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Abstract. We study the eigenvalue spectrum of Dirichlet Laplacians which
model quantum waveguides associated with tubular regions outside of a
bounded domain. Intuitively, our principal new result in two dimensions as-
serts that any domain Ω obtained by adding an arbitrarily small “bump”
to the tube Ω0 = R × (0, 1) (i.e., Ω % Ω0, Ω ⊂ R2 open and connected,
Ω = Ω0 outside a bounded region) produces at least one positive eigen-
value below the essential spectrum [π2,∞) of the Dirichlet Laplacian −∆DΩ .
For |Ω\Ω0| sufficiently small (| . | abbreviating Lebesgue measure), we prove
uniqueness of the ground state EΩ of −∆DΩ and derive the “weak coupling”

result EΩ = π2 − π4|Ω\Ω0|2 + O(|Ω\Ω0|3) using a Birman-Schwinger-type
analysis. As a corollary of these results we obtain the following surprising
fact: Starting from the tube Ω0 with Dirichlet boundary conditions at ∂Ω0,
replace the Dirichlet condition by a Neumann boundary condition on an ar-
bitrarily small segment (a, b) × {1}, a < b, of ∂Ω0. If H(a, b) denotes the
resulting Laplace operator in L2(Ω0), then H(a, b) has a discrete eigenvalue in
[π2/4, π2) no matter how small |b− a| > 0 is.

§1. Introduction

Our goal in this paper is to study the bound state spectra of the Dirichlet Lapla-
cian −∆D

Ω for open regions Ω ⊂ Rn which are tubes outside of a bounded region
(quantum waveguides). (Following the traditional notation in quantum physics, we
denote the Laplacian by −∆ as opposed to ∆ in the following.) In particular, let
Ω0 ⊂ R2 be defined by

Ω0 = R× (0, 1).

Consider open connected sets Ω such that:

(i) For some R > 0, Ω ∩ {x ∈ R2 | |x| > R} = Ω0 ∩ {x ∈ R2 | |x| > R}.
(ii) Ω0 ⊂ Ω, Ω0 6= Ω.

Because of condition (i),

σess(−∆D
Ω ) = σess(−∆D

Ω0
) = [π2,∞).(1)

Then one of our main goals will be to prove
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Theorem 1.1. If Ω obeys (i), (ii), then −∆D
Ω has at least one eigenvalue in (0, π2).

Actually, the eigenvalue lies in [ π2

4R2 , π
2) since Ω ⊂ R× (−R,R) implies

inf spec(−∆D
Ω ) ≥ inf spec(−∆D

R×(−R,R)) =
π2

4R2
.

We will focus especially on the particular case

Ω = Ωλ,

where

Ωλ = {(x, y) ∈ R2 | 0 < y < 1 + λf(x)}(2)

and f is a C∞(R) function of compact support with f ≥ 0. Since inf spec(−∆D
Ω )

decreases as Ω increases and every Ω obeying (i), (ii) has Ω0 ⊂ Ωλ ⊂ Ω for some f ,
it suffices to prove Theorem 1.1 for Ωλ of the form (2). Indeed, it suffices to prove
the result for λ sufficiently small.

We will prove a much more detailed result in these Ωλ regions for λ small enough.
Actually, we can replace f ≥ 0 by the weaker requirement that

∫
R f(x) dx > 0.

Theorem 1.2. Let Ωλ be given by (2) where f is a C∞0 (R) function with
∫

R f(x) dx

> 0. Then for all small positive λ, −∆D
Ωλ

has a unique eigenvalue E(λ) in (0, π2),
it is simple, E(λ) is analytic at λ = 0, and

E(λ) = π2 − π4λ2

(∫
R
f(x) dx

)2

+O(λ3).(3)

This is the main result of this paper, which we’ll prove in Section 2 using a
calculation in the appendix. The technique used in our proof is closely patterned

after the theory of bound states of − d2

dx2 +λV (x) for λ small as developed in [2], [10],

[11], [14]. The key idea there is that (− d2

dx2 +k2)−1 has a well-behaved limit as k ↓ 0

except for a divergent rank one piece. In exactly the same way, (−∆D
Ω0
−π2 +k2)−1

has a nice limit as k ↓ 0 except for a rank one piece.
Theorem 1.1 (or 1.2) leads to the following remarkable result which, roughly

speaking, asserts that if on an arbitrarily small segment in the boundary ∂Ω0 of
Ω0 the original Dirichlet boundary condition is replaced by a Neumann boundary
condition, at least one additional eigenvalue is instantly created in the interval
(0, π2).

