
ROCKY MOUNTAIN
JOURNAL OF MATHEMATICS
Volume 36, Number 3, 2006

WEAKLY CLEAN RINGS AND
ALMOST CLEAN RINGS

MYUNG-SOOK AHN AND D.D. ANDERSON

ABSTRACT. Let R be a commutative ring with identity.
Nicholson defined R to be clean if each element of R is
the sum of a unit and an idempotent. In this paper we
study two related classes of rings. We define a ring R to be
weakly clean if each element of R can be written as either the
sum or difference of a unit and an idempotent and following
McGovern we say that R is almost clean if each element of R
is the sum of a nonzero-divisor and an idempotent.

1. Introduction. All rings except for one fleeting instance will be
commutative with identity. Following Nicholson [5, 6] we say that a
ring R is clean if, for each x ∈ R, x can be written as x = u + e
where u ∈ U(R), the group of units of R, and e ∈ Id (R), the set of
idempotents of R. Clean rings have also been studied in [2] and [1].
It is easy to see [1, Proposition 15] that a ring R is clean if and only
if each x ∈ R can be written in the form x = u − e where u ∈ U(R)
and e ∈ Id (R). This raises the question of whether a ring with the
property that, for each x ∈ R, either x = u + e or x = u − e for some
u ∈ U(R) and e ∈ Id (R) must be clean. Let us call rings with this
property weakly clean. In [1, Proposition 16] it was shown that if R
has exactly two maximal ideals and 2 ∈ U(R), then each x ∈ R has
the form x = u + e or x = u − e where u ∈ U(R) and e ∈ {0, 1}. Thus
Z(3) ∩ Z(5) is weakly clean but is not clean since an indecomposable
clean ring is quasilocal [1, Theorem 3].

In Section 1 we study weakly clean rings. We begin by proving the
converse of the above mentioned [1, Proposition 16]: a ring R with the
property that each x ∈ R has the form x = u + e or x = u − e where
u ∈ U(R) and e ∈ {0, 1} that is not clean has exactly two maximal
ideals and 2 ∈ U(R). We also give weakly clean analogs of several
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results for clean rings given in [1]. For example, we show that a direct
product

∏
Rα of rings {Rα} is weakly clean if and only if each Rα is

weakly clean and at most one Rα is not clean.

In his study of when a ring C(X) of continuous real-valued functions
is clean, McGovern [4] introduced the notion of an almost clean ring. A
ring R is almost clean if each x ∈ R can be written in the form x = r+e
where r ∈ reg (R), the set of regular elements (=nonzero-divisors) of R,
and e ∈ Id (R). Certainly a clean ring is almost clean, but an integral
domain while always almost clean is clean if and only if it is quasilocal.
In Section 2 a number of analogs of results concerning clean rings are
given for almost clean rings. We also determine the indecomposable
almost clean rings.

1. Weakly clean rings. In this section we study weakly clean rings
and S-weakly clean rings which are defined below. We also consider
other classes of rings defined using idempotents and their negatives.

Definition 1.1. A ring R is weakly clean if each x ∈ R can be
written as x = u + e or x = u − e where u ∈ U(R) and e ∈ Id (R).
More generally, let S be a nonempty set of idempotents of R; then R
is S-weakly clean if each x ∈ R can be written in the form x = u + e or
x = u − e where u ∈ U(R) and e ∈ S.

Like the case for a clean ring, the homomorphic image of a weakly
clean ring is easily seen to be weakly clean. More generally, if R is S-
weakly clean and R is a homomorphic image of R, then R̄ is S-weakly
clean where S is the image of S.

In a similar fashion we could define an S-clean ring R: each x ∈ R can
be written as x = u+e where u ∈ U(R) and e ∈ S. However, according
to [1, Lemma 7], if R is S-clean, then S = Id (R). We first consider
{0, 1}-weakly clean rings, i.e., rings in which each element x ∈ R has
the form x = u + 0 = u, x = u + 1, or x = u − 1 where u ∈ U(R).
Equivalently, R is {0, 1}-weakly clean if at least one of x − 1, x, x + 1
is a unit. Note that a quasilocal ring is both clean and {0, 1}-weakly
clean. The proof of [1, Proposition 16] shows that a ring R with exactly
two maximal ideals in which 2 is a unit is {0, 1}-weakly clean. Our first
goal is to prove the converse.
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Lemma 1.2. (1) If R is weakly clean or {0, 1}-weakly clean, then
so is every homomorphic image of R.

