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Hunter and Scheurle have shown that capillary-gravity water waves in the vicinity of Bond number (Bo) = l/3 are 

consistently modelled by the Korteweg-de Vries equation with the addition of a fifth derivative term. This wave equation 

does not have strict soliton solutions for Bo < l/3 because the near-solitons have oscillatory “wings” that extend indefinitely 

from the core of the wave. However, these solutions are “arbitrarily small perturbations of solitary waves” because the 

amplitude of the “wings” is exponentially small in the amplitude 6 of the “core”. Pomeau, Ramani, and Grammaticos have 

calculated the amplitude of the “wings” by applying matched asymptotics in the complex plane in the limit E + 0. 

In this article, we describe a mixed Chebyshev/radiation function pseudospectral method which is able to calculate the 

“weakly non-local solitons” for all E. We show that for fixed phase speed, the solitons form a three-parameter family 

because the linearized wave equation has three eigensolutions. We also show that one may repeat the soliton with even 

spacing to create a three-parameter of periodic solutions, which we also compute. 

Because the amplitude of the “wings” is exponentially small, these non-local capillary gravity solitons are as interesting as 

the classical, localized solitons that solve the Korteweg-de Vries equation. 

1. Introduction: non-local solitary waves 

A solitary wave in the strict or classical sense is 

a non-linear wave which decays rapidly in space 

as 1x1+ CC but is non-decaying in time. The book 

by Ablowitz and Segur [ll is a good catalogue of 

examples. It has become increasingly clear, how- 

ever, that this strict definition is too narrow. 

There is a whole class of non-linear waves which 

almost satisfy the classical definition of a soliton, 

but fail because of very small-amplitude spatial 

oscillations which persist arbitrarily far from the 

core of the vortex. 

These quasi-solitons are known collectively as 

“weakly non-local solitons”. As reviewed by Boyd 

16, 71, such generalized solitary waves seem to be 

as common as those which satisfy the classical 

definition of a soliton. Table 1 is a catalogue of 

examples with references. 

In each case, the non-local wave consists of a 

central “core”, which resembles a classical soli- 

ton, accompanied by oscillatory “wings” which 

extend indefinitely from the core. Fig. 1 is a 

schematic that illustrates two extremes. The con- 

ditions of (iI rapid decay as 1x1 + 03 (“spatial 

localization”) and (ii) no temporal decay (“per- 

manence”) cannot be simultaneously satisfied. 

The best that one can do with a non-local soliton 

is to enforce one or the other. 

The left panel is a “radiatively decaying” soli- 

ton: spatially localized but not permanent. All 

localized initial conditions slowly decay through 

radiation to the left or the right or both. For the 

Korteweg-de Vries equation or any other equa- 

tion that has classical soliton solutions, it is al- 

ways possible to adjust the shape of the initial 

condition so as to suppress the radiation. (For 

example, choosing 4x, 0) = 12~~ sech2(ex) for 
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Table 1 

Examples of weakly non-local solitons. 

Name 

Water waves 

with surface tension 

(generalized 

Korteweg-de Vries) 

higher mode 

Rossby waves 

plasma modons 

in magnetic shear 

“slow manifold” 

(in time) 

dendrite formation/ 

Taylor-Saffman 

problem 

q%4 breather 

Field 

hydrodynamics 

Ref. 

17, 15, 181, 
this work 

meteorology and 

oceanography 

plasma physics 

(5, 61 

1171 

meteorology I6, 7, 161 

hydrodynamics [ll, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA131 

particle 

physics 

[6, 7, 9, 191 

some E will suppress all radiation for the 

Korteweg-de Vries equation.) For non-focal soli- 

tons, however, the radiation to x = +co can only 

be minimized, not eliminated. 

The right panel of fig. 1 illustrates the opposite 

extreme: a soliton which is permanent but not 

spatially localized. By allowing the “wings” to fill 

all of space, one can suppress the radiative decay. 

1.0 

0.8 

0.6 

0.4 

0.2 

0 

Fig. 1. Left: Schematic of a “radiatively decaying” soliton for 

t = 0 (dashed) and some later time (solid). The soliton need 

not disperse in symmetrical fashion. If the solitons are weakly 

non-local, then the radiation cannot be completely eliminated 

by any small perturbations in the shape of the initial condi- 

tion. Right: A permanent but non-local solitary wave or 

“nanopteron”. In a frame of reference which is moving with 

the maximum of the wave, the nanopteron is independent of 

time except perhaps for a steady, non-propagating oscillation. 

