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Abstract

The standard definition of weak convergence of distribution laws (d.l.’s) is
generalized to a definition of weak approach of d.l.’s to each other. For the case
of random d.l.’s a definition is given for a sequence of random d.L’s to weakly
approach a sequence of non-random d.l.’s. The main result (Theorem 2) concerns
this case providing necessary and sufficient conditions for weak approach in terms
of characteristic functions of random and non-random d.l.’s. Applications of the
theory are given to scheme of series of independent random variables and to linear
regression.!
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1 Introduction

Asymptotic methods are often used in the analysis of collected statistical data. A
typical problem is to obtain an asymptotically exact approximation of an "unob-
served” sequence of distribution laws (d.l.’s) by the use of some other ”observed”
sequence of d.l.’s when the volume of collecting data is increasing. For exam-
ple one may wish to determine the d.l.’s of deviations of point estimators from
some estimated parameters. Intensive computer methods, using bootstrap and
resampling for example, can help to solve such problems. Usually it is assumed or
implied under some assumptions, that the "unobserved” sequence of d.1.’s weakly
converges to some limit d.l. which we call the atiractor d.l. The existence of at-
tractor d.l.’s can be a too strong restriction on statistical models and can limit the
use of known statistical methods in the analysis of real statistical data. Moreover,
the reduction of a problem to one with an attractor d.l. inevitably involves the
use of stabilizing transformations, in the form of normalizing constants or matri-
ces, for example, and then their unknown parameters need to be estimated. This
can be difficult if the collected data have different structures and hence different
probability distributions, Belyaev, and Gadjiev [3], White [11]. In this paper we
suggest a way to avoid the use of attractor d.l.’s by defining what it means for
sequences of d.1.’s to weakly approach each other. Sequences of random d.l.’s can
also be considered, providing a justification of the use of resampling methods.
The new type of convergence of sequences of d.l.’s is a natural generalization of
the usual weak convergence of d.l.’s to some limit d.l., i.e. to some attractor
d.l. It is shown that this generalized weak convergence has similar properties to
standard weak convergence. The well-known continuity theorem (see e.g. Shi-
ryaev [10], page 318) states relations between the weak convergence of d.1.’s and
the pointwise convergence of characteristic functions (c.f.’s). One variant of the
continuity theorem within the framework of ordinary weak convergence was given
in Knight [6]. Theorems 1 and 2 in Section 2 are generalisations of the continuity
theorem in the case of sequences of d.1.’s that weakly approach each other. These
theorems can be generalised to the case of sequences of d.1.’s of vector - valued
random variables (r.v.’s) that weakly approach each other, see forthcoming re-
port Belyaev, and Sjostedt [4]. Theorem 2 can be used to justify the resampling
methods in many typical problems involving the point estimation of unknown
parameters, and in some other problems. This paper is an extended version of
Section 2 in the research report Belyaev [2]. The basic definitions and results in
Belyaev [2] are restated. Here, the proofs are given only for new results.

Capital letters are used for r.v.’s, small letters for values of r.v.’s and for
constants, Greek letters for parameters of d.l.’s, bold letters for vectors, contour
fonts (such as B) for collections of sets, and matrices, X for the transposed matrix
X, calligraphic (bold) letters for sets and d.l.’s, £(X') denotes the d.l. (probability
measure) of a r.v. X, N;(u,o?) denotes the one dimensional normal d.l. with




mean value g and variance o2, C(u,6) denotes the Cauchy d.l. centered at y and
with the scale parameter 6, := means definition by expression, f(-) denotes the
"whole” function f and f(z) denotes its value at z, I(A) is an indicator function
of an event A, Z* = {1,2,...}, A® is the complement of a set A. We use 5 to
denote the convergence in probability, and 2 for convergence in distribution.

We now outline a class of problems to which Theorem 2 is applicable. Thisis a
scheme of series of observations of independent r.v.’s, for which we are interested
in approximating the d.L.’s of sums of the r.v.’s.

Let U, := (Uin, ---, Unn) be an array of collections of real valued r.v.’s Uin, EU;,
=0,i=1,..,n,n=1,2,.... For each r.v. Ui, we have only one observation u;y,.
We will consider U, = (Uin,--; Unn) as the observed statistical data, and denote
by L(U.,) the d.l. of U, := Urn+... +U,n. We seek to understand how, and under
what assumptions, it is possible to approximate L(U..), asymptotically accura-
tely as n — oo, given only u,. In Section 2 we cite the so-called Central Limit
Resampling Theorem (CLRT) obtained in Belyaev [1]. The case with non i.i.d.
sequence of 1.v.’s has been considered in Liu [7], where the uniform convergence
of d.1.’s was used.

