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Abstract. The aim of this paper is to investigate the existence of proper, weakly bihar-
monic maps within a family of rotationally symmetric maps ua : Bn → S

n, where B
n and

S
n denote the Euclidean n-dimensional unit ball and sphere respectively. We prove that

there exists a proper, weakly biharmonic map ua of this type if and only if n = 5 or n = 6.
We shall also prove that these critical points are unstable.

1. Introduction

Harmonic maps are the critical points of the energy functional

(1.1) E(u) =
1

2

∫

M

|du|2 dvg ,

where u : M → N is a smooth map between two Riemannian manifolds (M, g) and (N, h)
of dimension m and n respectively (we refer to [5, 6] for background on harmonic maps). In
analytical terms, the condition of harmonicity is equivalent to the fact that the map u is a
solution of the Euler-Lagrange equation associated to the energy functional (1.1), i.e.

(1.2) τ(u) = −d∗d u = trace∇du = 0 .

The left member τ(u) of (1.2) is a vector field along the map u or, equivalently, a section of
the pull-back bundle u−1 (TN): it is called tension field. Its expression with respect to local
coordinates is given by

(1.3) [τ(u)]k = ∆uk + gij NΓk
ℓp

∂uℓ

∂xi

∂up

∂xj

, 1 ≤ k ≤ n ,

where the Einstein convention on the sum over repeated indices is used, NΓk
ℓp are the Christof-

fel symbols of (N, h) and the Laplacian on (M, g) is:

(1.4) ∆uk =
1

√

|g|

∂

∂xi

(

√

|g| gij
∂uk

∂xj

)

.

A related topic of growing interest deals with the study of the so-called biharmonic maps.
These maps, which provide a natural generalization of harmonic maps, are the critical points
of the bienergy functional (as suggested in [6], [7])

(1.5) E2(u) =
1

2

∫

M

|τ(u)|2 dvg .
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There have been extensive studies on biharmonic maps (see [4, 15, 17] for an introduction
to this topic and [11, 18, 19, 20, 21] for an approach which is related to this paper). In
particular, in 1986 Jiang [15] obtained the first and the second variational formulas for the
bienergy functional (1.5). Clearly, any harmonic map is trivially biharmonic and an absolute
minimum for the bienergy functional. Therefore, we say that a (weakly) biharmonic map is
proper if it is not (weakly) harmonic. Note that the notion of a weak solution requires the
introduction of suitable Sobolev’s spaces: this will be detailed in Section 2 below.
Let Bn and S

n denote the n−dimensional Euclidean unit ball and sphere respectively. The
main aim of this paper is to study the following family of rotationally symmetric maps:

(1.6)
ua : Bn → S

n ⊂ R
n × R

x 7→ (sin a x
r
, cos a) ,

where r = |x| and a is a constant value in the interval (0, π/2). Of course, ua is well-defined
and smooth away from the origin O. Note that we do not study the case a = π/2 because, if
n ≥ 3, that would give rise to the well-known weakly harmonic equator map (see [13]). Our
main existence result is the following:

Theorem 1.1. Let ua be a map as in (1.6). Then ua is a proper, weakly biharmonic map if

and only if either

(i) n = 5 and a = π/3; or
(ii) n = 6 and a = (1/2) arccos(−4/5).

Next, we state our result concerning the stability of these critical points:

Theorem 1.2. Let ua be one of the two proper, weakly biharmonic maps of Theorem 1.1.

Then ua is unstable.

Remark 1.3. It follows from Theorem 1.2 that the biharmonic maps of Theorem 1.1 are
not minimizers for the bienergy functional (the notion of minimizing biharmonic maps will
be detailed in Section 2).

Our work is organized as follows: in order to make this work reasonably self-contained, in
Section 2 we recall some basic facts about Sobolev’s spaces, weak solutions and stability. In
Section 3 we shall prove Theorems 1.1 and 1.2.