This permanent-but-non-local soliton is called a 

“nanopteron”#‘. Because it is permanent, one 

can compute the nanopteron directly by solving a 

boundary value problem. 

In this article, we choose to calculate nanopter- 

ons even though it might seem more logical-or 

at least allow easier comparison with initial value 

experiments - to compute spatially localized, ra- 

diatively decaying solitons instead. One motive is 

that nanopterons may be computed directly 

whereas radiatively decaying solitons are merely 

the most prominent part of the debris of an initial 

value solution. A second motive is that the two 

extremes, nanopteron and radiatively decaying 

soliton, boundary value solution and initial value 

solution, are very closely related. 

The crucial observation is that CX, the ampli- 

tude of the “wings”, is exponentially small in E, 

the amplitude of the “core”. Because of this, the 

dynamics of the “wings”, 1x1 X- 1, is always linear 

to a high degree of approximation. This makes it 

possible to use linear wave theory to convert 

nanopterons into radiatively decaying solitons. 

Merely by adding a travelling sine wave to the 

nanopteron, we can alter the standing wave oscil- 

lations of the nanopteron’s “wings” to the out- 

wardly radiating travelling waves which are the 

wings of the radiatively decaying soliton. We 

postpone a full discussion of radiatively decaying 

solutions to a future article, but see ref. [Sl. 
In this article, we concentrate exclusively on 

nanopterons and on the last entry in table 1: 

capillary-gravity water waves. Hunter and 

Scheurle [15] show that the generalized 

Kortweg-de Vries equation 

U, = UU, + U,,, + U XXXXX = 0 

(“FKDV equation”) (1.1) 

is a model for capillary-gravity waves when the 

Bond number, which measures the relative im- 

portance of surface tension and gravity, is close to 

and slightly less than l/3. We shall call this the 

“The name means “dwarf-wing” in Greek [6]. 
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“fifth-degree Korteweg-de Vries” or “FKDV” 

equation. We shall not repeat the analysis of ref. 

[15], but instead refer the reader to that paper for 

the physical background of (1.1). 

The nanopterons of (1.1) solve the equation 

(after one integration with respect to x) 

consistent with ref. [141, as proved in ref. [El. 

Hunter and Scheurle also prove that there are 

permanent, exact travelling waves which “are ar- 

bitrarily small perturbations of solitary waves, but 

are not solitary waves themselves, because they 

approach small amplitude oscillations for large 

values of the independent variables.” 

Uxxxx + uxx + (4 - c)u = 0, (1.2) 

which is the form that we shall actually attack 

where X is the coordinate moving with the wave, 

i.e., 

x=x -ct. (1.3) 

Applying the complex variable matched asymp- 

totics method of Segur and Kruskal[l9], Pomeau, 

Ramani, and Grammaticos quantify “arbitrarily 

small” by showing that the amplitude of the oscil- 

lations is proportional to exp(-r/26) in the 

limit E --f 0, where E is the parameter in the 

approximation to the “core” of the non-local 

soliton: 

In the next section, we review what has been 

previously learned about this problem and discuss 

the simple “far field analysis”, which explains 

why its solitons are non-local. 

u(X) _ 12e2sech2(eX), E +z 1, (2.1) 

where 

c N 462’, E < 1. (2.2) 
2. The F’KDV equation: review and far 

field analysis 

Hunter and Scheurle [15] were motivated by 

Hunter and Vanden-Broeck [14]. The latter’s cal- 

culation of capillary-gravity solitons for the full 

water wave equations was successful only when 

the Bond number was greater than l/3. Was the 

failure for Bo < l/3 a numerical problem, or a 

reflection of the fact that classical solitons do not 

exist in this parameter range? 

To answer this question, Hunter and Scheurle 

[15] performed an asymptotic analysis to derive 

the approximate model (1.1). When the Bond 

number is slightly larger than l/3, (1.1) still ap- 

plies except for the change of the fifth derivative. 

As reviewed by Boyd [3], the FKDV equation 

with negative highest derivative has strict soliton 

solutions. This is consistent with the success of 

Hunter and Vanden-Broeck for the full wave 

equations. 

The approximations (2.1) and (2.2) may be con- 

tinued as a formal power series in E, but the 

series misses the exponentially small oscillations. 

