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WEAKLY COMPACT HOMOMORPHISMS

J. E. GALE, T. J. RANSFORD AND M. C WHITE

Abstract. We study the structure of weakly compact homomorphisms between
Banach algebras. In particular, it is shown that between many pairs of algebras,
the only weakly compact homomorphisms are those of finite rank.

1. Introduction

Let A and B be complex Banach algebras, not necessarily unital. In this pa-
per we investigate the structure of those homomorphisms 9 : A —> B which are
weakly compact, i.e. which take bounded subsets of A to weakly relatively com-
pact subsets of B . In particular we show that, under various assumptions on
the pair (A, B), the range 9(A) is necessarily finite-dimensional and semisim-
ple, and therefore, by the Wedderburn-Artin structure theorem, isomorphic to
a finite direct sum of full matrix algebras.

Our results build on previous work in the area, which has concentrated on
compact endomorphisms of commutative Banach algebras [11, 12, 13], compact
homomorphisms between C*-algebras [9], and compact and weakly compact
homomorphisms between uniform algebras [18]. These references also provide
a fund of interesting examples of weakly compact homomorphisms, most of
them actually compact (see §4). Such homomorphisms also arise naturally out
of the factorization theory of linear operators (see §3), for if 6 factors through
a reflexive Banach space, then it is automatically weakly compact.

We conclude this introductory section by posing a converse problem.
Problem 1.1. Let A and B be Banach algebras. If 6 : A -> B is a weakly
compact homomorphism, then do there exist a reflexive Banach algebra C and
continuous homomorphisms cp : A —> C and i// : C —> B such that 9 = y/ o cp ?

The corresponding statement for linear maps between Banach spaces is known
to be true (see e.g. [5; 15, Theorem 2.g.l 1]), but its proof fails to adapt to our
situation because the interpolation method used does not respect Banach alge-
bras.

2. Homomorphisms from amenable algebras

Consider the inclusion map from Cx[0, 1] to C[0, 1], and the endomor-
phism f(z) h-> f(z/2) of the disc algebra A(A). Using the Arzela-Ascoli theo-
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rem it is easily verified that, relative to the usual Banach-algebra norms on these
spaces, both maps are compact. In each case, the compactness arises in an es-
sential way from the differentiability properties of the domain. This suggests
looking at algebras with 'no differentiability'.

The following definition is due to Johnson [10]. A Banach algebra A is
amenable if every continuous derivation from A into a dual Banach ,4-bimodule
is inner. In particular, this condition rules out the possibility of nonzero con-
tinuous point derivations on A, and therefore neither C'[0, 1] nor A(A) is
amenable. Johnson showed that if G is a locally compact group, then the group
algebra LX(G) is amenable if and only if G is amenable in the classical sense
(i.e. possesses an invariant mean), hence in particular whenever G is compact
or abelian. Other examples of amenable algebras include the uniform algebra
C(K) of all continuous functions on a compact space K, and the C*-algebra
S£(H) of compact operators on a separable Hubert space H. Moreover, if A is
amenable and there exists a continuous homomorphism from A onto a dense
subalgebra of another Banach algebra B, then B is also amenable. Further
information on amenability may be found in [4, 10 and §43 of 2].

We can now state the main theorem of this section.

Theorem 2.1. Let A be an amenable Banach algebra and let B be a Banach
algebra all of whose irreducible representations are finite-dimensional. If 9 :
A —> B is a weakly compact homomorphism and 8(A) = B, then 9(A) is
finite-dimensional and semisimple.

The proof of Theorem 2.1 relies on the following lemma, which will also be
used in §3.

Lemma 2.2. Let A and B be Banach algebras, and let 9 : A —> B be a weakly
compact homomorphism such that 9(A) = B . If I is a closed ideal in B of finite
codimension, and if 9~X(I) has a bounded approximate identity, then I = Bp
for some central idempotent p in B.

