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WEAKER CRITERIA AND TESTS FOR LINEAR RESTRICTIONS 
IN REGRESSION 

BY T. D. WALLACE' 

The standard F test for linear restrictions in regression is relevant as a criterion but fails 
to capture the notion of tradeoff between bias and variance. Average squared distance criteria 
yield operational tests that are more appropriate, depending upon objectives. In the present 
paper two alternative criteria are developed. The first allows testing of the hypothesis that 

the average squared distance of a restricted estimator from the parameter point in k space 
is less than the average squared distance of the unrestricted, ordinary least squares estimator 
from the same parameter point. The second sets up a test of betterness of the restricted 

estimator over the unrestricted estimator of E(YjX), where betterness is again defined in 

average squared distance. 

Tim STANDARD PROCEDURE for deciding whether to impose linear restrictions in 

regression has been the Snedecor F test. To summarize, one begins with a linear 

model 

(1) Y-=X# + , N(O, 2I) 

where Y is N x 1, X is N x k and fixed, at least conditionally, fi is k x 1, and e 

is an N x 1 vector of random variables. A general linear reduction in the parameter 

space from k to k - m can be written 

(2) H'f3=h 

where H' is m x k and known and the rank of H is m, and h is an m x 1 known 

vector. 

Defining SSE(,B) as the error sum of squares for the least squares estimators 

constrained by equation (2), SSE(b) as the error sum of squares for the unrestricted 

ordinary least squares estimators, and 62 as the least squares estimate of a2 in 

the unrestricted case. 

(3=) SSE(i1) 
- SSE(b) 

m62 

is distributed as a noncentral F with parameters m, N - k, and A. The noncentrality 

parameter, A, is 

4 
(H'f3 - h)'(H'S-IH) (H'3 - h) 

where S = X'X. 

1 My thanks to the Economics Department, the University of Washington at Seattle, for a visiting 

appointment during the summer, 1970, during which time a first draft of this paper was completed. 
I am grateful to Allan Seheult and Burt Holland for directing my attention to the possibility of this line 

of investigation and to Burt Holland and an unknown referee for helpful suggestions on an earlier 

draft. 
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690 T. D. WALLACE 

Thus, the test that A = 0 tests truth of the restriction H'f = h, and the distribu- 

tion of u becomes the central F under the null hypothesis. Such results can be 
found in Chipman and M. Rao [2] or in C. R. Rao [10]. The test is uniformly 

most powerful. 
For example, to implement the test for pooling data from different sources one 

may proceed as in Chow [3] to specify 

(5) (Y) (0 X (:) +(') (2) N(0,a2p 

where the partitions represent, say, two time periods, and there are N observations 
in each cross section and k parameters in each cross section. Choosing H' as 

(Ik9- Ik) and h null puts the pooling problem into the more general framework. 

The general testing procedure has considerable flexibility for handling many 

such questions and is at least approximately correct under a wide range of dis- 

tributional assumptions other than the ones stated here. There are, however, 

several complaints that one might air about the procedure. For. example: 
(i) Those who use the test applied to the pooling question find it a rare event 

when the test statistic is smaller than the tabulated central F at the commonly 

tabulated .05, .01 levels of type one error. 
(ii) The null hypothesis can ultimately be rejected if the sample size gets large 

enough-i.e., if x N(u, a2), and p unknown, the chance that we pick p precisely 
out of the real numbers as a null hypothesis is zero and for jgo = 4u, we can ulti- 

mately reject Ho0: = go by reducing a,. 
(iii) We may want to use the constrained estimators even when the restriction 

is not valid. Looking at the distribution of b and f,, the ordinary least squares and 

restricted least squares estimators, one finds, 

(b - fl) N(O, c2S-), 

and 

(/-) N{-S-'H(H'S- 'H)- l(H'# - h), c2S- 
1 

_ (2S-'H (HIS - H) - 'HIS - 

Thus, if the restrictions are valid, the bias of R is zero and the variances smaller 

(G2S- 'H(H'S- 'H)- 1H'S- 1 is non-negative definite). But even if the restriction is 

strictly invalid, the constrained estimators have smaller variances and one might 

be Willing to make a tradeoff, accepting some bias in order to reduce variances. 
The truth of H'# = h is relevant but overstrong as a criterion. 