The series is asymptotic, but diverges because the 

exp(-TTT/2E) cannot be represented by a power 

series in E. Nonetheless, (2.1) and (2.2) are good 

approximations for small E. In this limit, the 

fourth derivative in (1.1) is an @(e2) perturbation 

of the standard, once-integrated Korteweg- 

de Vries equation, so the lowest-order approxi- 

mation (2.1) has the form of the usual 

Korteweg-de Vries soliton. 

We shall not review the detailed analysis of 

refs. [15, 181. However, it is useful to give a 

simpler argument which makes the non-local 

character of the solitons at least plausible. 

Definition 2.1. The “far field” is the region 1x1 z+ 

l/E. 

When the sign of the highest derivative is posi- In the core of the nanopteron, the nonlinear 

tive, as in (l.l), however, classical solitons which term in (1.1) is comparable with the phase speed 

decay exponentially at infinity do not exist, again and second derivative terms: all are @‘(e2). In the 



132 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJ.P. Boyd / W eakly non-local so&tons for capillary-gracity waces 

far field where u(X) < E according to (2.11, the 

non-linear term is negligible and the differential 

equation reduces to the linear, constant coefi- 

cient equation 

uxxxx + Uxx - CU = 0, (2.3) 

whose four linearly independent solutions are of 

the form 

u(X) - eiKx, 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAK is any of the four roots of 

(2.4) 

u4 - K2 -c = 0, 

i.e. 

(2.5) 

K2 = ; + +( 1 + 4c)“*. (2.6) 

The negative sign in (2.6) gives two solutions 

which exponentially decay or grow as X* fw. 

For sufficiently large IX/, one solution has zero 

amplitude (so that u(X) is bounded!) while the 

other is exponentially small. The non-local char- 

acter of FKDV solitons arises from the plus sign 

in (2.6). Asymptotically, 

U(X)-y*cos(~~)+a+sin(~x), X+ *to3 

(2.7) 

for some constants y and 6. 

This “far field” analysis is a heuristic argument 

rather than a proof because we have not shown, 

as done by Hunter and Scheurle 1151 and Pomeau, 

Ramani, Grammaticos [181, that at least some of 

the amplitude constants in (2.7) are non-zero. In 

the rest of the article, we shall present convincing 

numerical evidence to remedy this omission. 

3. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAThe Newton-Kantorovich/rational Chebyshev 

pseudospectral method 

Because (1.2) is non-linear, we must solve it 

iteratively. If the ith iterate is u”‘(X), write 

u(X) = U(i) + A”‘. 
(3.1) 

Substituting (3.1) into (1.2) and neglecting @(A*> 

gives the linear equation 

A(‘) xXxX + A$ + ( ~6’) - c) A(‘) 

= - {L&,, + CL!& + ($(‘) - c)zP} 

[ “Newton-Kantorovich equation.“] (3.2) 

We repeat the “Newton-Kantorovich iteration”, 

(3.1) and (3.2), until the correction A”’ is negligi- 

bly small. 

The iteration requires a first guess. For small 

amplitude, that is, for small c, the perturbative 

approximation (2.1) and (2.2) is sufficient. For 

larger c (or E), we apply the continuation method: 

the solution for a given c is used as the first guess 

for slightly larger c. Through this bootstrapping 

procedure, we can march from small amplitude to 

large amplitude. 

The spatial discretization is accomplished by 

expanding u(X) as a series of spectral basis func- 

tions: 

4X> = ifi aA,( (3.3) 
n=l 

To compute periodic solutions (“nanopteroidal 

waves”), we set 

4,(X) = cos[(, - 1)X]. (3.4) 

For a given c, there is a one-parameter family of 

solutions which are symmetric about X = 0; for 

these, the cosines are sufficient. To compute 

asymmetrical nanopteroidal waves (beyond the 

scope of this article), one would replace the 

cosines by a general Fourier expansion including 

sines. 

On the infinite interval, we use the rational 

Chebyshev functions, so-called because they are 

the images of the ordinary Chebyshev polynomi- 

als under a change of variable. These functions 

are also the images of the cosines under a differ- 

ent change of variable, which provides the easiest 
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definition of these functions: 

TB,( x) = cos( it), t = arccot( x/L), (3.5) 

where L is a constant map parameter which is 

chosen to improve efficiency. CL = 2/e in the 

calculations here, so that the scale of the basis 

functions approximately matches that of the 

nanopteron core.) 

Since the solution (except for the far field 

oscillations) vanishes at infinity, we improve ef- 

ficiency by taking linear combinations of the ra- 

tional Chebyshev functions as the basis, i.e. 