2. Preliminaries

First, we introduce the most convenient setting to study maps of the type (1.6). Let (M, g)
be an m-dimensional compact Riemannian manifold with boundary ∂M and u : M → S

n.
We consider the canonical embedding i : Sn →֒ R

n+1 and still write u = (u1, . . . , un+1) for
i ◦ u. We shall use the following notation:

(2.1) ∇u = (∇u1, . . . ,∇un+1) and ∆u = (∆u1, . . . ,∆un+1) ,

where ∇ is the gradient on (M, g) and the Laplacian ∆ acts on functions as specified in
(1.4) (note that each entry of ∇u is an m-dimensional vector). Next, let p denote a positive
integer. In this context we introduce the Sobolev spaces (see [1, 8])

(2.2) W p,2 (M, Sn) =
{

u ∈ W p,2
(

M,Rn+1
)

: u(x) = (u1(x), . . . , un+1(x)) ∈ S
n a.e.

}

.
2



The energy functional (1.1) becomes

(2.3) E(u) =
1

2

∫

M

|∇u|2 dvg

and its Euler-Lagrange equation (1.2) takes the form

(2.4) ∆u+ |∇u|2 u = 0 .

Now, we say that a map u ∈ W 1,2 (M, Sn) is weakly harmonic if it is a critical point of
(2.3) in W 1,2 (M, Sn), i.e., if it is a solution of (2.4) in the sense of distributions. Let
u0 ∈ W 1,2 (M, Sn): we define

(2.5) W p,2
u0

(M, Sn) =
{

u ∈ W p,2 (M, Sn) : ∇k (u− u0)
∣

∣

∂M
≡ 0, 0 ≤ k ≤ p− 1

}

,

where the boundary condition in (2.5) is understood in the sense of traces. A typical class
of weakly harmonic maps is that of minimizers for the energy functional. More precisely, we
say that u0 ∈ W 1,2 (M, Sn) is a minimizer if it satisfies

E(u0) ≤ E(v) ∀ v ∈ W 1,2
u0

(M, Sn) .

Existence and regularity of weakly harmonic maps is an important area of research. For
instance, F. Hélein [9] has shown that, if m = 2, then any weakly harmonic map is smooth.
By contrast, ifm ≥ 3, there exist weakly harmonic maps into the sphere which are everywhere
discontinuous (see [22]). Let Sn

+ = {y ∈ S
n : yn+1 > 0} be the open hemisphere. If u : M →

S
n
+ is weakly harmonic and u(M) is contained in a compact set of Sn

+, then u is smooth (see
[10]). In particular, no map of the type (1.6) can be weakly harmonic if 0 < a < π/2. The
previous regularity result does not hold for the closed hemisphere Sn

+. Indeed, the equator
map (i.e., ua defined as in (1.6) with a = π/2) is discontinuous and weakly harmonic if n ≥ 3.
Moreover, we know that the equator map is a minimizer if and only if n ≥ 7 (see [13]).
As for the bienergy functional (1.5), in our context its expression becomes (see [2, 23])

(2.6) E2(u) =
1

2

∫

M

(

|∆u|2 − |∇u|4
)

dvg

and its Euler-Lagrange equation is given by

(2.7) ∆2u+ 2div
(

|∇u|2 ∇u
)

+
(

|∆u|2 +∆ |∇u|2 + 2∇u · ∇∆u+ 2 |∇u|4
)

u = 0 ,

where the divergence operator div is applied to each component and · denotes scalar product
in the following sense:

∇u · ∇∆u =
n+1
∑

j=1

∇uj · ∇∆uj .

Next, we say that a map u ∈ W 2,2 (M, Sn) is weakly biharmonic if it is a critical point of
(2.6) in W 2,2 (M, Sn), i.e., if it is a solution of (2.7) in the sense of distributions. Again, a
typical class of weakly biharmonic maps is that of minimizers for the bienergy functional.
Indeed, we say that u0 ∈ W 2,2 (M, Sn) is a minimizer if it satisfies

E2(u0) ≤ E2(v) ∀ v ∈ W 2,2
u0

(M, Sn) .

The regularity of weakly biharmonic maps is an interesting topic. In particular, when n ≤ 3,
every biharmonic map is smooth as a consequence of the injection theorem of Sobolev.
More generally, in this case Uhlenbeck [24] has proved regularity for biharmonic maps which
belong to the Sobolev spaces W 2,p for some p > n/2. When n = 4, the regularity of weakly
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biharmonic maps was proved in [14, 25]. In the case that n ≥ 5 there is not a general theorem
on the regularity of weakly biharmonic maps. We cite [12] and the references therein for a
study of the regularity of minimizing biharmonic maps: in this paper it is shown that every
minimizing biharmonic map from a domain Ω ⊂ R

n to S
k (n ≥ 5) is smooth away from

a closed set whose Hausdorff dimension is at most n − 5. An important step towards the
understanding whether a given weakly biharmonic map is a minimizer consists in studying
its stability. More precisely, let u ∈ W 2,2 (M, Sn) be a weakly biharmonic map and denote
by us (s ≥ 0) a variation of u through maps in W 2,2

u (M, Sn). We say that u is stable if

(2.8)
d2

ds2
E2 (us)

∣

∣

∣

∣

s=0

≥ 0

for all variations us. In particular, if u is not stable, then it cannot be a minimizer.