(iv) Using the test as a decision rule gives rise to sequential estimators whose 

properties are formidable and little understood.2 

The remainder of this paper suggests three alternative tests within the classical 
framework that avoid all except the last of the complaints. The first of these tests 

has been presented elsewhere and is only reviewed here. The second is not easy to 

2 For example, see Bancroft [1]. 



LINEAR RESTRICTIONS 691 

use because considerable computation is required and the test statistic is not 

amenable to simple tabulation. The third test requires no more computation than 

provided in standard computer routines and a tabulation of the test statistic is 

provided in a companion paper [4]. 

2. 

As stated in Section 1, if the restriction (H', = h) is not valid, the restricted 

estimators, /B, are biased but have smaller variances. The possibility of tradeoff 
can be captured via the concept of mean squared error. For example, suppose we 

accept ,B as better than b, the ordinary least squares estimator, if and only if 

(6) MSE(1'/P) < MSE(l'b) for every 1 = 0, 

1 being any k x 1 constant vector.3 It is convenient to define the inequality (6) as 

the strong MSE criterion. 
It has been shown [11] that each linear combination of / has smaller mean 

squared error than the same linear combination of b if and only if 

(7) 2 

where A is the noncentrality parameter defined in equation (4) above. Thus, a 

uniformly most powerful test exists to test whether the restricted estimator /B is 

better in strong MSE. The relevant hypothesis is that the noncentrality parameter 
be less than one-half against the alternative that it is greater than one-half. Tabula- 

tion of the F(m,N k,)for A = - may be found in [12], along with examples, including 

the pooling problem of equation (5) above. 

3. 

Even though the strong MSE testing procedure overcomes some of the objections 

raised by the older testing via the central F, one is still struck by the strength of 

the null hypothesis. To have the mean squared error of every linear combination 

of , better than each corresponding linear combination of b is quite persuasive 

that ,B is better.4 But the question arises whether some weaker but still acceptable 

criterion would lead to another test. 
A weaker mean squared error concept in vector estimation is 

(8) E(0 - 0)'(0 - 0) = tr [ZE + (BIAS 0) (BIAS 0)'] = E MSE(0i). 

Geometrically, 2 is the "average" squared Euclidian distance of the point 0 

from 0, whatever the dimension of the parameter space. 

MSE(0) = E = var Oi + (BIAS ,)2 for scalar estimation. Geometrically, the mean 

squared error is the average squared distance of Oi to Oi. For the vector 0, MSE I'() is the 

quadrm ic form 1'[fbh + (BIAS 0)(BIAS 0)']I, where Znb is the variance-covariance matrix of 0 and 

BIAS 0 is the vector that displays biases. The criterion in equation (6) is equivalent to a requirement 
that E(b - fl)(b - f' - E(P -- fl)( - f)' be non-negative definite. 

4 To have such betterness equivalent to A < 2 rather dramatically illustrates the strength of the 

requirement that A = 0. 
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The unrestricted least squares estimator, b, is unbiased, distributed as a multi- 
variate normal, with mean squared error matrix 

(9) MSEbb = C2S 

where S = X'X. The average squared distance of b from ,B is the trace of 
2S 1. 

Recalling the algebra of restricted least squares [11], one can write the restricted 
estimator, ,, of , as 

(10) b = b-S- 'H(H'S-'H)-'(H'b - h) 

where b is the unrestricted ordinary least squares estimator. It follows from (10) 
and the distributional assumptions of the model that /3 is multivariate normal: 

(11) ' - N(f, + BIAS $, Zp,f) 

where the bias vector and covariance matrix are 

(12) BIAS = -S- 'H(H'S- 'H)- (H' - h) 

and 

(13) fi = CF2S-1 _ a2S- 'H(H'S-'H)-'H'S-. 