&=TB,,(X)-1, n=l,..., N-l. (3.6) 

Because the nanopterons are assumed to be sym- 

metric, it is sufficient to use only the even degree 

TBj(X) in constructing the basis. The index n is 

limited to N - 1 because the Nth basis function 

is a special “radiation” function to represent the 

far field oscillations. The “radiation” function is 

the theme of the next section. 

The Newton-Kantorovich equation is con- 

verted into a matrix equation by substituting the 

spectral series (3.3) into the differential equation 

and then demanding that the residual vanish at 

each of the N collocation points defined by 

xi= (2i-  l)rr/2N i= l,...,N 

(periodic case) 

or 

(3.7) 

xi = arccot[(2i - l)rr/4LN] 

(infinite interval) . (3.8) 

These collocation conditions give N constraints 

which convert (3.1) into an N x N dense matrix 

problem. It is not necessary to impose the bound- 

ary conditions explicitly because the spectral basis 

functions individually have the correct boundary 

behavior. 

Our treatment of the “pseudospectral” method 

is brief because the basic ideas and theory are 

described fully by Boyd [3, 4, 8, 101. One crucial 

point is that the pseudospectral method is “ex- 

ponentially accurate”, that is, the error decreases 

as an exponential function of N, the number of 

grid points. This spectral accuracy is essential to 

computing the amplitude of the far field oscilla- 

tions because this amplitude is exponentially small 

in l/e. 

Two key issues remain. The first is to construct 

a special radiation basis function to represent the 

far field oscillations. The second is that the solu- 

tion of the Newton-Kantorovich equation is not 

unique because this equation has three eigensolu- 

tions of zero eigenvalue. 

4. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAConstruction of the radiation basis function: 

Stokes’ series and cnoidal matching 

To lowest order, the nanopteron asymptotes to 

a sine wave as shown in section 2. By combining 

the sine and cosine terms via trigonometric iden- 

tities, we can rewrite (2.7) as 

u(X)-a*Sin[K(x+@*)], x+ fm. (4.1) 

The linear asymptotic analysis of section 2 is 

accurate only to lowest order in (Y. Sir George 

Stokes showed how one could generalize (4.1) to 

a perturbation series in powers of (Y. Since Stokes’ 

method is adequately described in many places 

including Haupt and Boyd [12] and Boyd [3], we 

shall just quote the result to third order. To 

simplify expressions, we write X for X + @ + and _ 
(Y for (Y*. 

u,,(X) - (Y sin( Kx) + (.y’[ u,a -t z.+ cos(2~x)] 

+ (Y3U23 Sin(3KX) + @(a”), (4.2) 

K = K,, + K2(Y2 + 8( (Y4), (4.3) 
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where series, but used only the linear far field approxi- 

mation (4.1). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
U 10 = 1/4c, (4.4a) 

U zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 1/(6Oc + 48~,2), 
12 - 

(4.4b) 

u 23 = - l/[ 192(50c2 + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA85~~; + 36~ + 36~:)], 

(4.4c) 

Ko=;[1+(1+4C)1’2], 

K2 = ( +U12 - U,,)/ (4K; -  2KO). 

(4.5a) 

(4.5b) 

The one mild twist on the usual Stokes’ series 

is that not only the phase speed c but also the 

amplitude (Y are fixed. ((u is determined by 

matching the far field solution to the nanopteron 

core.) Instead, the wavenumber K is the parame- 

ter which is expanded in powers of LY. 

By itself, u,,(X; a) is a global solution. In the 

nanopteron, however, the far field cnoidal wave 

for large negative X is joined with that for large 

positive X through the core (fig. 1). Conse- 

quently, the cnoidal wave which approximates the 

nanopteron as X + --oo may have different am- 

plitude and phase (i.e. different CY and @) from 

the cnoidal wave which approximates the 

nanopteron as X -+ cQ. It follows that in general 

we need two radiation functions. 

To convert U,,(X) into a basis function which 

approximates the nanopteron as X --+ m, we mul- 

tiply it by a smoothed step function 

H(X;e)-_[l+tanh(eX)], (4.6a) 

The perturbation series is a legitimate approxi- 

mation solution for all X, not just in the far field. 

We will refer to uJX) as the “cnoidal” function 

because this solution is analogous to the cnoidal 

waves of the Korteweg-de Vries equation. We 

can compute ucn(X) to as much accuracy as 

desired by applying the Fourier pseudospectral 

method outlined in section 3 and ref. [3]. 

which asymptotes to 

H(X;e) N 1, X-m,, 

-0, X+ -to, (4.6b) 

where we define E(C) by using the perturbative 

approximation (2.2), i.e. 

