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WEAKLY DEFECTIVE VARIETIES

L. CHIANTINI AND C. CILIBERTO

Abstract. A projective variety X is ‘k-weakly defective’ when its intersection
with a general (k + 1)-tangent hyperplane has no isolated singularities at the
k + 1 points of tangency. If X is k-defective, i.e. if the k-secant variety of
X has dimension smaller than expected, then X is also k-weakly defective.
The converse does not hold in general. A classification of weakly defective
varieties seems to be a basic step in the study of defective varieties of higher
dimension. We start this classification here, describing all weakly defective
irreducible surfaces. Our method also provides a new proof of the classical
Terracini’s classification of k-defective surfaces.

1. Introduction

In this paper we work over the complex field C.
Let X ⊆ Pr be a reduced, irreducible (not necessarily smooth) projective variety

of dimension n and codimension q = r − n. Let H be a hyperplane divisor on X
and let H ⊆ |H | be the (possibly incomplete) linear series cut out on X by the
hyperplanes of Pr. We will assume that X is non-degenerate, i.e. that H has
dimension r, which is equivalent to saying that X spans the whole of Pr. Then,
abusing notation, we will often identify the divisor H with the unique hyperplane
which cuts H on X .

Now let k be a non-negative integer and let Sk(X) be the k-secant variety of X ,
i.e. the Zariski closure of the set

{P ∈ Pr : P lies in the span of k + 1 independent points of X}.
Of course S0(X) = X , Sr(X) = Pr and Sk(X) is empty if k ≥ r + 1. We will

also set Sk(X) = ∅ if k < 0. Notice that, for k ≥ −1, one has

s(k)(X) := dim(Sk(X)) ≤ min{r, n(k + 1) + k}.(1.1)

The right hand side of (1.1) is called the expected dimension of Sk(X) and will
be denoted by σ(k) := σ(k)(X). We will also write s(k) instead of s(k)(X) if there
is no danger of confusion. According to a definition given by Zak in [Zak], we will
say that X has a k-defect, or is k-defective, or is defective of index k when strict
inequality holds in (1.1). Notice that no variety is 0-defective, and every variety is
k-defective for k ≥ r + 1. Furthermore, if X is h-defective for some h ≥ 1, then it
is also k-defective for all k such that sk(X) < r.

Recall now the classical lemma of Terracini (see [Terr1] or, for modern versions,
[Adl], [Dale1], [Zak]), which says that, given a general point P ∈ Sk(X), lying in
the subspace 〈P1, . . . , Pk+1〉 spanned by P1, . . . , Pk+1 general points on X , then
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the tangent space TSk(X),P to Sk(X) at P is the span TX,P1,...,Pk+1 of the tangent
spaces TX,P1 , . . . , TX,Pk+1 , namely

TSk(X),P = TX,P1,...,Pk+1 := 〈TX,P1 , . . . , TX,Pk+1〉.
Therefore X is k-defective if and only if:

s(k) = dim(TX,P1,...,Pk+1) < σ(k) = min{r, (k + 1)(n+ 1)− 1}.(1.2)

Now let Y be a subscheme of a variety X and let L be a linear system of Cartier
divisors on X . We will denote by L(−Y ) the linear system of all divisors in L
containing Y . If Y is a union of points P1, . . . , Pm, we write L(−P1 · · · − Pm) for
L(−Y ). If P1, . . . , Pm are smooth points of X , we let L(−2P1 · · · − 2Pm) be the
linear system of all divisors in L(−P1 · · ·−Pm) having singular points at P1, . . . , Pm.

In case L = H is, as above, the linear system of hyperplane divisors of X in
Pr, then H(−P1 · · · − Pm) is cut out on X by the hyperplanes in Pr containing
the subspace 〈P1, . . . , Pm〉, whereas H(−2P1 · · · − 2Pm) is cut out on X by the hy-
perplanes in Pr containing the subspace TX,P1,...,Pm := 〈TX,P1 , . . . , TX,Pm〉. These
hyperplanes are called m-tangent hyperplanes to X . Hence (1.2) is equivalent to
saying that X is k-defective if and only if, for P1, . . . , Pk+1 general points on X ,
the system H(−2P1 · · · − 2Pk+1) is not empty and

r − s(k) − 1 = dim(H(−2P1 · · · − 2Pk+1)) ≥ r − (k + 1)(n+ 1).

One defines the k-defect of X as the number

δk(X) = dim(H(−2P1 · · · − 2Pk+1))−max{−1, r− (k + 1)(n+ 1)}
= σk(X)− sk(X),

where P1, . . . , Pk+1 are general points on X . We will also use the shorter notation
δk for δk(X) if there is no danger of confusion. Of course X is k-defective if and
only if δk > 0. X is said to have a defect, or to be defective, if it has a non-zero
k-defect for some k.

The first non-trivial example of a defective variety is the Veronese surface in P5.
A general theory of defective varieties has been developed by several authors, both
classical and modern (see e.g. [Pal1], [Terr2], [Sco1], [Br], [Zak], [Dale2], [Adl], [Fa],
[CJ1], etc.). We will not review here all known results in this theory, but only recall
that, as we will also see later, there are no defective varieties of dimension 1. By
contrast, as noticed by Palatini in [Pal2], there are defective surfaces, and he tried to
classify them, but his classification contained some gaps. A complete classification,
which fills up Palatini’s gaps, is contained in Terracini’s paper [Terr2], and has been
also worked out in modern times by Dale [Dale2] and Catalano-Johnson [CJ2], who
apparently were both unaware of Terracini’s paper.

In his paper [Terr2], Terracini implicitly used a crucial result which we now state
and will prove in §2 below. Notice that this result could be partly deduced from the
results of Chapt. V of [Zak], to which we refer for the general theory of defective
varieties.

If X is any variety as above, if P1, . . . , Pk+1 ∈ X are general points, and if
H ∈ H(−2P1 − · · · − 2Pk+1) is a general hyperplane tangent at P1, . . . , Pk+1 ∈ X ,
we can consider the contact variety of H , i.e. the union Σ := ΣP1,...,Pk+1(H) of the
irreducible components of Sing(H) containing P1, . . . , Pk+1. Since P1, . . . , Pk+1 are
general points, an obvious monodromy argument shows that Σ is equidimensional,
and we denote by νk := νk(X) its dimension, which we will call the k-singular defect
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of X . Of course νk ≤ n−1, and we set νk = −1 if H(−2P1−· · ·−2Pk+1) is empty.
We also set h(Σ) = r− dim(H(−Σ)). This is the number of conditions imposed by
Σ on the divisors of H containing it.

With all this in mind, we can state Terracini’s theorem:

Theorem 1.1. Let X ⊂ Pr be a reduced, irreducible, non-degenerate, projective
variety of dimension n. If P1, . . . , Pk+1 ∈ X are general points, and if H ∈
H(−2P1− · · ·− 2Pk+1) is a general (k+ 1)-tangent hyperplane and Σ is its contact
variety of dimension νk ≥ 0, then

k + 1 ≤ h(Σ) ≤ (k + 1)(1 + νk)− δk,
and therefore

(k + 1)νk ≥ δk.
In particular, if X is k-defective then n − 1 ≥ νk > 0, i.e. the general (k + 1)-

tangent hyperplane to X has a contact variety of positive dimension.

This theorem explains the difficulty in finding varieties with large defect: as soon
as δk increases, the variety Σ imposes fewer and fewer conditions on the hyperplanes,
so that it becomes more and more special.

Notice also that the converse to the final part of this statement is false in general:
if X is a cone, by imposing tangency at one point one gets tangency along a line,
but on the other hand there are cones which are not defective at all. So one is led
to the following definition:

Definition 1.2. X is a k-weakly defective variety if the general (k + 1)-tangent
hyperplane to X has a contact variety of positive dimension.

Notice that if X is h-weakly defective for some h ≥ 1, then it is also k-weakly
defective for all k ≥ h such that there is a (k+ 1)-tangent hyperplane to X at k+ 1
general points. The value of the singular defect νk ≤ n− 1 plays an important role
in the classifcation of weakly defective varieties. The maximal case νk = n − 1,
which we will refer to as to the divisorial case, turns out to be simpler than the
others. We will collect the main properties of weakly defective varieties in §3, and
we will present a few basic examples in §4.

As we already pointed out, a k-defective variety is also k-weakly defective, the
converse being in general false. However it turns out that, in order to understand
defective varieties of a given dimension n, one first has to classify weakly defective
varieties of any dimension smaller than n (see [Sco1], [Terr2]). Unfortunately, such
a classification problem, even for varieties of low dimension, seems to have never
been really considered in the literature, except for:

(i) the case of 0-weakly defective varieties, which are the varieties whose Gauss
map is degenerate, whose classification is well known (see remark 3.1, ii, below);
and

(ii) the case of 1-weakly defective surfaces, considered in the papers [Sco2] and
[Terr2] by Scorza and Terracini.

The aim of this paper is to start filling up this gap, thus giving the full classi-
fication of weakly defective surfaces, which, of course, present the divisorial case.
Our main result is the following theorem, proved in §7:

Classification Theorem 1.3. Let X ⊂ Pr be a reduced, irreducible, non-degen-
erate, projective surface which is k-weakly defective.
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If δk > 0, i.e. if X is k-defective, then k ≥ 1 and either
(i) the contact curve of a general k + 1-tangent hyperplane is irreducible, and then
r = 3k + 2, δk = 1 and X is the 2-Veronese embedding in Pr of a rational normal
surface Y of degree k in Pk+1; or,
(ii) the contact curve of a general k + 1-tangent hyperplane is reducible, and then
X sits in an (s + 2)-dimenional cone over a curve, with vertex a linear space of
dimension s ≤ k − 1 and r ≥ 2k + s + 3. The minimal such s is characterized by
the property that X is s-defective but not (s− 1)-defective, and one has δk ≥ k− s.

If δk = 0, i.e. if X is not k-defective, then either
(iii) the contact curve of a general k+1-tangent hyperplane is irreducible, and then
either k = 0 and X is the tangent developable to a curve, or
(iv) r = 9, k = 2 and X is the 2-Veronese embedding of a surface of degree d ≥ 3
in P3, or
(v) r = 3k+ 3 and X sits in the cone with vertex a point over a k-defective surface
of type (i), or
(vi) r = 3k + 3 and X is the 2-Veronese embedding in Pr of a surface Y of degree
k + 1 in Pk+1 with curve sections of arithmetic genus 1, or
(vii) the contact curve of a general k + 1-tangent hyperplane is reducible, and then
X sits in a s + 2 dimensional cone over a curve, with vertex a linear space of
dimension s ≤ k and r ≥ 2k + s + 3. The minimal such s is characterized by the
property that X is s-weakly defective but not (s− 1)-defective.

The nature of the cases listed in the above statements and their properties are
fully explained in §4.