Thus the mean squared error matrix for /3 is 

(14) MSEf = c2S- 
I _ G2S- 1H(H'S-1H)-1H'S-1 

+ S- 'H(H'S- 'H)- 1 (H'/ - h)(H'f -h)'(H'S- H)- H'S 1, 

and the average squared distance of j2 from ,B is the trace of the matrix of equation 
(14). 

To have the restricted estimator better in average squared distance means that 
the trace of equation (14) must be smaller than the trace of equation (9). A sufficient 
condition for this to be the case is to have the noncentrality parameter A smaller 
than one-half, i.e., to have the inequality (7) hold, because if the difference between 
two matrices is positive semi-definite, one is assured that the difference of their 
traces is nonnegative. The relevant question is whether some weaker condition 
exists that insures /2 to be better in average squared distance. 

Hence, taking the trace of the difference of equations (9) and (14), interest centers 
on the condition(s) under which 

(15) tr S- 'H(H'S- 'H)- l(H' - h)(H'/3 - h)'(H'S- 'H)- 'H'S- 

<q2 tr S- 'H(H'S- 'H)- 'HS-. 

Using the fact that tr AB = tr BA where AB and BA and their traces are defined, 
the left hand side of inequality (15) can be written as the scalar 

(16) [(H'/3 - h)'(H'S- 'H)- 'H'S- 1] [S- 'H(H'S- 1H) - 1(H'# - h)] = Z'Z, 

where Z is the m x 1 vector indicated by the brackets. 
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Referring to the definition of A in equation (4), one can see that it is a simple 
trick to re-express A as 

Z'SZ 
(17) A = 2r2 or 2a2A = Z'SZ. 

This allows use of an inequality to bound the Z'Z of (16); namely, 

(18) _A__ 2<2 < 

where It and Ik are, respectively, the largest and smallest characteristic roots of 
the S matrix.5 

Thus, an alternative sufficient condition that the restricted estimator I be 
better in average squared distance is 

(19) A < 0, where 0 = T,tktrS-'H(H'S-'H)-'H'S-'. 

Since 0 can be calculated from the nonstochastic variables and whatever set 
of restrictions are in question, and A is a parameter in a well-defined distribution, 
the inequality in (19) can be used for testing purposes. That the criterion can be 
less demanding than the one for which A must be smaller than 4 is illustrated by 
taking both S and H' as a kth order identity. Such an extreme but admissable case 
asks only that A be no greater than k/2. However, one should note that there are 
cases for which 0 < 2. For example, take 

{1 p 

p1 

and 

H' = (1,0). 

For p > 0, the least root ofS is 1 - p and 0 is 2(1 + p2)/(1 + p) <2. 

Computation of 0 in a particular problem setting poses only slight difficulty. 
However, critical points for the noncentral F are not available over a wide range 
of the noncentrality parameter, nor would it be economic to do the necessary 
numerical integration as each case presented itself. Nor, as seen above, is it always 
the case that 0 < . Even though an approximation is made available in the 
companion paper [4]. for the noncentral F(0) for various 0, the usefulness of a 
simpler criterion is apparent. 

4. 

For ease of subsequent discussion, consider a restatement of the model as 

(20) Y= XD-L'DJ + 8, s N(0,a2i), H'D-I'Df = h, 

I See Graybill [6, p. 309] for the relevant theorem and proof. 
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where D diag { . 2..,/Xk. Letting D: = fP, XD - 

and H'D-1 = G', the model of equation (20) can be restated: 

(21) Y= X*,B* + E 

G'f3* = h. 