3. Proofs of the results

Proof of Theorem 1.1. A map of type (1.6) is smooth and not harmonic on Bn\{O}. If
ua is weakly biharmonic on Bn, then it must be a strong solution of (2.7) on Bn\{O}. First,
we observe that the (n + 1) component of ua is a non-zero constant. Thus, it is immediate
to conclude that the (n + 1) component of the first two terms in (2.7) vanishes. It follows
that, if ua is a solution of (2.7), then

(3.1) |∆ua|
2 +∆ |∇ua|

2 + 2∇ua · ∇∆ua + 2 |∇ua|
4 = 0.

Now, we want to compute directly the single terms in (3.1). To this purpose, first we establish
a general lemma which will also be useful in the study of the second variation.

Lemma 3.1. Let r = |x|. Let u : Bn\{O} → S
n ⊂ R

n+1 be a map of the following form:

(3.2) x = (x1, . . . , xn) 7→ (p(r) x, q(r)) = (p(r) x1, . . . , p(r) xn, q(r)) ,

where p(r) and q(r) are smooth functions for r > 0. Then

(3.3)

∆u =

([

p′′ +
(n+ 1)

r
p′
]

x1, . . . ,

[

p′′ +
(n+ 1)

r
p′
]

xn,

[

q′′ +
(n− 1)

r
q′
])

|∆u|2 =

[

p′′ +
(n+ 1)

r
p′
]2

r2 +

[

q′′ +
(n− 1)

r
q′
]2

∇u =









p′ x1

r









x1

x2

...

xn









+









p
0
...

0









,
p′ x2

r









x1

x2

...

xn









+









0
p
...

0









, . . . ,
p′ xn

r









x1

x2

...

xn









+









0
0
...

p









,
q′

r









x1

x2

...

xn

















|∇u|2 = r2 p′2 + n p2 + 2r p p′ + q′2 .
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Proof. The proof is a straightforward computation which can be carried out by using the
following standard equalities:

∇p(r) = p′(r)
x

r

∆p(r) = p′′(r) +
(n− 1)

r
p′(r)

∆(fg) = f∆g + g∆f + 2〈∇f,∇g〉 .

�

Since ua in (1.6) and ∆ua are maps of type (3.2), using Lemma 3.1 and computing we find:

(3.4)

|∆ua|
2 = (n− 1)2

sin2 a

r4

∆ |∇ua|
2 = (n− 1)(8− 2n)

sin2 a

r4

2∇ua · ∇∆ua = − 2 (n− 1)2
sin2 a

r4

2 |∇ua|
4 = 2 (n− 1)2

sin4 a

r4

By using (3.4) we find that the vanishing of the expression (3.1) is equivalent to

(n− 1)
sin2 a

r4
[

(n− 1) + (8− 2n)− 2(n− 1) + 2(n− 1) sin2 a
]

≡ 0 ,

i.e.,

(3.5) cos(2a) =
2(n− 4)

(1− n)
.

By way of summary, a map of the type (1.6) can be a solution of (2.7) on Bn\{O} only if
(3.5) holds. Since 0 < a < (π/2), the only possibilities are:

(3.6) (i)n = 4 and a =
π

4
; (ii)n = 5 and a =

π

3
; (iii)n = 6 and a =

1

2
arccos(−4/5) .

Next, assume that ua satisfies (3.1), that is (3.5) holds. Then, according to (2.7), ua is
biharmonic if and only if

(3.7) ∆2ua + 2div
(

|∇ua|
2 ∇ua

)

= 0 .