(2) If R is {0, 1}-weakly clean, then R has at most two maximal
ideals.

(3) Let K1 and K2 be fields. Then K1 × K2 is {0, 1}-weakly clean if
and only if both K1 and K2 have characteristic not equal to 2.

Proof. (1) Clear. Of course, here if R is a homomorphic image of R,
we mean that R is {0̄, 1̄}-weakly clean.

(2) Suppose that R has more than two maximal ideals, say M1, M2

and M3 are distinct maximal ideals of R. Let R = R/M1M2M3
∼=

R/M1 × R/M2 × R/M3. By (1), R is {0, 1}-weakly clean. However,
(0, 1,−1), (0, 1,−1) + (1, 1, 1) = (1, 2, 0), and (0, 1,−1) − (1, 1, 1) =
(−1, 0,−2) are all nonunits, a contradiction.

(3) (⇐). Suppose that K1 and K2 are not of characteristic 2. Then
K1 × K2 has exactly two maximal ideals and 2 ∈ U(K1 × K2). So by
the proof of [1, Proposition 16], R is {0, 1}-weakly clean. (⇒). Suppose
that, say char K1 = 2. Then (1, 0) − (1, 1) = (0,−1), (1, 0), and
(1, 0) + (1, 1) = (0, 1) are all nonunits. Hence K1 × K2 is not {0, 1}-
weakly clean.

Theorem 1.3. A ring R is {0, 1}-weakly clean if and only if
either (1) R is quasilocal, or (2) R has exactly two maximal ideals
and 2 ∈ U(R).

Proof. (⇐). A quasilocal ring is {0, 1}-weakly clean by [1, Proposition
2(1)], and a ring with two maximal ideals in which 2 is a unit is {0, 1}-
weakly clean by the proof of [1, Proposition 16].

(⇒). Let R be {0, 1}-weakly clean. Suppose that R is not quasilocal.
Then by Lemma 1.2 (2), R has exactly two maximal ideals, say M1 and
M2. Then R/M1M2

∼= R/M1 × R/M2 is {0, 1}-weakly clean (Lemma
1.2 (1)), so both R/M1 and R/M2 have characteristic different from 2
by Lemma 1.2 (3). Hence 2 /∈ M1 ∪ M2, so 2 ∈ U(R).
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Corollary 1.4. An indecomposable weakly clean ring is either
quasilocal or is an indecomposable ring with exactly two maximal ideals
in which 2 is a unit.

Proof. If R is indecomposable, Id (R) = {0, 1}. Hence R is weakly
clean if and only if it is {0, 1}-weakly clean.

We next consider the case where R is S-weakly clean with |S| < ∞.

Theorem 1.5. Let R be S-weakly clean where |S| < ∞. If 0 /∈ S,
then R has at most 2 |S| − 1 maximal ideals. If 0 ∈ S, then R has at
most 2 |S| − 2 maximal ideals. In particular, |Id (R)| < ∞ and R is a
finite direct product of indecomposable rings.

Proof. Let S = {e1, . . . , en}. Suppose that R has more than 2n − 1
maximal ideals, say M1, . . . ,M2n are distinct maximal ideals of R.
Let R̄ = R/M1 · · ·M2n

∼= R/M1 × · · · ×R/M2n. Let ēi be the image
of ei in R̄ and S = {ē1, . . . , ēn}. Clearly R̄ is S-weakly clean. Let
f1, . . . , f2n be idempotents of R corresponding to the standard basis for
R/M1×· · ·×R/M2n. Let x = −ē1f1−· · ·−ēnfn+ē1fn+1+· · ·+ēnf2n.
Then x + ēi has ith coordinate −ēifi + ēifi = 0 and x− ēi has n + ith
coordinate ēifn+i − ēifn+i = 0. Thus no x ± ēi is a unit in R, a
contradiction. If 0 /∈ S, we are done. Suppose that 0 ∈ S. Let
e1, . . . , en−1 be the nonzero members of S, so en = 0. Suppose that
R has more than 2(n− 1) maximal ideals, say M1, . . . ,M2(n−1)+1 are
distinct maximal ideals of R. Then in the notation as above, we see
that for x = −ē1f1−· · ·−ē(n−1)fn−1+ē1fn+· · ·+ēn−1f2(n−1)+0f2n−1,
x ± ēi is a nonunit in R for each i = 1, . . . , n. (Note that in the case
where n = 1, we have shown that no ring is {0}-weakly clean.) The
last statement follows from the fact that R1 × · · · ×Rm has at least m
maximal ideals.