The following results are immediate: 

(22) b* = Db, b* N(f*, a R ), 

and 

(23) ,* = D3, 

where b* and ,B* are, respectively, unrestricted and restricted least squares estima- 

tors of /B*, and R is the sample correlation matrix of the regressors. 

Since the u statistic of equation (3) can be written as 

(24) u = [H'b - h] [H'S HH]- l [H'b - h]/mI2, 

it follows that u is invariant to the reparameterization from ,B and H to ,B* and G. 

Invariance to the reparameterization also holds for the noncentrality parameter A. 

(See equation (4).) Hence, without loss of generality, the question of whether to 

adopt H'f = h can be recast into the question of whether to force G'J* = h in 

the restated model of equation (21). 
In the reparameterized form, 

(25) E(b* - f*)'(b* - f*) -2 E 

where the yi are the characteristic roots of the correlation matrix R.6 

It is known that 

k 

(26) Ey =trR = k, 
i= 1 

so that the minimum of (25) over the vi is for each Vi to be unity. This is equivalent 

to orthogonality of the X and orthonormality of the X* matrices. Hence the 

minimum average squared distance of b* from ,B* is kc2, the lower bound being 

achieved in the case of orthogonal X. Thus 

k 

(27) kc2 = Z yjE(b* - fl') = E(b* - f*)'R(b* -*) 
i= 1 

< E(b* - 3*)'(b* -*) 

Since R is a positive definite matrix that can be written as C'FrFrC, where C 

is orthogonal and FI is a diagonal matrix displaying the positive square roots of 

6 See Hoerl and Kennard [7]. 
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the eigen values of R, the rotated average squared distance of (27) can be character- 

ized as the mean of a a2X2) variate, i.e., 

(28) b*^ N(f*, a2R-1). 

Hence, 

(29) W = FQC(b* - *) N(O, c2I) 

and 

(30) v = W'W- a2X(k) and Ev = kc2. 

The same transformation of ,B* yields a noncentral x2. By analogy from equations 

(11), (12), and (13), 

(31) (f*-3*) N(-R -G(G'R 
- 

1G) [G'#* -h], 

a 2R-1 _2 2R - G(G'R 
- 1G) - 1GIR -1) 

and 

(32) F QFC(f*-/*) N(- FCG(G'RG) [G'#* -h], 

I - F4CG(G'RG)-'G'CF ). 

Letting 

(33) W* = FC(Q3* - /*), 

the quadratic form W*'W*/la2is noncentral chi-square if and only if the covariance 

matrix of (1/a)W* is idempotent.7 And the condition holds in the present case as 

can be seen by squaring the covariance matrix of equation (32). The degrees of 

freedom of the noncentral x2 distribution of W*'W*/la2 is the trace of the covariance 

matrix which is k - m. The noncentrality parameter is the same A as that of 

equation (4), and the average squared distance of F+CgB* from FiC/3* is the 

expectation: 

(34) EW*'W* = E(B* - ,*)'R(B*-,B*) - (k - m)2 + 2,{2. 

The foregoing analysis motivates the following definition: 

The restricted estimator, ,, is better in weak mean squared error if and only if 

(35) E(3* - f*)'R(.* - 3*) , E(b* - f*)'R(b* - *) 

or equivalently, if and only if 

(36) E(f3 - f3)'S(3 - ,3) < E(b - f3)'S(b - /3. 

7 See Graybill [5, p. 84]. 
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And from the results of equations (27) and (34), a necessary and sufficient 
condition for , to be better in weak mean squared error is 

m 
(37) A < 2 

This is a particularly nice result because the test statistic can be easily tabulated 
and to make the test the investigator need only make computations provided by 
most computer routines. The companion paper [4] provides a tabulation. 

Note that for a single restriction the weak and strong mean squared error 
criteria coincide. 

5. 

