

Lower set (down closed) is any subset Y of a given poset (X, ≤) such that, for all
elements x and y, if x ≤ y and y ∈ Y , then x ∈ Y . A Heyting algebra is a bounded
lattice X with finite meets and joins such that for each element x ∈ X , the function
(_) ∧ x : X → X has a right adjoint x ⇀ (_), also called an algebraic implication.
An equivalent definition can be given by considering a bounded lattice such that for
all x and y in X there is a greatest element z in X , denoted by x ⇀ y, such that
z ∧ x ≤ y; that is, x ⇀ y =

∨
{z ∈ X | z ∧ x ≤ y} (relative pseudocomplement).

In Heyting algebra we can define negation ¬x as a pseudocomplement x ⇀ 0. Then
x ≤ ¬¬x . A complete Heyting algebra is a Heyting algebra which is complete as
a poset. A complete lattice is thus a complete Heyting algebra if and only if the
following distributivity x ∧

( ∨
S
)

=
∨

y∈S(x ∧ y) holds.
The negation and implication operators can be represented as monotone functions,

¬ : X → XOP and ⇒: X × XOP
→ XOP,

where XOP is the lattice with inverse partial ordering and ∧
OP

= ∨, ∨
OP

= ∧.
The smallest complete distributive lattice is denoted by 2 = {0, 1} with classic

two values, false and true, respectively. It is also complemented Heyting algebra;
consequently, it is Boolean. A Galois algebra is a complete Heyting algebra B both
with a “nexttime” monotone function from B to B that preserves all meets (i.e., right
adjoint). Such Galois algebras are often called Heyting algebras with (unary) modal
operators.

2 Algebra for Positive Fragment of da Costa System

It was previously mentioned that the set PLA of positive axioms of the da Costa
system is equal to the positive intuitionistic (thus also classic) fragment of the propo-
sitional logic with connectives ∧, ∨, and ⇒, for conjunction, disjunction, and impli-
cation, whose algebraic version is defined by x ⇀ y =

∨
{z ∈ X | z ∧ x ≤ y} (rela-

tive pseudocomplement). Consequently, we obtain positive Heyting algebra (without
negation) which is a complete distributive lattice (X, ≤), where meet and join oper-
ators act as algebraic conjunction and disjunction, with the sublattice (2, ≤) where
2 = {0, 1} is the set of classic logic values, which are the bottom and the top values
in X , respectively. Notice that in the case of 2-valued lattice this Heyting algebra be-
comes Boolean algebra with classic 2-valued implication. From this point of view,
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other axioms in the da Costa system are used only to define the weak-negation ¬,
different from the pseudocomplement which is used in full Heyting algebras.

Let L be a propositional logic language obtained as free algebra from connectives
in 6 of an algebra based on the complete lattice (X, ≤) of algebraic truth-values (for
example, meet, join, and implication {∧, ∨, ⇒} ⊆ 6 are binary operators, negation
¬ ∈ 6 and other modal operators are unary operators, while each x ∈ X ⊆ 6
is a constant (nullary operator)) and on a set Var of propositional variables (letters)
denoted by p, r, q, . . . . We will use letters A, B, . . . for formulas of L. We define
a (many-valued) valuation v as a mapping v : L → X (notice that X ⊆ L are the
constants of this language and we will use the same symbols as those used for ele-
ments of the lattice X ), which is a homomorphism (for example, for any p, q ∈ Var,
v(p � q) = v(p) � v(q), � ∈ {∧, ∨, ⇒}, and v(¬p) = ¬v(p), where ∧, ∨, ⇒, ¬
are conjunction, disjunction, implication, and negation, respectively) and acts as the
identity for elements in X ; that is, for any x ∈ X , v(x) = x .

Given a propositional logic language L (set of logic formulas), we say that
 ⊆ P (L) × L defines a (Tarskian) consequence relation for L if the following
clauses hold, for any propositional formula A and B, and subsets 0, 2 of L called
also theories (formulas and commas at the left-hand side of  denote, as usual, sets
and unions of sets of formulas):

(1) (reflexivity) if A ∈ 0 then 0  A;
(2) (monotonicity) if 0  A and 0 ⊆ 2, then 2  A;
(3) (cut) if 0  A and 2, A  B, then 0, 2  B;
(4) (finiteness) if 0  A then there is a finite 2 ⊆ 0 such that 2  A;
(5) for any homomorphism σ from L into itself (i.e., substitution), if 0  A, then

σ [0]  σ(A), that is, {σ(B) | B ∈ 0}  σ(A).

We denote by C : P (L) → P (L) the closure operator with C(0) =def {A ∈

L | 0  A} having the following properties: 0 ⊆ C(0) (from reflexivity (1)),
0 ⊆ 01 implies C(0) ⊆ C(01) (from (5)), and C(C(0)) = C(0). Thus we obtain
that

(6) 0  A iff A ∈ C(0).

Any theory 0 ⊆ L is called a closed theory if and only if 0 = C(0). This closure
property corresponds to the fact that 0  A if and only if A ∈ 0.

If 0  A for all 0, we will say that A is a thesis of this logic. The sequent calculus
was developed by Gentzen [14] inspired by some ideas of Herz [15]. Given a propo-
sitional logic language L (set of logic formulas) a binary sequent is a consequence
pair of formulas s = (A; B) ∈ L × L, denoted also by A ` B. A Gentzen system,
denoted as a pair G = 〈L, 〉 where  is a finitary consequence relation on a set of
sequents in L ⊆ L × L, is said to be normal if it satisfies the five conditions above.
Now we are ready to define the following lattice-based consequence binary relation
`⊆ L×L between formulas (analog to the binary consequence system from [12] for
the distributive lattice logic DLL), where each consequence pair A ` B is a sequent
also.

Definition 2.1 ([12]) The Gentzen-like system G of the DLL (distributive lattice
logic) L contains the following axioms (sequents) and rules.



Weakening of Intuitionistic Negation 407

Axioms G contains the following sequents.
1a. A ` A (reflexive)
2a. A ∧ B ` A, A ∧ B ` B (product projections: axioms for meet)
3a. A ` A ∨ B, B ` A ∨ B (coproduct injections: axioms for join)
4a. A ∨ (B ∧ C) ` (A ∨ B) ∧ (A ∨ C) (distributivity axiom)

Inference Rules G is closed under the following inference rules.

1r. A `B, B `C
A `C (cut/transitivity rule)

2r. A `B, A `C
A `B∧C , A `B, C `B

A∨C `B (lower/upper lattice bound rules)

It is easy to verify that the binary relation ` corresponds to the distributive lattice
ordering ≤; thus, for a given lattice of truth values in (X, ≤), we can also take the
set of these lattice axioms,

(a) top/bottom axioms, A ` 1, 0 ` A ,
(b) the set of sequents which define the poset of the lattice of truth values (X, ≤):

for any two x, y ∈ X , if x ≤ y then x ` y ∈ G

(if we consider the algebraic values in X as nullary logic constants such that for a
given x ∈ X we have that for every valuation v(x) = x).

Notice that the modus ponens rule of propositional logic B, B⇒C
C , with the sequent

form 1`B, B`C
1`C , is a particular case of the transitive rule (1r) when A is equal to 1.

So, for example, we may specify by this Gentzen sequent system G that a formula
A has an algebraic truth value x ∈ X by means of two true sequents, A ` x and
x ` A, and specify the truth of this formula by 1 ` A (where 1 ∈ X is the top
algebraic value in a distributive complete lattice (X, ≤)).