By using again Lemma 3.1 we compute the two terms in (3.7) and find:

(3.8)
∆2ua = 3 (n− 1)(n− 3)

u

r4

2 div
(

|∇ua|
2 ∇ua

)

= −2 (n− 1)2 sin2 a
u

r4

By replacing (3.8) in (3.7) we find that a map ua which satisfies (3.5) is biharmonic on
Bn\{O} if and only if

3 (n− 1)(n− 3)− 2 (n− 1)2 sin2 a = 0
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which turns out to be equivalent to (3.5). By way of conclusion, we have verified that a map
ua of type (1.6) is a smooth, proper biharmonic map on Bn\{O} if and only if one of the
instances in (3.6) holds. Since maps of this type are strong solutions on Bn except at zero,
we conclude that they are proper, weakly biharmonic on Bn if and only if they belong to
the Sobolev space W 2,2 (Bn, Sn). Next, we observe that the requirement ua ∈ W 2,2 (Bn, Sn)
is equivalent to

(3.9)

∫

Bn

|∇ua|
2 dvg < +∞ and

∫

Bn

|∆ua|
2 dvg < +∞ .

By using (3.4) it is easy to verify that the conditions in (3.9) become:

Vol
(

S
n−1

)

∫

1

0

(n− 1)(sin a)2 rn−3 dr < +∞ ; Vol
(

S
n−1

)

∫

1

0

(n− 1)2(sin a)2 rn−5 dr < +∞ .

It follows that (3.9) is verified if and only if n ≥ 5. We deduce that the solution in (3.6) (i)
is not acceptable and the conclusion of Theorem 1.1 follows immediately. �

Remark 3.2. The notion of biharmonicity that we study in this paper is intrinsic, i.e., it
does not depend on the choice of the embedding of Sn into R

n+1. We point out that, in the
recent literature, several authors have considered an extrinsic version of the bienergy (often
called the Hessian energy), that is

(3.10) H(u) =
1

2

∫

M

|∆u|2 dvg .

The study of existence, regularity and minimizing properties of the critical points of (3.10) is
a difficult topic of rapidly growing interest. For instance, see [3, 11, 12, 23, 25] and references
therein for more details. Here we limit ourselves to say that, by using (3.4) and (3.7), it
is easy to verify that a map ua of the type (1.6) is a smooth critical point for the Hessian
energy (3.10) on Bn\{O} if and only if n = 3 (for all a ∈ (0, π/2)), but these solutions are
not weak critical points on B3 because they do not belong to W 2,2 (B3, S3).

Proof of Theorem 1.2. In order to prove that ua is unstable it suffices to exhibit a vari-
ation ua,s of ua (ua,0 = ua) such that

(3.11)
d2

ds2
E2 (ua,s)

∣

∣

∣

∣

s=0

< 0 .

For our purposes, we can use variations of the following type:

(3.12) ua,s =
(

sin(a+ sV (r))
x

r
, cos(a+ sV (r))

)

(s ≥ 0) ,

where V (r) is a smooth function on [0, 1] such that V (1) = V ′(1) = 0. For each fixed s, a map
ua,s as in (3.12) is of the type (3.2) with p(r) = sin(a+ sV (r))/r and q(r) = cos(a+ sV (r)).
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Therefore, after a straightforward computation based again on Lemma 3.1 we obtain

|∆ua,s|
2 =

1

r4

(

(n− 1) sin(a+ sV )− (n− 1)rs cos(a+ sV )V ′

+ r2s2 sin(a+ sV )V ′2 − r2s cos(a+ sV )V ′′

)2

+
r2s2

(

(n− 1) sin(a+ sV )V ′ + rs cos(a+ sV )V ′2 + r sin(a+ sV )V ′′

)2

r4

and

|∇ua,s|
4 =

(

(n− 1) sin2(a+ tV ) + r2s2V ′2

)2

r4
.

Using these expressions and simplifying we find the expression for the bienergy:

E2 (ua,s) =
1

2

∫

Bn

(

|∆ua,s|
2 − |∇ua,s|

4
)

dvg

=

∫

Bn

[(n− 1) sin(a+ sV ) cos(a+ sV )− (n− 1)s r V ′ − s r2 V ′′]
2

2 r4
dvg .(3.13)

By using (3.13) we find:

d2

ds2
E2 (ua,s)

∣

∣

∣

∣

s=0

=
1

4
Vol

(

S
n−1

)

∫

1

0

(

[2(n− 1) cos(2a)V − 2(n− 1)rV ′ − 2r2V ′′]2

−4(n− 1)2 sin2(2a)V 2

)

rn−5dr .(3.14)

Now we are in the right position to complete the proof of Theorem 1.2. We study the two
cases separately. First, we assume n = 5, a = π/3 and use V (r) = (1 − r2)4 in (3.14). We
obtain

d2

ds2
E2 (ua,s)

∣

∣

∣

∣

s=0

= 8Vol
(

S
4
)

∫

1

0

(

1− r2
)4 (

1011r8 − 984r6 + 278r4 − 16r2 − 1
)

dr

= −
32768

17017
Vol

(

S
4
)

< 0 .