Corollary 1.3. Let Ω0 = R× (0, 1) and denote by H(a, b) in L2(Ω0) the Laplacian
on Ω0 with a Neumann boundary condition on the segment (a, b)×{1}, −∞ < a <
b <∞, and Dirichlet boundary conditions on ∂Ω0\{(a, b)×{1}}. Then H(a, b) has

a discrete eigenvalue in [π
2

4 , π
2) no matter how small |b− a| > 0 is.

Proof. Clearly H(a, b) ≥ 0 and σess(H(a, b)) = [π2,∞). Enlarge Ω0 to Ωλ of the
type (2) with λ > 0 sufficiently small and some 0 ≤ f ∈ C∞(R) with supp(f) =
[a, b], f > 0 on (a, b). By Theorem 1.1, −∆D

Ωλ
has at least one eigenvalue Eλ ∈

(0, π2). Next, decouple Ω0 and Ωλ\Ω0 by a Neumann boundary condition along

the segment (a, b) × {1}. Denoting the resulting Laplace operator by ĤΩλ , we

obtain the direct sum decomposition ĤΩλ = H(a, b) ⊕ −∆̃(a, b) with respect to

L2(Ωλ) = L2(Ω0) ⊕ L2(Ωλ\Ω0), where −∆̃(a, b) has Dirichlet (resp. Neumann)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



WEAKLY COUPLED BOUND STATES IN QUANTUM WAVEGUIDES 1489

boundary conditions on ∂Ωλ\∂Ω0 (resp. (a, b) × {1}). By Neumann decoupling
(see, e.g., [12], p.270)

0 ≤ inf spec(ĤΩλ) ≤ inf spec(−∆D
Ωλ) ≤ Eλ < π2.

Choosing f appropriately such that inf spec(−∆̃(a, b)) > π2 (e.g., choose f such
that Ωλ\Ω0 is a smoothed out rectangle of the type (a, b)× (1, 1 + c) with 0 < c�
|b− a|), one obtains

0 ≤ inf spec(H(a, b)) ≤ inf spec(−∆D
Ωλ) ≤ Eλ < π2.

That actually inf spec(H(a, b)) ≥ π2

4 follows as in the proof of Corollary 1.4.

We note that the analogous result containing two such segments (a, b) with
Neumann boundary conditions placed symmetrically with respect to the axis R ×
{1/2} can be inferred from Lemma 3.2 in [5]. That paper also contains a variety of
spectral results on acoustical waveguides (i.e., Neumann Laplacians as opposed to
our Dirichlet Laplacians) using trial function techniques.

We have a number of remarks concerning Theorem 1.2:
(1) λ

∫
R f(x) dx is exactly the area of Ωλ\Ω0.

(2) In thinking about the higher-dimensional analogs, one needs to realize there
are two independent dimensions in the above examples: the dimension of the cross
section and the number of unbounded dimensions. In general, one can consider
K ⊂ Rn, a bounded connected open set, and Ω0 = R` ×K. With minor changes,
our analysis extends to general (n,K) so long as ` = 1, that is, for Ω0 a long tube.

(3) In the notation of point (2), the results are ` dependent. For ` = 2, that
is, Ω0 a long slab, there are still weakly coupled states, but as in [14], the binding
is only O(e−c/λ). For ` ≥ 3, there will be no bound state if too small a bump is
added.

(4) If one uses the one-dimensional Schrödinger operator [14] as a guide, one
might guess that if

∫
R f(x) dx = 0, then −∆D

Ωλ
has a bound state for all sufficiently

small λ; but since −∆D
Ωλ

has second-order terms not found in the one-dimensional
case, that is not totally clear.