It is easy to verify that any valuation v : L → X (notice that X ⊆ L
are the constants of this language and we will use the same symbols as those
used for elements of the lattice X ) for this positive fragment of Cω is truth-
functional; that is, it is a homomorphism (for example, for any p, q ∈ Var,
v(p � q) = v(p) � v(q), � ∈ {∧, ∨, ⇒}).

Example 2.2 The smallest distributive complete lattice is the classic 2-valued logic
where X = 2. The infinite distributive complete lattice logic is, for example, fuzzy
logic, where X = [0, 1] is the closed interval of reals between 0 and 1, where the
algebraic versions for logic connectives ∧ and ∨ are min, max : X × X → X
operations, while the implication is defined by relative pseudocomplement; that is,
x ⇀ y = 1 if x ≤ y, y otherwise.

Another infinite example is the DCDL defined in what follows, when the set of
“possible worlds” W used for Kripke semantics of intensional logics is infinite.

Particularly important is the distributive powerset lattice when X = P (W) for a
given (finite or infinite set W ). It is an example of the positive fragment (without
negation) of Heyting algebra (P (W), ⊆,

⋂
,
⋃

, ⇀), where meet and join operators
are set intersection and set union while ⇀ is a relative pseudocomplement for sets.
Notice that (P (W), ⊆) is a complete distributive lattice also when the set W is infi-
nite; thus, for any two S, S′

⊆ W , the implication S ⇀ S′
=

⋃
{Z | Z

⋂
S ⊆ S′

}

is well defined also when the set {Z | Z
⋂

S ⊆ S′
} is infinite. But instead of this

set-based complete distributive lattice we will use a function-based lattice which is
isomorphic to it.
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Definition 2.3 (Functional Complete Distributive Lattice—FCDL) The lattice
(2W , ≤, ∧a, ∨a) is a complete distributive lattice with elements f ∈ 2W that are
functions f : W → 2, with the isomorphism

ch :
(
P (W), ⊆,

⋂
,
⋃ )

'
(
2W , ≤, ∧a, ∨a)

such that, for any subset S ⊆ W , ch(S) = f is a characteristic function for S; that
is, S = ch−1( f ) = {x ∈ W | f (x) = 1}, where ch−1 is the inverse of ch, and for
any two f, f ′

∈ 2W , we have f ≤ f ′ if and only if ch−1( f ) ⊆ ch−1( f ′).
So that (◦ is a composition of functions), ∧a

= ch ◦
⋂

◦ (ch−1
×ch−1) : 2W

×2W

→ 2W and ∨
a

= ch ◦
⋃

◦ (ch−1
× ch−1) : 2W

× 2W
→ 2W are meet and join

algebraic operators in this complete distributive lattice.

Notice that complete lattices are very important when the lattice is infinite (remember
that each finite lattice is complete), when such infinite distributive lattices have to be
used for Cn (which cannot have a finite lattice matrix [2]). Such complete distributive
lattices have the following Galois connection between conjunction and implication.

Proposition 2.4 In each complete distributive lattice (X, ≤) we have the Galois
connection _ ∧ y a y ⇒ _ for any y ∈ X, where ⇒ is defined by y ⇒ z =∨

{x | x ∧ y ≤ z}. For such lattices we can obtain the simple binary sequent calculi,
where structural connective “comma” in the left-hand of a sequent can be replaced
by the logic conjunction ∧ connective.

Proof It is a well-known result in the literature. Consequently, Definition 2.1 is
adequate also for infinite complete distributive latices, as, for example, functional
lattice FCDL in Definition 2.3, but also for the following.

Example 2.5 Another case of complete distributive lattices, where the set W is a
poset, are the sublattices of hereditary sets used in Kripke semantics for intuitionistic
propositional logic.

Definition 2.6 (Functional Hereditary Sublattice of FCDL—FHL) Let (W , ≤) be
a poset. A subset S ⊆ W is said to be hereditary if x ∈ S and x ≤ x ′ implies
x ′

∈ S. We denote by HW the subset of all hereditary subsets of P (W) so that(
HW , ⊆,

⋂
,
⋃ )

is a sublattice of the powerset lattice
(
P (W), ⊆,

⋂
,
⋃ )

.
Then (FW , ≤, ∧a, ∨a) is the functional hereditary complete distributive sublattice

(FHL) of (2W , ≤, ∧a, ∨a), where FW = {ch(S) | S ∈ HW } ⊆ 2W .
We define also the algebraic implication operator ⇒

a for FHL by

⇒
a
= ch ◦ ⇀ ◦ (ch−1

× ch−1) : FW × FW → FW ,

where ⇀ is the relative pseudocomplement for sets given by S ⇀ S′
=

⋃
{Z ∈ HW |

Z
⋂

S ⊆ S′
}.

The hereditary sets are closed under set intersection and union, thus also under
a relative pseudocomplement operator ⇀, which is expressed by using set union
and intersection. As a result of this the positive fragment of Heyting algebra
(FW , ≤, ∧a, ∨a, ⇒a) is well defined (closed under algebraic operations) with the
isomorphism

ch :
(
HW , ⊆,

⋂
,
⋃

, ⇀
)

' (FW , ≤, ∧a, ∨a, ⇒a).

It is easy to verify that FHL is also a complete distributive lattice where the bottom
element 0 : W → 2 is a function such that ch−1(0) = ∅ is the empty set, while the
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top element 1 : W → 2 is a function such that ch−1(1) = W . Given a propositional
logic L, then a homomorphism v : L → X , where X = FW ⊆ 2W , is a truth-
functional hereditary valuation for such a many-valued logic with connectives ∧, ∨,
and ⇒, whose algebraic counterparts are many-valued algebraic operators ∧

a, ∨a ,
and ⇒

a . �

The Gentzen system in Definition 2.1 is a normal logic, thus monotonic and transi-
tive; therefore, the Deduction Metatheorem holds.

Proposition 2.7 For any two propositional formulas A and B in the PLA fragment
of da Costa system, we have

A ` B iff 1 ` (A ⇒ B).

Notice that we use 1 ` (A ⇒ B) instead of ` (A ⇒ B) in order to have the
binary relation ` and so to maintain the equivalence between ` and lattice ordering ≤

between algebraic truth values.

Proof It is familiar and straightforward to show that A ` B implies 1 ` (A ⇒ B)
holds for any logic containing axioms (1) and (2) of PLA as provable schemas and
having only MP as a primitive rule. Vice versa, by monotonicity and transitivity and
MP, we obtain also that 1 ` (A ⇒ B) implies A ` B. �

Now we are able to demonstrate the following property of the PLA fragment of
da Costa system Cω, which is equal to the positive fragment of intuitionistic (and
classic) logic. We know that Boolean algebra (distributive lattice with complements,
where ¬(A ∧ ¬A) and A ∨ ¬A are theorems) is the algebraic counterpart of CPL
(classic propositional logic), whereas Heyting algebra (where A∨¬A does not hold)
is the algebraic counterpart for intuitionistic propositional logic. The question which
we consider here is what is the algebraic counterpart for the PLA (positive fragment
common to both of these two propositional logics). The answer is as follows.

Proposition 2.8 The PLA fragment of the da Costa system Cω is equal to the pos-
itive fragment of classic and intuitionistic propositional logic and corresponds to
distributive lattice algebra. Thus, it is the normal distributive lattice logic (DLL)
given by Definition 2.1.