Proof. First we observe that 9(9~X(I)) = I. For, writing / for the left-hand
side, we certainly have 7c/; also if 9 : A¡9~'(/)—> B/J denotes the induced
homomorphism and n : B/J —> B/I is the quotient map, then n°9 is injective,
from which it follows in turn that dim(A/9~x(I)) < oo, that 8 is surjective,
that n is injective, and finally that J = I, as claimed.

Now let (ea) be a bounded approximate identity for 9~X(I). Since 9 is
weakly compact, taking a subnet if necessary we can suppose that 9(ea) is
weakly convergent in B, say to p. As / is a norm-closed subspace, it is
also weakly closed, and hence p £ I. Now if a £ A , then 9(a)9(ea) converges
weakly to 9(a)p . Also if a £ 9~X(I), then since (ea) is a bounded approximate
identity for / we have 9(a)9(ea) convergent to 9(a) in norm. Hence 8(a)p =
9(a) for all a £ 9~X(I), and using the observation made at the start of the
proof, it follows by density that bp = b for all b £ I. Likewise pb = b for all
b £ I, and the result now follows.   □

Proof of '2.1. Since A is amenable, it has a bounded approximate identity (see
[4, Corollary 3.2]). Therefore we can apply Lemma 2.2 with / = B to deduce
that B must have an identity, e say.
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Denote by YlB the structure space of all primitive ideals in B , endowed with
the hull-kernel topology. By [2, Corollary 26.5], YlB is a compact space. We
now proceed to prove that it is also discrete.

Take P £ YlB . Then P is the kernel of an irreducible representation, so by
hypothesis dim(F/F) < oo . It follows that P is in fact a maximal ideal in B .
Also 9~X(P) has finite codimension in A , and so since A is amenable, 8~X(P)
has a bounded approximate identity (see [4, Corollary 3.9]). Applying Lemma
2.2 again, we deduce that P - Bp for some central idempotent p. Clearly
e -p £" P. However if Q £ YIb\{P} , then e -p £ Q: for otherwise, since Q
like P is maximal, it would follow that B(e - p) + Q — B, which would entail

P = Bp = Bp(e-p) + Qp = QpcQ,
contradicting the maximality of F. Thus Ç\q^p Q £ P, in other words {P} is
open in YIb . Also, using the maximality of P once again, we have hull(ker(F))
= {P} , so {P} is closed in YlB . This proves discreteness.

Since YlB is compact and discrete, it must be finite, say YlB = {Px,..., Pn} ■
Each Pj - Bpj for some central idempotent Pj, so the radical of B is given
by

n

Rad(B) = f]PJ = B(px---pn).
i

Since (px ---Pn) is a radical idempotent, it must be zero, and hence Rad(5) =
{0}. Therefore B is isomorphic to a subalgebra of B/Px © • • ■ © B/Pn and so
is finite-dimensional. Finally as 9(A) is dense in B, it must in fact be equal
to B , and so it too is finite-dimensional and semisimple.   D

Corollary 2.3. Let A be a reflexive amenable Banach algebra such that every
irreducible representation is finite-dimensional. Then A is finite-dimensional
and semisimple.
Proof. Apply Theorem 2.1 to the identity map on A .   D

Remark. It appears to be an open problem whether every reflexive amenable
Banach algebra has to be finite-dimensional. If this were indeed true, and if the
answer to Problem 1.1 were yes, then it would be possible to prove a stronger
form of Theorem 2.1 in which there was no hypothesis on B at all. At present,
the best we can do is to verify a number of special cases.