This cnoidal wave, u,,(X), has a dual role. It 

not only describes the “far field” of the 

nanopteron, but is an independent exact solution. 

It follows that for a given phase speed c, there 

are two families of steadily translating solutions 

to the FKDV equation. The small-amplitude fam- 

ily is ucn(X) and the crests are all of equal, B(cr) 

amplitude. The large-amplitude family is the 

nanopteron; the “far field” is better and better 

approximated by u,,(X) as IX1 -+ m, but the crests 

are not all equal because the “core” towers above 

the “wings” as shown in fig. 1. 

E z +c1/2 (all c) . (4.7) 

Replacing H(X; E) by H( -X; E) gives the second 

radiation function. 

The hyperbolic tangent is chosen for simplicity; 

it could be replaced by any smooth function which 

has the desired asymptotic behavior. We chose 

the argument of the hyperbolic tangent to be EX 

rather than X so that the scale of the step 

function matches that of the core of the 

nanopteron, which is proportional to sech2 (EX). 

In this work, we shall use the cnoidal wave The two radiation functions contain the four 

solely as an approximation to the nanopteron’s parameters (a *, Cp +). (We assume that c is fixed.) 

“wings”. Because (Y -=z 1 for nanopterons that As explained in the next section, the Newton- 

deserve the name (i.e. have “cores” large in com- Kantorovich equation has three eigenfunctions, 

parison to the “wings”), the explicit Stokes’ series so the nanopteron for fixed phase speed is a 

will be quite sufficient to calculate the nanopteron three-parameter family. Thus, three of the ampli- 

far field. Indeed, the +4 breather calculation of tude and phase parameters may be fixed to spec- 

Boyd [9] did not even bother with the Stokes’ ify a unique nanopteron; the remaining parame- 
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ter is a spectral coefficient which is determined by 

the pseudospectral method simultaneously with 

the coefficients of the rational Chebyshev func- 

tions. 

The numerical calculations presented below are 

limited to nanopterons which are (i) symmetric 

about the origin and (ii) have the core maximum 

at x = 0. For this special case, a one-parameter 

family for fixed c, we used the single radiation 

function 

&d(X;(Y) =H(X+@)u,,(X+@;cu) 

+H(-X+@)u,,(-X+@;a). 

(4-S) 

We specify @ (and c) to specify a unique 

nanopteron; (Y is the spectral coefficient. 

The fact that the numerical solution is a non- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

linear function of the “radiation coefficient” LY is 

no complication. The FKDV equation is itself 

non-linear, and must be solved by iteration in any 

event. 

The numerical solution for symmetric 

nanopterons on the infinite interval is written as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

N-l 

zP(X) =4Jra@;4 + c ~,[~~,,(.d - 11, 

n=l 

(4.9) 

where the rational Chebyshev functions TBi(X> 

are defined by (3.5). Let 6aj and 6a denote the 

corrections to coefficients in (4.9). Define the 

elements of the column vectors A and F by 

Aj=6aj, i=l,..., N-l and AN=&, 

(4.10) 

where the r.h.s. of (4.11) is the result of evaluat- 

ing the expression in 1 } at x =xi, where the 

collocation points are given by (3.7). Let J denote 

the square matrix which is the Jacobian of the 

system of non-linear equations F(ai,. . . , a& 1, a) 

= 0; its elements are given explicitly by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Jij E 4j, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAxxxx (xi ) + 4ji ,XX(xi ) 

i=l ,..., N, i=l,..., N-l, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

JiN=r$ rad,aXXXX(Xi) + +rad,aXX 

+(p- 
C)4rad,a(Xi ) 

i=l ,**-, N, (4.12) 

where the subscript (Y denotes differentiation with 

respect to (Y. (For simplicity, a-differentiations 

were done via finite differences, but the X-deriva- 

tives were evaluated analytically using (4.2)-(4.9) 

and the trigonometric definition of the rational 

Chebyshev functions, (3.5).) 

The Newton-Kantorovich differential equation 

is then discretized as the matrix problem 

JA=F. (4.13) 

We use the corrections computed in A to update 

the coefficients in the series (4.9) and then iterate 

until convergence. 