(5) However, if
∫

R f(x) dx < 0, then by our analysis, −∆D
Ωλ

has no spectrum in

[0, π2) if λ is too small.
(6) Since Ωλ isn’t monotone if f isn’t positive, we cannot be sure that if f is

somewhere negative then Ωλ=1 has bound states even if
∫

R f(x) dx > 0. Indeed, if

f is very close to −1 on a long region, we expect that −∆D
Ωλ=1

has no bound states.
(7) We owe to Mark Ashbaugh the following observation:

Corollary 1.4. Let Ω̃ = {R× (0, 2)}\{R×{1}}∪{(a, b)×{1}}, −∞ < a < b <∞
(i.e., Ω̃ consists of two copies of Ω0 with the boundary between them removed in

(a, b)×{1}) and denote by −∆D
Ω̃

the associated Dirichlet Laplacian in L2(Ω̃). Then

−∆D
Ω̃

has a discrete eigenvalue in [π
2

4 , π
2) independently of the size |b− a| > 0 of

the slit (a, b)× {1}.
Proof. Ω̃ has reflection symmetry under y → 2 − y. Thus, −∆D

Ω̃
is a direct sum

of operators even and odd under this symmetry, and so −∆D
Ω̃
∼= H(a, b) ⊕ −∆D

Ω0
,

where H(a, b) is the operator in Corollary 1.3 (since even is equivalent to Neumann
and odd to Dirichlet boundary conditions) and ∼= abbreviates unitary equivalence.
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Since σess(H(a, b)) = σess(−∆D
Ω0

) = [π2,∞) = σess(−∆D
Ω̃

), it suffices to prove that

−∆D
Ω̃

has spectrum in [π
2

4 , π
2).

Let Ω̂ = Ω0 ∪ {(x, y) ∈ R2 | a < x < b, 0 < y < 2}. Then Ω̂ ⊂ Ω̃, so
inf spec(−∆D

Ω̃
) ≤ inf spec(−∆D

Ω̂
) < π2 by Theorem 1.1. The lower bound then

follows from Ω̃ ⊂ R× (0, 2).

Remark 1.5. An alternative proof of Theorem 1.1 can be based on the following
trial function argument. Without loss of generality assume that Ω contains a small
neighbourhood of the point (0, 1). Thus there are a, b > 0 such that the triangle
spanned by the points (−a, 1), (a, 1) and (0, 1 + b) is in Ω. Define on Ω

ψ̂β,δ(x, y) =


sin(πy)e−δ(|x|−a), |x| > a, 0 < y < 1,

sin( πy

1+β(1− |x|
a )

), |x| ≤ a, 0 < y < 1 + β(1− |x|
a ),

0, otherwise

(4)

where 0 < β < b and δ > 0. This trial function certainly vanishes on ∂Ω and at ∞,
and it is in the form domain Q(−∆D

Ω ). By a straightforward calculation we obtain

E(ψ̂β,δ) =
(∇ψ̂β,δ,∇ψ̂β,δ)

(ψ̂β,δ, ψ̂β,δ)
= π2(1− 2aδβ) +O(β2δ) +O(δ2).

If we first choose β and then δ small enough, we get

E(ψ̂β,δ) < π2 = inf σess(−∆D
Ω ).

Since inf spec(−∆D
Ω ) < E(ψ̂β,δ) and −∆D

Ω > 0, this proves Theorem 1.1. Note that
sin(πy) in (4) represents the function u(x, y) in (7) used prominently in Lemma 2.2
and in the proof of Theorem 1.2.

Spectral properties of quantum waveguides have received considerable attention
recently. While a complete bibliography is beyond the scope of this paper, the
interested reader is referred to [1], [3], [4], [5], [6], [7], [8], [13] and the literature
cited therein. In particular, a weak coupling mechanism different from the one
discussed in the present paper, based on arbitrarily small bending of tubes, has
been studied in detail in [4] and [13].