Unlike the case for an “S-clean ring” where S must be Id (R), an
S-weakly clean ring may have S � Id (R). Indeed, by Lemma 1.2 (3),
Z3 × Z3 is {0, 1}-weakly clean. However, we must have 1 ∈ S. For
0 = u ± e where u ∈ U(R) and e ∈ Id (R) implies e = ∓u ∈ U(R) and
so e = 1. The rings that are {1}-weakly clean are easy to characterize.
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Theorem 1.6. A commutative ring R is {1}-weakly clean if and
only if R is quasilocal and 2 ∈ U(R).

Proof. (⇒). By Theorem 1.5, R is quasilocal. Since one of 1 ± 1 is a
unit, 2 ∈ U(R).

(⇐). Let M be the maximal ideal of R. If x ∈ M , then both x ± 1
are units. Suppose that x /∈ M . Suppose that both x + 1, x − 1 ∈ M .
Then 2x = (x+1)+ (x− 1) ∈ M implies x ∈ M , a contradiction.

A direct product
∏

Rα of rings is clean if and only if each Rα is clean.
We next determine when

∏
Rα is weakly clean.

Theorem 1.7. Let {Rα} be a family of commutative rings. Then
the direct product R =

∏
Rα is weakly clean if and only if each Rα is

weakly clean and at most one Rα is not clean.

Proof. (⇒). Suppose that R is weakly clean. Then each Rα being
a homomorphic image of R is weakly clean. Suppose that, say Rα1

and Rα2 , α1 
= α2, are not clean. So there is an xα1 ∈ Rα1 with
xα1 = uα1 + eα1 , uα1 ∈ U(Rα1), eα1 ∈ Id (Rα1), but xα1 
= u− e where
u ∈ U(Rα1) and e ∈ Id (Rα1). For Rα1 is not clean, so not every x is a
u−e where u ∈ U(Rα1) and e ∈ Id (Rα1), say xα1 is not. But then Rα1

weakly clean gives xα1 = uα1 + eα1 . Likewise, there is an xα2 ∈ Rα2

with xα2 = uα2 − eα2 where uα2 ∈ U(Rα2) and eα2 ∈ Id (Rα2), but
xα2 
= u + e where u ∈ U(Rα2) and e ∈ Id (Rα2). Define x = (xα) ∈ R
by

xα =
{

xαi
α ∈ {α1, α2}

0 α /∈ {α1, α2} .

Then x 
= u ± e where u ∈ U(R) and e ∈ Id (R).

(⇐).If each Rα is clean, then so is R =
∏

Rα. So assume some Rα0

is weakly clean but not clean and that all the other Rα’s are clean.
Let x = (xα) ∈ R =

∏
Rα. In Rα0 , we can write xα = uα0 + eα0

or xα = uα0 − eα0 where uα0 ∈ U(Rα0) and eα0 ∈ Id (Rα0). If
xα0 = uα0 + eα0 , for α 
= α0, let xα = uα + eα (uα ∈ U(Rα),
eα ∈ Id (Rα)); while if xα0 = uα0 − eα0 , for α 
= α0, let xα = uα − eα

(uα ∈ U(R), eα ∈ Id (R)). Then u = (uα) ∈ U(R), e = (eα) ∈ Id (R),
and x = u + e or x = u − e.
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Theorem 1.8. For a commutative ring R the following conditions
are equivalent :

(1) R is an S-weakly clean ring with S finite,

(2) R is a weakly clean ring that is a finite direct product of indecom-
posable rings (equivalently, Id (R) is finite), and

(3) R is a finite direct product of quasilocal rings or R is a finite direct
product of quasilocal rings and an indecomposable ring with exactly two
maximal ideals in which 2 is a unit.

Proof. (1) ⇒ (2). By Theorem 1.5, R = R1 × · · · ×Rn where each Ri

is indecomposable.

(2) ⇒ (3). Let R = R1 × · · · × Rn where each Ri is indecomposable.
By Theorem 1.7 each Ri is weakly clean with at most one not clean.
Since an indecomposable clean ring is quasilocal and an indecomposable
weakly clean ring is either quasilocal or has exactly two maximal ideals
with 2 a unit (Corollary 1.4), the result follows.

(3) ⇒ (1). This follows from Theorem 1.7.