If the radiation function is evaluated by using 

only the lowest order Stokes term (4.0, then 

(4.13) is just the discretization, of the Newton- 

Kantorovich equation (3.2). This neglect of @(cy’) 

terms is made everywhere in ref. [9] and in some 

(but not all) of the eigenfunction calculations of 

the next section. When we include terms that are 

higher order in (Y, however, we can accurately 

compute the nanopteron even when LY is only 

moderately small. 

Fig. 3 illustrates the effectiveness of the cnoidal 

matching when a = 0.01 by comparing two calcu- 

lations which differ only in the number of terms 

kept in the Stokes’ series for the cnoidal wave. 

For both computations, the pattern is consistent 

with that found in ref. [8]. The first few Cheby- 

shev coefficients decrease very rapidly, indepen- 

dent of the radiation basis function. For larger n, 

the coefficient curves decrease more slowly and 
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X zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX 

Fig. 2. If one takes a nanopteron (left panel), makes an 

infinite number of duplicates and then spaces them evenly 

over all x, one obtains a good approximation to the spatially 

periodic “nanopteroidal” wave shown on the right. 

eventually plateau at some small magnitude. The 

reason the convergence stops is that the high- 

degree coefficients are attempting - poorly - to 

approximate the first neglected term in the Stokes’ 

series. For the first-order calculation, the error in 

the radiation basis function is @((u*) and a, - 

@(lO-“1 for large II. For the third-order solution, 

the radiation basis function omits @((Ye), so the 

plateau is at a, - 8(10-7). For the case illus- 

I 

10-g ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ 
0 IO 20 30 40 50 60 70 

n 

Fig. 3. The absolute values of the rational Chebyshev basis 

functions are plotted versus degree. The solid curve used a 

radiation basis function with the third-order Stokes’ series for 

the cnoidal wave; the dashed curve shows the coefficients IanI 

when u,,(X) = (Y sin(K,,X), the first-order Stokes’ approxima- 

tion. For both, E = 0.16 and @ = 0. 

trated, the cnoidal matching improves on the 

simple first order, sine wave radiation function by 

a factor of roughly lOO! zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

5. Eigenfunctions 

The Newton-Kantorovich equation (5.1) has 

three eigensolutions illustrated schematically by 

fig. 4. The first is the translational mode 

e,( X) = du/d X. (5.1) 

The reason for this eigensolution is that the 

FKDV equation and its boundary conditions are 

translationally invariant, i.e. if u(X) is a 

nanopteron, then 

zJ(X) -u(X+l)) (5.2) 

is also a solution for any constant $. This transla- 

tional invariance is true for both the infinite 

domain and the spatially periodic interval. If 4 is 

infinitesimal, then Taylor expansion of (5.2) shows 

I I I I I I I I I 
-20 -15 -10 -5 0 5 IO 15 20 

X 

Fig. 4. Schematic of the three eigenfunctions of the Newton- 

Kantorovich equation. Top panel: e,(X), translational mode; 

middle: e,(X), symmetric sinusoidal mode, bottom: e,(X), 

antisymmetric sinusoidal mode. 
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that 

u(X) =u(X) +$du/dX+ B($*). (5.3) 

It follows that the nanopteron for a given c is not 

unique, but rather one can add a multiple of 

du/dX and still obtain a valid solution. 

For the Newton-Kantorovich equation itself, 

the multiple of du/dX may be arbitrarily large 

because this equation is linear. For the FKDV 

equation, adding 4 du/dX gives an error of 

@($*> as in (5.3); this error can be removed by 

iteration. 

For symmetric nanopterons, one may remove 

this translational invariance simply by restricting 

the basis set to functions that are symmetric 

about the origin. This forces the numerical solu- 

tion to have a local maximum (or minimum) at 

the origin so that an arbitrary shift in X is no 

longer possible. 

A direct proof that du/dX is a homogeneous 

solution of (3.2) may be obtained by differentiat- 

ing the FKDV equation with respect to X and 

then defining A = du/dX. One finds that the 

differentiated equation, expressed in terms of A, 

is the homogeneous form of the Newton- 

Kantorovich equation (3.2). 

The other two eigenfunctions lack the core- 

plus-wings structure of the translational 

eigenmode, but instead are perturbations of 

trigonometric functions. When E -=z 1, that is, 

when the scale of u(x) in the Newton-Kantoro- 

vich equation is large in comparison to that of the 

eigenmodes, the WKB method [2] gives good 

approximations. Because this technique is an ex- 

pansion in E, it is inconsistent to approximate 

u(X) in the Newton-Kantorovich equation by 

anything more elaborate than the perturbative 

approximation (2.1). Similarly, one may expand 

the usual WKB phase integral in powers of E 

without sacrificing the uniformity of the approxi- 

mation. This is rare in most WKB solutions be- 

cause expansions of the phase integral break down 

at so-called “turning points” where the solution 

changes from oscillatory to exponential behavior. 