2 Weakly approaching sequences of distribution
laws

Distribution laws (probability measures) are points in some functional space (the
space of all probability measures or all distribution functions on R!). Estimators
of d.1’s should be considered as random d.L.’s (random probability measures). It
is necessary to define what is to be meant by the statement that two sequences of
d.1.’s approach each other. Qur definition of convergence is a modification of the
standard notion of weak convergence. We restate the definitions and Lemmas 1-
3, and 5 from Belayev [2]. Let C5(R') be the set of all bounded, continuous, real
valued functions on R!.

Definition 1 Two sequences of d.L.’s (£(Xn))nz1, (£(¥a))n>1 of real valued ran-
dom variables (X, )n>1, and (Yn)n>1 are said to weakly approach each other if for
any function c(-) € Co(R?)

Ec(X,) —Ec¢(Yn) =0 asn— 0. (1)

Correspondingly (Xp)ny1, and (Ya)n>1 are said to approach each other in distri-
bution.

We denote this convergence by £(Xn) ¥ L(Ys) or X BY,,n— .
Remark. If £(Y,) = L(Y,) for some r.v. Y5, and n = 1,2, .., and (1) holds,
then the sequence (£(Xn))a1 is said to weakly converge to L(Ys), £(X5) = L(Yo)




or X, L Y, as n — oo. This is the case usually considered in the literature (see
e.g. Dudley [5], and Shiryaev [10]). o

There is also a need to consider random d.l.’s. We restrict ourselves to the
following situation. We assume that the d.L’s of (X,)n31 are random d.l’s in
the sense that there are 1.v.’s Z,, taking values in some space Z,, such that the
d.l. of X, is the ordinary regular conditional d.l. given Z,. We denote it by
L(X, | Z,). In this case, we can consider conditional expectations E(c(X,) |
Zy), c(+) € Gy(R), n = 1,2,..., which are real valued r.v.’s.

Definition 2 Let (X., Zn)n31, and (Y)n>1 be two sequences of r.v.’s, where
XY, € RY, Z, € Z,, the r.v.’s X,,Z, being defined on the same (basic)
probability space (9,B(R),P) for each n. The sequence of conditional d.lL’s
(L(Xn | Zu))ap1 given Z, is said to weakly approach (L£(Ys))n1 in probability
(almost surely) along (Zn)n>1, if for any c(-) € Cy(R*)

E(e(Xn) | Zn) — Ec(Yn) =0 asn— oo, (2)

in probability (almost surely). We denote this convergence by

LXn | Za) 2B LY, (L(Xn | Za) €2 L(Y,)) asn— 0.

Remark. Here we combine weak convergence and convergence in probability.
If L(Y,:) = L(Yo), the sequence (L(Xn | Zn))a>1 is said to weakly converge to
L(Yy) in probability (almost surely) along (Z,)n>1 as n — oo, if (2) holds almost
surely. Note that P can also depend on n. a

We recall that a sequence of real valued r.v.’s (X;)a>1 is said to be uniformly
tight if for any small € > 0 there is a k. < oo such that

P(| Xn|>k)<e, n=1,2,...

Definition 3 Let (X, | Zn)np1 be a sequence of r.v.’s X, given Z,, n=1,2,....
The sequence (X, | Zy)ap1 is called uniformly tight along (Z,)n>1 in probability
if for any small € > 0, and & > 0 there is a constant ks < oo, such that

P(P(| X |> kes | Zn) > €) <8, n=1,2,.... (3)

Lemma 1 If (Y,)n>1 is uniformly tight and L(X,) & L(Y,) as n = oo, then
(Xn)n>1 s also a uniformly tight sequence of r.v.’s.

Proof. See Belyaev [2].

Lemma 2 Let (X,,V,)a>1 be a sequence of pairs of real valued r.v.’s defined on
the same probability space, and V, 2y 0, n — oo. Assume also that (Yo)n>1 ts
uniformly tight real valued r.v.’s and that L(X,) & L(Y,) as n — oo. Then
L(Xn+ Vo) 8 L(Y,) as n — co.




Proof. See Belyaev [2].
Definition 4 A sequence of real valued random variables (Xn)n31 is said to be
properly random if there is no sequence of real numbers (@n)n>1 such that

X, — an 5 0 as n — oo.
If £(X,) = N1(0,02), 0 < 02 < 6% < 0% < 00, then (Xa)np1 is properly random.