A number of results concerning clean rings carry over mutatis mu-
tandis to weakly clean rings. The next theorem lists several of these.

Theorem 1.9. Let R be a commutative ring.

(1) R is weakly clean if and only if R/
√

0 is weakly clean.

(2) R is weakly clean if and only if R[[X]] is weakly clean.

(3) R[X] is never weakly clean.

Proof. For (1), modify the proof of [1, Theorem 9] as necessary. For
(2) and (3), modify the proof of [1, Proposition 12].

For more examples of weakly clean rings, we consider the method
of idealization. Let R be a commutative ring and M an R-module.
The idealization of R and M is the ring R(M) = R ⊕ M with product
(r, m) (r′, m′) = (rr′, rm′ + r′m).
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Theorem 1.10. Let R be a commutative ring and M an R-module.
Then the idealization R(M) of R and M is clean, respectively, weakly
clean, {0, 1}-weakly clean, if and only if R is clean, respectively, weakly
clean, {0, 1}-weakly clean.

Proof. (⇒). Note that R ≈ R(M)/(0⊕M) is a homomorphic image of
R(M). Hence if R(M) is clean, respectively weakly clean, {0, 1}-weakly
clean, so is R.

(⇐). Observe that if u ∈ U(R), then (u, m) ∈ U(R(M)) for each
m ∈ M and if e ∈ Id (R), then (e, 0) ∈ Id (R(M)). Hence if
r ∈ R with r = u ± e where u ∈ U(R) and e ∈ Id (R), then
for m ∈ M , (r, m) = (u, m) ± (e, 0) where (u, m) ∈ U(R(M)) and
(e, 0) ∈ Id (R(M)). Thus if R is clean, respectively, weakly clean,
{0, 1}-weakly clean, so is R(M).

Suppose that R is an indecomposable weakly clean ring that is not
clean. So by Corollary 1.4, R is an indecomposable ring with exactly
two maximal ideals in which 2 is a unit. Then for any clean ring S,
R × S is weakly clean, but not clean. We know of no examples of
nonclean, weakly clean rings not of this form.

Question 1.11. If a commutative ring T is weakly clean but not
clean, is T ≈ R × S where R is an indecomposable nonclean, weakly
clean ring and S is a clean ring?

By Corollary 1.4 and Theorem 1.7, Question 1.11 has an affirmative
answer if T is a (possibly infinite) direct product of indecomposable
rings. In particular, the answer is affirmative for T Noetherian. Note
that Theorem 1.10 is not useful for settling the question. For if
T = R1 × R2 and M is a T -module, then M = M1 × M2 where Mi

is an Ri-module and T (M) ≈ R1(M1) × R2(M2). Thus if T (M) gives
a negative answer to Question 1.11, T must already give a negative
answer.

In [1, Theorem 14] it was shown that a commutative ring R satisfies
R = U(R) ∪ Id (R) if and only if R is a field or a Boolean ring.
We next wish to characterize the commutative rings R with R =
U(R) ∪ Id (R) ∪ −Id (R). We begin with the following special case.
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In the next result we do not need to assume that R is commutative.

Theorem 1.12. For a ring R the following conditions are equivalent:

(1) R = Id (R) ∪ −Id (R),

(2) for x ∈ R, x2 = x or x2 = −x, and

(3) R is isomorphic to one of the following :

(a) Z3,

(b) a Boolean ring, or

(c) Z3 × B where B is Boolean.

Proof. (1) ⇒ (2). x ∈ Id (R) ⇒ x2 = x while −x ∈ Id (R) ⇒ x2 =
(−x)2 = −x.

(2) ⇒ (1). Of course x2 = x ⇒ x ∈ Id (R) while x2 = −x ⇒ (−x)2 =
−x ⇒ −x ∈ Id (R). Note that x2 = −x ⇒ x3 = −x2 = x. Thus for
x ∈ R, either x2 = x or x3 = x and hence by a celebrated theorem of
Jacobson [3, Theorem 1, p. 217], R is commutative.

(3) ⇒ (1). Clear.

(1) ⇒ (3). First, suppose that R is indecomposable, so Id (R) =
{0, 1}. Then R = {0,±1} and hence R is isomorphic to either Z2 or
Z3. Suppose that R is not indecomposable. Let e ∈ Id (R) − {0, 1}.
Suppose that in the decomposition R = Re ⊕ R(1 − e), Re is not a
Boolean ring. We claim that then R(1 − e) is Boolean. Suppose re is
not idempotent. So for any s ∈ R, re + (−s)(1− e) is not idempotent.
Hence −(re + (−s)(1 − e)) = −re + s(1 − e) is idempotent. So each
s(1−e) is idempotent. Thus R(1−e) is Boolean and hence 2R(1−e) = 0.
Hence for each idempotent e ∈ R, either 2e = 0 or 2(1 − e) = 0.