Proof This is proved in the usual way. Notice that, for example, Dummett’s law
A ∨ (A ⇒ B) holds only for distributive complemented lattices (i.e., Boolean
algebras) but not for any other many-valued distributive lattice. There are many-
valued classic logics (which satisfy all axioms of the classic logic), that is, many-
valued Boolean algebras, as, for example, Belnap’s four valued logic, which is
isomorphic to the Cartesian product distributive lattice (2 × 2, �), where par-
tial order is defined by (x, y) � (x ′, y′) if and only if x ≤ x ′ and y ≤ y′.
The ∧ and ∨ correspond to meet and join lattice operators, with the classic
negation defined by ¬(x, y) = (¬x, ¬y) and classic material implication by
(x, y) ⇒ (x ′, y′) = ¬(x, y) ∨ (x ′, y′). For such complemented distributive lattices
we have that Dummett’s law A ∨ (A ⇒ B) = A ∨ ¬A ∨ B is a theorem, because
A ∨ ¬A holds in these complemented distributive lattices.

But the da Costa system, that is, PLA, is not a complemented distributive lat-
tice (does not hold that A ⇒ B = ¬A ∨ B as in classic logic), so that A ∨ ¬A
holds (axiom 9) but Dummett’s law does not hold in any da Costa system Cn ,
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1 ≤ n ≤ ω. It holds only for the particular case of the 2-valued distributive lat-
tice, that is, when X = 2, which is necessarily complemented (with uniquely defined
negation ¬ : 2 → 2OP which inverts 0 and 1), but such a minimal complemented
distributive lattice cannot be a truth-functional matrix for any da Costa system. �

3 Weak Negation for Distributive Lattices

The da Costa extension of PLA with weak negation ¬ is intended to preserve the
positive intuitionistic logic (in the special case in which this lattice is 2, the PLA is
a fragment of classic logic) so that other axioms are dedicated to define the weak
negation. The classic propositional logic (CPL) is defined by the set of positive
axioms in PLA with the following axioms concerning the negation operator ¬ .

Negative Classic Logic Axioms—NCLA

(9) A ∨ ¬A (excluded middle axiom)
(10c) A ⇒ (¬A ⇒ B) (ex falso quodlibet axiom)
(11c) (A ⇒ B) ⇒ ((A ⇒ ¬B) ⇒ ¬A) (reductio axiom)

Notice that the propositional intuitionistic logic is equal to classic logic without the
excluded middle axiom (9). The axiom (10c), by using the Deduction Metatheorem
(Proposition 2.7) obtained by PLA, corresponds to the ex falso quodlibet rule A, ¬A

B ,
while the reductio axiom (11c) to the rule A⇒B, A⇒¬B

¬A , or in binary-sequent form to
the Gentzen-like rule A`B, A` ¬B

1` ¬A . Thus, the Gentzen-like CPL is a system composed
by the sequent system given for DLL in Definition 2.1, extended by the following.

(9g) 1 ` A ∨ ¬A (excluded middle axiom)

(10g) 1 ` A, 1 ` ¬A
1 `B (ex falso quodlibet rule)

(11g) A ` B, A ` ¬B
1 ` ¬A (reduct rule)

Da Costa replaced the reductio axiom (11c) by its relativization axiom (11), dropped
the ex falso quodlibet axiom (10c) in order to obtain a nonexplosive inconsistent
logic, and replaced it by the axiom (10) ¬¬A ⇒ A as a way of rendering the nega-
tion of his calculi a bit stronger, using as argument the intended duality with the
logics arising from the formalization of intuitionistic logic in which only the con-
verse, that is, the formula A ⇒ ¬¬A, is valid.

Our choice will be different from his, because from the precedent results we have
seen that PLA is a positive intuitionistic logic fragment; thus it will be natural to use
a kind of weakening for the intuitionistic negation (which drops the excluded middle
axiom (9)). It is not possible to use directly intuitionistic negation because in that
case we are not able to realize da Costa’s relativization of the reductio axiom (11c).
This is because in pure intuitionistic logic (PLA plus two negation axioms (10c) and
(11c)) the formula B◦ is valid for any B.

But before we start to define the intuitionistic version of da Costa negation weak-
ening, let us consider some other reasons why the original da Costa negation is an
inadequate semantics for negation, considering the distributive lattice ordering de-
termined by PLA fragment of his logic. In fact, with respect to the lattice (X, ≤)
the first two axioms for negation, A ∨ ¬A and ¬¬A ⇒ A, become (from Propo-
sition 2.8) 1 ` A ∨ ¬A and ¬¬A ` A, that is, 1 ≤ A ∨ ¬A and ¬¬A ≤ A, for
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the lattice ordering ≤. So that for the bottom logic value 0 ∈ 2 ⊆ X , we obtain
1 ≤ 0 ∨ ¬0 = ¬0, that is, ¬0 = 1, and for the top logic value, 1 ∈ 2 ⊆ X , we
have that ¬¬0 ≤ 0, that is, (from ¬0 = 1) we obtain ¬1 = 0. Consequently, for
every negation operator, the top and bottom values are inverted by it. But for (finite
or infinite) lattice-based logic the negation has to satisfy also the antitonicity; that
is, it must be a monotonic mapping ¬ : X → XOP, or, equivalently, an antitonic
mapping ¬ : X → X so that for any two logic formulas A, B must hold that, A ≤ B
implies ¬B ≤ ¬A, or, equivalently, 1 ` (A ⇒ B) implies 1 ` (¬B ⇒ ¬A), and
corresponding antitonicity axiom (A ⇒ B) ⇒ (¬B ⇒ ¬A). But it does not hold in
da Costa weakening of negation.

Proposition 3.1 The antitonicity (A ⇒ B) ⇒ (¬B ⇒ ¬A) and the contraposition
(A ⇒ ¬B) ⇒ (B ⇒ ¬A) for negation operator ¬ do not hold in Cn .

Proof The reductio axiom (a) (A ⇒ B) ⇒ ((A ⇒ ¬B) ⇒ ¬A) of classic propo-
sitional logic (CPL) is independent of other axioms in propositional logic. Thus
it cannot be derived from the first ten axioms of the da Costa system which are a
subset of axioms for CPL. In classic propositional logic, in order to derive theorem
(A ⇒ B) ⇒ (¬B ⇒ ¬A), we need axiom (a) (take, for example, a bivaluation
which does not satisfy contraposition in C1, for A and B atomic formulas). From
the fact that axiom (a) is relativized to B◦ in axiom 11 of da Costa, it means that the
antitonicity of negation cannot be derived from his axiom system.

Suppose that the contraposition (b) (A ⇒ ¬B) ⇒ (B ⇒ ¬A) holds in Cn , then

1. A ⇒ B IP
2. A ⇒ ¬B IP
3. (A ⇒ ¬B) ⇒ (B ⇒ ¬A) Ax.b
4. B ⇒ ¬A 2, 3, MP
5. ¬A 1, 4, transitivity.

Thus we obtain A ⇒ B, A ⇒ ¬B  ¬A; so from the Deduction Metatheorem,
A ⇒ B  (A ⇒ ¬B) ⇒ ¬A. Consequently, (A ⇒ B) ⇒ ((A ⇒ ¬B) ⇒ ¬A),
which is a contradiction because this does not hold in da Costa (it is relativized to
B◦ in axiom 11 of da Costa system). �

It means that if we want to obtain semantically correct weakening of negation we
need to add the antitonicity axiom to the da Costa system. Thus, together with
the fact that PLA corresponds to general many-valued logic based on the complete
distributive lattice, that is, on intuitionistic positive logic, in what follows we will
change the two negation axioms of Cn , 9 and 10, with the following set of axioms, in
order to obtain the Kripke semantics for such a modified da Costa system, denoted
by Zn .