Lemma 3 Let (X,)n>1 be uniformly tight. Then (Xn)np1 ts properly random iff
for any sequence of real numbers (an)n>1, there exists c(-) € Cs(RY) such that
Ec(Xn) — c(an) /0 as n = oo.
Proof. See Belyaev [2].

Note. If (Y,)n>1 is uniformly tight, properly random and L(X,) 8 L(Y,),
as n — 00, then (X,)n>1 is also uniformly tight and properly random. o

Let Go(s) = EI(Y, < s), Fu(s) = EI(X, < 5), and Fo(s | Z,) =
E(I(X, < s) | Z,) be distribution functions (d.f.’s) of the r.v.’s ¥y, Xy, and X,
given Z,. The sequence of d.f.’s (Gx(-))nz1 is uniformly continuous iff

supsup | Gn(s + k) — Gn(s) |20 as h—0.

n>l s

The following lemma and its corollary show that under natural assumptions,
weakly approaching sequences of r.v.’s have uniformly approaching d.f.’s.

Lemma 4 Let (X )n>1, (Ya)a>1 be two sequences of r.v.’s with d.f.’s (Fu(-))n31,
(Gr(-))az1. If the sequence (Yn) is uniformly tight, (Gu(-))n>1 is uniformly conti-
nuous, and L(X,) & L(Y,), n = oo, then

sup | Frp(s) — Ga(s) |+ 0 as n— 0. (4)

Proof. The assumption of uniform continuity (Gxa(-))n>1 implies that for any s,
and for any arbitrarily small ¢ > 0 we can find a he = he(s) > 0 such that

sup(Gn(s + he) — Gal(s — he)) < 15—0 , n=12... (5)

For any s we define two bounded continuous functions of
coe(u,s) i=I(u < s+he)— ((u—s)/he)[(s <u<s+he),
coe(u,s) = I(u < 8) — ((u— (s = he))/he)I(s — ke <u < s).

The assumption £(X,) & L(Y,), » = oo, and (5) imply that for all sufficiently
latge n > ne(s) | Ecie(Xn,s) — Ecie(Ya,s) < €/10, =0, —. Hence,

Fo.(s) — Gn(s) < Ecoe(Xn,s) —Ec_(Ya,s)
= Ecoe(Xn,s) — Ecoe(Ya,s) + Ecoe(Ya,s) — Ec—e(Ya, s)
< =4 Guls+h) —Cals—h) <% )




and

Fﬂ(s) = Gﬂ(s) > Ec—,e(Xn:S) - ECO,S(KH 5)
Ec_ . (Xn,8) — Ec_o(Ya,8) + Ec_ o(Ya, s) — Ecoe(Yan, 5)
—Z 4+ Ga(s —h) = Gals +he) 2 —5 (7)

Il

v

It follows, that
| Fa(s) = Ga(s) IS £, if n2ma(s). (®)

By Lemma 1 both sequences (X5 )n>1, and (¥;)n>1 are uniformly tight. Therefore
we can find sufficiently large k. > 0 such that

P(lXs|>k)<e, P(|Yu|pk)<e, n=1L12... (9)
We consider a finite set
Ik,
Sm,s = (Sfm ¢ Sim = om [=-2"-2"+ 1:"'12m - 1,2m) »

with points Sim, | Si41,m — Sim |< he. From (8) if follows that

max | Fn(slm) - Gn(sim) lS

Slm eSm,g

, if n>n.(m,ke), (10)

oM

ne(m, k) := max(ne(s) : s € Sn.). We also have for s, sim < 5 < S141,m, Sim,
and Sit1,m € Sm,e, by using (5) and (10), that

| Fu(s) = Ga(s) | < Fu(s) — Fa(sim) + Gn(s) — Gn(sim)
+ | Fa(sim) — Ga(5im) |
< Fu(sip1,m) — Fa(sim) + Ga(st41,m) — Gu(8im)
+ | Falsim) — Gn(sim) |
< | Falst41,m) = Ga(si41,m) | +2(Gn(si41,m) — Ga(sim))
+ 2 | Fﬂ(‘sfm) - Gn(slm) |< €.

It follows that

max sup | Fu(s) — Gn(s) |<e, if n2>n.(m,k.).