Next, we assume n = 6, a = (1/2) arccos(−4/5) and use V (r) = (1 − r2)18 in (3.14). We
obtain

d2

ds2
E2 (ua,s)

∣

∣

∣

∣

s=0

= Vol
(

S
5
)

∫

1

0

r
(

1− r2
)32 (

2085127r8 − 646876r6 + 61674r4 − 1756r2 + 7
)

dr

= −
9

28490
Vol

(

S
5
)

< 0

so that the proof of Theorem 1.2 is complete. �

Remark 3.3. It was proved in Theorem 1.1.1 of [23] that every extrinsic biharmonic map
with values in a compact set of Sn

+ such that ∆un+1 ≤ 0 a.e. is a minimizer for the Hessian
energy. By contrast, since the examples of our Theorem 1.1 satisfy these conditions but they
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are unstable, we see that the conclusion of Theorem 1.1.1 of [23] does not hold for the case
of the intrinsic energy.

Remark 3.4. Let ua : B
5 → S

5 be the proper, weakly biharmonic map of Theorem 1.1. For
any fixed positive integer p we can define a new map Ua : B

5 × S
p → S

5 × S
p by setting

Ua(x, w) = (ua(x), w)

for all x ∈ B5, w ∈ S
p. Then Ua is a proper, weakly biharmonic map from an n-dimensional

manifold (n = p + 5) which is discontinuous on a set of Hausdorff dimension n− 5. By the
same argument of Theorem 1.2 these maps are unstable.

Remark 3.5. A detailed study of the second variation operator associated to smooth bi-
harmonic maps into S

n can be found in [16].

References

[1] T. Aubin. Some nonlinear problems in Riemannian geometry. Springer Monographs in Mathematics,
1998.

[2] P. Baird, A. Fardoun, S. Ouakkas. Liouville-type theorems for biharmonic maps from Riemannian
manifolds. Advances in Calculus of Variations 3 (2010), 49–68.

[3] S.Y.A. Chang, L. Wang, P.C. Yang, A regularity theory of biharmonic maps. Comm. Pure Appl. Math.

52 (1999), 1113–1137.
[4] B.-Y. Chen. Total mean curvature and submanifolds of finite type. Second edition. Series in Pure Math-

ematics, 27. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, (2015).
[5] J. Eells, L. Lemaire. Another report on harmonic maps. Bull. London Math. Soc., 20 (1988), 385–524.
[6] J. Eells, L. Lemaire. Selected topics in harmonic maps. CBMS Regional Conference Series in Mathe-

matics, 50. American Mathematical Society, Providence, RI, 1983.
[7] J. Eells, J.H. Sampson. Variational theory in fibre bundles. Proc. U.S.-Japan Seminar in Differential

Geometry, Kyoto (1965), 22–33.
[8] E. Hebey. Nonlinear analysis on manifolds: Sobolev spaces and inequalities. Courant Lect. Notes Math.

5, New York, 1999.
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et Appliquées 61 (2016), 261–292.
[19] S. Montaldo, C. Oniciuc, A. Ratto. Rotationally symmetric maps between models. J. Math. Anal. and

Appl. 431 (2015), 494–508.
8



[20] S. Montaldo, A. Ratto. A general approach to equivariant biharmonic maps. Med. J. Math. 10 (2013),
1127–1139.

[21] S. Montaldo, A. Ratto. Biharmonic submanifolds into ellipsoids.Monatshefte für Mathematik 176 (2015),
589–601.

[22] T. Rivière. Everywhere discontinuous harmonic maps into spheres. Acta. Math., 175 (1995) 197–226.
[23] L. Saliba. Applications biharmoniques extrinsèques à valeurs dans une sphère. Thèse de Doctorat,
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