Our approach to the proof is inspired by, but substantially simplifies, Terracini’s
original one. It is mainly based, as we said, on theorem 1.1, which we prove in §2
using some standard facts on deformations of divisors on a variety. These results
from deformation theory also enable us to prove the following theorem, which,
together with the classification theorem 1.3, should be seen as a wide extension of
Arbarello-Cornalba’s results in [ArCo]:

Theorem 1.4. Let X ⊂ Pr be a reduced, irreducible, non-degenerate, projective
variety. Then the general point of every irreducible component of the contact variety
of a general (k + 1)-tangent hyperplane section H is a double point for H. If, in
addition, X is not k-weakly defective for a given k such that r ≥ (n + 1)(k + 1),
then, given P1, . . . , Pk+1 general points on X, the general (k+1)-tangent hyperplane
H ∈ H(−2P1 − · · · − 2Pk+1) is tangent to X only at P1, . . . , Pk+1. Moreover such
a hyperplane section H has ordinary double points at P1, . . . , Pk+1.

For the proof of the classification theorem we also use a tool of independent
interest, i.e. the classification, presented in §5, of certain families of divisors on
a variety, classically called involutions. This classification extends the classical
theorem of Castelnuovo and Humbert which classifies involutions on curves (see
[EnChi], [Ma]). In addition, we use a basic lemma in Castelnuovo’s theory, discussed
in §6 (for a general reference on this latter subject we refer to [EiHa]), which enables
us to determine some basic properties of the contact curve of a general (k + 1)-
tangent hyperplane to a k-weakly defective surface X .

As we mentioned already, we became aware of the importance of classifying
weakly defective surfaces when we tried to understand Scorza’s classification in
[Sco1] of 2-defective (not necessarily smooth) threefolds. In a future paper, with
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the aid of the present classification thoerem, we hope to come back to the subject
of defective varieties of higher dimension.

2. The infinitesimal Bertini theorem,

Terracini’s theorem, and applications

In this section, we prove Terracini’s theorem 1.1. First we recall a few standard
facts about deformation theory of divisors on a smooth variety.

Let X be a smooth n-dimensional variety and let H be an effective divisor on
X . Then we have the normal bundle sequence

0→ TH → TX|H → NH,X ' OH(H)→ T 1
H → 0.(2.1)

If we have a point x ∈ H , we let z1, . . . , zn be coordinates on X centered at x, and
we let f(z1, . . . , zn) = 0 be an equation of H in this coordinate system. The Taylor
expansion of f at x gives us

f(z1, . . . , zn) =
∞∑
i=1

fi(z1, . . . , zn),

where the fi’s are homogeneous polynomials of degree i. Then H is singular at x
of multiplicity m ≥ 2 if fi ≡ 0, i = 1, . . . ,m− 1, but fm is not identically zero. In
this case the tangent vector space TX,x to X at x coincides with the Zariski tangent
space TH,x to H at x. Moreover, fm(z1, . . . , zn) = 0 is the equation of the tangent
cone T CH,x to H at x, which sits in TH,x and does not depend on local coordinates.

Recall that H is said to have an ordinary singularity of multiplicity m at x if
T CH,x is singular only at x. If H has a double point at x, i.e. if m = 2, then one
says that the rank of this double point is h if T CH,x is a quadric of rank h. Then
the vertex AH,x of T CH,x is a subspace of TH,x of dimension n− h which is called
the asymptotic space of H at x.

The map TX|H → NH,X ' OH(H) appearing in (2.1) is locally given by sending
∂
∂zi
→ ∂f

∂zi |H . Hence T 1
H is supported at the scheme S :=Sing(H) defined by the

vanishing of the derivatives of f , and T 1
H ' OS(H).

Let us consider the natural restriction map

ρ : H0(H,NH,X)→ H0(S, T 1
H) ' H0(S,OS(H)).

Giving a section s ∈ H0(H,NH,X) is equivalent to giving a first order deforma-
tion of H , i.e. a flat family σ : Hε → D, where D is the spectrum of the ring C[ε]
of the dual numbers. Suppose we also have a first order deformation ξ : xε → D
of x in X given by zi = εai, i = 1, . . . , n. Then one has the following well known
lemma, whose easy proof we reproduce here for convenience.

Lemma 2.1. Let us consider, as above, a smooth variety X, a point x ∈ X, an
effective divisor H on X passing through x, a first order deformation σ of H in X
and a fisrt order deformation ξ of x in X. Then:

(i) If x has multiplicity m for H and σ has multiplicity at least m− 1 along ξ,
then ρ(s) vanishes with order at least m− 1 at x.

(ii) If H has a double point of rank h at x and if σ is singular along ξ, then for
every tangent vector v belonging to the asymptotic space AH,x, one has v(ρ(s)) = 0.
Conversely if for every v ∈ AH,x one has v(ρ(s)) = 0, then σ is singular along a
suitable first order deformation ξ of x in X.
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Proof. As above, let z1, . . . , zn be coordinates on X centered at x, let f(z1, . . . , zn)
= 0 be the equation of H in these coordinates and let f(z1, . . . , zn) + εg(z1, . . . , zn)
= 0 be the equation of σ. The Taylor expansions of f and g give us

f(z1, . . . , zn) =
∞∑
i=2

fi(z1, . . . , zn),

g(z1, . . . , zn) =
∞∑
i=0

gi(z1, . . . , zn),

where the fi’s and gi’s are homogeneous polynomials of degree i. The infinitesimal
deformation ξ of x is given by zi = εai, i = 1, . . . , n.

Notice that σ has multiplicity at least m− 1 along ξ if and only if:

Df(εa1, . . . , εan) + εDg(εa1, . . . , εan) = 0,(2.2)

where D is any partial derivative of order j ≤ m−2. Since fi ≡ 0, i = 0, . . . ,m−1,
we have Df(εa1, . . . , εan) = 0, for any D of order j ≤ m − 2. Thus (2.2) is
equivalent to εDg(εa1, . . . , εan) = 0 for any such D. This clearly implies that
gi ≡ 0, i = 1, . . . ,m− 2, proving (i).

In order to prove (ii), we may assume f0 = f1 ≡ 0 and f2(z1, . . . , zn) = z2
1 +

· · ·+ z2
h. Then (2.2) is equivalent to g0 = 0 and to the system of relations

2ai +
∂g1

∂zi
= 0, i = 1, . . . , h,

∂g1

∂zi
= 0, i = h+ 1, . . . , n.

Since AH,x has equations zi = 0, i = 1, . . . , h, the former set of relations tells us
that for every tangent vector v ∈ AH,x, one has v(ρ(s)) = 0. Conversely, if such
a condition is satisfied, then the second set of relations is satisfied, and from the
first we can compute the ai’s, hence a first order deformation ξ along which σ stays
singular.

As an immediate consequence, we have the following:

Infinitesimal Bertini’s Theorem 2.2 . Let X be a smooth irreducible variety
and let {Hy}y∈Y be an algebraic family of Cartier divisors on X parametrized by
a reduced, irreducible variety Y . Let y ∈ Y be a general point, let S := Sy be the
singular locus of H := Hy. Let v be any tangent vector to Y at y and let s ∈
H0(H,NH,X) be the section of the normal bundle NH,X of H in X corresponding
to the first order deformation σ of H determined by v. Then s vanishes along S.

In particular, if Y is contained in a linear system L, then the projective tangent
space to Y at y in L is contained in L(−S).

Proof. Since y ∈ Y is general, if x ∈ S is any singular point of H , there is a first
order deformation of x along which σ stays singular. Then one applies the previous
lemma.

Now we give a proof of Terracini’s theorem 1.1, which essentially reproduces the
proof given in [CiHi].

Proof of theorem 1.1. Let X k+1 be the open subset of Xk+1 described by (k + 1)-
tuples formed by distinct points. Given an element D ∈ X k+1, we will abuse
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notation and denote by D also the subset of X formed by the k + 1 points of D.
Consider now the closure I in H×Xk+1 of the incidence correspondence

{(H,D) ∈ H ×X k+1 : D ⊆ Sing(H)},

and let p1 : I → H and p2 : I → Xk+1 be the two projections.
Since νk ≥ 0, the map p2 is dominant and its general fiber is a projective space of

dimension l = r− (k+1)(n+1)+ δk. Then there is only one irreducible component
J of I which dominates Xk+1, and one has

dim(J) = l + n(k + 1) = r − k − 1 + δk.

Now consider the family of divisors on X given by Y = p1(J) ⊆ H. If (H,D) ∈ J
is general, with D = (P1, . . . , Pk+1), then every component of Σ = ΣP1,...,Pk+1(H)
intersects the set of smooth points of X . Hence we may apply theorem 2.2 and
conclude that the projective tangent space to Y at H is contained in H(−Σ) ⊆
H(−D). Since D is formed by k + 1 general points of X , then dim(H(−D)) =
r − k − 1, and hence

dim(Y ) ≤ dim(H(−Σ)) ≤ dim(H(−D)) = r − k − 1.(2.3)

Finally, by the very meaning of the singular defect νk, we see that the general
fibre of the restriction of p1 to J has dimension (k + 1)νk. In conclusion we have:

r − k − 1 + δk = dim(J) = dim(Y ) + (k + 1)νk

which, together with (2.3), yields the assertion.

Notice that the classical theorem of Bertini, which says that the singular points
of a general member of a linear system are base points of the system itself, is an
obvious consequence of theorem 2.2, on which we will not dwell here. Rather, we
want to point out the following interesting consequence of theorem 2.2:

Proposition 2.3. Let X be a smooth variety and let L be a linear system of divisors
on X. Let P be a general point of X, let m be a positive integer and let L(−mP )
be the sublinear system of L formed by all divisors with a point of multiplicity at
least m at P . If L(−mP ) is not empty, then the general element H ∈ L(−mP ) has
a point of multiplicity exactly m at P .

Proof. The assertion is trivial for m = 1, so we assume m ≥ 2. Consider the
incidence correspondence M = {(P,H) ∈ X × L : H ∈ L(−mP )}. There is a
unique irreducible component N of M which dominates X under the projection to
the first factor. The image Y of N in L under the projection to the second factor
parametrizes a family of divisors in L which is not, by Bertini’s theorem, a linear
system, since the singularities of the general member of this family describe the
whole of X . Suppose for a contradiction that L(−mP ) = L(−(m + 1)P ). Then
by lemma 2.1 we see that if y ∈ Y is a general point corresponding to a divisor
H ∈ L(−mP ), if v is any tangent vector to Y at y, and if s ∈ H0(H,NH,X) is the
section of the normal bundle NH,X corresponding to the first order deformation of
H determined by v, then s vanishes at P with multiplicity at least m. This implies
that the projective tangent space to Y at y in L is contained in L(−mP ), and
thus dim(Y ) ≤ dim(L(−mP )). On the other hand we know that dim(L(−mP )) <
dim(Y ), since L(−mP ) is a closed subset of Y ; but it is not equal to Y because Y
is not a linear system. Thus we have reached a contradiction.
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Remark 2.4. Proposition 2.3 could be easily extended to a more general situation,
if we replace the point P by a subvariety Z of X which is allowed to vary in such a
way as to describe the whole of X . We think this extension is obvious and therefore
we do not insist on this here.