If (0 : 2) = {x ∈ R | 2x = 0} = R, then char R = 2. Hence R = Id (R)
and so R is Boolean. So assume (0 : 2) 
= R. Note that (0 : 2) is a
maximal ideal. For suppose M ⊇ (0 : 2), a maximal ideal. Suppose
x ∈ M − (0 : 2). Then x or −x ∈ Id (R) and −x ∈ M − (0 : 2) if
and only if x ∈ M − (0 : 2). So we may assume that x is idempotent.
If x /∈ (0 : 2), then 2x 
= 0, and hence by the previous paragraph
2(1 − x) = 0. Then 1 − x ∈ (0 : 2) ⊆ M , a contradiction. Thus (0 : 2)
is a maximal ideal. Thus R = R/(0 : 2) is an indecomposable ring with
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R = Id (R) ∪ −Id (R). By the previous paragraph, R is isomorphic to
Z2 or Z3.

Now 2R ∩ (0 : 2) = 0. For, if x ∈ 2R ∩ (0 : 2), then x = 2s and
2x = 0. But then x = x2 = (2s)2 = 4s2 = 2xs = 0. If 2R = 0, then
R is Boolean. So assume 2R 
= 0. If 2R = R, then (0 : 2) = 0 is a
maximal ideal of R. Then R is a field and hence by the first paragraph
of this proof is isomorphic to Z3. If 2R 
= R, then R = 2R ⊕ (0 : 2)
where (0 : 2) is a Boolean ring and 2R ∼= R/(0 : 2) is isomorphic to Z3.
For 2R ∼= Z2 or Z3 by the above paragraph and 2R � (0 : 2).

Corollary 1.13. A commutative ring R satisfies R = U(R)∪Id (R)∪
−Id (R) if and only if R is isomorphic to one of the following : (1) a
field, (2) a Boolean ring, (3) Z3 × B where B is a Boolean ring, or
(4) Z3 × Z3.

Proof. (⇐). It is easily checked that any of these four types of rings
satisfies the desired condition.

(⇒). If R is indecomposable, then Id (R) = {0, 1}. Hence each
nonzero element of R is a unit, that is, R is a field. Next, suppose
that R is decomposable, say R = S × T . Let t ∈ T . Then since
(0, t) is not a unit, (0, t) ∈ Id (R) ∪ −Id (R). So T = Id (T ) ∪ −Id (T ).
By Theorem 1.12, T is isomorphic to either Z3, a Boolean ring, or
Z3 × B, where B is a Boolean ring. The same applies to S. Since
the direct product of two Boolean rings is again a Boolean ring,
we get R is isomorphic to a Boolean ring, Z3 × Z3, Z3 × B, or
Z3×Z3×B where B is a Boolean ring. However, for R = Z3×Z3×B,
R 
= U(R) ∪ Id (R) ∪ −Id (R). Indeed, (−1, 1, 0) is not in the union.

2. Almost clean rings. In this section we study almost clean rings,
defined below, which were introduced by McGovern [4].

Definition 2.1. A ring R is almost clean if each x ∈ R can be
written as x = r + e where r ∈ reg (R), the set of regular elements of
R, and e ∈ Id (R).
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Of course, a clean ring is almost clean. However, as any integral
domain is almost clean while an integral domain is clean if and only
if it is quasilocal, an almost clean ring need not be clean. Let R be a
commutative ring and let S ⊆ Id (R). We could define R to be S-almost
clean if each x ∈ R can be written as x = r + e where r ∈ reg (R) and
e ∈ S. However, the proof given for [1, Lemma 6], that if an idempotent
e ∈ Id (R) is represented as e = u + f where u ∈ U(R) and f ∈ Id (R),
then u = 2e − 1 and f = 1 − e, only requires that u be regular. Thus
as in the case for clean rings [1, Lemma 7], if R is S-almost clean, then
S = Id (R). Hence a {0, 1}-almost clean ring is the same thing as an
indecomposable almost clean ring.