Definition 3.2 (Zn system) In order to define Zn we use the da Costa axioms weak-
ening of intuitionistic negation by relativization of the unique remaining reductio
axiom (after dropping also the ex falso quodlibet intuitionistic axiom),

(11) B(n)
⇒ ((A ⇒ B) ⇒ ((A ⇒ ¬B) ⇒ ¬A)) (Reductio relativization axiom)

(12) (A(n)
∧ B(n)) ⇒ ((A ∧ B)(n)

∧ (A ∨ B)(n)
∧ (A ⇒ B)(n))

with the following set of new axioms,
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(9b) (A ⇒ B) ⇒ (¬B ⇒ ¬A) (antitonicity)
(10b) 1 ⇒ ¬0, ¬1 ⇒ 0 (inversion axioms)
(11b) A ⇒ 1, 0 ⇒ A (top/bottom axioms)
(12b) (¬A ∧ ¬B) ⇒ ¬(A ∨ B) (additive modal negation axiom)

where 0 and 1 are considered as contradiction and tautology nullary logic operators
(constants) in this propositional logic; that is, for every valuation v, v(1) = 1 and
v(0) = 0 (the symbol on the left side is logic constant, while on the right is logic
value). We denote, by CZn , the constructive Zn system by adding the axiom

(13b) ¬(A ∧ B) ⇒ (¬A ∨ ¬B) (multiplicative modal negation axiom).

Notice that axiom (11b) corresponds to A ≤ 1, 0 ≤ A, while axiom (12b) expresses
the inverting of top and bottom elements; that is, from the axiom 1 ⇒ ¬0, that
is, 1 ≤ ¬0, we obtain ¬0 = 1, because 1 is the top lattice value. (We denote an
equivalence A = B if and only if A ` B and B ` A). Analogously, we obtain
¬1 = 0.

Proposition 3.3 From the Zn system without axiom (12b) we obtain the following
theorems:

¬(A ∨ B) ⇒ (¬A ∧ ¬B)

and
(¬A ∨ ¬B) ⇒ ¬(A ∧ B).

Thus, in Zn , the equivalence ¬(A ∨ B) = (¬A ∧ ¬B) holds, while in C Zn , the
equivalence ¬(A ∧ B) = (¬A ∨ ¬B) also holds.

Proof We have

1. B ⇒ (A ∨ B) Ax.7
2. (B ⇒ (A ∨ B)) ⇒ (¬(A ∨ B) ⇒ ¬B) Ax.9b (substitution A 7→ B

and B 7→ A ∨ B)
3. ¬(A ∨ B) ⇒ ¬B 1, 2, MP
4. A ⇒ (A ∨ B) Ax.6
5. (A ⇒ (A ∨ B)) ⇒ (¬(A ∨ B) ⇒ ¬A) Ax.9b (substitution and

B 7→ A ∨ B)
6. ¬(A ∨ B) ⇒ ¬A 4, 5, MP
7. ¬(A ∨ B) ⇒ (¬A ∧ ¬B) 4, 6, deduction in case 6

of Proposition 2.7

Thus we obtain from the Deduction Metatheorem that ¬(A ∨ B) ` (¬A ∧ ¬B),
and from the axiom (12b) (¬A ∧ ¬B) ` ¬(A ∨ B). Also, thus, we obtain
the homomorphism equivalence ¬(A ∨ B) = (¬A ∧ ¬B) in Zn . So we ob-
tain a homomorphic property of negation operator for join semilattice in Zn ,
¬ : (X, ≤, ∨) → (X, ≤, ∨)OP, where ∨

OP corresponds to the meet operator ∧

in a distributive lattice (X, ≤, ∧, ∨), so that ¬(A ∨ B) = ¬A ∨
OP

¬B = ¬A ∧ ¬B
(and also ¬0 = 0OP

= 1). Analogously we obtain

1. A ∧ B ⇒ B Ax.5
2. ((A ∧ B) ⇒ B) ⇒ (¬B ⇒ ¬(A ∧ B)) Ax.9b (substitution A 7→ A ∨ B)
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3. ¬B ⇒ ¬(A ∧ B) 1, 2, MP
4. A ∧ B ⇒ A Ax.4
5. ((A ∧ B) ⇒ A) ⇒ (¬A ⇒ ¬(A ∧ B)) Ax.9b (substitution A 7→

A ∨ B and B 7→ A)
6. ¬A ⇒ ¬(A ∧ B) 4, 5, MP
7. (¬A ∨ ¬B) ⇒ ¬(A ∧ B) 4, 6, deduction in

case 6 of Proposition 2.7.

Thus we obtain from the Deduction Metatheorem that (¬A ∨ ¬B) ` ¬(A ∧ B), and
from axiom (13) ¬(A ∧ B) ⇒ (¬A ∨ ¬B). Also we obtain the homomorphism
equivalence ¬(A ∧ B) = (¬A ∨ ¬B) in CZn .

So we obtain a homomorphic property of negation operator for a distributive
lattice in CZn , ¬ : (X, ≤, ∧, ∨) → (X, ≤, ∧, ∨)OP, where ∧

OP corresponds to
the meet operator ∨ so that ¬(A ∧ B) = ¬A ∧

OP
¬B = ¬A ∨ ¬B (and also

¬1 = 1OP
= 0) corresponds to the multiplicativity of ¬; thus in CZn the negation is

selfadjoint (both additive and multiplicative). �

Remark 3.4 In this way we obtained that the monotone weak-negation operator
on the distributive lattice ¬ : (X, ≤, ∨) → (X, ≤, ∨)OP is an additive algebraic
operator for Zn and can be defined as a selfadjoint modal operator in CZn for a
distributive lattice with the Galois connection (see preliminaries), ¬B ≤

OP A if and
only if B ≤ ¬A; that is (from ≤

OP equal to ≥), A ` ¬B if and only if B ` ¬A,
or from the Deduction Metatheorem, in sequents 1 ` (A ⇒ ¬B) if and only if
1 ` (B ⇒ ¬A) so that in CZn the contraposition axiom (A ⇒ ¬B) ⇒ (B ⇒ ¬A)
holds, as in classic propositional logic. In CZn the following also holds:

1. (¬B ⇒ ¬B) ⇒ (B ⇒ ¬¬B) contraposition (with substitution A 7→ ¬B)
2. (¬B ⇒ ¬B) Ax.1
3. B ⇒ ¬¬B 1, 2, MP, (that is, B ≤ ¬¬B).

That is, we obtained the inverted version of the replaced da Costa axiom (10) as
in constructive logics (that is, the reason that we consider CZn a constructive Zn),
where we are not able to deduce B from the fact that the negation of B cannot be
proved (for example, in intuitionistic logic). Thus in the ZCω system, antitonicity
and contraposition and constructive negation A ⇒ ¬¬A all hold, which is not case
with the da Costa system Cω.

4 Kripke Semantics for the Paraconsistent Logic Zn

Now we will introduce a hierarchy of negation operators for many-valued logics
based on complete lattices of truth values (X, ≤) with respect to their homomorphic
properties. The negation with the lowest requirements (which inverts the truth order-
ing of the lattice of truth values and is able to produce the falsity and truth, that is,
the bottom and top elements of the lattice) denominated “general” negation can be
defined in any complete lattice (see the example below).

Definition 4.1 ([18] Hierarchy of Negation Operators) Let (X, ≤, ∧, ∨) be a com-
plete lattice. Then we define the following hierarchy of negation operators on it.

1. A general negation is a monotone mapping between posets (≤OP is inverse
of ≤),

¬ : (X, ≤) → (X, ≤)OP such that {0, 1} ⊆ {y = ¬x | x ∈ X}.
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2. A split negation is a general negation extended into join-semilattice homo-
morphism,

¬ : (X, ≤, ∨) → (X, ≤, ∨)OP,

with

(X, ≤, ∨)OP
= (X, ≤OP, ∨OP), ∨OP

= ∧.