From proposition 2.3 one immediately deduces

Corollary 2.5. Let X ⊂ Pr be a smooth variety and let H be the linear
system of hyperplane sections of X. If P1, . . . , Pk+1 are general points of X, if
H(−2P1−· · ·−2Pk+1) is not empty, and if H is a general divisor of this linear sys-
tem, then the general point of each component of ΣP1,...,Pk+1(H) is a double points
for H.

This corollary proves the first part of theorem 1.4 stated in the introduction.
Before giving the proof of its second part, we recall the following well known fact:

Proposition 2.6. Let X ⊆ Pr be an irreducible, reduced, non-degenerate projec-
tive variety of dimension n and let k be a non-negative integer such that k < r−n.
Let P1, . . . , Pk+1 be general points of X. Then the schematic intersection of X with
the subspace 〈P1, . . . , Pk+1〉 is the union of the points P1, . . . , Pk+1.

Proof. By taking the section of X with a general subspace of codimension n − 1,
it suffices to prove the assertion only for curves. Then, by taking the projection
of the curve X from a general point P ∈ X , it suffices to prove the assertion for
k = 1, in which case it is true, a result known “since forever” and recently called
the trisecant lemma (see for example [ChCi]).

Now we are ready to finish the

Proof of theorem 1.4. We will prove the final assertion in the theorem in the case
when X is smooth. Otherwise one can easily adapt the argument by passing to a
resolution of the singularities. We leave these details to the reader.

Let us go back to the proof of theorem 1.1, from which we keep the notation. We
thus consider the variety Y ⊂ H of codimenision k+1 inH. Let H ∈ Y be a general
point. Then H is tangent to X at k+ 1 general points P1, . . . , Pk+1. Since X is not
k-weakly defective, H has isolated singularities at P1, . . . , Pk+1. Then the infinites-
imal Bertini theorem 2.2 tells us that TY,H is contained in H(−P1 − · · · − Pk+1).
Since the two spaces have the same dimension, they coincide. On the other hand
H(−P1 − · · · − Pk+1) is cut out on X by the hyperplanes through 〈P1, . . . , Pk+1〉.
Then proposition 2.6 and the infinitesimal Bertini theorem 2.2 again forbid the
presence of singularities for H other than P1, . . . , Pk+1. Furthermore, proposi-
tion 2.6 and lemma 2.1,ii also forbid the presence of non-ordinary singularities at
P1, . . . , Pk+1.

3. Weakly defective varieties: main properties

In this section we collect a few general remarks and propositions on weakly
defective and defective varieties, which are either immediate consequences of the
definition or easy consequences of theorem 1.1. Unless otherwise stated, X ⊆
Pr will be an irreducible, reduced n-dimensional projective variety, and k a non-
negative integer. We start with the following:
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Remark 3.1. (i) There are no weakly defective curves. Actually, by theorem 1.1
there are also no defective curves.

(ii) X is 0-weakly defective if and only if its Gauss map

γX : P ∈ X − Sing(X)→ TX,P ∈ Grass(n, r)

is degenerate, i.e. it is not generically finite. These varieties are singular, since a
theorem of F. Zak ensures that the Gauss map is finite for a smooth variety (see
[Zak]). The classification of these varieties is classical; it goes back to C. Segre
([Segre]) and is also contained in [GrHa], §2. It turns out that the closure of the
general fibre of γX is a projective space; hence X is a developable scroll, i.e. a scroll
such that along the general generating space, the tangent space to X is constant.

In the case of a surface X , this follows easily from theorem 1.1. In fact the
general tangent hyperplane to X is tangent to X along a curve Σ which, according
to theorem 1.1, imposes 2 conditions on the hyperplanes which have to contain it.
Hence Σ is a line, and S is a scroll, which is developable. As we know, developable
surfaces are either cones or tangent surfaces to curves (see [Segre], [GrHa]).

Given all this, from now on we will consider k-weakly defective varieties for
k ≥ 1.

(iii) If X is a weakly defective variety of index k − 1 and if νk ≥ 0, i.e. if the
linear system H(−2P1− · · · − 2Pk+1) is non-empty for general points P1, . . . , Pk+1,
then X is also weakly defective of index k.

(iv) If r ≤ (k+ 1)(n+ 1)− 1, i.e. if σ(k) = r, and νk ≥ 0, then the linear system
H(−2P1 − · · · − 2Pk+1) is non-empty for general points P1, . . . , Pk+1. Hence X is
actually k-defective and therefore also k-weakly defective.

(v) If the general projection X ′ of X in Pr−1 is a weakly defective variety of
index k, then X is also a weakly defective variety of index k. The converse holds
provided νk(X ′) ≥ 0, which is certainly the case whenever r ≥ (n + 1)(k + 1), i.e.
whenever σ(k) < r.

(vi) If the hyperplane section of X is a weakly defective variety of index k and
if νk(X) ≥ 0, then X itself is a weakly defective variety of index k. If νk(X) ≥ 2,
the converse also holds.

A bound on the index of a k-weakly defective variety X in Pr, in terms of its
codimension q, is given by the following proposition. This bound is sharp for k = 1,
but for higher values of k it could be improved with the same ideas contained in
the proof below. We do not dwell on this here.

Proposition 3.2. If k ≥ 1 and νk ≥ 0, then k ≤ r− n− 1 = q− 1. In addition, if
q ≥ 2 then k ≤ q − 2.

Proof. If P1, . . . , Pq ∈ X are general points, then there is only one hyperplane H
which is tangent to X at P1 and passes through P2, . . . , Pq. This immediately shows
that k+ 1 ≤ q, since H cannot contain another general point of X . Let us exclude
the case q = k+ 1 ≥ 2. In this case H , which is tangent to X at P1, should also be
tangent to X at P2, . . . , Pq. In particular, every element in the pencil of hyperplane
sections H(−2P1−P2− · · ·−Pq−1) = H(−2P1− · · ·− 2Pq−1) would be everywhere
non-reduced, contrary to Bertini’s theorem.

Next we discuss projections from tangent spaces and relations with (weak) de-
fectiveness. First of all, let us introduce some more definitions and notation. Let
X ⊆ Pr be, as above, a variety of dimension n and let P1, . . . , Pk be general points
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of X . Consider the subspace TX,P1,...,Pk = 〈TX,P1 , . . . , TX,Pk〉, which has dimen-
sion s(k−1) by (1.2). Consider the projection τX,k := τX,P1,...,Pk of Pr with centre
TX,P1,...,Pk . We will call such a projection a general k-tangential projection of X .
Abusing notation, we will often denote by τX,k := τX,P1,...,Pk also the restriction of
this projection to X . We will write τX instead of τX,1, a map which we will call a
general tangential projection of X .

We will set Xk := τX,k(X), nk := nk(X) = dim(Xk) and µk := µk(X) = n−nk,
so that µk is the dimension of the general fibre of τX,k : X → Xk. We will set
τX,0 =id, and accordingly n0 = n and µ0 = 0.

Lemma 3.3. Let X ⊆ Pr be a reduced, irreducible, non-degenerate projective va-
riety of dimension n. For every positive integer k ≤ r − 1 one has:

(i) nk ≤ nk−1 or, equivalently, µk−1 ≤ µk;
(ii) nk = s(k) − s(k−1) − 1;
(iii) νk ≥ µk;
(iv) s(k) = k+

∑k
i=0 nk = (k+1)(n+1)−1−

∑k
i=0 µj, and hence δk ≤

∑k
i=0 µj,

with the equality holding if and only if r ≥ (k + 1)(n+ 1)− 1, i.e. if r ≥ σ(k).

Proof. Notice that τX,k = τXk−1,1 ◦ τX,k−1. This immediately yields (i).
A general tangent space to Xk is the projection from TX,P1,...,Pk of the tangent

space TX,Pk+1 to X at a general point Pk+1. Hence it has dimension s(k)−s(k−1)−1.
This proves (ii).

A general hyperplane sectionH through TX,P1,...,Pk+1 is the pull-back, via τX,k, of
a general tangent hyperplane section H ′ to Xk at τX,k(Pk+1). Since H ′ is certainly
singular at τX,k(Pk+1), then H is singular along τ−1

X,k(τX,k(Pk+1)), which is a µk-
dimensional variety containing Pk+1. The assertion follows by the definition of the
singular defect. This proves (iii).

Part (iv) follows by summing the relations ni = s(i) − s(i−1) − 1, i = 1, . . . , k,
that we get from (ii).

Remark 3.4. From lemma 3.3 we deduce that δk ≤ (k + 1)µk ≤ (k + 1)νk, which
gives another proof of a part of theorem 1.1.

Proposition 3.5. Let X ⊆ Pr be a reduced, irreducible, non-degenerate, projective
variety of dimension n.

(i) If X is k-defective, then µk > 0; that is, a general k-tangential projection
τX,k : X → Xk has positive dimensional fibres.

(ii) Conversely, if r− s(k−1)− 1 ≥ n, which is the case if r ≥ (k+ 1)(n+ 1)− 1,
i.e. if r ≥ σ(k), and if a general k-tangential projection τX,k : X → Xk has positive
dimensional fibres, then X is k-defective.

Proof. Suppose X is k-defective and assume µk = 0. Then lemma 3.3, i, iv would
give s(k) = (k + 1)(n+ 1)− 1 ≥ σ(k), and so equality would hold, a contradiction.
This proves (i).

Let us prove (ii). Since nk < n, by lemma 3.3, ii and the hypothesis, s(k) < r.
On the other hand, we have

s(k) < s(k−1) + n+ 1 ≤ k(n+ 1) + n = (k + 1)(n+ 1)− 1,

which proves that s(k) < σ(k), i.e. that X is k-defective.
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Proposition 3.6. Let X ⊆ Pr be a reduced, irreducible, non-degenerate, projective
variety of dimension n, let h ≥ 0 be an integer, and suppose X is not (h − 1)-
defective and r−s(h−1)−1 ≥ n, which is the same as saying that r ≥ (h+1)(n+1)−1,
i.e. r ≥ σ(h). Then X is k-weakly defective for some k ≥ h if and only if Xh is
(k − h)-weakly defective.

Proof. The assertion is trivially true for k = 0. So we can proceed by induction
on k. In order to finish the proof, it therefore suffices to prove the assertion only
for h = 1, where we have a generically finite map τX : X → X1 ⊂ Pq−1. Let
P1, . . . , Pk+1 be general points of X . The hyperplanes tangent to X1 at the general
points τX(P2), . . . , τX(Pk+1) are cut out on Pq−1 by hyperplanes in Pr containing
TX,P1 and tangent to X at P2, . . . , Pk+1, i.e. by hyperplanes tangent to X at
P1, . . . , Pk+1. Since τX is generically finite, so is its restriction to such general
tangent hyperplane sections, and, by the very meaning of the singular defect, we
see that νk(X) = νk−1(X1), proving the assertion.

4. Examples

We collect in this section some basic examples. Among them are all the ones
listed in the classification theorem 1.3.