Without entering into further details, we remark that Theorem 1.1 admits a
variety of extensions. For instance, Ω and Ω0 need not coincide outside a sphere of
radius R as assumed in our condition (i); Ω only needs to approach Ω0 asymptot-
ically (still assuming condition (ii)) since equality of the essential spectra of −∆D

Ω

and −∆D
Ω0

as recorded in (1) is the crucial property in question. In addition, Ω
could have various further branches running off to infinity as long as the asymptotic
width of these branches is less than or equal to one in order to guarantee the valid-
ity of (1). Moreover, combining our results with the ones in [4] and [13] produces
the same ground state effect for a bent tube of constant width one (and again ad-
ditional bent branches running off to infinity of asymptotic widths not larger than
one can be accommodated).

§2. Weak coupling analysis

We’ll study −∆D
Ωλ

by a perturbation method. Since L2(Ωλ) is λ dependent, it
is difficult to use perturbation theory directly, so we’ll map all the operators onto
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the same space. Let Uλ : L2(Ωλ) → L2(Ω0) be given by

(Uλψ)(x, y) =
√

1 + λf(x)ψ(x, (1 + λf(x))y).

Then Uλ is unitary and

Hλ = Uλ(−∆D
λ )U−1

λ − π2

acts in L2(Ω0). We subtract π2 so that σess(Hλ) = [0,∞).
A straightforward calculation found in the appendix (cf. (A.6)) proves that

Hλ = H0 + λ

3∑
i=1

A∗iBi + λ2
8∑

i=4

A∗iBi ,(5)

where each Ai and Bi is a first-order differential operator with coefficients which
have compact support and (g is a C∞ function chosen such that g ≡ 1 on supp f)

(i) A∗1 = 2f(x)
∂

∂y
, B1 = g(x)

∂

∂y
,

(ii) A∗2 = f ′′(x), B2 = g(x)

(
y
∂

∂y
+

1

2

)
,

(iii) A∗3 =

(
2y

∂

∂y
+ 1

)
g(x), B3 = f ′(x)

∂

∂x

(we’ll see below that to leading order only A∗1B1 matters).
Rewrite (5) as follows. Define C(λ), D : L2(Ω0) → L2(Ω0)⊗ C8 by

(Cϕ)i =

{
Aiϕ, i = 1, 2, 3,

λAiϕ, i = 4, . . . , 8,

(Dϕ)i = Biϕ, i = 1, . . . , 8.

Then (5) becomes

Hλ = H0 + λC∗(λ̄)D.

At this point we can apply Birman-Schwinger-type techniques (see, e.g., [12],
Sect. XIII.3).

Lemma 2.1. Let k ∈ C, Re k > 0 and λ ∈ R. Then −k2 is an eigenvalue of Hλ if
and only if

λD(H0 + k2)−1C∗ ≡ Qλ

has −1 as an eigenvalue.

Proof. If Qλψ ≡ −ψ, then −λ(H0 + k2)−1C∗ψ ≡ ϕ is seen to satisfy Hλϕ = −k2ϕ.
Conversely, if Hλϕ = −k2ϕ, then ϕ ∈ Q(Hλ) ⊂ D(D), so ψ = Dϕ is in L2(Ω0) and
Qλψ = −ψ.

Lemma 2.2. Let h be a C∞ function of compact support in R. Then

h(H0 + k2)−1h =
(hu, · )hu

2k
+A(k),(6)

where u is the function

u(x, y) = 2
1
2 sin(πy)(7)
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and A(k) is a bounded operator–valued function of k, which can be analytically
continued from {k ∈ C | Re k > 0} to a region that includes k = 0. Indeed, even
(H0 + 1)1/2A(k)(H0 + 1)1/2 has an analytic continuation into such a region.

Moreover, (H0+1)1/2A(k)(H0+1)1/2 is bounded uniformly in {k ∈ C | |Arg k| <
π/3} ∪ {a small disk about k = 0} (π3 can be replaced by any number strictly less
than π

2 ).

Proof. Let H0 ⊂ L2(Ω0) be the space of L2(Ω0) functions of the form ϕ(x) sin(πy),

sin(πy) being chosen as the lowest eigenfunction of (− d2

dy2 )D. Let P0 be the pro-

jection onto H0. Then (H0 + k2)−1(1 − P0) has an analytic continuation into the
region {k ∈ C | −k2 ∈ C\[3π2,∞)}, since the lowest point in the spectrum of
H0(1− P0) � (1− P0)L

2(Ω0) is 3π2.
On the other hand, h(H0 + k2)−1P0h has the explicit integral kernel

(2k)−1h(x)h(x′)u(y)u(y′)e−k|x−x
′| = a1(k) + a2(k),

where a1(k) is obtained by replacing e−k|x−x
′| by 1 and a2(k) by using e−k|x−x

′|−1
in its place. The first term is the explicit rank one piece in (6) and the second term
is analytic as a Hilbert-Schmidt kernel at k = 0.