Corollary 2.4. Let A and B be Banach algebras such that A is amenable and
at least one of A and B is commutative. If 9 : A —► B is a weakly compact
homomorphism, then 9(A) is finite-dimensional and semisimple.
Proof. We can suppose without loss of generality that 9(A) = B. Then B
is commutative, so all its irreducible representations are one-dimensional, and
Theorem 2.1 now applies.   D

Corollary 2.5. Let G be a compact group, let LX(G) be the corresponding group
algebra, and let B be a Banach algebra. If 9 : LX(G) —> B is a weakly compact
homomorphism, then 9(LX(G)) is finite-dimensional and semisimple.
Proof. As before, we can suppose without loss of generality that 9(Ll(G)) =
B.   The algebra  LX(G)  is amenable because  G is compact.   Also, if n  is
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an irreducible representation of B, then nod is a topologically irreducible
representation of LX(G), so using [16, Theorem 32C and 14, p. 136, Corollary
1 ] it follows that n o 9 is finite-rank, and hence also n . Thus the result again
follows from Theorem 2.1.   D

We conclude this section with a few results about compact homomorphisms.
Theorem 2.6. Let A be an amenable Banach algebra and let B be a Banach
algebra which has the bounded approximation property. If 9 : A —> B is a
compact homomorphism and 9(A) = B, then 9(A) is finite-dimensional and
semisimple.
Proof. By [2, Theorem 43.9], since A is amenable it has an approximate diag-
onal, i.e. a bounded net (<^Q) in the projective tensor product A® A satisfying

Ça-a-a-Ç„^0       (a£A),
p(Ça)a -> a       (a£ A).

Here • denotes the standard bimodule action of A on A® A, and p. : A® A -» A
is the multiplication map p(a®a') = aa! . Now the induced map 9®9 : A®A —►
B®B sends the unit ball of A®A into the norm-closed convex hull of the set

{9(a)®B(d):\\a\\<l,\\a'\\<Y\.
Hence, as 9 is compact, so is 9®8 . Therefore a subnet of 8®8(£,a) converges
in B®B , say to n . This n then satisfies

ri'b-b-n = 0      (b£B),
p(n)b = b       (b£B).

By [22, Proposition 5.11], the existence of such an n, together with the bounded
approximation property, implies that B is finite-dimensional and semisimple.
Hence so is 9(A).   D

From this we can deduce a variant of Corollary 2.5.

Corollary 2.7. Let A be an amenable Banach -«-algebra and let B be a C*-
algebra. If 9 : A —► B is a compact «-homomorphism, then 9(A) is finite-
dimensional and semisimple.
Proof. We can suppose without loss of generality that 9(A) = B . This implies
that the C* -algebra B is amenable, hence nuclear, and hence that it possesses
the bounded approximation property (see [3]). The result now follows from
Theorem 2.6.   D

Corollary 2.8. Let G be an amenable locally compact group and let LX(G) be the
corresponding group algebra, equipped with the involution f*(s) = A(s~x)f(s~x).

(i) If 9 : LX(G) —y LX(G) is a compact «-homomorphism, then 6(LX(G)) is
finite-dimensional and semisimple.

(ii) If 9 : LX(G) -» LX(G)  is a weakly compact  «-homomorphism, then
92(LX(G)) is finite-dimensional and semisimple.
Proof, (i) Let 3§(L2(G)) be the C*-algebra of bounded operators on the Hilbert
space L2(G), and let n : LX(G) —► 3§(L2(G)) be the continuous *-homomor-
phism given by

n(f)(g) = f*g       (f£Lx(G),g£L2(G)).
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Applying Corollary 2.7 to n o 9 , we deduce that no9(Lx(G)) is finite-dimensional
and semisimple, and the result follows since n is injective.

(ii) Since LX(G) has the Dunford-Pettis property, 9 weakly compact implies
that 92 is compact (see [6, Corollary VI.8.13]). Thus (ii) follows from (i).   D

Remark. By making stronger use of the group structure of G, it is possible to
extend Corollaries 2.5 and 2.8. For further details see [7].

3. Homomorphisms from C* -algebras

In [9], Ghahramani showed that a compact homomorphism between C*-
algebras has a finite-dimensional, semisimple range. The principal theorem of
this section is a generalization of his result.

Theorem 3.1. Let A be a C*-algebra and let B be a Banach algebra. If 9 :
A —> B is a weakly compact homomorphism, then 9(A) is finite-dimensional
and semisimple.