Before starting, we point out the following elementary, but useful, criterion which
tells us when we have a variety sitting in a cone (for further information, see [Ga]).

Proposition 4.1. Let X ⊂ Pr be an irreducible, reduced, projective variety of
dimension n. Then X is contained in an (s + m + 1)-dimensional cone over a
reduced, irreducible variety Y of dimension m < n, with vertex a linear space V
of dimension s, if and only if the general tangent space to X intersects V along a
subspace of dimension n−m− 1.

Proof. It suffices to remark that X sits in such a cone if and only if the projection of
X from V has dimension m. Hence such a projection generically has rank m on X ,
which is equivalent to its having m on the general tangent space to X . This happens
if and only if such a space meets V along a subspace of dimension n−m− 1.

We stress the following obvious consequence:

Corollary 4.2. Let X ⊂ Pr be an irreducible, reduced, non-degenerate, projective
variety of dimension n. Then there is no subspace V of dimension s ≤ r − 2 such
that a general tangent space to X meets V along a subspace of dimension n− 1.

Proof. Otherwise the projection of X from V to Pr−s−1 would be a point, a con-
tradiction to the non-degeneracy, since r − s− 1 ≥ 1.

Now we come to our examples.

Example 4.3. Any non-degenerate variety X ⊂ Pr of dimension n contained in an
(s+m+ 1)-dimensional cone W over a reduced, irreducible variety Y of dimension
m < n, with vertex a linear space V of dimension s, is k-defective whenever s+2 ≤
(k + 1)(n−m) and r ≥ (m+ 1)(k + 1) + s+ 1.

Indeed, according to proposition 4.1, the general tangent space to X cuts V in
a subspace of dimension n−m− 1. Since s+ 2 ≤ (k + 1)(n−m), then k + 1 such
tangent spaces span a subspace of dimension at most s+ (k+ 1)(m+ 1), and since
r ≥ (m+ 1)(k+ 1) + s+ 1, this is a proper subspace of Pr. On the other hand, we
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also have s+ (k + 1)(m+ 1) ≤ (k + 1)(n+ 1)− 2, and hence (1.2) implies that X
is k-defective.

Notice that the above considerations show that δk ≥ (n−m)(k + 1)− s− 1, so
that the k-defect δk can become arbitrarily large in these examples.

Notice also that, if P1, . . . , Pk+1 are general points of X , the space TX,P1,...,Pk+1

is contained in TW,P1,...,Pk+1 , a space which is tangent to W along the rulings
Π1, . . . ,Πk+1 passing through P1, . . . , Pk+1. Then TW,P1,...,Pk+1 is also tangent to
X along the subvarieties X1, . . . , Xk+1 cut out by Π1, . . . ,Πk+1 on X . Notice that
the Xi’s are fibres of the projection π : X → Y from V ; hence they have positive
dimension n−m. So we see that νk ≥ n−m > 0, and that the contact variety is
reducible in this case.

Similarly, if, in the above situation, one has s + 1 ≤ (k + 1)(n − m) and r ≥
(m+ 1)(k+ 1) + s+ 1, then X is k-weakly defective. In fact, by following the same
argument as before, we see that either X is k-defective, or TX,P1,...,Pk+1 has exactly
dimension s+ (k + 1)(m+ 1) and coincides with TW,P1,...,Pk+1 . Then we conclude,
arguing as above, that X is k-weakly defective.

We notice that there are examples of varieties X as above which are smooth. By
way of example, consider the following situation. Let Y be a smooth, irreducible,
non-degenerate m-dimensional variety and let Z = P(E) be a Pk-bundle over Y ,
where E is a vector bundle of rank k+1 on Y . We assume that OZ(1) is very ample
and embeds Z in a Ps. Let L be a very ample line bundle on Y which embeds Y
in a Ph. The variety X = P(E ⊕ L) is smooth, of dimension n = k + m + 1. We
also assume that OX(1) is very ample and embeds X in a Pr, in which we have a
subspace V of dimension s where Z sits and a subspace U of dimension h where Y
sits, and V and U span all of Ps, so that r = r+h+1. The projective construction
of X is well known: a generating Pk+1 of X is obtained by joining a point P of Y
in U with the generating Pk of Z corresponding to P in V . Hence X also lies in
the cone over Y with vertex V .

For a different example which is not a scroll, take a smooth, irreducible, non-
degenerate rational curve C ⊂ Ph, and take the coneW overC with vertex a general
line V in Pr, r = h + 2, so that W is smooth off V . The group of Weil divisors
of W , modulo linear equivalence, is generated by H , the hyperplane class, and Π,
the class of a ruling. It is not difficult to verify (see for example the argument in
[DiG], §3) that the general element X in a linear system of the form hH+Π, h ≥ 1,
is smooth, irreducible and non-degenerate. For h = 1 we find examples essentially
the same as the previous ones, whereas for h > 1 we find different examples of
2-defective and 1-weakly defective surfaces. Notice that the assumption about the
rationality of C is not really necessary in order to perform the above construction.

Example 4.4. Let Y in Ps be a k-defective, irreducible, reduced and non-degen-
erate variety of dimension n, with k ≥ 1 and s ≥ (k + 1)(n + 1) − 1; let X be
any irreducible, reduced, non-degenerate, n-dimensional variety in Pr, r = s + 1,
contained in the cone W over Y with vertex at a point V . Then X is k-weakly
defective.

One can see this in the following way. Let P be a general point of X . If the
tangent space TX,P contains the point V , then proposition 4.1 says that X is a cone
and X is 0-weakly defective, hence also k-weakly defective for any k ≥ 0. Otherwise
let us consider the tangential projection τX,P : X ⊆ Pr → X1 ⊆ Pr−n−1. We set
V ′ = τX,P (V ) ∈ Pr−n−1, and also consider the projection σ : Pr−n−1 → Pr−n−2
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from V ′. Notice that 〈V, TX,P 〉 = TW,P , so that the composite projection σ ◦ τ :
Pr → Pr−n−2 is nothing but the tangential projection τW,P .

We denote by U the hyperplane in Pr in which Y sits. We may actually assume
that U is a general hyperplane containing P . We can then consider also the tan-
gential projection τY,P : U → Pr−n−2. Since TW,P = 〈V, TX,P 〉 = 〈V, TY,P 〉, we see
that TY,P = TW,P ∩ U , so that τY,P is the restriction of τW,P to U .

By the above considerations, we see that the image W1 of W via τX,P is the
cone with vertex V ′ over the variety Y1 ⊂ Pr−n−2 which is the projection of W via
τW,P . Since all the generating lines of W are contracted by τW,P , we see that this
is the same as the image via τY,P of Y .

Now, if dim(Y1) <dim(Y ), which is certainly the case if k = 1 by proposition
3.5, i, then

dim(W1) = dim(Y1) + 1 < dim(Y ) + 1 = n+ 1.

Hence, either also dim(X1) < dim(X) and therefore X is 1-defective by proposition
3.5, ii, or

dim(X1) = dim(X) = n ≤ dim(W1) < n+ 1,

which proves that X1 = W1. Thus X1 is a cone; hence it is 0-defective. Then X is
1-defective, and therefore also k-defective, by proposition 3.6.

The assertion is thus proved if either k = 1 or dim(Y1) < dim(Y ). If k > 1 and
dim(Y1) = dim(Y ), then Y1 is (k − 1)-defective by proposition 3.6 and X1 sits in
the cone over Y1 from V ′. We may then apply induction to X1 and assert that it
is (k − 1)-weakly defective. Then propostion 3.6 again ensures that X is k-weakly
defective, as desired.

Example 4.5. Let Y be a reduced, irreducible variety of dimension n ≥ 2 in Ps,
of minimal degree s− n+ 1. Notice that we allow n = s, in which case Y coincides
with Ps. The classification of these varieties is well known; see [Ha]. They are
projectively Cohen-Macaulay, so that, in particular, the quadrics in Ps cut out on
them a complete linear system, which turns out to be of dimension

r = s(n+ 1)− (n− 2)(n+ 1)
2

− 1

(see either the proof of proposition 3.23 from [EiHa] or proposition 6.1 below).
Consider the 2-Veronese embedding X of Y in Pr. We claim that X is k-defective
for every k such that

s− [
n− 2

2
]− 1 ≤ k ≤ s− 1.

Indeed, for every such value of k one has

r − (n+ 1)(k + 1) ≤ r − (n+ 1)(s− [
n− 2

2
]) ≤ r − (n+ 1)(s− n− 2

2
) = −1.

On the other hand, we claim that for general points P1, . . . , Pk+1 on X , the lin-
ear system H(−2P1 − · · · − 2Pk+1) is not empty. In fact, let Q1, . . . , Qk+1 be
the corresponding points on Y . The system certainly contains the Veronese im-
age of the linear system cut out on Y by the quadric cones in Ps with vertex at
〈Q1, . . . , Qk+1〉. Since s− k− 1 < n in this case, we see that the general projection
of Y from 〈Q1, . . . , Qk+1〉 surjects onto Ps−k−1. Hence there is no quadric cone
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with vertex at 〈Q1, . . . , Qk+1〉 containing Y , and therefore the system in question
is not empty of dimension

(
s−k+1

2

)
− 1. This proves that actually

δk(X) = dim(H(−2P1 − · · · − 2Pk+1))−max{−1, r − (n+ 1)(k + 1)}

≥
(
s− k + 1

2

)
In the surface case n = 2, one has k = s− 1. The surface X is thus s-defective.

We claim that δk = 1 in this case. In fact, if we take P1, . . . , Ps general points
on X , the general tangent hyperplane at P1, . . . , Ps is tangent along a curve Σ.
Let Q1, . . . , Qs be the corresponding points on Y and let Γ be the curve on Y
corresponding to Σ. Since a special case of this situation is when Γ is cut out on Y
by the hyperplane spanned by Q1, . . . , Qs, we see that the general Γ is the general
hyperplane section of Y . Since it imposes 2s−1 conditions on the quadrics, theorem
1.1 tells us that δk = 1.

Notice that the contact variety is irreducible in these cases.

Example 4.6. From the previous example we have that the 2-Veronese image V2,s

of Ps in Pr, with r = s(s+3)
2 , is defective. Arguing as in the previous example, one

sees that if s
2 ≤ k ≤ s− 1, then δk =

(
s−k+1

2

)
. On the other hand, it is an exercise

to see that for 1 ≤ k ≤ s
2 one has δk =

(
k+1

2

)
.