We next give a large class of indecomposable almost clean rings. For
a ring R, Z(R), respectively, J(R), will denote the set of zero divisors,
respectively, Jacobson radical, of R.

Proposition 2.2. Suppose that R is présimplifiable, that is, Z(R) ⊆
J(R). Then R is an indecomposable almost clean ring.

Proof. Let 1 
= e ∈ Id (R); so e ∈ Z(R) ⊆ J(R). Hence e = 0. So R is
indecomposable. If x ∈ reg (R), then x = x + 0 where x ∈ reg (R) and
0 ∈ Id (R). If x /∈ reg (R), then x ∈ Z(R) ⊆ J(R). So x−1 = u ∈ U(R).
Hence x = u + 1 where u ∈ U(R), 1 ∈ Id (R).

The converse of Proposition 2.2 is false. Let R = K[X, Y ]/(X)(X, Y )
where K is a field. Then R is almost clean by Proposition 2.3 below
and R is indecomposable since it has a unique minimal prime ideal
(X)/(X)(X, Y ). But Z(R) = (X, Y )/(X)(X, Y ) while J(R) =

√
0 =

(X)/(X)(X, Y ) (as R is a Hilbert ring). Actually, the condition
Z(R) ⊆ J(R) is equivalent to the following condition: for x ∈ R,
x = x + 0 where x ∈ reg (R) or x = u + 1 where u ∈ U(R). (For, if
x ∈ Z(R), then for each r ∈ R, rx ∈ Z(R) and so rx − 1 ∈ U(R) and
thus x ∈ J(R).) We next characterize the indecomposable almost clean
rings.

Theorem 2.3. For a commutative ring R the following conditions
are equivalent.
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(1) R is an indecomposable almost clean ring.

(2) For x ∈ R, either x or x − 1 is regular.

(3) For (prime) ideals I and J of R consisting of zero divisors,
I + J 
= R.

Proof. (1)⇔(2). Note that condition (2) is equivalent to R being
{0, 1}-almost clean. By the remarks in the paragraph after Defini-
tion 2.1, R is {0, 1}-almost clean if and only if R is an indecomposable
almost clean ring.

(2)⇒(3). Suppose that I and J are ideals consisting of zero divisors
and that I + J = R. So 1 = i + j where i ∈ I and j ∈ J . Then i and
i − 1 = −j are both zero divisors, a contradiction.

(3)⇒(2). Let x ∈ R and suppose that x and x − 1 are both zero
divisors. Then (x) + (x − 1) 
= R, a contradiction. Note that since an
ideal I ⊆ Z(R) can be enlarged to a prime ideal P ⊆ Z(R), we can
assume that the I and J in (3) are actually prime, or even maximal
primes of zero divisors.

Corollary 4. Suppose that R has a reduced primary decomposition
0 = Q1∩· · ·∩Qn where Qi is Pi-primary. Then R is an indecomposable
almost clean ring if and only if Qi +Qj 
= R (or equivalently, Pi +Pj 
=
R).

Note that condition (3) of Theorem 2.3 cannot be extended to: If
I1, . . . , In are ideals consisting of zero divisors, then I1 + · · · + In 
=
R for n ≥ 2. For, take R = k[X, Y, Z]S/IS where k is a field,
I = (XY Z) and S = k[X, Y, Z] − ((X, Y ) ∪ (X, Z) ∪ (Y, Z)). Then
Z(R) = XR ∪ Y R ∪ ZR. So if I1, I2 ⊆ Z(R) are ideals, I1 + I2

is contained in either
(
X, Y

)
R,

(
X, Z

)
R, or

(
Y , Z

)
R and hence

I1 + I2 
= R; so R is an indecomposable almost clean ring. However,
XR, Y R, ZR ⊆ Z(R), but XR + Y R + ZR = R.

The next result gives a characterization of Noetherian almost clean
rings.

Theorem 2.5. Suppose that the commutative ring R is a finite
direct product of indecomposable rings, e.g., R is Noetherian. Then the
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following conditions are equivalent.

(1) R is almost clean.

(2) For prime ideals P, Q ⊆ Z(R) with P + Q = R, there exists an
idempotent e with e ∈ P and 1 − e ∈ Q.