It is easy to modify this argument to accommodate the extra factors of (H0+1)1/2

and prove the boundedness.

Proof of Theorem 1.2. Consider first the operator on L2(Ω0)⊗ C8:

L0 = (C(λ = 0)u, · )Du,
where u is given by (7). Then L0 is a rank one operator, so it has a single eigenvalue
at

e0 = Tr(L0).(8)

But Ci(0) = 0 for i = 4, . . . , 8, B3u = 0, and (A2u,B2u) = 0 since
∫

R f
′′(x) dx = 0.

It follows that

e0 = (A1u,B1u) = −2

(∫
R
f(x) dx

)∫ 1

0

2π2 cos2(πy) dy

= −2π2

∫
R
f(x) dx.

Let k = λ`. Then by Lemma 2.2,

λD(H0 + k2)−1C∗ = Q(λ, `)

has the form

Q(λ, `) =
1

2`
Lλ + λM(λ, `),

where

(i) Lλ is rank one and Lλ = L0 + λL̃.
(ii) M(λ, `) = DA(λ, `)C∗, where A is given by Lemma 2.2 and h is chosen such

that h ≡ 1 in a neighborhood of supp f .

By Lemma 2.2, we are interested in when Q(λ, `) has −1 as an eigenvalue for
λ > 0 and ` > 0. Since M is uniformly bounded in λ on a sector about (0,∞),
this can happen where λ is small if e0

2` is near −1, that is, ` is near −e0
2 > 0 since∫

R f(x) dx > 0 by hypothesis.
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For such ` and λ small, Q(λ, `) has exactly one eigenvalue near −1, call it E(λ, `),
which by eigenvalue perturbation theory ([9], Ch.2, [12], Ch.XII) is jointly analytic
in λ, `. Let

F (λ, `) = 2`(E(λ, `) + 1).

Since 2`Q(λ, `)|λ=0 is independent of `,

∂(2`E(λ, `))

∂`

∣∣∣∣
λ=0

= 0 and so
∂F (λ, `)

∂`

∣∣∣∣
λ=0,`=−e0/2

= 2 6= 0.

It follows by the implicit function theorem that for λ sufficiently small, there is
an analytic function `(λ) = − e0

2 + O(λ) so that for λ > 0 and ` in the sector
|Arg `| < π

3 , −1 is an eigenvalue of Q(λ, `) if and only if ` = `(λ). Since Hλ for λ
real has only real eigenvalues, `(λ) must be real for λ > 0. Thus Hλ has a unique
eigenvalue, e(λ), in (−∞, 0), given by e(λ) = −λ2(− e0

2 )2 +O(λ3), as claimed.
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Appendix: Calculating H̃λ = Uλ(−∆D
Ωλ

)U−1
λ .

We use coordinates (x, y) on Ω0 and (s, u) on Ωλ. Thus Uλ becomes

Uλ : L2(Ωλ) → L2(Ω0)

ψ̃(s, u) 7→ ψ(x, y) =
√

1 + λf(x) ψ̃(x, (1 + λf(x))y).(A.1)

The coordinate transformation is

x = s, y = (1 + λf(s))−1u.(A.2)

The form associated with −∆D
Ωλ

is given by

qDΩλ : Q(−∆D
Ωλ

)×Q(−∆D
Ωλ

) → C
(ϕ, ψ) 7→ (∇ϕ,∇ψ),(A.3)

where Q(−∆D
Ωλ

) = H1,2
0 (Ωλ) is the usual Sobolev space (i.e., the completion of C∞0

under the norm ‖ · ‖∇ = (‖∇·‖2 +‖ · ‖2)1/2). By unitary equivalence, the quadratic

form associated with H̃λ is

q
H̃λ

: UλQ(−∆D
Ωλ)× UλQ(−∆D

Ωλ) → C

(ϕ, ψ) 7→ qDΩλ(U−1
λ ϕ,U−1

λ ψ).(A.4)