Let us now take any reduced, irreducible, non-degenerate, projective variety
X ⊂ V2,s of dimension n < s. We make the following claims:

Claim 1: If k is such that 1 ≤ k ≤ s− 1 and

2(k + 1)(n+ 1) ≥ (s+ 2)(s+ 1),

then X is k-defective.
Claim 2: If k is such that 1 ≤ k ≤ s− 1 and

2(k + 1)(n+ 1) ≤ (s+ 2)(s+ 1)− 2,

and, in addition, 2(s− n) < k, then again X is k-defective.
Claim 3: If k is such that 1 ≤ k ≤ s− 1, k = 2(s− n) and

2(k + 1)(n+ 1) ≤ (s+ 2)(s+ 1)− 2,

then either X is k-defective or it is k-weakly defective with νk = s− n.
As for the proofs, notice that, under the hypothesis of claim 1, we have σ(k)(X) =

r, and therefore we would expect H(−2P1 − · · · − 2Pk+1) to be empty for general
points P1, . . . , Pk+1 of X . Instead, this system is not empty of dimension

(
s−k+1

2

)
−

1, since it coincides with the linear system of quadric cones in Ps with k + 1 given
independent double points. This proves claim 1.

For claim 2, the situation is similar. We have r ≥ (k + 1)(n+ 1); hence

δk(X) = dim(H(−2P1 − · · · − 2Pk+1))− r + (k + 1)(n+ 1)

≥
(
s− k + 1

2

)
−
(
s+ 2

2

)
+ (k + 1)(n+ 1) =

(
k + 1

2

)
− (k + 1)(s− n) > 0,

which proves the claim.
As for claim 3, the above computation shows that, if δk(X) = 0, then the linear

system H(−2P1 − · · · − 2Pk+1) has exactly dimension
(
s−k+1

2

)
− 1. This implies

that H(−2P1 − · · · − 2Pk+1) comes, via the 2-Veronese map of Ps, from the linear
system cut out on X by the quadric cones with vertex 〈P1, . . . , Pk+1〉. Notice that,
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abusing notation, we are identifying X with its pre-image under the Veronese map.
Since 〈P1, . . . , Pk+1〉 cuts X in a subvariety of dimension k + n− s = s− n, claim
3 follows.

Notice that claim 3 yields that the 2-Veronese image of any surface of degree
d ≥ 3 in P3 is 2-weakly defective.

Example 4.7. This is a variation and an extension of example 4.5. On the same
lines example 4.5 could be further generalized, but we will not do so here.

Let us consider an irreducible, reduced, non-degenerate, projective variety Y ⊂
Ps of dimension n such that its general curve section C is a linearly normal curve
of arithmetic genus g ≥ 0 and degree d ≥ 2g+ 1. One knows that C, and therefore
Y , is then projectively Cohen-Macaulay and d = s − n + g + 1 (see theorem 6.1
below). Note that the case g = 0 gives us back the varieties of minimal degree
considered in example 4.5.

The quadrics in Ps cut out on Y a complete linear system, which is of dimension

r = s(n+ 1)− (n− 2)(n+ 1)
2

+ g − 1

(see theorem 6.1, below). Then the 2-Veronese embedding X of Y in Pr is k-
defective for every k such that

s− [
n− 2

2
]− 1 ≤ k ≤ s− 1

as soon as
(
s−k+1

2

)
> g. Indeed, one has

r − (n+ 1)(k + 1) ≤ r − (n+ 1)(s− [
n− 2

2
]) ≤ r − (n+ 1)(s− n− 2

2
) = g − 1,

whereas, with the same argument we used in example 4.5, we can see that
H(−2P1 − · · · − 2Pk+1) is not empty, of dimension at least

(
s−k+1

2

)
− 1.

The situation is particularly interesting if g = 1. Then the above argument
shows that X is k-defective for some k, unless n = 2. In this case, however,
the surface S is (s− 1)-weakly defective but not (s− 1)-defective. In fact we have
σ(s−1) = r−1; hence we expectH(−2P1−· · ·−2Ps) to be 0-dimensional. Notice that
H(−2P1 − · · · − 2Ps) contains the double of the hyperplane section Γ of Y passing
through the points Q1, . . . , Qs corresponding to P1, . . . , Ps. Observe that Γ is a
general hyperplane section of Y and Q1, . . . , Qs are general points on it. Suppose
there is a divisor D in H(−2P1−· · ·−2Ps) not containing Γ. Then it should cut out
on Γ the divisor 2Q1 + · · ·+2Qs, which therefore would belong to |OΓ(2)|, contrary
to the generality assumption on Q1, . . . , Qs. Thus D contains Γ, i.e. D = Γ + Γ′,
with Γ′ linearly equivalent to Γ, containing Q1, . . . , Qs. Again by the generality
assumption on Q1, . . . , Qs, one has Γ = Γ′, proving that H(−2P1 − · · · − 2P2) is
indeed 0-dimensional, and therefore X is not (s− 1)-defective. On the other hand,
since the unique element inH(−2P1−· · ·−2Ps) is 2Γ, we see that X is (s−1)-weakly
defective, and the contact curve is irreducible.

Notice that in the above situation of surfaces Y ⊂ Ps, of degree s with curve
sections of arithmetic genus 1, one has to take, in principle, s ≥ 3 in order to make
a sensible construction. However, one can also consider double covers f : Y → P2

branched along a quartic curve. Then the linear system |f∗(L)|, where L is a line
in P2, consists of elliptic curves, and |2f∗(L)| determines an embedding of Y in P6

as a surface X which is 1-weakly defective, as one can see with the same argument
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as above. However X also sits on the cone over the Veronese surface in P5; thus
these examples are also included in example 4.4.

As for the classification of surfaces Y ⊂ Ps, of degree s with curve setions of
arithmetic genus 1, it is very well known that, if the general hyperplane section of
Y is smooth, then either s ≤ 9 and Y is a del Pezzo surface or Y is a cone (for a
quick proof of this classical result, see [CiLoMi]). If the general hyperplane section
of Y is singular, then it has either a node or a cusp, hence Y itself has either a nodal
or a cuspidal line, and it is a projection of a rational normal scroll Y ′ ⊂ Ps+1 of
degree s, from a point P /∈ Y ′ lying in a plane which cuts Y ′ along a conic, whose
projection in Ps is the double line.

5. Involutions on varieties and Castelnuovo-Humbert’s theorem

The present section contains a basic preliminary, of independent interest, to
the proof of the classification theorem 1.3. Namely, we prove an extension to
higher dimensional varities of a famous theorem of Castelnuovo and Humbert on
involutions on curves (see [EnChi], pg. 480; [Ma], Appendix).

Let X be a reduced, irreducible, projective variety of dimension n. Let D =
{Dy}y∈Y be an algebraic family of Weil divisors onX parametrized by a reduced va-
riety Y . We will constantly assume in what follows that D is effectively parametrized
by Y , i.e. the corresponding map of Y to the appropriate Hilbert scheme of divisors
on X is generically finite to the image on any irreducible component of Y . We will
say that D is irreducible of dimension m if Y is, and we can speak in an obvious
way of the irreducible components of Y , etc.

Let P1, . . . , Ph be points in X . We define D(−P1 − · · · − Ph) to be the family of
all divisors in D containing P1, . . . , Ph.

Suppose D has pure dimension m. For every positive integer h we can consider
the incidence correspondence

I(h) := I(h)(D) = {(y, P1, . . . , Ph) ∈ Y ×Xh : P1, . . . , Ph ∈ Dy}

with the two projections p1 : I(h) → Y and p2 : I(h) → Xh. All the fibres of p1 have
the same dimension h(n− 1); hence all the irreducible components of I(h) have the
same dimension (h+ 1)(m− 1) + 1 and dominate Y via p1.

Lemma 5.1. Suppose D is irreducible of positive dimension m.
(i) For every positive integer h there is at least one irreducible component J of

I(h) such that the map p2 : J → Xh is generically of maximal rank; namely, it is
dominant if and only if h ≤ m, it is generically finite to the image if and only if
h ≥ m, and both generically finite and dominant if and only if h = m.

(ii) Let h be a positive integer such that h ≤ m. If P1, . . . , Ph are general points,
then every irreducible component of D(−P1 − · · · − Ph) has dimension m − h. If
P1, . . . , Ph are points in X, then every irreducible component of D(−P1− · · · −Ph)
has dimension at least m− h.

Proof. First we prove (i) for h ≤ m. In this case it suffices to prove that p2 : I(h) →
Xh is dominant.

The assertion is true for h = 1, since D is effectively parametrized by a positive
dimensional variety Y , and therefore Dy moves as y moves in Y , thus describing a
Zariski dense subset of X . So we may argue by induction on h.

Consider the projection π : Xk → X to the last factor and the composite
maps f = π ◦ p2 : I(h) → Xk−1 and f2 = π2 ◦ p2 : I(h) → X , which are again
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dominant. Hence its fibre Φ over a general point Ph is pure of dimension equal to
dim(I(h))−dim(X) = nh+m− h− n. We may replace Φ by one of its components
and assume it is irreducible. The general fibre Ψ of p1 : Φ → Y has dimension at
most (h− 1)(n− 1); hence Y ′ := p1(Φ) is irreducible of dimension at least m− 1.
Since Y ′ cannot coincide with Y , because all divisors Dy with y ∈ Y ′ contain Ph
which is a general point on X , we have that Y ′ has codimension 1 in Y . Consider
the family D′ = {Dy}y∈Y ′ . It is clear that, as Ph moves in X , Y ′ moves with Ph
sweeping out the whole of Y . This implies that D′ is effectively parametrized by
Y ′. So, by applying induction, one easily concludes the proof of (i) in this case.

Now let us prove the first assertion of (ii). Let J be any irreducible component
of I(h) and let FJ be the fibre of p2 : J → Xh over a general point (P1, . . . , Ph) in
Xh. Then either p2 : J → Xh is dominant, in which case FJ has pure dimension
m − h = dim(J) − dim(Xh), or FJ is empty. The first possibility actually occurs
for some J , as we already proved.

Notice that p1 is injective on FJ and D(−P1 − · · · − Ph) is the union of the
FJ ’s as J varies among the irreducible components of I; hence it is not empty, of
dimension m− h.

The proof of the second assertion of (ii) is similar, and therefore we omit it.
Finally we prove (i) for h > m. The projection πh,m : Xh → Xm onto the

first m factors induces a surjective map fh,m : I(h) → I(m) whose fibres all have
dimension (h−m)(n− 1). Thus fh,m carries irreducible components J of I(h) onto
irreducible components J ′ of I(m). Let J ′ be an irreducible component of I(m)

which dominates Xm. Such a component exists, as we already proved. Let J be
a component of I(h) dominating J ′ via fh,m and let (y, P1, . . . , Ph) be a general
element of J . Then (y, P1, . . . , Pm) is a general element of J ′, and so P1, . . . , Pm
are general points on X . Since (ii) holds for h = m, then D(−P1 − · · · − Pm) is
finite, which implies that also D(−P1 − · · · − Ph) is finite. This implies that the
map p2 : J → Xh is generically finite to the image, proving (i) in this case.

Let X be as above and let D be a family of pure positive dimension m of divisors
on X . If P1, . . . , Pm are general points of X , then we know by lemma 5.1, ii, that
D(−P1 − · · · − Pm) is finite. The number of its elements is called the index of D.
We will say that D is an involution if its index is 1.