The proof proceeds via another theorem, valid for arbitrary Banach algebras,
and of some interest in its own right.

An element h of a unital Banach algebra A is called hermitian if \\e"h\\ = 1
for all (el. It can be shown that the set of all hermitian elements of A forms
a closed real subspace of A . For further details see [2, §10 and §38].

Theorem 3.2. Let A and B be unital Banach algebras, and let H be the set of
hermitian elements of A . If 9 : A —> B is a weakly compact unital homomor-
phism, then there exists an integer A > 1 such that every element of 9(H + iH)
is algebraic over C, of degree at most N.

We shall need a simple analytic lemma.

Lemma 3.3. Let D be a subdomain of C, let X be a complex Banach space,
and let f0, ... , fN : D —> X be holomorphic functions. Define E to be the set of
k £ D for which {fo(k), ... , AnW} is linearly dependent. Then either E - D
or E contains only isolated points.
Proof. Suppose that E / D, say ko £ D\E. Using the Hahn-Banach theo-
rem, we may choose y$, ... ,yn £ X* such that y¡(fk(ko)) = àjk ■ Then the
determinant

7o(fo(k))   ■■■    y0(fN(k))

Mfo(k))   ■■■   yN(fN(k))
is a holomorphic function of k which is zero on F, but not identically zero on
D (for it equals 1 at ko). Therefore F contains only isolated points.   D

Proof of 3.2. We first show that if h £ H then 9(h) is algebraic. Fix h e H,
and define cp : /'(Z) —> A by

oo

cp((an)) = Y,ane'nh       i(an)£lxCL)).
—oo

Since \\e'nh\\ = 1 for all n , this is a well-defined, continuous homomorphism.
Therefore 9 o tp ; lx(Z) —> B is a weakly compact homomorphism, and so by
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Corollary 2.4 it has finite-dimensional range. This implies that e,e(A) is alge-
braic, say p(e'eW) = 0. If we factor p(e'z) as q(z)r(z), where q is a polyno-
mial and r is nonzero on the spectrum oB(9(h)), it follows that q(9(h)) = 0.
Thus 9(h) is algebraic, as claimed.

Now for n > 1 , define

Hn = i h G H: 3a0, ... , a„ £ C, ¿ \aj\ = 1, ¿a,-0(A);' = ol .
I o o J

Then each Hn is closed in //, and by the first part of the proof \JnHn = H.
Since H is complete, we can apply Baire's theorem to deduce that inXn(HN) ^
0 for some A. Fix ho £ int//(///v). Given h,k £ H, define fo, ■■■ , An '■
C^B by

/}(A) = 0(/!O + kk + k2(h0 - h))J       (k£C,0<j<N).

If k is real and sufficiently small, then ho+kk+k2(ho~h) £ HN , so {/o(A) , • • • ,
fN(k)} is linearly dependent. By Lemma 3.3 it follows that {fo(k), ... , /Jv(A)}
is linearly dependent for all k £ C, in particular for k = i. Translating this back
again, we deduce that 9(h + ik) is algebraic of degree at most A. The set of all
elements with this property is closed in B , hence it contains 9(H + iH).   D

Remark. The complex vector space H + iH in Theorem 3.2 is not in general a
subalgebra of A, though it does form a Lie subalgebra (see [2, Lemma 38.2]).
If J is the subalgebra generated by H + iH, is it true that every element of
9(J) is necessarily algebraic?

Proof of 3.1. Adjoining identities if necessary, we can suppose that A , B ,
and 6 are unital, and that 9(A) - B. Then since A is a C*-algebra, every
selfadjoint element is hermitian, and so in the notation of Theorem 3.2, H +
iH = A . Hence there exists A > 1 such that every element of B is algebraic
of degree at most A. Using standard representation theory (see e.g. [1, Lemma
3.2.1]), it follows that the radical Rad(ß) has finite codimension in B . Since
9~x Kad(B)) is a closed ideal in a C*-algebra, it has a bounded approximate
identity (see [2, Lemma 39.14]). So Lemma 2.2 applies, and we deduce that
Rad(ß) = Bp for some central idempotent p . As in the proof of Theorem 2.1,
this implies that Rad(B) = {0}. Thus B is finite-dimensional and semisimple,
and hence so is 9(A).   D

To round off this section, we give two applications of Theorem 3.1. The
first of these is already known, though previous proofs (see e.g. [21]) are not
altogether easy.