The form domain of H̃λ is UλH
1,2
0 (Ωλ) = UλC∞0 (Ωλ), where the bar denotes com-

pletion under the norm ‖ · ‖q = (q
H̃λ

( · , · ) + ‖ · ‖2)1/2.
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Next we calculate the quadratic form q
H̃λ

(ϕ, ψ) for ϕ, ψ ∈ C∞0 (Ω0). We use the

shorthand c(x) = 1 + λf(x) and use subscripts to denote partial derivatives.

q
H̃λ

(ϕ, ψ) = qDΩλ(U−1
λ ϕ,U−1

λ ψ)

=

∫
Ωλ

(∂sc(s)
−1/2 ϕ(s, u

c(s) ) )(∂sc(s)
−1/2ψ(s, u

c(s) )) dsdu

+

∫
Ωλ

(∂uc(s)
−1/2 ϕ(s, u

c(s)) )(∂uc(s)
−1/2ψ(s, u

c(s) )) dsdu

=

∫
Ω0

{[
−1

2

c′(x)
c(x)

ϕ(x, y) + ϕx(x, y)− yc′(x)
c(x)

ϕy(x, y)

]
[
−1

2

c′(x)
c(x)

ψ(x, y) + ψx(x, y)− yc′(x)
c(x)

ψy(x, y)

]
+

1

c(x)2
ϕy(x, y)ψy(x, y)

}
dxdy

=

∫
Ω0

{
ϕx(x, y)ψx(x, y) +

1 + y2c′(x)2

c(x)2
ϕy(x, y)ψy(x, y)

− yc′(x)
c(x)

(ϕx(x, y)ψy(x, y) + ϕy(x, y)ψx(x, y))

− c′(x)
2c(x)

(ϕx(x, y)ψ(x, y) + ϕ(x, y)ψx(x, y))

+
yc′(x)2

2c(x)2
(ϕy(x, y)ψ(x, y) + ϕ(x, y)ψy(x, y))

+
c′(x)2

4c(x)2
ϕ(x, y)ψ(x, y)

}
dxdy.(A.5)

By partial integration we get the operator

H̃λ = − ∂2

∂x2
− 1 + y2λ2f ′(x)2

c(x)2
∂2

∂y2
+

(
yλf ′′(x)
c(x)

− 3yλ2f ′(x)2

c(x)2

)
∂

∂y

+
2yλf ′(x)
c(x)

∂

∂x

∂

∂y
+
λf ′(x)
c(x)

∂

∂x
+
λf ′′(x)
2c(x)

− 3λ2f ′(x)2

4c(x)2

= −∆D
Ω0

+ λ

[
2f(x)

∂2

∂y2
+ yf ′′(x)

∂

∂y
+ 2yf ′(x)

∂

∂x

∂

∂y
+ f ′(x)

∂

∂x
+
f ′′(x)

2

]
− λ2

[
3f(x)2 + 2λf(x)3 + y2f ′(x)2

(1 + λf(x))2
∂2

∂y2
+

(
yf(x)f ′′(x)
(1 + λf(x))

+
3yf ′(x)2

(1 + λf(x))2

)
∂

∂y

+
2yf(x)f ′(x)
(1 + λf(x))

∂

∂x

∂

∂y
+

f(x)f ′(x)
(1 + λf(x))

∂

∂x
+

f(x)f ′′(x)
2(1 + λf(x))

+
3f ′(x)2

4(1 + λf(x))2

]
.

(A.6)

Since we assumed f ∈ C∞0 (R), clearly C∞0 (Ω0) ⊂ D(H̃λ) = UλD(−∆D
Ωλ

).
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Actually, UλC
∞
0 (Ωλ) = C∞0 (Ω0). From (A.5) we infer that the norm ‖ · ‖q is

equivalent to the norm ‖ · ‖∇, i.e.,

Q(H̃λ) = UλC∞0 (Ωλ) = H1,2
0 (Ω0).(A.7)
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