Lemma 5.2. Suppose D is an involution on the irreducible, reduced variety X.
Then:

(i) there is a unique irreducible component J of I(m) dominating Xm via p2;
(ii) p2 : J → Xm is a birational morphism;
(iii) D is irreducible; and
(iv) if D has no fixed divisor, then I(1) is irreducible.

Proof. Assertions (i) and (ii) are immediate consequences of the definition. By
lemma 5.1, i, assertion (iii) follows from (i).

Let us prove (iv). Since D has no fixed divisor, every irreducible component of
I(1) dominates X via p2. Now I(m) is the m-fold fibred product of I(1) over Y .
Thus two different irreducible components of I(1) would give rise to two different
irreducible components of I(m), both dominating Xm via p2, against (i).

The next examples show typical situations in which we have involutions on a
variety:
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Example 5.3. A linear system is clearly an involution.

Example 5.4. If X is a curve, the family Dm := Dm(X) of all divisors of degree
m on X is an m-dimensional involution.

Example 5.5. Let X be a variety as above and let V be an irreducible, reduced
projective variety. Let f : X → V be a rational dominant map which is not the
identity and let D be an algebraic family on V . The pull-back f∗(D) of D on X is
defined in the obvious way. Then D is an involution if and only if the same is true
for f∗(D), which is said to be composite with the map f .

In particular, if V is a curve, then the family Df,m = f∗(Dm(V )) whose general
member is a sum of m general fibres of f is an m-dimensional involution on X . We
write Df instead of Df,1. If an involution D is composed with such an f , we also
say that it is composite with the invoution Df . The involution Df , or the map f ,
is said to be a pencil if f has irreducible fibres. Using Stein factorization, one sees
that every involution of the type Df is compososite with a pencil.

Recall that the theorem of Bertini asserts that if D is a linear system without a
fixed part, whose general member is reducible, then it is composed with a pencil.

Example 5.6. Let D be a family of divisors on X . If we count any divisor in D
with a certain multiplicity µ ≥ 2, we have a new family D(µ) which is an involution
if and only if D is.

Next we give a criterion which tells us when an algebraic family is composed
with a pencil.

Proposition 5.7. Let D be an irreducible family of divisors on a reduced, irre-
ducible variety X of dimension n ≥ 2 [resp. of dimension n = 1]. If D has no fixed
divisor, then it is composed with a pencil if and only if for a general point P in X,
the family D(−P ) has a fixed divisor [resp. a fixed divisor of degree at least 2].

Proof. We only prove the non-trivial implication. We also assume n ≥ 2, the curve
case being similar. Suppose D(−P ) has a fixed divisor Φ. Let F be an irreducible
component of Φ. Since for Q ∈ F general we have D(−P ) = D(−Q) by 5.1, ii, then
P sits, by its generality, as a general point on some irreducible component FP of Φ.
As P varies on X , FP varies in some component W of the Hilbert scheme of divisors
on X . Hence we have a map f : P ∈ X → [FP ] ∈W , whose general fibre is exactly
FP . Hence C := f(X) is a curve and f : X → C is a pencil. Furthermore, if D is
a general divisor in D, then D is the sum of divisors in the pencil Df . This follows
by the obvious fact that for any general point P in a component D′ of D, and FP is
contained in D; hence coincides with D′. This description of D immediately yields
the assertion.

We also point out the following proposition:

Proposition 5.8. Let X be a reduced, irreducible variety. Let D be an involution
on X which has no fixed component. If the general divisor D in D is non-reduced,
then there is an involution E whose general divisor is reduced and there is an integer
µ ≥ 2 such that D = E(µ).

Proof. We know by lemma 5.2, iv, that I(1) is irreducible. Let us consider the
normalization π : I → I(1) with the two maps π1 := π◦p1 : I → Y and π2 := π◦p2 :
I → X . The general fibre of π1 is smooth. Let us consider the Stein factorization
of π1. We have an m-dimensional variety T , a finite morphism ψ : T → Y of a
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certain degree δ, and a morphism φ : I → T with smooth and irreducible general
fibres, such that π1 : φ ◦ ψ. Now φ : I → T may be interpreted as a new family
D′ = {Ft}t∈T of divisors on X . The divisors of D are sums of δ divisors of D′.
More precisely If y ∈ Y is a general point and t1, . . . , tδ are the points in ψ−1(y),
then Dy = µ1Ft1 + · · ·+ µδFtδ , where µ1, . . . , µδ are integers. However, since T is
irreducible, the monodromy of ψ : T → Y acts in an irreducible way on ψ−1(y),
yielding µ1 = · · · = µδ. This immediately implies our assertion.

The classical Castelnuovo-Humbert theorem for curves can be stated as follows:

Proposition 5.9. Let X be a reduced, irreducible curve and let D be an m-dimen-
sional involution on X which has no fixed component, whose general divisor is
reduced, and which is not composed with a map f : X → C of degree d ≥ 2 to a
curve C of positive genus. Then either D is a linear system or D = Dm.

Proof. Let m = 1, i.e. the parameter variety Y of D is a curve C. Then I(1) is an
irreducible curve which is birational to X via p2. Consider the rational dominant
map f : p1 ◦ p−1

2 : X → C. Clearly D = Df . Hence our assumptions imply that
either f has degree 1, i.e. D = D1, or C is rational, i.e. D is a linear system.

Now let m ≥ 2. Let us denote by d the degree of the divisors of D. We have
d ≥ m, and equality holds if and only if D = Dm. Hence we may assume d ≥ 3. We
argue by induction. Since the problem is birational in nature, we may, and will,
assume X is smooth.

Let P be a general point of X and consider D(−P ). By the assumptions and by
proposition 5.7, P is the only fixed part of D(−P ). Let DP be the fixed point free
involution obtained from D(−P ) by taking P away from the general divisor of D
containing it.
Claim: DP is not composite with a map f : X → C of degree d ≥ 2 onto a curve C
of positive genus.

Let us argue by contradiction. By the results in the appendix of [Ma], we see
that f would not depend on P . Take a general divisor D ∈ DP . Let Q be a point
in D different from P . Q is another general point of X . Thus D −Q ∈ DQ. Then
D−Q should contain f∗(f(P )), and D itself would be composite, by (5.7), with f ,
a contradiction.

By the claim, we may apply induction to DP . Then either DP = Dm−1, which
yields D = Dm; or DP is a linear system. In the latter case we see that if D ∈ D is a
general divisor, there are d linear systems of dimension m− 1 of the type DP , with
P ∈ D, containing D. Since each of these systems is mapped to a point via the
natural map Y → Pic(X), we see that Y is mapped to a point, i.e. D is contained
in a complete linear system L of dimension r ≥ m. Then we have the natural map
y ∈ Y → DY ∈ L = Pr that is generically finite to the image Y ′, which therefore
has dimension m. The above argument shows that, given a general point of Y ′,
we have at least d ≥ 3 subspaces Pm−1 passing through that point and contained
in Y ′. Hence Y ′ is ruled with at least d ≥ 3 rulings. This implies that Y ′ is a
projective space. This is clear if m = 2: a ruled surfaces which is not P2 has at
most two different rulings, in which case it is a quadric. If m > 2, one reduces
to the surface case by considering a general surface section. This concludes our
proof.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



170 L. CHIANTINI AND C. CILIBERTO

Our extension of the Castelnuovo-Humbert theorem to higher dimensional va-
rieties reduces all involutions either to linear systems or to involutions on curves
already classified in theorem 5.9.

Theorem 5.10. Let X be a reduced, irreducible variety of dimension n > 1. Let D
be an m-dimensional involution on X which has no fixed divisor and whose general
divisor D is reduced. Then either D is a linear system, or it is composite with a
pencil.

Proof. Since the problem is birational, we may, and will, assume X is smooth. We
will freely use here the construction and notation from the proof of proposition 5.6.

Suppose first that the general divisor D ∈ D is irreducible. In the present case
one has T = Y .

Let m = 1, i.e. Y is a curve C. The map π2 : I → X is now birational. Hence
the rational map f := π1 ◦ π−1

2 : X → C is dominant, and of course D = Df .
Suppose next that m ≥ 2. We will argue by induction. Let P be a general point

of X . Then D(−P ) is an (m− 1)-dimensional involution. Since in the present case
clearly D is not composite with a pencil, by proposition 5.7 the system D(−P )
has no fixed divisor. Then, by induction, D(−P ) is a linear system of dimension
m − 1 ≥ 1. If D ∈ D is a general divisor and P is a general point on D, then
D(−P ) is a linear system contained in D and containing D. Furthermore, D(−P )
is different from D(−Q), if P and Q are two general points of D. This immediately
implies that the natural map Y → Pic(X) is constant, i.e. D is contained in a
linear system. We want to prove now that D itself is a linear system.

Take general divisors D,D′ ∈ D. Let Z be the scheme-theoretic intersection of
D and D′. First we notice that Z 6= ∅. Otherwise we would have dim|D| ≤ 1,
contrary to the fact that dim |D| ≥ dimD = m ≥ 2. Furthermore we claim that,
as D′ varies in D, Z describes a dense Zariski subset of D. Otherwise, since D
is irreducible, Z would stay fixed. By blowing up Z we would then reduce to the
case Z = ∅, which we have already excluded. This implies that we can choose a
general point P on X in such a way that it lies on D ∩D′. Hence D and D′ are
connected by the (m− 1)-dimensional linear system D(−P ) inside D. This proves
that D itself is a linear system.

Suppose now that the general divisor D ∈ D is reducible. We will prove that D
is composite with a pencil in this case. The case m = 1 can be easily treated as
before. Let m ≥ 2, and let us argue by induction.

Let P be a general point on X . Suppose D(−P ) has no fixed divisor. By
induction there are a pencil f : X → C and an involution E on C such that
D(−P ) = f∗E . Since all divisors in D(−P ) contain P , then all fibres of f contain
P . Let d > 1 be the degree of divisors in E . Then a general divisor D in D(−P )
would consist of d fibres of f , all passing through P . Hence D would be singular
at P , against the generality of P and D. In conclusion, D(−P ) has a fixed divisor,
and we are done by proposition 5.7.

Remark 5.11. This remark has little to do with the main object of the present
section, i.e. the Castelnuovo-Humbert theorem. However, it has to do with families
of divisors, and it will be useful later on. Let X be a reduced, irreducible variety
of dimension n and let, as usual, D = {Dy}− y ∈ Y be an algebraic family of Weil
divisors on X parametrized by a reduced variety Y of dimension 1. If P is a general
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point of X , then any two divisors in D(−P ) intersect transversally at P . The proof
relies on a straightforward local computation, and it is left to the reader.

6. A basic result from Castelnuovo’s theory

The present section is devoted to a basic result in Castelnuovo’s theory which
is a slight extension of propostion 3.23 from [EiHa]. We used part of this result
already in examples 4.5 and 4.7, and we will rely on it in our proof of theorem 1.3.

Before stating the theorem, we introduce some notation and definitions. Let X
be a scheme in Pr of positive pure dimension n and codimension q = r − n. We
denote by hX the Hilbert function of X , i.e., for any integer l we set

hX(l) = dim(Im(ρX,l : H0(Pr,OPr (l))→ H0(X,OX(l))).