Proof. (1)⇒(2). Suppose that R is almost clean. So R = R1×· · ·×Rn

where each Ri is an indecomposable almost clean ring, Proposition 2.10.
Let P, Q ⊆ Z(R); so P = R1 × · · · × Ri−1 × Pi × Ri+1 × · · · × Rn and
Q = R1 × · · · × Rj−1 × Qj × Rj+1 × · · · × Rn where Pi ⊆ Z(Ri) and
Qj ⊆ Z(Rj). If i = j, then Pi + Qi = Ri, contradicting Theorem 2.3.
So assume i 
= j. Then e = (1, . . . , 1, 0Ri

, 1, . . . , 1) is idempotent with
e ∈ P and 1 − e ∈ Q.

(2)⇒(1). Suppose R = R1×· · ·×Rn where each Ri is indecomposable.
By Proposition 2.10 it suffices to show that each Ri is almost clean.
By a change of notation we can take i = 1. Let P1, Q1 ⊆ Z(R1) and
put P = P1 × R2 × · · · × Rn and Q = Q1 × R2 × · · · × Rn. Suppose
that P1 +Q1 = R1. Then P +Q = R. So there is an idempotent e ∈ R
with e ∈ P and 1 − e ∈ Q. Thus there is an idempotent e1 ∈ R1 with
e1 ∈ P1 and 1− e1 ∈ Q1. But R1 is indecomposable so either e1 = 1 or
1 − e1 = 1 and hence either 1 ∈ P1 or 1 ∈ Q1, a contradiction. Hence
P1 +Q1 
= R1. By Theorem 2.3, R1 is an indecomposable almost clean
ring.

While the polynomial ring R[X] is never clean [1, 2], we next show
that if R is almost clean, then R[X] is almost clean and conversely.

Proposition 2.6. Let R = R0 ⊕ R1 ⊕ R2 ⊕ · · · , be a graded ring.

(1) If R is almost clean, then R0 is almost clean.

(2) If R0 is almost clean and each Rn is a torsion-less R0-module,
i.e., r /∈ Z(R0) ⇒ r /∈ Z(Rn), then R is almost clean.

Proof. (1) Write r0 ∈ R0 as r0 = r + e where r ∈ reg (R) and e ∈
Id (R). Since Id (R) = Id (R0), e ∈ R0, so r ∈ R0 ∩ reg (R) ⊆ reg (R0).

(2) Let x = x0 +x1 + · · ·+xn ∈ R where xi ∈ Ri. Write x0 = r0 + e0
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where r0 ∈ reg (R0) and e0 ∈ Id (R0) = Id (R); put x′ = r0+x1+· · ·+xn

so x = x′ + e0 where e0 ∈ Id (R). If x′ ∈ Z(R), then there exists a
nonzero homogeneous t ∈ Rn (say) with tx′ = 0. (The proof of this
is similar to the proof of McCoy’s theorem.) But then r0t = 0, a
contradiction.

Corollary 2.7. (1) Let R = R0 ⊕ R1 ⊕ R2 ⊕ · · · , be a graded ring
where R0 is a field. Then R is almost clean.

(2) If R is almost clean, then R[{Xα}] is almost clean for any set
{Xα} of indeterminates. Conversely, if some R[{Xα}] is almost clean,
then R is almost clean.

The condition in Proposition 2.6 (2) that each Rn be a torsion-less
R0-module is essential. For by Theorem 2.11 the ring R = Z(Z/6Z) is
a graded ring (R0 = Z ⊕ 0, R1 = 0 ⊕ Z/6Z, Rn = 0 for n ≥ 2) with
R0 weakly clean, but R is not weakly clean. We next note that for a
commutative ring R, R[[X]] is almost clean if and only if R is clean.

Theorem 2.8. If a commutative ring R is almost clean, then
the power series ring R[[{Xα}]] is also almost clean. Conversely, if
R[[{Xα}]] is almost clean for some set of indeterminates, then R is
almost clean.

Proof. (⇒). Suppose that R is almost clean. Let f ∈ R[[{Xα}]],
so f = f0 + f ′ where f0 ∈ R and f ′ ∈ ({Xα}). Write f0 = r + e
where r ∈ reg (R) and e ∈ Id (R). Then f = (r + f ′) + e where
r + f ′ ∈ reg (R[[{Xα}]]) and e ∈ Id (R) ⊆ Id (R[[{Xα}]]).