5!m|51+1,mesﬂl= S:mS3S5t+1,m
This inequality together with (9) imply

sup | Fu(s) — Gu(s) |[<e, if n2>n.(m,k.),

and the desired result follows. O




Corollary 1 If (Yu)a»1 is the same as in Lemma 4, and L(Xn | Zn) piati,
L(Y,), n = oo, then for any smalle >0

P (Sgp | Fu(s | Z,) — Gal(s) |> 5) -0, n—o0. (11)

Proof. Let € > 0 and 6 > 0 be any small numbers. We can find a sufficiently
large kes > 0 such that (3) holds with /2 instead of &, and such that

Gn(—kes) +1— Ghnl(kes) < ef2. (12)
We can write (3) in the equivalent form
P(Fo(—kes— | Zn) +1 = Fu(kes | Za) <€) >1— 6/2. (13)

Let k. = kes, m, and Spme be as in Lemma 4. From the assumption £(X, |

Zn) i L(Y,), n = oo, and inequalities similar to (6) and (7) with s € Spe,

and with Fo(s | Z,) and E(cie(Xn,s) | Z,) instead of F,(s) and Ec;(Xn,s), we

have 5
€

- i, Y [ —

P (| Fn(slm I Zn) Gn(slm) |S 5) = 1 2(2m+1 * 1):

if n is sufficiently large, say n > nl(m, k).
Further, by similar arguments to those in the proof of Lemma 4, we obtain

P ( max sup | Fa(s | Zn) — Gn(s) I< 6) >1-4/2, (14)

Sims8141,m€Ome 51y m<s<sim

if n > n'(m, k.). Inequalities (12), (13) and (14) imply

P (sup | Fu(s | Za) — Gn(s) < E) >1-4, (15)
for all sufficiently large n. If € > 0 is given we can choose § > 0 arbitrarily small.
Hence, inequality (15) implies the assertion of Corollary 1. m]

Remark. Under natural assumptions, weakly approaching sequences of r.v.’s
approach each other in the Levy metric. Let C, = (5 : Gu(s—) = Ga(s1)), ie.
C, contains all points of continuity of Gu(+). If Cr = Co, i.e. the sets C, are the
same, and at any s € Cp for any € > 0 exists he >0 such that

sup | Gu(s + he) — Gn(s — he) [< €,

then the Levy distance
dp(L(Xn | Zn), £(Ya)) 20, n—00. (16)
If Gu(-) = Go(+), n =1,2,..., then (16) is valid. W

Together with the sequences of r.v.’s (Xn)n>1 and (Ya)n»1, we consider their
characteristic functions (ch.f.) fa(t) := Ee*», and ga(t) := EetY», n € Z .
Here i = +/—1. We restate the well-known continuity theorem (see Shiryaev [10],
page 320).



Proposition 1 (Continuity theorem)

(i) If L(Yz) = L(Ys) as n — oo, then g.(t) = go(t) as n — oo, for each
t € R and go(t) = Ee*Yo.

(i) If g(t) = limueyoo gn(t) for each t, and g(-) is continuous att = 0, then g(-)
is the ch.f. of some r.v. Yo, i.e. g(*) = go(-), and L. (¥n) = L(Yo) as n — oo.

The following theorem is an extension of the above cited continuity theorem.

Theorem 1 (Continuity theorem for sequences of d.l.’s that weakly approach
each other) Let (Xp)n>1, and (Ya)a31 be two sequences of r.v.’s, and suppose
(Ya)ns1 is uniformly tight. Then

L(X,)E L(Y,) as n— oo, (17)

iff for each t € R?
fa(t) —g.(t) 20 as n— co. (18)

Proof. (Necessity of (18)). We note that sinz and cosz are continuous and
bounded functions. Hence, for any ¢t € R?! from (17) it follows that

| Fa(t) = gn(2) |<| Ecos(tX,) — Ecos(tY,) | + | Esin(tX,) — Esin(tY,) |= 0

as n — 00.
(Sufficiency of (18)). See Belyaev [2].

Lemma 5 If (Y,).>1 is a uniformly tight sequence of real valued r.v.’s, then the
sequence of corresponding ch.f.’s (gn(+))n>1, gn(t) :== Ee*™ t € R, is umfarmly
equicontinuous, i.e. for any € > 0 there is a § > 0 such that

sup sup sup | gn(t+h)—gn(t) |[<e. (19)
neZt h:|h|<S teR1

Proof. See Belyaev [2].