We will also use the first difference function ∆hX(l) := hX(l)− hX(l − 1).
We recall that X is said to be l-normal if the map ρl is surjective, which is

equivalent to saying that H1(Pr , IX(l)) = 0, where IX is the ideal sheaf of X in
Pr. One says that X is linearly [resp. quadratically, etc.] normal, if it is 1-normal
[resp. 2-normal, etc.].

If X is l-normal for all l ≥ 0, then one says that X is arithmetically normal. Let
Xi be the section of X with a general Pq+i, i = 0, . . . , n. Notice that Xn = X .

If Xi is arithmetically normal for all i = 1, . . . , n, one has that X is projectivelly
Cohen-Macaulay, i.e. the coordinate ring of X in Pr ia a Cohen-Macaulay ring.

Now we need to recall two basic facts from Castelnuovo’s theory. The first one
is that

∆hX(l)− hXn−1(l) = dim(Ker(σX,l : H1(Pr, IX(l − 1))→ H1(Pr, IX(l)))) ≥ 0,
(6.1)

and the equality holds for all integers l if and only if X is projectively Cohen-
Macaulay (see [Ci], §1).

The second basic result is that, if X is irreducible of degree d, then

hX0(l) ≥ min{d, lq + 1}(6.2)

(see [EiHa], chapt. 3, or again [Ci], §1).
We are now ready to prove the following theorem.

Theorem 6.1. Let X be a reduced, irreducible, non-degenerate, projective variety
in Pr of positive dimension n and codimension q = r− n and of degree d. Suppose
that d ≥ q + 1 + ι, with 0 ≤ ι ≤ c. Then for every integer l ≥ 2 one has

hX(l) ≥
(
l + n− 2

n

)
ι+
(
l+ n− 1

n

)
q +

(
l + n

n

)
.(6.3)

If d ≤ 2q + 1, then the following propositions are equivalent:
(i) equality holds in (6.3) for some l ≥ 2;
(ii) equality holds in (6.3) for all l ≥ 2;
(iii) the general curve section X1 of X is linearly normal of degree d = q+ 1 + ι;
(iv) X is projectively Cohen-Macaulay of degree d = q + 1 + ι.

Proof. By (6.1) we have

hX(l) ≥
n∑
i=1

hXi(l − 1) + hX0(l).(6.4)
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Since by the non-degeneracy hypothesis we have hXi(1) = q + i + 1, i = 1, . . . , n,
then (6.4) and (6.2) imply (6.3) for l = 2. For l ≥ 3 one proves (6.3) by induction.

Suppose equality holds in (6.3) for some l ≥ 2. Then it has to hold for l = 2.
This implies that d = q+1+ι and that the map σXi,2 is injective for all i = 1, . . . , n.

Consider now, for every integer l and for every i = 1, . . . , n, the exact sequence

· · · → H1(Pq+i, IXi(l − 1))→ H1(Pq+i, IXi(l))→ H1(Pq+i−1, IXi−1(l))→ · · · .
(6.5)

The injectivity of σXi,2 implies that H1(Pq+i, IXi(l)) = 0 for l = 1, 2, whenever
the cohomology group H1(Pq+i−1, IXi−1(1)) vanishes. Since (6.2) implies that
H1(Pq, IX0(l)) = 0 for all l ≥ 2, we conclude, by induction, thatH1(Pq+i, IXi(l)) =
0 for l = 1, 2, and all i = 1, . . . , n. Finally, by using (6.5) and induction again we
conclude that H1(Pq+i, IXi(l)) = 0 for all i = 1, . . . , n and for all integers l. We
have thus proved that (i) implies (iv).

If (iv) holds, the proof of (6.3) shows that the equality has to hold there for all
integres l. Thus (iv) implies (ii). Since (ii) implies (i), we see that (i), (ii) and (iv)
are equivalent.

Of course (iv) implies (iii). Suppose (iii) holds. Notice that the irreducibility of
X implies that Xi is irreducible for all i = 1, . . . , n. Hence H1(Pq+i, IXi) = 0 for
all i = 1, . . . , n. Since (iii) implies that H1(Pq+1, IX1(1)) = 0, we see by induction,
using (6.5) for l = 1, that H1(Pq+i, IXi(1)) = 0 for all i = 1, . . . , n. Then, pro-
ceeding as before by induction, we conclude again that H1(Pq+i, IXi(l)) = 0 for all
i = 1, . . . , n and for all integers l. We have thus proved that (iii) is equivalent to
(iv).

7. The proof of the classification theorem

In this section we can finally give the

Proof of the classification theorem (1.3). Let X ⊂ Pr be a reduced, irreducible,
non-degenerate, projective, k-weakly defective surface. If k = 0, we know by remark
3.1, ii, that X is either a cone or the tangent developable to a curve. Thus from
now on we will assume k ≥ 1.

Let P1, . . . , Pk+1 be general points on X . Let H be a general hyperplane section
in H(−2P1 − · · · − 2Pk+1). As in §1, we consider Σ := ΣP1,...,Pk+1(H), which is the
union of all irreducible components of Sing(H) containing P1, . . . , Pk+1.

Recalling theorem (1.1), since νk = 1 in this case, we have

h(Σ) = r − dim(H(−Σ)) ≤ 2(k + 1)− δk ≤ 2(k + 1).(7.1)

Bertini’s theorem implies
Claim 1: For a general H in H(−2P1 − · · · − 2Pk+1), the set ΣP1,...,Pk+1(H) does
not depend on H.

Furthermore, by the very defintion of ΣP1,...,Pk+1(H), one has
Claim 2: ΣP1,...,Pk+1(H) has no fixed components as P1, . . . , Pk+1 vary on X and
H varies in H(−2P1 − · · · − 2Pk+1).

Indeed, each irreducible component of ΣP1,...,Pk+1(H) has to contain at least one
of the points P1, . . . , Pk+1, each one of which varies describing the whole of X .

Proposition 2.4 yields
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Claim 3: If P1, . . . , Pk+1 are general points on X and if H is general in the linear
system H(−2P1− · · · − 2Pk+1), then every irreducible component of ΣP1,...,Pk+1(H)
appears with multiplicity 2 in H.

Then we can write

H = 2ΣP1,...,Pk+1(H) + ∆P1,...,Pk+1(H),(7.2)

where ∆ := ∆P1,...,Pk+1(H) is effective. As H varies in H(−2P1 − · · · − 2Pk+1), ∆
varies in a linear system L := LP1,...,Pk+1 of dimension.

dim(LP1,...,Pk+1) = r − 3(k + 1) + δk.

Thus

r = 3(k + 1)− δk + dim(LP1,...,Pk+1) ≥ 3(k + 1)− δk.(7.3)

The claims above imply that Σ varies in a (k + 1)-dimensional involution D on
X , with no fixed component, whose general divisor is reduced. Now we discuss
separately the two cases: (i) the general divisor Σ is irreducible; (ii) the general
divisor Σ is reducible.
Case (i): The general divisor Σ is irreducible.

By theorem 5.10, D is a linear system of dimension k + 1 ≥ 2.
Claim 4: In formula (7.2) one has ∆ := ∆P1,...,Pk+1(H) = 0.
First we prove the assertion for k = 1. Proposition 3.3, iv, tells us that δ1 ≤ 1.
Then (7.3) yields r ≥ 6− δ1 ≥ 5.

If X is 1-defective, then (7.1) implies that the curves Σ are irreducible plane
curves. They are non-degenerate plane curves, as otherwise X would contain a
2-dimensional family of lines; hence it would be a plane, against its non-degeneracy
in Pr. But then it is a classical result that X is the Veronese surface in P5 (for a
modern reference see [CiSe]), whence the assertion immediately follows.

Suppose now X is not 1-defective. By (7.1) each of the curves Σ lies in some
P3. Actually, the above argument tells us that a general curve of this family is
non-degenerate in a P3. We denote by ΠΣ the P3 spanned by the general curve
Σ ∈ D. In this way we have a 2-dimensional family S of P3’s in Pr.

By the non-degeneracy assumption on X in Pr, r ≥ 6, two general P3’s in S
cannot meet along a plane. We claim that:
Claim 4.1: If two general P3’s in S meet along a line, then r = 6 and X sits in a
cone over the Veronese surface in P5, and claim 4 holds for X.

The latter assertion immediately follows from the former. In order to prove this,
note that the lines which are intersections of two general P3’s in S have to meet
pairwise; otherwise all the P3’s in S would be contained in the P5 spanned by
two general P3’s in S, contradicting the non-degeneracy of X . Then either all the
lines in question, hence all the P3’s in S, contain a fixed point P ∈ Pr, or they all
lie in a plane Z. The latter case cannot occur. In fact, by projecting X from Z
to Pr−3, we would find a surface X ′ with a 2-dimensional family of lines. Hence
X ′ would be a plane and therefore it would be degenerate, because r − 3 ≥ 3, a
contradiction again. On the other hand, by projecting X to Pr−1 from P we find a
non-degenerate surface X ′ with a 2-dimensional family of irreducible plane curves.
As we saw, X ′ is a Veronese surface, proving claim 4.1.

We may thus assume, from now on, that two general P3’s in S span a P6. Notice
in fact that they cannot be skew, since two general curves in D of course meet. We
want to show that this case does not really occur.
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We consider the tangential projection τX : X → X1 ⊂ Pr−3 from a general point
P . Since r ≥ 6, then r − 3 ≥ 3. By proposition 3.6, the surface X1 is 0-defective;
hence it is a developable scroll. Notice that the generating lines of X1 are the
projection of the curves of D(−P ).

We will prove that X1 can be neither a cone, nor the developable tangent to a
curve, thus concluding the proof of claim 4 in the case k = 1.
Claim 4.2: X1 is not a cone.

Suppose X1 is a cone. Then two general curves Σ,Σ′ in D(−P ) would be mapped
to two lines which meet at a point, thus spanning a plane S. Hence Σ ∪ Σ′ would
be contained in the P5 spanned by TX,P and S, against our assumpion that ΠΣ

and ΠΣ′ span a P6.
Claim 4.3: X1 is not the developable tangent to a curve.

By remark 5.11, two general curves in D(−P ) meet transversely at P . By (7.2)
we see that two general curves in H(−2P ) have nodes with different tangents at
P , i.e. they have intersection multiplicity 4 at P . One moment of reflection then
shows that the image of the interminacy point P under the rational map τX is an
irreducible curve Γ of degree γ ≤ 2, which meets all the rulings of X1. Hence Γ is
a conic and X1 is a rational scroll. On the other hand, the general curve Σ ∈ D
is mapped via τX to a curve Σ which does not meet Γ. By letting Σ move to a
general curve in D(−P ), we see that Σ is homologous, on X1, to Γ plus a ruling.
Hence Σ is a cubic. Then, since X1 is rational, we see that its degree has to be 5;
thus X1 cannot be the developable tangent to a curve, because such a surface has
even degree.