The two non-translational eigenmodes, however, 

are oscillatory for all X, so there are no turning 

points and the WKB answer may be greatly sim- 

plified. We omit details because the WKB method 

is standard [2], but the result is 

e zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS _ [ 1 + 6e2 sech*( l X)] 

XCOS[ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAK~X - 6~ tanh( l X)] , (5.4) 

e a N [ 1 + 6e2 sech*( l X)] 

xsin[KaX-6ctanh(eX)], (5.5) 

where K~ is given by (4.5a) above. The labels “s” 

and “a” denote that the e, is symmetric with 

respect to X = 0 while e,( -X) = -e,(X). 

If we restrict the basis set to symmetric 

functions, then we automatically exclude both the 

translational mode and e,(X) because these are 

antisymmetric with respect to X = 0. However, 

the numerical solution of the Newton-Kantorovich 

equation is still not unique because one may add 

an arbitrary multiple of e,(X). Thus, for fixed 

phase speed c, the symmetric nanopteron is a 

one-parameter family on the infinite interval. 

Usually, WKB eigensolutions include a phase 

integral condition which determines the eigen- 

value. On the infinite interval, however, the only 

boundary condition is boundedness at infinity, 

which is automatically satisfied by both e,(X) and 

e,(X). 

When the boundary condition is spatial period- 

icity, however, there is a phase matching condi- 

tion because the “wings” of the nanopteron on 

one subinterval must smoothly join the oscilla- 

tions on neighboring subintervals. Because of the 

freedom represented by e,(X), it is always possi- 

ble to satisfy this condition. However, the phase 

matching condition implies that the symmetric 

nanopteroidal wave for a given c with a given 

spatial period W is unique. By varying W, we 

effectively vary the amplitude of e,(X). 

In sections 7 and 8, we shall explore these 

relationships between the eigenmode e, and the 
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nanopteron and nanopteroidal wave in more de- 

tail. First, though, we should note that we checked 

the accuracy of the WKEJ approximation by using 

two numerical methods. 

The first numerical method is to directly com- 

pute the eigenmodes of (3.2) by using the QR 

algorithm to calculate the eigenvalues and eigen- 

functions of the Jacobian matrix J, defined in 

section 4, which is the pseudospectral discretiza- 

tion of the Newton-Kantorovich equation. This 

calculation has also made the approximation that 

u(X) in (3.2) could be replaced by the perturba- 

tive nanopteron, 12~~ sech2(eX). 

The second numerical algorithm calculated the 

symmetric, spatially periodic wave -the nanopter- 

oidal wave (see fig. 2) - for two slightly different 

periods, W and W  + 7, where n s 1. The differ- 

ence between the two solutions is the symmetric 

eigenmode. This numerical algorithm does not 

linearize about the perturbative nanopteron, but 

is exact in the limit n + 0. 

Fig. 5 shows that both numerical calculations 

agree very well with each other and with the 

WKR approximation. As a quantitative check, 

note that in the far field, 

e, N (arbitrary constant) 

X[cos(~~X) +qsin(K”X)] 

IX/ >> 1. (5.6) 

Table 2 compares three independent calculations 

of q(E) for two different E. The QR and WKR 

algorithms become more accurate as E + 0, but 

are obviously very good even for E = 0.1. 

Table 2 

Comparison of different calculations of the phase parameter q. 

E q-periodic q-QR q-W KES 

(= tan(6e)) 

0.075 0.4841 0.4849 0.4831 

0.1 0.688 0.694 0.684 
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Fig. 5. A comparison of three independent calculations of 

the symmetric eigenfunction e,(X) for E = 0.1 (i.e. c = 0.04). 

Solid: difference of two symmetric nanopteroidal waves for 

slightly different spatial periods (“exact”). Dashed: QR algo- 

rithm applied to the pseudospectral Jacobian matrix, lin- 

earized with respect to 12~~ sech’(eX). Dotted line: WKB 

approximation (5.4). The exact and QR curves are almost 

indistinguishable. 