3. A constructive negation is a general negation extended into full lattice homo-
morphism,

¬ : (X, ≤, ∧, ∨) → (X, ≤, ∧, ∨)OP,

with

(X, ≤, ∧, ∨)OP
= (X, ≤OP, ∧OP, ∨OP), and ∧

OP
= ∨.

4. A De Morgan negation is a constructive negation when the lattice homomor-
phism is an involution (¬¬x = x).

The names given to these different kinds of negations follow from the fact that a split
negation introduces the second right adjoint negation, that a constructive negation
satisfies the constructive requirement (as in Heyting algebras) ¬¬x ≥ x , while De
Morgan negation satisfies well-known De Morgan laws.

Lemma 4.2 ([18] Negation properties) Let (X, ≤) be a complete lattice. Then the
following properties for negation operators hold, for any x, y ∈ X:

1. for general negation,

¬(x ∨ y) ≤ ¬x ∧ ¬y, ¬(x ∧ y) ≥ ¬x ∨ ¬y, with ¬0 = 1, ¬1 = 0;

2. for split negation,

¬(x ∨ y) = ¬x ∧ ¬y, ¬(x ∧ y) ≥ ¬x ∨ ¬y;

it is an additive modal operator with right adjoint (multiplicative) negation
∼: (X, ≤)OP

→ (X, ≤), and Galois connection ¬x ≤
OP y if and only if

x ≤∼ y such that x ≤∼ ¬x and x ≤ ¬ ∼ x;
3. for constructive negation,

¬(x ∨ y) = ¬x ∧ ¬y, ¬(x ∧ y) = ¬x ∨ ¬y;

it is a self-adjoint operator, ¬ =∼, with x ≤ ¬¬x satisfying proto De Mor-
gan inequalities ¬(¬x ∨ ¬y) ≥ x ∧ y and ¬(¬x ∧ ¬y) ≥ x ∨ y;

4. for De Morgan negation,

¬¬x = x;

it satisfies also De Morgan laws ¬(¬x∨¬y) = x∧y and ¬(¬x∧¬y) = x∨y,
and is contrapositive; that is, x ≤ y if and only if ¬x ≥ ¬y.

Proof The proof can be found in [18]. �

Remark 4.3 We will see that the system Zn without axiom (12b) corresponds to
a particular case of general negation, that the whole system Zn corresponds to a
particular case of split negation, while the system CZn corresponds to a particular
case of constructive negation.
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Generally lattices arise concretely as substructures of closure systems (intersec-
tion systems) where a closure system is a family F (W) of subsets of a set W
such that W ∈ F (W) and if Ai ∈ F (W), i ∈ I , then

⋂
i∈I Ai ∈ F (W). Clo-

sure operators 0 are canonically obtained by composition of the two maps of
Galois connection. The Galois connections can be obtained from any binary re-
lation based on a set W [5] (Birkhoff polarity) in a canonical way: If (W , R)
is a set with a particular relation based on a set W , R ⊆ W × W , with map-
pings λ : P (W) → P (W)OP, % : P (W)OP

→ P (W) such that for subsets
U, V ∈ P (W),

λU = {w ∈ W | ∀u ∈ U.((u, w) ∈ R)}, ρV = {w ∈ W | ∀v ∈ V .((w, v) ∈ R)},

where (P (W), ⊆) is the powerset poset complete distributive lattice with bottom
element empty set ∅ and top element W , and P (W)OP its dual (with ⊆

OP inverse
of ⊆), then we have the induced Galois connection λ a ρ; that is, λU ⊆

OP V if and
only if U ⊆ ρV .

It is easy to verify that λ and ρ are two antitonic set-based operators which invert
empty set ∅ and W , thus can be used as set-based negation operators. The negation
as modal operator has a long history [11]. The following lemma is useful for con-
necting these set-based operators with the operation of negation in complete lattices.
But instead of compatibility relation C as in [19] we will use its complement, that is,
the incompatibility relation R = W × W − C .

Lemma 4.4 (Incompatibility relation) Let (W , ≤) be a poset. Then we can use the
binary relation R ⊆ W × W as an incompatibility relation for set-based negation
operators λ and ρ with the following properties. For any U, V ⊆ W ,

1. λ(U
⋃

V ) = λU
⋃OP λV = λU

⋂
λV , with λ∅ = ∅OP

= W (additivity);

2. ρ(U
⋂OP V ) = ρ(U

⋃
V ) = ρU

⋂
ρV , with ρWOP

= ρ∅ = W
(multiplicativity);

3. while

λ(U
⋂

V ) ⊇ λU
⋃

λV,

ρ(U
⋂

V ) ⊇ ρU
⋃

ρV,

and

λρV ⊇ V, ρλU ⊇ U.

We denote by R the class of such binary incompatibility relations R ⊆ W × W
which are also hereditary; that is,

4. if (u, w) ∈ R and (u, w) � (u′, w′) then (u′, w′) ∈ R, where
(u, w) � (u′, w′) if and only if u ≤ u′ and w ≤ w′; then, for a
hereditary incompatibility relation R we obtain the additive modal operator
¬

a
= ch ◦ λ ◦ ch−1

: (FW , ≤) → (FW , ≤)OP, where FW is a complete
distributive lattice FHL in Definition 2.6, with the following isomorphism:

5. ch : (HW , ⊆,
⋂

,
⋃

, ⇀, λ) ' (FW , ≤, ∧a, ∨a, ⇒a, ¬a), between these two
Paraconsistent Heyting (P-Heyting) algebras, where the pseudocomplement
negation is replaced by modal paraconsistent negation.
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Proof The additivity of λ and multiplicativity of ρ are standard results from
Birkhoff polarity. Let us show that λ is closed under hereditary sets in HW given in
Definition 2.6. In fact, given a hereditary set S ∈ HW , if x ∈ λ(S) and x ≤ x ′, then

∀u ∈ U.((u, x) ∈ R) and x ≤ x ′, so ∀u ∈ U.((u, x) ∈ R) and (u, x) � (u, x ′),

and from point 4 we obtain ∀u ∈ U.((u, x ′) ∈ R); that is, x ′
∈ λ(S). Consequently,

we have

λ : (HW , ≤) → (HW , ≤)OP,

and

¬
a

= ch ◦ λ ◦ ch−1
: (FW , ≤) → (FW , ≤)OP.

Isomorphism 5 is only the algebraic extension of the isomorphism of the positive
fragment of Heyting algebras as defined in Definition 2.6 by the modal negation
operator obtained from the hereditary incompatibility relation and Birkhoff polarity
additive operator λ. �

It is easy to see that, for any given hereditary incompatibility relation R ∈ R, the
additive algebraic operator ¬

a can be used as the split negation for Zn (or construc-
tive negation, when λ is selfadjoint, that is, λ = ρ, for CZn) in Definition 4.1. We
obtained the P-Heyting algebra (FW , ≤, ∧a, ∨a, ⇒a, ¬a) by extending the positive
fragment of Heyting algebra of FHL in Definition 2.6 by this new algebraic weak-
ened paraconsistent modal negation ¬

a .
Now we have seen that the additive negation in Zn has to satisfy the axioms (11)

and (12) in Definition 3.2 also so that the set of hereditary incompatibility relations
RZn for weakened negation in Zn is a subset of hereditary incompatibility relations,
that is, RZn ⊂ R. For the constructive negation used in CZn we have that λ = ρ;
that is, the hereditary incompatibility relation is a symmetric relation in RZn .