Once we have proved claim 4 in the case k = 1, the general case is easily proved
by induction, by looking at a general tangential projection and using proposition
3.6. We leave the details to the reader.

Consider now the rational map φ : X → Y ⊆ Pk+1 determined by D. Notice
that it is generically finite to the image Y , which is therefore a surface.

Since H contains the involution D(2), which in turn is contained in the linear
system D2 the pull-back via φ of the quadrics of Pk+1, we have, by theorem 6.1
applied to Y for ι = 0, by (7.3) and by claim 4, that

3(k + 1)− δk = r = dim(H) ≥ dim(D2) ≥ 3k + 2,(7.4)

which yields δk ≤ 1.
Claim 5: If X is k-defective, then δk = 1, and we are in case (i) of theorem 1.3.

If δk > 0, then, as we saw, we must have δk = 1. Furthermore, (7.4) tells us that
dim(D2) = 3k + 2. Then theorem 6.1 implies that D is a complete linear system
of dimension k + 1 and Y is a surface of minimal degree k in Pk+1 with rational
normal sections. In addition, (7.4) implies that H = D2. Since H is very ample on
X , we thus deduce that φ must be an isomorphism to the image, proving the claim.

We turn now to the case of non-k-defective surfaces. We will dispose of this case
with the next two claims. First we notice that, if δk = 0, then (7.4) tells us that
either

dim(D2) = 3k + 2(7.5)

or

dim(D2) = 3k + 3.(7.6)
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Claim 6: If X is not k-defective, i.e. δk = 0, and (7.5) holds, then we are in case
(iv) of theorem 1.3.

Again, as before, we have that D is a complete linear system of dimension k+ 1
and Y is a surface of minimal degree k in Pk+1 with rational normal sections. By
(7.3) and claim 4 we have

dim(H) = r = 3(k + 1) = (3k + 2) + 1 = dim(D2) + 1.

The assertion immediately follows.
Claim 7: If δk = 0, and (7.6) holds, then we are either in case (iii) or in case (v)
of theorem 1.3.

In the present situation we have H = D2 and, as in the proof of claim 5, we
deduce that φ must be an isomorphism to the image.

Let us now apply theorem 6.1 to Y ⊆ Pk+1. Let d be the degree of Y . If
d = q + 1 = k, then Y would be a surface of minimal degree and D2 = H would
have dimension 3k+ 2, a contradiction. Thus we have d ≥ q+ 2 = k+ 1 and q ≥ 1.

Suppose q ≥ 2 and d ≥ q+ 3. Then theorem 6.1 could be applied with ι = 2 and
would tell us that

3(k + 1) = dim(H) = dim(D2) = hY (2)− 1 ≥ 3(k + 1) + 1,

a contradiction. Thus, if q ≥ 2, then d = q+ 2 = k+ 1, and theorem 6.1 again tells
us we are in case (v) of theorem 1.3. Otherwise q = 1, and we are in case (iii).

Finally we analyse
Case (ii): The general divisor Σ is reducible.

By theorem 5.10, D is composite with a pencil P . Then Σ = ΣP1,...,Pk+1 =
F1 + · · ·+ Fk+1, where Fi is the curve of the pencil through Pi, i = 1, . . . , k + 1.
Claim 8: Suppose that X lies in an s + 2-dimensional cone as in (ii) or (iii) of
theorem 1.3. Then:

(i) if the rulings of the cone cut out on X the curves of the pencil P, then
r ≥ 2k + s+ 3;

(ii) conversely, if r ≥ 2k + s+ 3, then the rulings of the cone cut out on X the
curves of the pencil P.

Indeed, let V be the s-dimenional vertex of the cone. To prove (i), let H′ be the
linear system of hyperplane sections of X through V . Then H′ is composed with
the pencil P . Moreover it contains 2F1 + · · ·+ 2Fk+1, where F1, . . . , Fk+1 are k+ 1
general curves of the pencil. This immediately implies that

r − s− 1 = dim(H′) ≥ 2(k + 1),

proving (i). Part (ii) immediately follows by what we saw in example 4.3.
By part (i) of the previous claim, we may, and will, replace the original k by the

integer s ≤ k such that X is s-weakly defective, but not (s − 1)-weakly defective.
We will still assume that s ≥ 1, since otherwise we are done.

Notice that, by our assumptions, we have

dim(H(−2F1 − · · · − 2Fs)) ≤ r − 3s− 1,

dim(H(−2F1 − · · · − 2Fs+1)) ≥ r − 3(s+ 1) + δs.

Hence

2 ≤ dim(H(−2F1 − · · · − 2Fs))− dim(H(−2F1 − · · · − 2Fs+1)) ≤ 2− δs
and therefore δs = 0 and the equality holds everywhere. In particular, we conclude
that:
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Claim 9: In the present situation, we have:
(i) r = 3(s+ 1);
(ii) the general curve F in P is contracted to a point by the rational map deter-

mined by the linear system H(−2F1 − · · · − 2Fs); and
(iii) X is not s-defective, but it is l-defective for all l ≥ s + 1 for which

H(−2F1 − · · · − 2Fs+1) is not empty.
The first assertion follows by (7.7). Part (ii) easily follows from the fact that if

F is the general curve in the pencil P , then 2F imposes exactly two conditions on
H(−2F1−· · ·−2Fs), so that F has to impose one condition on the same system. For
the same reason, 2F imposes two conditions on the systems H(−2F1 − · · · − 2Fl),
as soon as l ≥ k + 1 and H(−2F1 − · · · − 2Fl+1) is not empty. This implies (iii).

Now theorem 1.3 will be proved if we prove that we are in case (vi), which we
will do next.

Recall that by theorem 1.1 we have h(Σ) = h(F1 + · · · + Fs+1) ≤ 2s + 2. On
the other hand, h(F1 + · · · + Fs+1) ≥ h(F1) + s; hence h(F1) ≤ s + 2. In other
words, a general curve F of the pencil P spans a projective space ΠF of dimension
h ≤ s + 1. By part (ii) of claim 9, for a general F ∈ P , the space ΠF meets
a subspace of dimension 3k along a subspace of dimension h − 1. Let V be a
subspace of minimal dimension v which is cut by the general ΠF along a subspace
of dimension h − 1. Then X sits in a (v + 2)-dimensional cone over a curve with
vertex V and, according to example 4.3 and claim 8, the theorem will be proved if
we prove that v ≤ s. In this case, we note that V has dimension s by example 4.3
and is uniquely determined. Otherwise X would be contained in the span of two
such spaces, which is a proper subspace in P3(s+1).

First we dispose of the case s = 1.
Claim 10: Theorem 1.3 holds if s = 1.

In this case r = 6, and F is either a non-degenerate plane curve or a line.
If F spans a plane, then X is swept out by plane curves, whose planes pairwise

meet along a line. Then either all these planes span a P3 which contains X , a
contradiction, or they all contain the same line, and we are in case (vi) of theorem
1.3.

If F is a line, then X is a scroll, which is not developable. Let, as above, F1,
F2 be two general rulings of X and let S1 and S2 be the tangent P3’s along F1

and F2, i.e. the P3’s spanned by the tangent planes to X along F1 and F2. In
the present situation, S1 ∪ S2 spans the same P5 spanned by the tangent planes
to X at two general points, one on F1, one on F2. This means that the general
tangent plane to X meets S1 at a point, which, by proposition (4.1), implies that
by projecting X down to Pr−4 from S1 we get a curve Γ. Since r ≥ 6, Γ cannot be
a line. Hence the aforementioned projection contracts all the rulings of X to points
of Γ. In other words, the rulings in question all meet S1. Since they also meet S2,
but they cannot lie in a fixed P5, then they all meet the line S1 ∩ S2, and we are
again in case (vi) of theorem 1.3.

Next we turn to the case s ≥ 2, and proceed by induction on s. Since r = 3(s+1),
we may apply proposition 3.6 to X . So we make a general tangential projection of
X and get an (s − 1)-defective surface X1 in Pr′ , with r′ ≥ 3s, to which we can
apply induction. Hence X1 sits in a cone over a curve with vertex V1, a subspace
of dimension s− 1 and not less.

By proposition (4.1) we know that V is cut by the general tangent plane to X
in a point. On the other hand, we have
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Claim 11: Let F be a general curve in P. Then either ΠF does not intersect the
general tangent plane of X, or v ≤ s.

Suppose ΠF intersects the general tangent plane of X . If F1, F2 are two general
curves in P , then either the general tangent plane to X intersects 〈ΠF1 ,ΠF2〉 along
a line or it intersects ΠF1 ,ΠF2 along their intersection. But 〈ΠF1 ,ΠF2〉 has dimen-
sion at most 2s + 3 ≤ 3s + 1, because s ≥ 2. Thus, by proposition 4.1, only the
second possibility holds. But then the general tangent plane to X has to intersect
the intersection V ′ of all the ΠF ’s. Notice that V ′ has dimension at most s. Fur-
thermore, by proposition 4.1 again, X sits in a cone over a curve with vertex V ′.
By part (ii) of claim 8, we see that the rulings of the cone cut out on X the curves
of P , which implies that, for a general F , the space ΠF cuts V ′ in a subspace of
dimension h− 1. This proves our assertion.

So we may assume that for F general in P , ΠF does not intersect the general
tangent plane of X . Going back to the tangential projection of X to X1 from
a general tangent plane TX,P of X , we have the subspace WP := 〈TX,P , V1〉 of
dimension s + 2. A general ΠF is projected to a subspace of the same dimension
h, intersecting V1 in a subspace of dimension h− 1. In particular, h ≤ s, and ΠF

has to intersect WP in a subspace of dimension h− 1. This shows that v ≤ s+ 2.
Finally we can conclude our proof that v = s. Notice that X1 is swept out

by curves F ′, the projections of the curves F in P , spanning subspaces ΠF ′ , the
projections of the ΠF ’s, which, as we saw, have dimension h and cut V1 in a subspace
of dimension h − 1. On the other hand, a subspace V would project down to a
subspace V ′ which is also met by the ΠF ′ ’s in a subspace of dimension h− 1. Since
V is met by the general tangent plane of X at a point, then dim(V ′) = v−1 ≤ s+1.
Thus the span of V ′ and V1 would have dimension at most 2s+1 < 3s. This implies
that the general space ΠF ′ meets V1 ∩ V ′; otherwise 〈V1, V

′〉 would contain the
general ΠF ′ , hence the whole of X1, a contradiction. Since there is no subspace of
P3s of dimension smaller than s−1 which is met by the general ΠF ′ in a subspace of
dimension h−1, we have that V ′ has to contain V1. Hence V ∩WP has dimension s,
and therefore 〈V,WP 〉 has dimension at most s+4 < 3(s+1). Since the general ΠF

meets both V and WP in a subspace of dimension h− 1, and cannot be contained
in 〈V,WP 〉, then it has to intersect V ∩WP in a subspace of dimension h−1, which
tells us, by the minimality property of V , that V ⊂ WP ; hence it has dimension
s.
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