Let (£(Xn | Zn))n>1 and (£(Ya))n>1 be two sequences of d.1.’s as introduced
in Definition 2. We denote by f.(t | Z,) := E(e** | Z,) the ch.f. of X, given
Z,. As before let g,(t) := Eei¥».

Lemma 6 If (Y,)n>1 is uniformly tight and if for any t € R!
| falt | Za) = a() [0 as n— oo, (20)

then the sequence of r.v.’s (Xn | Zu)n>1 ts uniformly tight along (Z,)n>1 in pro-
bability.



e —

Proof. We recall that for a r.v. V with ch.f. k(-), and any u > 0, the following

inequality is valid
1 T ru
2) <L [ (1 =Reh(t))dt,
P(1vI>3) <7 [(1-Reh(®)

see e.g. Shiryaev [10], page 324.
This inequality implies that a.s. for any given Z,

P(1% 1> < 12) < [(1-Refult] Z)it < -ao)a

T ru
- = Jn Zn dt. 21
+2 [Moa) - £t 2,) | (21)
Let ¢ be any small value (0 < & < 1) and let a. > 0 be large enough such that
€ 22
P( ¥, |>0) < . (22)
We take u. > 0 such that 3u.a. < €/42. Then it follows
I(e) := sup E|1—-€""|I(|Y,|<a.)
0<t<ue
. o (tYn .
< sup E (25111 —) + | sin(tYa) | ) I(| Ya |< @)
0<t<u, 2

IA

2sin? (u;as) + | sin(uea.) |< 3ucae < :1%

By using (22) we have

sup |1—ga(t)| < In(e)+ sup E(J1- ltY"lf(]Yn|> ac))
0<t<u, 0<t<u,
<
<5 +2P(| Y. |[5>ge) S 14 (23)

The inequality | gn(t) — fa(t | Z5) |< 2, assumption (20) and Lebesgue’s Domi-
nated Convergence Theorem give

B[ gn(t) = falt] Z0) | dt = [ E | galt) = fult ] Z0) | d2 0

as n — co.
It follows that

Tole)i= uljo Lon®) — Falt| Z2) | dt = 0p(1), m—o0.  (28)

From relations (21), and (23) we have

1
p (i Xo > — | zn) <7 sup |1—ga(t) | +Jale) < £ + Jule).
Ue 0<t<u, 2




Therefore, by (24) it follows that

£

P(P(|X,, |>ul|zn) >e) 5P(2+J,.(e)>s) =P(Jn(e)>-;~) 50
as n — oo. This relation holds for arbitrarily small € > 0 and, with regard to
Definition 3, for k. = 1/u,. 0
Lemma 7 If ((Xn | Zn))np1 is uniformly tight along (Z,)n>1 in probability and

wn(a | Z,) == sup sup | fa(t+ 2| Zn) = fn(t | Z.) [,
|h|<a teR!

then for arbitrarily small ' > 0

supP(wn(a | Zn) > €)= 0 as a—0. (25)

Proof. Let ¢, be arbitrarily small positive numbers, and let c.; be such that

supP(P(| Xn |> s | Zn) > €) <94 (26)

We consider the events
Acsn = (@ B(| X [> a5 | Z0) > ),
‘ :(w: P(an l>c£3|Zn)S€).

edn

(26) implies that sup,, P(Aesn) < 4, and we have
P(| X» |> ces) = E(E(| Xa |> ces) | Zn))
= E(P(l Xﬂ I> Ces I Zn)I(Asén))
+ E(P(| Xa |> ces | Za)I(Ag))
< P(Aesn) +eP(Ag,) < 6+¢ (27)

foranyn=1,2,....
If | X, |< ces and h < 1/ces, then

un(h | Z2) = sup | fult+h|Z,) = falt] Za) |

teR!
< E(| e — 1| (I(] X IS ces) + (| X |> ces)) | Zn)
< 2sin®(hes/2)+ | sin(hces) | +2P(] Xn |> ces | Zn)
< 2(hecs +P(| Xn > ces | Zn)) - (28)

If | |< a < ¢, then from (27), (28) and the Markov inequality, with any
€' > 0, it follows that

1
P(wa(ex | Za) > ') = P sup va(h | Zu) > ¢) < ZBwa(a | Z,)
[hl<e

1 2
< ;2(%5& +P(| X |> ces)) < ;(csga—i- d+e). (29)

10



For any given ¢ > 0 we can choose so small € > 0, and & >0, that 6 +¢ < €2/4.
Then we have ¢ < 00 and we can take o < € 2/(4ces)- Hence (29) gives P(wn(c |
Z,) >¢) <e foralln= 1,2,... . We thus have

sup P(wn(a | Za) > €) < g. (30)

Simce & can be chosen arbitrarily small (30) is equivalent to (25), and so the
0

lemma. is proved.