In order to be able to use this semantics for weakened negation in Zn we have only
to prove that there exists the distributive lattice (X, ≤) such that intensional (modal)
negation in Zn can be represented as many-valued truth-functional split negation. In
order to obtain this result we will first define the intensional Kripke-like semantics
for paraconsistent propositional logic Zn and then from it demonstrate that there is
at least an infinite distributive lattice such that Zn can be represented as many-valued
truth-functional propositional logic. The Kripke semantics for Zn and CZn logic can
be defined as modified Kripke semantics for intuitionistic positive fragment (corre-
spondent to PLA positive fragment of Zn and CZn) with weakened paraconsistent
da Costa negation instead of intuitionistic negation (pseudocomplement in Heyting
algebras).

Definition 4.5 We define the Kripke model M = (W , ≤, R, V ) where (W , ≤) is
a poset, R ∈ RZn is an incompatibility binary accessibility relation for weakened
paraconsistent da Costa negation, and a mapping V : Var × W → 2 such that
for any propositional letter p ∈ Var, if w ≤ w′ then V (p, w) ≤ V (p, w′), with
2 ⊂ Var such that ∀w.(V (0, w) = 0 and V (1, w) = 1). Then, for any world
w ∈ W we define the satisfaction relation for any propositional formula A, denoted
by M |Hw A, as follows:

1. M |Hw p iff V (p, w) = 1, for any p ∈ Var;
2. M |Hw A ∧ B iff M |Hw A and M |Hw B;
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3. M |Hw A ∨ B iff M |Hw A or M |Hw B;
4. M |Hw A ⇒ B iff ∀y((y ≤ w and M |Hw A) implies M |Hy B);
5. M |Hw ¬A iff ∀y(M |Hy A implies (y, w) ∈ R).

It is easy to see that points from 1 to 4 are identical regarding the satisfaction relation
of intuitionistic propositional logic. Point 5 defines this relation for the new modal
paraconsistent weakened negation.

Let v = [V ] : Var → 2W be the mapping obtained by currying (λ-abstraction)
of the function V (where [_] is λ-abstraction operator) such that for any p ∈ Var,
w ∈ W , v(p)(w) = V (p, w). Then for each function v(p) : W → 2 we obtain that
it is hereditary; that is, from Definition 4.5, if w ≤ w′ then v(p)(w) ≤ v(p)(w′).
That is, for any p ∈ Var, we have that v(p) ∈ FW , and consequently, v is a many-
valued propositional valuation with a set of algebraic values equal to the complete
distributive lattice FW , that is, v : Var → FW . Let us show that v can be homomor-
phically extended to all formulas in Zn so that it is a truth-functional many-valued
valuation for the paraconsistent logic Zn . We denote by Vm ⊂ F Zn

W the set of all
homomorphic many-valued valuations.

Corollary 4.6 For any Kripke model M = (W , ≤, R, V ) of the paraconsistent
propositional logic Zn , given by Definition 4.5, we obtain the many-valued truth-
functional valuation as a homomorphism v = [V ] : Zn → FW between free gen-
erated algebra of formulas in Zn (by the carrier set Var and logic connectives in
6 = {∧, ∨, ⇒, ¬}) and the P-Heyting algebra (FW , ≤, ∧a, ∨a, ⇒a, ¬a). Thus, for
any given frame (W , ≤, R), we have the bijective correspondence between Kripke
valuations V ∈ 2Var×W for Zn (where the set of propositional letters Var ⊆ Zn
is a subset of atomic formulas in Zn) and many-valued truth-functional valuations
v ∈ Vm ⊂ F Zn

W , given by the currying operator [_ ] : 2Var×W
→ Vm .

Proof Let us denote by ‖A‖ for a given formula A the set of worlds where A is
satisfied; that is, ‖A‖ = {w ∈ W | M |Hw A }. Then by structural induction we have
the following cases.

1 A = p is a propositional letter: Thus,

‖p‖ = {w ∈ W | V (p, w) = 1} = {w ∈ W | v(p)(w) = 1} = ch−1(v(p))

which is a hereditary set because v(p) ∈ FW .

2 A = A1 ∧ A2: Then ‖A‖ = ‖A1 ∧ A2‖ = (from point 1 in Definition 4.5)
= ‖A1‖

⋂
‖A2‖, which is a hereditary set, because from inductive hypothesis both

‖A1‖ and ‖A2‖ are hereditary, and their intersection is a hereditary from Lemma 4.4.

3 A = A1 ∨ A2: Then ‖A‖ = ‖A1 ∨ A2‖ = (from point 2 in Definition 4.5)
= ‖A1‖

⋃
‖A2‖, which is a hereditary set, because from inductive hypothesis both

‖A1‖ and ‖A2‖ are hereditary, and their union is hereditary from Lemma 4.4.

4 A = A1 ⇒ A2: Then ‖A‖ = ‖A1 ⇒ A2‖ = (from point 3 in Definition 4.5
as for intuitionistic logic) = ‖A1‖ ⇀ ‖A2‖, which is a hereditary set, because from
inductive hypothesis both ‖A1‖ and ‖A2‖ are hereditary, and their relative pseudo-
complement is hereditary from Lemma 4.4.
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5 A = ¬A1: Then ‖A‖ = ‖¬A1‖ = (from point 1 in Definition 4.5)
= {w ∈ W | ∀y( M |Hy A1 implies (y, w) ∈ R)} = {w ∈ W | ∀y( y ∈ ‖A1‖

implies (y, w) ∈ R)} = {w ∈ W | ∀y ∈ ‖A1‖.(y, w) ∈ R)} = λ(‖A1‖), which
is a hereditary set, because from inductive hypothesis ‖A1‖ is hereditary, and, con-
sequently, from Lemma 4.4, the set λ(‖A1‖) is hereditary also. Consequently, we
obtained the homomorphism ‖_‖ : (Zn, ∧, ∨, ⇒, ¬) → (HW ,

⋂
,
⋃

, ⇀, λ) such
that ‖A� B‖ = ‖A‖�

s
‖B‖, where � ∈ {∧, ∨, ⇒} and ∧

s
=

⋂
, ∨s

=
⋃

, ⇒s
=⇀

and ‖A‖ = λ(‖A1‖).
Consequently, from the homomorphism ch, given in Definition 2.6 of Example

2, we obtain, by composition of these two homomorphisms, the many-valued truth-
functional homomorphism (a valuation for Zn),

v = ch ◦ ‖_‖ : (Zn, ∧, ∨, ⇒, ¬) → (FW , ∧a, ∨a, ⇒a, ¬a). �

From the bijection between Kripke valuations and many-valued valuations of Zn , we
have that each valid formula A in a Kripke model M (with valuation V ), that is, with
‖A‖ = W , has the top value 1 = f1 : W → 2 in the complete distributive lattice
FHL FW (such that ∀w ∈ W . f1(w) = 1), and vice versa.

Now that we have demonstrated that there is a complete distributive lattice FHL
for which the paraconsistent propositional logic Zn is a truth-functional many-valued
logic for this set of algebraic truth values, we are able to define the entailment for it.

5 Sound and Complete Truth-Functional Semantics for Zn

We have shown how we are able to define the truth-functional many-valued seman-
tics for paraconsistent logics Zn and CZn based on Kripke models in Definition 4.5.
Let us show that this Kripke (or many-valued) semantics is sound and complete for
deductive-theoretic-based systems of Zn and CZn . In order to do this we will first
define the following 2-valued binary Gentzen-like system for Zn and CZn based on
the complete distributive lattice FHL of algebraic truth values in FW , defined in Def-
inition 2.6.