(⇐). Suppose that R[[{Xα}]] is almost clean. For r ∈ R, r = f + e
where f ∈ reg (R[[{Xα}]]) and e ∈ Id (R[[{Xα}]]). Observe that
Id (R[[{Xα}]]) ⊆ R. (Write e = e0+e1+e2+· · · , where deg ei = i. Then
e = e2 gives e0 = e2

0 and by induction each coefficient of ei lies in Re0.
So e = e0u where u ∈ U(R[[{Xα}]]). Then e0u = e = e2 = e2

0u
2 = e0u

2

implies e0 = e0u = e.) Thus f ∈ reg (R[[{Xα}]]) ∩ R = reg (R).

If R is clean, then so is each homomorphic image R/I. We next show
that this is not the case for almost clean rings. Note that since every



796 M.-S. AHN AND D.D. ANDERSON

commutative ring is the homomorphic image of Z[{Xα}] for some set
of indeterminates, every commutative ring is the homomorphic image
of an almost clean ring.

Example 2.9. R almost clean does not imply that R/I is almost
clean. Let R = K[X, Y ]/(X(X − 1)Y ), K a field. Certainly K[X, Y ],
being a domain, is almost clean. Note that R is indecomposable. Here
X and X − 1̄ are both zero divisors, so R is not almost clean.

The proof of the next result, being similar to the clean case, is left to
the reader.

Proposition 2.10. Let {Rα} be a nonempty collection of commu-
tative rings. Then R =

∏
Rα is almost clean if and only if each Rα is

almost clean.

We next determine when the idealization R(M) is almost clean.
Unlike the clean and weakly clean cases, R is almost clean does not
necessarily give that R(M) is almost clean. Indeed, it follows from the
next theorem that Z(Z/6Z) is not almost clean.

Theorem 2.11. Let R be a commutative ring and M an R-
module. Then the idealization R(M) of R and M is almost clean if
and only if each x ∈ R can be written in the form x = r + e where
r ∈ R − (Z(R) ∪ Z(M)) and e ∈ Id (R).

Proof. We first observe that Id (R(M)) = {(e, 0) ∈ R(M) | e ∈ Id (R)}.
Suppose (e, m) ∈ Id (R(M)); so (e, m) = (e, m)2 =

(
e2, 2em

)
. Hence

e = e2 and m = 2em. So em = 2e2m = 2em gives em = 0 and hence
m = 2em = 0. As the other containment is obvious, we have equal-
ity. Also, if (r, 0) ∈ reg (R(M)), then r ∈ R − (Z(R) ∪ Z(M)). For if
r ∈ Z(R), then rs = 0 where s 
= 0 and then (r, 0) (s, 0) = (0, 0); while
if r ∈ Z(M), then rm = 0 where m 
= 0 and then (r, 0) (0, m) = (0, 0).
Conversely, if r ∈ R − (Z(R) ∪ Z(M)), then (r, m) is regular. For
(r, m) (s, n) = (0, 0) gives rs = 0 and hence s = 0 and then rn = 0 and
hence n = 0.
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Suppose that R(M) is almost clean. Let x ∈ R. Since Id (R(M)) =
{(e, 0) | e ∈ Id (R)}, (x, 0) = (r, 0) + (e, 0) where r ∈ reg (R(M)) and
e ∈ Id (R). Since r ∈ reg (R(M)), r ∈ R − (Z(R) ∪ Z(M)), and
x = r + e. Conversely, let x ∈ R and m ∈ M . Write x = r + e where
r ∈ R − (Z(R) ∪ Z(M)) and e ∈ Id (R). Then (x, m) = (r, m) + (e, 0)
where (r, m) ∈ reg (R(M)) and (e, 0) ∈ Id (R(M)). Hence R(M) is
almost clean.

We end with an almost clean analog of Corollary 1.13.

Theorem 2.12. A commutative ring R satisfies R = reg (R) ∪
Id (R)∪−Id (R) if and only if R is isomorphic to one of the following :
(1) a domain, (2) a Boolean ring, (3) Z3 × B where B is a Boolean
ring, or (4) Z3 × Z3.

Proof. (⇐). Clear.

(⇒). First, suppose that R is indecomposable. Then Id (R) = {0, 1},
so R = reg (R)∪{0}. Hence R is an integral domain. Next, suppose that
R is not indecomposable, say R = S × T . For s ∈ S, (s, 0) /∈ reg (R);
so s or −s ∈ Id (S). Hence S = Id (S) ∪ −Id (S). By Theorem 1.12,
S is either a Boolean ring or is isomorphic toZ3 or Z3 × B where B
is a Boolean ring. The same also applies to T . As in the proof of
Corollary 1.13 we get that R = S × T has one of the forms (2), (3), or
(4).
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