Perhaps the main justification for defining betterness in weak MSE in terms 
of average squared distance after rotation by the design matrix is the simplicity 
of the criterion. However, the rotated average squared distance falls within the 
class of positive definite quadratic loss functions. And some people may be willing 
to subscribe to the notion that there is really no such thing as an "unweighted" 
average. Even so, it would be nice to claim that inequalities (36) or (37) insure that 
the unweighted average squared distance for j2 is smaller than the unweighted 
average squared distance for b. Such is not the case. However, for those who prefer 
the unweighted criterion function there is some solace in the following: 

(i) The criterion A < 2 is sufficient for ,B to be better in unweighted average 
squared distance and a tabulation of the relevant test statistic is available [12]. 

(ii) The right-hand side of the potentially weaker sufficient condition of in- 
equality (19) can be calculated in any real problem setting. And even though critical 
points corresponding to all A values are not available in tabular form, there are 
approximations to the noncentral F that can be used. Such an approximation 
formula is provided in the companion paper [4], along with some evaluation of 
how it performs. 

(iii) One can derive the weak MSE criterion of inequality (37) by concentrating 
on an alternative parameter space. Suppose interest is centered on estimating 

Xf,, the conditional mean of Y given X. Consider the two alternative estimators 
Xb and X/3 and define X, to be the better estimator of E(IYX) if and only if 

(38) E(XB - X,)'(XB - X,) < E(Xj - Xb)'(Xf - Xb). 

The inequality in (38) reduces immediately to 

(39) E(/ - /3)'X'X(f3 - /3) < E(b - fl)'X'X(b - /3) 

which is equivalent to the inequalities in (36) and (37).8 Hence, if interest centers 
on conditional mean forecasting, rather than the ,B vector per se, the criterion 
A < m/2 is entirely appropriate. 

8 My thanks to Paul R. Johnson for a reference to a paper by Howard L. Jones [8] leading to this 
comment. Jones [8] also shows that in the MSE sense, Y - Xb is always a better estimator of ? than 
is Y - XA. 
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6. 

Using the notation of this paper, Table I summarizes the various criteria and 
tests of linear restrictions suggested here in relation to previous practices.9 

TABLE I 

ALTERNATIVE CRITERIA AND TESTS FOR RESTRICTIONS IN LINEAR REGRESSION 

Criterion Critical value Test: Compute u (equation (3)) and 
of A compare it to the critical value of: 

The set of restrictions, H',B = h, is true A = 0 The usual central F distribution 

MSE(l'b) > MSE(I',B) for all 1 =# 0. 2 Noncentral F(-). 
Or equivalently, E(b - P)(b - '- Tabulated in reference [12]. 

E(3 - /)(/ - 3' = a non-negative 
definite matrix. (Strong MSE criterion.) 

E(h - f)'(h - /3) - E(P - fl)'(P - fl) is ai i 0 Noncentral F(O). 

positive scalar. (First weak MSE (Compute 0: the right hand side of (19) 
CIItCII loll ) above. Compute probability of a 

larger F from approximation given 
in the companion paper [4].)a 

E(b - fl)'X'X(b - /) - E(P - fl)'X'X A < (m/2) Noncentral F(m/2). 
x ( - /3) is a positive scalar. (Second Tabulated in the companion paper [4]. 
weak MSE criterion.) 

If 0 < 2, use noncentral F(-), tabulated in Reference [12]. 

In conclusion, there is a methodological implication of the formal material 

presented in this paper favoring simplicity of model construction. Intuition 

would lead one to believe that there should be a cost to overspecification as well 

as underspecification of models. Indeed there is, and the cost takes the form of 

larger variances. It is the purpose of theory not only to count but to avoid double 

counting. The concentration of this paper on statistical testing is not meant to 

suggest that all potential restrictions ought to be tested. On the contrary-the 
results presented here can be interpreted to be in support of simpler specification 

and bold use of priors. 

North Carolina State University 

Manuscript received September, 1970; revision received February, 1971. 

9 My thanks to an unknown referee for suggesting the format for Table I. 
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