Definition 5.1 The Gentzen-like system GZn = 〈L, 〉, with a set of axioms L

and Tarskian consequence relation , of the paraconsistent system Zn in Defini-
tion 3.2, considered as many-valued logic based on a distributive lattice (FW , ≤) of
algebraic truth-values, contains the sequent system of distributive lattice given by
Definition 2.1 (four axioms and two inference rules) and the following axioms and
rules.

Axioms

5a. 1 ` ¬0 and ¬1 ` 0 (inversion axioms)
6a. A ` 1, 0 ` A (top/bottom axioms)
7a. (¬A ∧ ¬B) ` ¬(A ∨ B) (additive modal negation axiom)

Inference Rules

3r. A`B
¬B` ¬A (antitonicity rule)

4r. 1`B(n), A`B, A` ¬B
1` ¬A (relativized reduction rule)

5r. 1`(A(n)
∧B(n))

1`((A∧B)(n)∧(A∨B)(n)∧(A⇒B)(n))
(propagation rule)
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The Gentzen-like system GCZn of the constructive paraconsistent system CZn con-
tains also the axiom,

8a. ¬(A ∧ B) ` (¬A ∨ ¬B) (multiplicative modal negation axiom).

In what follows we will denote by G∗

L the extension by the set of constant axioms
(they are not axiom schemas) of the Gentzen-like systems GL which define the poset
of the lattice of truth values (FW , ≤): for any two constants x, y ∈ FW − {0, 1},
if x ≤ y then x ` y ∈ L. We will denote by ∗ the entailment relation for this
extended system.

Notice that GL, where L ∈ {Zn, CZn}, are Gentzen-like systems equivalent to
propositional logics Zn and CZn in Definition 3.2. The extensions G∗

L are strictly
stronger (monotonic extensions) and correspond to the modified paraconsistent log-
ics extended by the set of constants in a given lattice FW . Thus, for a given set of
hypothesis 0, we have from the monotonic property that 0  s implies 0 ∗ s,
but not vice versa. But in what follows we will see that for any sequent of the form
s = (1 ` A) we have that 0 ∗ s implies 0  s holds also; that is, 0  s if and
only if 0 ∗ s.

Thus from the algebraic point of view, the paraconsistent systems Zn and CZn
are distributive lattice with a negative modal operator ¬, weakened by the rules (4r)
and (5r) in order to obtain the paraconsistent logic. We can therefore use the Dunn’s
gaggle theory (the GZn system without rules (4r) and (5r) is equal to the logical
system K− of Dunn [13]).

Definition 5.2 (Truth-preserving entailment in FLA for Zn and CZn) For any
two formulas A, B ∈ L, where L ∈ {Zn, CZn}, the truth-preserving conse-
quence pair (sequent), denoted by A ` B, is satisfied by a given Kripke valuation
V : Var × W → 2, that is, by a many-valued valuation v = [V ] : L → (FW , ≤) if
and only if v(A) ≤ v(B). This sequent is a tautology if it is satisfied by all valua-
tions, that is, when ∀v ∈ Vm(v(A) ≤ v(B)), or, equivalently from Corollary 4.6, by
all Kripke valuations in Definition 4.5, that is, ∀V ∈ 2Var×W (‖A‖ ⊆ ‖B‖).

For a normal Gentzen-like sequent system GL in Definition 5.1 of the many-
valued logic L ∈ {Zn, CZn}, we state that a many-valued valuation v is its model if
it satisfies all sequents in GL. The set of all models of a given set of sequents (theory)
0 is denoted by

ModK(0) =def {V ∈ 2Var×W
| ∀(A ` B) ∈ 0.(‖A‖ ⊆ ‖B‖)},

or equivalently,

Mod0 =def {v = [V ] | V ∈ ModK(0)} ⊆ Vm ⊂ F L
W .

Proposition 5.3 (Soundness) All the axioms of the Gentzen-like sequent system
G∗

L in Definition 5.1 of the many-valued logic L ∈ {Zn, CZn}, based on complete
distributive FLA lattice (FW , ≤) of algebraic truth values, are the tautologies, and
all its rules are sound for model satisfiability and preserve tautologies.

Proof It is straightforward to check that all axioms in a Gentzen-like system in
Definition 5.1 are tautologies (all constant sequents specify the poset of the complete
lattice (FW , ≤), thus are tautologies). It is also straightforward to check that all rules
preserve tautologies. Moreover, if all premises of any rule in GL, L ∈ {Zn, CZn} are
satisfied by the given many-valued valuation v : L → FW , then also the deduced
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sequent of the rule is satisfied by the same valuation; that is, the rules are sound for
model satisfiability. �

Thus we are now able to introduce the many-valued valuation-based (i.e., model-
theoretic) semantics for paraconsistent propositional many-valued logics Zn and
CZn .

Definition 5.4 A many-valued model-theoretic semantics of a given many-valued
logic L, where L ∈ {Zn, CZn}, extended by the set of propositional constants (truth
values) in FW , with a Gentzen system G∗

L = 〈L, ∗
〉 in Definition 5.1, is the semantic

deducibility relation |Hm , defined for any 0 = {si = (Ai ` Bi ) | i ∈ I } and sequent
s = (A ` B) ∈ L ⊆ L × L by “0 |Hm s if and only if all many-valued models of 0
are the models of s”; that is,

0 |Hm s iff ∀v ∈ Vm(∀(Ai ` Bi ) ∈ 0(v(Ai ) ≤ v(Bi )) implies v(A) ≤ v(B))

iff ∀v ∈ Mod0(∀(Ai ` Bi ) ∈ 0(v(Ai ) ≤ v(Bi )) implies v(A) ≤ v(B))

iff ∀v ∈ Mod0(v(A) ≤ v(B)).

This model-theoretic entailment |Hm for L ∈ {Zn, CZn} is, from Corollary 4.6, bi-
jectively correspondent to the Kripke semantics for L given in Definition 4.5; that
is,

0 |Hm (A ` B) iff ∀V ∈ ModK(0)(‖A‖ ⊆ ‖B‖).

It is easy to verify that the Gentzen-like system G∗

L = 〈L, ∗
〉 is a normal logic.

Theorem 5.5 The many-valued model theoretic semantics is an adequate seman-
tics for many-valued logic L, where L ∈ {Zn, CZn}, extended by the set of propo-
sitional constants (truth values) in FW and specified by a Gentzen-like logic system
G∗

L = 〈L, ∗
〉 in Definition 5.1; that is, it is sound and complete. Consequently,

0 |Hm s if and only if 0 ∗ s.

Proof Let us prove that, for any many-valued model v ∈ Mod0 , the obtained se-
quent bivaluation β = eq ◦ 〈π1, ∧〉 ◦ (v × v) : L × L → 2 is the characteristic
function of the closed theory 0v = C(T ) with T = {A ` x, x ` A | A ∈ L, x =

v(A)}, where, for X = FW , π1 : X × X → X is the first projection, eq : X × X
→ 2 ⊆ X is the equality characteristic function such that eq(x, y) = 1 if x = y.

From the definition of β we have that

β(A ` B) = β(A; B) = eq ◦ 〈π1, ∧〉 ◦ (v × v)(A; B)

= eq ◦ 〈π1, ∧〉(v(A), v(B)) = eq〈π1(v(A), v(B)), ∧(v(A), v(B))〉

= eq(v(A), ∧(v(A), v(B))) = eq(v(A), v(A) ∧ v(B)).

Thus β(A ` B) = 1 if and only if v(A) ≤ v(B), that is, when this sequent is satisfied
by v.