Corollary 3.4. A reflexive C*-algebra is finite-dimensional.
Proof. Apply Theorem 3.1 to the identity map.   D

Remark. The result stated in Corollary 3.4 can be used as the basis for a second
proof of Theorem 3.1. This proof was discovered independently by M. Mathieu,
G. A. Willis, and one of the authors, and will appear in [17].

Our second application exploits the link, mentioned in §1, with the factoriza-
tion theory of linear operators. A Banach space X has cotype 2 if there exists
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¿il*,||2<rC2   /', Jo

a constant k such that whenever n > 1 and Xi, ... , xn £ X , then

¿2rj(t)Xj    àt.,

where ri, ... ,rn denote the first n Rademacher functions on [0, 1 ]. Exam-
ples of cotype 2 spaces include all Fp-spaces for 1 < p < 2, the dual of any
C* -algebra, and more generally, any 2-uniformly PL-convex space. For more
details see [15, 19].
Corollary 3.5. Let A be a C*-algebra and let B be a Banach algebra of cotype
2. If9 : A —> B is a continuous homomorphism, then 9(A) is finite-dimensional
and semisimple.
Proof. By Pisier's noncommutative version of Grothendieck's theorem [20, The-
orem 3.1], every continuous linear map from a C*-algebra to a Banach space of
cotype 2 factors through a Hubert space, and so in particular is weakly compact.
The result therefore follows from Theorem 3.1.   D

Remark. The results of this section also have analogues for Jordan-Banach al-
gebras. Details will appear in [8].

4. Homomorphisms from commutative algebras
If A is a commutative unital Banach algebra, we denote by <f>A the character

space of A. The dual 9* of a unital homomorphism 8 from A to another
commutative Banach algebra B then maps <i>B into <S>A .

Our basic result is the following simple theorem.
Theorem 4.1. Let A and B be commutative unital Banach algebras, and let
(Ua) be a partition of Q>A into o(A*, A**)-open subsets. If 9: A —► B is a
weakly compact unital homomorphism, then 0*(Og) meets only finitely many
Ua.
Proof. Let 9** : A** —> B** be the second dual of 9 . Since 9 is weakly com-
pact, 9** actually maps A** into B (see [6, Theorem VI.4.2]). From this
it follows easily that 0* is a continuous map with respect to the topologies
o(B*,B) and a(A*, A**). Hence ((0*)~l(Ua)) is a partition of <DB into
o(B*, B)-or>en sets, and since <$>B is a(B*, /?)-compact, only finitely many of
these sets can be nonempty.   D

As Theorem 4.1 is rather abstract, we will illustrate it with a pair of special
cases. The first is a result of Ohno and Wada [18, Theorem 1.1(c)].
Corollary 4.2. Let A and B be uniform algebras. If 9: A —> B is a weakly
compact unital homomorphism, then 0*(<P#) meets only finitely many Gleason
parts of A.
Proof. The Gleason parts of A are a(A*, ^**)-open subsets of O^ (this is
essentially proved in [18]). Thus the result follows from Theorem 4.1.   D

If A is a uniform algebra, then every peak point in <P^ is a(A*, A**)-
isolated. More generally, for any commutative Banach algebra A, a point of
Q>a is a(A*, ^**)-isolated whenever the corresponding maximal ideal has a
bounded approximate identity. Thus the next result is closely related to Theo-
rem 2.1.
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Corollary 4.3. Let A and B be commutative unital Banach algebras such that
<S>A is a(A*, A**)-discrete and B is semisimple. If 9 : A —> B is a weakly
compact homomorphism then 8(A) is finite-dimensional and semisimple.
Proof. We can suppose without loss of generality that 8(A) = B , so that 0 is
unital. By Theorem 4.1 0*(<Pb) is finite, and hence so also is <t>#. As B is
semisimple, it must therefore be finite-dimensional, and thus so is 8(A).   D

As remarked in the introduction, most of the standard examples of infinite-
rank weakly compact homomorphisms are actually compact. This is at least
partly explained by our final result, which was inspired by [18, Theorem 1.2].