Corollary 2 There is a sequence (etn)nz1> Qn 10, n— oo, such that almost

surely

wa(on | Zn) =0 @s n—00. (31)

Proof. Let &, = 0,7 — 00 and let g = 1. By using Lemma 7 for any fixed
r=1,2,.. wecan find a small a, > 0 such that ar < ar-1

1
sup P(wn(er | Zn) > gr) < e

Then, of course, i
Qr = P('wr(ar | Zr) > &) < '2—,. ’

and Y%, Q, < o0. By the Borel - Cantelli lemma almost surely there exists an

r(w) such that for all 7 = r(w)
0 < wrler | Zr) S ers
a

plied to justify certain resampling schemes
the d.1’s of sums of 1.v.’s, and in many

and (31) follows.
The following theorem can be ap

used to obtain consistent estimation of
other applications.
Theorem 2 (Continuity theorem for sequences of random d.1.’s that weakly ap-

proach deterministic sequences of d.1.’s in probability)
Let (Xny Zn)nz1, and (Yo)np1 be two sequences of r.v.’s as in Definition 2, and

let (Yy)n>1 be uniformly tight. Then

L(Xn | Z2) €8 L(Y) as n— 0, (32)
iff for each t € R!
Fult | Za) — gult) >0 as n—= 0. (33)

11




Proof. Assume that (32) holds. For any ¢ € R! both functions a;(z) = cos(tx)
and b,(z) = sin(tz), = € R, are in Cy(R?). Therefore, for each ¢ € R we have
as n — 0o

E(a(Xn) | Zn) — Eae(Ya) 20, E(0:(Xa) | Za) — Eb(Y,) 5 0. (34)
We have f,(t | Z,) = E(a(Xn) | Zn) +iE(b(Xn) | Zn), and ga(t) = Eay(Y) +
iEby(Yn). Hence, (34) implies (33).

Now assume that (32) does not hold. Then we can find co(-) € Cs(R?) such
that

P
D, = E(eo(Xn) | Zn) — Eco(Yn) #0 as n— co. (35)
Hence there is a subsequence (nx)>1 such that for some small € > 0
v =infP(| Dn, [> €) > 0. (36)

Let an(Z,) = E(co(Xy) | Zv), bn = Eco(Yn), n € Zt. We have a,,(Zy,), bn, €
[— inf,err cot), sup,er: co(t)], & € Z*. Let by be an accumulation point of
(bny)k>1, €.8. We can choose one such point with the largest absolute value. Then
there is a subsequence (ni())i>1 of the sequence (ng)r>1, along which b, ,, — bo,
as | — oco. The sequence of 1.v.’s (¥y,, Jiz1 is still uniformly tight. Hence, by
Prohorov’s theorem (see Shiryaev [10], page 318) we can find a r.v. ¥; and a
new subsequence (fim)m>1, fm = Tk(,), With the property L£(Y5,,) = L(Yo) as
m — co, where Y; is a r.v. By the continuity theorem (see Proposition 1 (z)) for
each t € R!

Gim(t) = go(t) as m — o0. (37)
(33), and (37) imply for each t € R?

Fan(t | Zn) —go(t) 0 as m — oo. (38)

For any fixed t it is possible to find a subsequence of (fin(t | Zin))m>1 that
converges almost surely to go(t) (see Shiryaev [10], p. 258). For any given
to > 0 and any r € Z*, we consider 7,(to) := {tir : tr = gk;tg, =
{0,4+1,+£2,43,...,+27}}, and T;(ts) C Tr41(fo). We can take a subsequence
(ny(m))m>1 of the sequence (7im)m>1 such that

o (TR, | farm)(t | Zn,im)) — 90(t) [0 as. as m — co. (39)
We can select these subsequences (n,(m))m>1 in the following way. We start
with » = 1 and find (ny(m))m>1. For r = 2 we find (n2(m))m>1 as a subsequence
of (n1(m))m>1 and so on. By Cantor’s method, taking one term n.(r) from
each subsequence (n.(m))m>1, r € Z*, we construct the universal subsequence
(nr(7r))r>1 for which we have

tEI%oa’()t(o) | fﬂr("')(t I an(r)) — go(t) rﬁ 0 as r— o0,
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where 7 is any fixed number, ro € Z™*. For each u € [—to,%0] we can find a #,.(u)
such that | #,,(u) — u |= minsez,) |t —u | . For any ro, and r we will use the

i notation:

'Pr‘o.r(tﬂ) = tEI’.’I'i?()Eo) I fnr(r)(t [ an(r)) - gﬂ(t) |1

@ro(to) = max | go(tr,(u)) — go(u) | -

i
i
i
k
‘
Hlt
i
i
f“

—tg<u<ip
We have
ki -—tﬁ%?éto | fn.-(r)(u ] an(r)) — go(u) |
< _max, | Fae) (| Zorry) = Farr)(tro(8) | Zoir) |

+ Pros(to) + @ro(to) < wa,(r)(20/27 | Zn,(r))
+ pr‘a,f'(to) + Gro (to) .

By Corollary 2, for any small given number 8 > 0, and for almost every w € Q,
we can find an ryj = rj(w) such that for all r > rj(w)

wm(r)(tu/gré | an(r)) < ﬁ/?’

The uniform continuity of the ch.f. go(-) implies the existence of an r{/', such that
g-(to) < B/3for all 7 > ry’. From the construction of the sequence (n,(r)),>; there
almost surely exists ry = rg(w) such that for all 7 > r§(w), we have pv (to) <
B/3. We denote r§(w) = max(ry,rh(w)). Then for almost all w € Q) for any

r > max(rg(w), rg(w)) the inequality

max | fon)(t | Zn,(r) — 90(u) [< B

—tg>u<ty

(40)

':'-v""‘ L TW"—'?}:ﬁr_:f‘:{““‘v A T A A S X P e T
R R S IR BT e e e 3 ST Vb

Sy

holds for arbitrary small 8 > 0. Hence for any ¢ € [—tg, o)
Frrr) (| Zapiry) — o(t) 220 as r— 0. (41)

By the same argument we can find a subsequence (n.(r,2)),>1 of the sequence
(nr(r))r21 satisfying (41) on [—2¢o, 24o]. We can then find a subsequence (n,(r,3)),>1
of (n.(r,2))r>1 satisfying (41) on [—4¢o, 4¢¢], and so on. We take the subsequence
(nr(r,7))r>1 to be "universal” in the sense that, for any ¢ € R!, along almost

every sequence (Zn, (r,r))r>1

I‘g
"‘:_4‘ fn,—(r,r}(t I an(r,r)) - gﬁ(t) —0 as r—o00. (42)

Yt Vo SO et o b b g e
R e e e e

We stress that (42) holds for any ¢ € R! when we have (Z,,(r,r)(w))r1, i.e. we
almost surely don’t need to change w when we consider all ¢ € R!. Therefore, we

can use Theorem 1, and along almost every sequence (Zy, (r,r))r>1 We have

LX) | Znp(rr)) = L(Yo) as 1 — co.
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This implies that
Ay (r,r) (Z,,‘_(nr)) — bnr(,.,,_) a—"}: 0 as n—co.

Since this contradicts (36), it follows that (35) cannot hold. Thus the theorem is
proved. |

The following auxiliary r.v.’s will be used. Let J,,...,J;, be Lid. r.v.’s,
P*(J?n = h) = 1/”’3 h=1,..,n, hn 1= Z?:l I(J:n = h)a M; = Mikn +--
My, = n. We use P*(X* € A) and E*X™* for probability expectation when a
random variable X* is obtained via the r.v.’s J§,,, ..., Ji,,. We have

E*M}, =Y B I(JL =h) =1, (43)
=1
E*(M;’In 1)?
= EE*IJ*—h)+ZZ E*(Jm—- R)E*I(J o = h)—1
j=1
= l+nn—-1)/n?-1=1-1/n, (44)
E*(M;:n - 1)(M_:n sz #ia E*I( sm h)E*I( J2.m g) _1

= n(n_l)/n _1":_1/”1 h'_lég': ,96{1,2,...,71}. (45)

We also let M., :=3"%_; I(J%, = k), and have by similar calculations

* r * * Y2 —- r_ l
E hrn = E’ E ( hrn n) - n (1 n) ) (46)
% " r " T T
E ( hirn = ;) (Mhzrn - ;) = _E ) hl :)é h2 . (47)

One can regard Jf,,.., J, as the results of n independent multinomial expe-
riments with n possible outcomes {1,2,...,n}. In fact, M}, is the number of
repetitions of outcome h after n independent multinomial experiments, and M},
after the first r independent multinomial experiments. We can use the r.v.’s
M., Mf.., h=1,...,n to define others r.v.’s.