1. Let us show that for any sequent s, s ∈ 0v implies β(s) = 1: First, for any
sequent s ∈ T , it is of the form A ` x or x ` A, where x = v(A) so that they
are satisfied by v (it holds that v(A) ≤ v(A) in both cases). Consequently, all
sequents in T are satisfied by v. By means of Proposition 5.3 we have that all
inference rules in G∗

L are sound with respect to the model satisfiability. Thus
for any deduction T ∗ s (i.e., s ∈ 0v) where all sequents in premises are
satisfied by the many-valued valuation (model) v, also the deduced sequent
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s = (A ` B) must be satisfied. That is, it must hold v(A) ≤ v(B); that is,
β(s) = 1.

2. Let us show that for any sequent s, β(s) = 1 implies s ∈ 0v: For any sequent
s = (A ` B) ∈ L × L if β(s) = 1 then x = v(A) ≤ v(B) = y (i.e., s is
satisfied by v). From the definition of T , we have that A ` x, y ` B ∈ T ,
and from x ≤ y we have x ` y ∈ L (where L are axioms (sequents) in G∗

L,
with {x ` y | x, y ∈ X, x ≤ y} ⊆ L, thus satisfied by every valuation) by the
transitivity rule, from A ` x, x ` y, y ` B, we obtain that T ∗ (A ` B);
that is, s = (A ` B) ∈ C(T ) = 0v .

So from (1) and (2) we obtain that β(s) = 1 if and only if s ∈ 0v; that is, the
sequent bivaluation β is the characteristic function of the closed set. Consequently,
any many-valued model v of this many-valued logic L corresponds to the closed
bivaluation β which is a characteristic function of a closed theory of sequents: we
define the set of all closed bivaluations obtained from the set of many-valued mod-
els v ∈ Mod0: Biv0 = {0v | v ∈ Mod0}. From the fact that 0 is satisfied by
every v ∈ Mod0 we have that for every 0v ∈ Biv0 we have that 0 ⊆ 0v so
that C(0) =

⋂
Biv0 (intersection of closed sets is a closed set also). Thus, for

s = (A ` B),

0 |Hm s iff ∀v ∈ Mod0(∀(Ai ` Bi ) ∈ 0(v(Ai ) ≤ v(Bi )) implies v(A) ≤ v(B))

iff ∀v ∈ Mod0(∀(Ai ` Bi ) ∈ 0(β(Ai ` Bi ) = 1) implies β(A ` B) = 1)

iff ∀v ∈ Mod0(∀(Ai ` Bi ) ∈ 0((Ai ` Bi ) ∈ 0v) implies s ∈ 0v)

iff ∀0v ∈ Biv0(0 ⊆ 0v implies s ∈ 0v)

iff ∀0v ∈ Biv0(s ∈ 0v), because 0 ⊆ 0v for each 0v ∈ Biv0

iff s ∈

⋂
Biv0 = C(0), that is, iff 0 ∗ s.

�

Now we have the following corollary that demonstrates that the many-valued se-
mantics for paraconsistent logic Zn , obtained from its Kripke semantics, is sound
and complete.

Corollary 5.6 The Kripke semantics and derived many-valued model theoretic se-
mantics are adequate semantics for paraconsistent logic L, where L ∈ {Zn, CZn}.
That is, for any deduced formula A from a given set of hypotheses 0 in L, that is,
when 0  (1 ` A), then 0 |Hm (1 ` A) so that the formula A is valid in the Kripke
frame in Definition 4.5, and vice versa.

Proof If 0  (1 ` A) then, from monotonicity, 0 ∗ (1 ` A), and from Theo-
rem 5.5, 0 |Hm (1 ` A). Vice versa, if 0 |Hm (1 ` A) then from Theorem 5.5,
0 ∗ (1 ` A). Let us show that 0 ∗ (1 ` A) implies 0  (1 ` A) also. We have
to show that in order to deduce the sequents of the form 1 ` A we do not need the
constant sequent axioms. By recursive induction, all sequents in 0 are of the form
1 ` A. Also all axiom schemas (different from 5a) of this form are reducible to the
sequent 1 ` 1, while the axiom schema 5a reduces to 1 ` ¬0. From the Deduc-
tion Metatheorem instead, each axiom schema in L, A ` B can be transformed into
correspondent axiom schema 1 ` A ⇒ B.



422 Zoran Majkić

Let us suppose that we make the step by step deductions from 0 by using the
inference rules. Suppose that up to the current nth step all deduced formulas are ob-
tained without using constant axioms. Then in the next step, a new deduced formula
of the form 1 ` A can be obtained from inference rules in one of the possible cases:

Case 1 from rule (1r) A `B, B `C
A `C

In order to deduce 1 ` C we need previously to have deduced sequents 1 ` B and
B ` C (from inductive hypothesis without constant axioms). Thus 1 ` C is also
deduced without constant axioms.

Case 2 from rule (2r) A `B, A `C
A `B∧C

In order to deduce 1 ` B ∧ C we need previously to have deduced sequents 1 ` B
and 1 ` C (from inductive hypothesis without constant axioms). Thus 1 ` B ∧ C is
also deduced without constant axioms.

from another rule A `B, C `B
A∨C `B

In order to deduce 1 ` B we need sequents 1 ` A ∨ C (so both with axiom 6a,
A ∨ C ` 1, we have that 1 = A ∨ C) and A ` 1 (axiom 6a), and C ` 1 (axiom 6a),
deduced previously (from hypothesis) without constant axioms. Thus 1 ` B is also
deduced without constant axioms.

Case 3 from rule (3r) A`B
¬B` ¬A

In order to deduce 1 ` ¬A we need previously to have deduced sequent 1 ` B
(from inductive hypothesis without constant axioms). Thus 1 ` ¬A is also deduced
without constant axioms.

Case 4 from rule (4r) 1`B(n), A`B, A` ¬B
1` ¬A

In order to deduce 1 ` ¬A we need previously to have deduced sequents 1 ` B(n),
and A ` B, A ` ¬B (from inductive hypothesis without constant axioms). Thus
1 ` ¬A is also deduced without constant axioms.

Case 5 from rule (5r) 1`(A(n)
∧B(n))

1`((A∧B)(n)∧(A∨B)(n)∧(A⇒B)(n))

In order to deduce 1 ` ((A ∧ B)(n)
∧ (A ∨ B)(n)

∧ (A ⇒ B)(n)) we need sequent
1 ` (A(n)

∧ B(n)), deduced previously (from inductive hypothesis) without constant
axioms. Thus 1 ` ((A ∧ B)(n)

∧ (A ∨ B)(n)
∧ (A ⇒ B)(n)) is also deduced without

constant axioms. �

6 Conclusion

In this paper we have developed a new weakening of negation based on the da Costa
method but by preserving fundamental properties of negation as antitonicity, inver-
sion of top/bottom truth values and additivity, with respect to the distributive lattice
logic represented by the positive fragment of propositional logic: this positive frag-
ment determines the semantics for logic conjunction, disjunction, and implication by
meet, join, and relative pseudocomplement of this complete lattice. Moreover, if we
preserve also the multiplicative property for this weak negation, we obtain construc-
tive paraconsistent negation which satisfies also the contraposition law for negation;
such constructive negation is paraconsistent weakening of intuitionistic negation.

We defined the Kripke-style semantics for these two paraconsistent negations with
modal negation and show that it is a conservative extension of the positive fragment
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of Kripke semantics for intuitionistic propositional logic, where only the satisfaction
for negation operator is changed by adopting an incompatibility accessibility rela-
tion for this modal operator which comes from Birkhoff polarity theory based on a
Galois connection for negation operator. After that we derived the many-valued se-
mantics for this logic based on truth-functional valuations and have shown that this
model-theoretic semantics for obtained substructural paraconsistent logics is sound
and complete.
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