Let us say that a commutative unital Banach algebra A has o(A*, A**)-
holomorphic structure if there exists a partition of Q>A into a(A*, ^**)-opensets
(Ua), such that for each a, either Ua is finite, or there exist gi, ... , gn £ A
with the following properties:

(i) the map g defined by

k(x) = (x(g\), ■ ■ ■ ,x(gn))     (*e£/a)
is a homeomorphism of Ua onto an open subset Va of C" , and

(ii) for each a £ A, the function ä o g"' is holomorphic on Va.
(The integer n may depend on a ; the case when Ua is finite may be thought of
as the degenerate case n = 0.) Examples of such algebras include /'(Z+), the
unitization of F'(R+), the disc algebra A(A), and their multi-variable coun-
terparts.

Theorem 4.4. Let A and B be commutative unital Banach algebras such that
A has o (A*, A**)-holomorphic structure and B is semisimple. If 8 : A —► B is
a weakly compact homomorphism then 8 is compact.
Proof. We can suppose without loss of generality that 8(A) = B , so that 0 is
unital. Let (Ua) be a o(A*, A**)-open partition of (¡>A satisfying the con-
dition above. By Theorem 4.1, 0*(Og) meets only finitely many Ua , say
Ui, ... , Um, and ((9*)~x(Uj)) then provides a a(B*, F)-open partition of
<P# . By the Shilov idempotent theorem [2, Theorem 21.5], there exist idempo-
tents pi, ... , pm £ B such that for each j

f 1,        9*(x)£Uj,
X(Pj)~\0,       9*(x)*Uj.

Now Bpj is a semisimple commutative Banach algebra, which has identity Pj
and character space (0*)~'(£/,•). Define a continuous homomorphism 9¡: A ->
BPj by

8¡(a) = 8(a)pj       (a £ A).
Since Ya Pj is tne identity on B , it follows that 9 = Yl7 ®i > an<i so t0 Proye
that 8 is compact, it suffices to do so for each 8j. In other words, we may
assume without loss of generality that the original 0 has the property that
0*(<Pfi) C U , where U is a single Ua .

There are two cases to consider. First suppose that U is finite. Then B
has a finite character space, and so because it is semisimple it must be finite-
dimensional. So in this case 0 is certainly compact.

Now suppose that we are in the other case, and let g\, ... , gn be elements of
A with the properties (i) and (ii) stated above. Let V be the open subset g(f/)
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of C , and denote by tf(V) the Fréchet algebra of all functions holomorphic
on V . Then we can define a continuous homomorphism cp : A —> tf(V) by

cp(a) — âog-1       (aeA).

Also the joint spectrum oB(9(gx), ... , 9(g„)), which is just g(0*(<Pß)), is con-
tained in V, so we can use the holomorphic functional calculus (see [2, §20])
to define a continuous homomorphism y :cf(V) —► B by

¥(f) = f(e(gi),...,e(gn))    (f£cf(v)).
Then given a £ A and ^ e $i , we have

X(yocp(a)) = x(ä°g-\9(gx),...,9(gn)))
= âog-x(x(9(gi)),...,x(9(gn)))
= â(9*(x)) = x(0(a)).

As 5 is semisimple, it follows that 8 = y/ocp. Thus 0 factors through cf(V),
and this implies that it must be compact.   D

Remark. For certain algebras A , it is possible to give an explicit description of
the structure of 0 , and thereby obtain an alternative proof of Theorem 4.4 in
these cases. For further details see [7].
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