Now we recall one result of Belyaev [1] related to the problem of the asym-
ptotically exact approximation of L£(U.,) mentioned in the Introduction. The

following assumptions will be used:

Al: Uy, t=1,..,n,are independent r.v.’s for eachn =1,2,...,

AL(2+438):  for Uy := VU, E|Um "< c2+6) < oo,
i=1,.,n,n=12,...
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The assumptions AVar in Belyaev [1] can be dropped.

Let us define the r.v. U% := oy Mintan. It i possible to interpret U7, as a
sum of values, n times randomly sampled with replacement from the components
in the statistical data un = (1n;--s Unn). After centering U7, by Um = Lz Uin
we obtain . .

U =Y My tpn — U = S (M, — 1)tihn - (48)
h=1 h=1
In fact, the d1. of the r.v. UZ defined in (48) is the conditional d.l. given
U, = un, and we denote it by L({U® | u,). We use the same notation for
U0 if we consider in (48) the r.v.’s Unn instead of their fixed (observed) values
Upn, b =1,...,n. In this case we write L(U?° | U,) for the d.1. of U*0. Now we
can formulate the following theorem, see Belyaev [1].

Theorem 3 (The Central Limit Resampling Theorem (CLRT)) If assumptions
AI, AL(2 + 6) hold then

L2 | U) 8 LU,), n— oo,
along the sequence of T.v.’s (Un)np1-

The d.1’s of the r.v.’s Uky = \/% Yoh=1 ( e ™ -:;) upn can also be used to ap-
proximate the d.l's L(U.) if r = r(n) — 00, and 1 = o(n), as n — oo. Theorem
3 can be applied to obtain approximations of the d.1’s of deviations of ordinary
least squares estimators (OLS-estimators) from true parameters of heterosceda-
stic linear regression.

Let Y; = ELI ;i 30 + W: be an observed random response in the :th experi-
ment, with a vector X; = (Zi1, -+ z;)7 of factors, a vector Bo = (B0 -+ Bro)” of
unknown true parameters, and with an unobserved value of random error Wi, i=
1,...,n. We assume that Wi, ..., W, are independent r.v.’s, EW: = 0, EW? = o7
where o2 are unknown and can be different for different i. Let Yn = (Fans Yl
X, = (2ij), i = Loty J = 1,...,k, and further let (X7X,)* be the pseu-
doinverse matrix for (X7X,) and tr(X7X,)* be the trace of (XZX,)*, Rao [8].
We write A < BifB—Aisa non-negatively defined matrix. Let B, be esti-
mable, i.e. By = (XIXn)T(XIX,)B,. Then the unbiased OLS-estimator B, =
(X2X,)*XTY, exists, Searly [9). Let ¢ = (1, k)" bea given vector, || ¢ |=
e 4 = 1, qu(e) = (F(EX) O, ain(e) 1= €O} i/ 02(0)
The typical problem, and one of great interest in heteroscedastic linear regression
theory, is to determine the d.l. of the weighted deviations of the OLS-estimators
from the true parameters, this is given by the r.v.

Ua(c) = cT(én - ﬁo)/‘l'n(c)-
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Let Y; — Y;, be the residuals, ¥i, = x7(XTX,)*XTY,, i = 1,...,n. We define the

random variable

~

Un(e) = Zam - Y )(ME, - 1),

i=1

where the r.v.’s M},

Theorem 4 (Belyaev [1]) Assume that

1t =1,...,n are as before.

() suptr(XIX,)t/gu(c) < oo, and tr(XIX;)* =20 as n— oo;
(i) Vnsup c"(X7Xn)xi/gn(c) < o0;
(732) for some 0 <o_- <oy <oo and any n=1,2,...

o2 (XIX,) X D o?XXT < 02 (X"X).

i=1

Then as n — oo along (Y,)»1

LUZ(e) | Ya) €8 £(U(c)).

Note. The d.l. of U}(c) given Y, can be obtained by a simulation of the
r.v.’s Mk, i = 1,...,n. Actually we obtain this d.l. by the random resampling

m?

from the centered weighted residuals a;n(c)(Y; — Yin), 7 = 1, ..., 7, (compare with
recommendations in Wu [12]). The left hand-side 1nequa,hty in Theorem 4 (7iz)
can be dropped.
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