The perturbative approximation (2.1) is also 

the exact soliton for the Korteweg-de Vries 

equation. The KdV soliton, however, has only a 

single eigenmode, the antisymmetric translational 

mode. Thus, the fourth derivative of (1.2) has 

altered the qualitative dynamics in two ways. The 

first is to make the FKDV soliton non-local. The 

second is to create two additional sine-like or 

cosine-like eigenmodes which increase by two the 

number of parameters that are needed to specify 

a unique nanopteron. These extra degrees-of- 

freedom must be kept in mind as we discuss 

numerical results for the nanopteron itself in the 

next of four sections. 

6. Numerical results I: The radiation coefficient 

as a function of E 

Fig. 6 compares the radiation coefficient (Y as 

computed for symmetric nanopterons on the in- 
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finite interval with various numbers of rational 

Chebyshev functions. The phase factor in (4.8) is 

@ = 0. (Recall that (Y is the amplitude of the 

fundamental component of the far field oscilla- 

tion; this differs by no more than @(a21 from the 

maxima and minima of u(X) for large [Xl.) 

The graph shows vividly the extraordinary ac- 

curacy of spectral methods. The computation with 

50 collocation points is accurate even when (Y is 

as small as lo-“! The calculations with 70 and 90 

basis functions agree well throughout the whole 

range illustrated. The error for cy < lo-r4 is prob- 

ably dominated by machine roundoff. 

The theory of Pomeau, Ramani, and Gram- 

maticos [18] predicts that 

a( E) - V(E) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAe-(T/2)/e, (6.1) 

where Y(E) is an algebraic function that varies 

slowly with E in comparison to the E. Fig. 6 

checks this prediction by plotting log(a) versus 

A----~N=~,cnoidal matching 
A..--....SN.3Q ’ 

Fig. 6. The radiation coefficient a versus l/t- for the 

nanopteron as computed using various numbers of collocation 

points. Solid: N = 90 points, long-dashed: N = 70, short- 

dashed: N = 50; dotted: N = 30. 

0 0.02 0.04 0.06 0.08 

E 

Fig. 7. A graph of Y(E) = Y(O)/&) =+&LX. No points are 

plotted for E < 0.04 because a is so small (< 10-‘4) that 

numerical calculations of (Y are seriously contaminated by 

roundoff. 

l/e. As predicted, the N = 90 curve asymptotes 

to a straight line. 

To quantify this, fig. 7 shows 

Y(E) = dO)P(E), (6.2) 

where v(0) is equal to half the prediction of the 

matched asymptotics perturbation theory of 

Pomeau, Ramani, and Grammaticos [18]. (The 

factor of i corrects for a minor error in their 

paper- a factor of i that was inadvertently 

dropped just above their eq. (181.) The plotted 

curves are restricted to E 2 0.04 because (Y is 

so small that it is lost in machine roundoff for 

smaller E. 

Nevertheless, the extrapolation to E = 0 clearly 

confirms the matched asymptotics result. The 

figure also shows the best fit line, 

Y(E) = 1.02 + 6.01~, (6.3) 

which is almost indistinguishable from the nu- 

merical curve. The quadratic fit, not graphed, is 

Y(E) = 1.001 + 6.6826 - 5.6214~~. Both fits con- 

firm that y(O) = 1 as predicted. 
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Fig. 7 also shows that the linear term in -y(e) 

(or (Y) has a rather large numerical coefficient 

(= 6). As a result, the simple strategy of combin- 

ing the matched asymptotics prediction for ~(0) 

with the exponential to obtain 

ff PRG = 376.4e-(“/2’/’ E << 1 (6.4) 

gives more than a 25% overshoot even for E as 

small as l/25, and cr as small as 10-14. Thus, the 

matched asymptotics formula is useful in a theo- 

retical sense (to prove that the FKDV solitary 

wave is truly non-local), but is unsatisfactory as a 

numerical approximation unless the radiation co- 

efficient cr is ridiculously small. Boyd [93 shows 

that the same is true for the $4 breather: the 

linear correction to V(E) has a large numerical 

coefficient so the extrapolation analogous to (6.4) 

has a very tiny range of numerical accuracy. 

The reason why this B(E) correction to ~(0) is 

so large is not known. Nor is it understood why 

V(E) is much more accurately fit by the reciprocal 

of a linear polynomial, as in fig. 7 where -Y(E) is 

inversely proportional to V(E), than by a linear 

polynomial (not shown, but a much poorer ap- 

proximation than fig. 7). It would be interesting 

to see the matched asymptotics theory extended 

to the next highest order. 

7. Numerical results II: The nanopteron 

Fig. 8 shows a numerically computed weakly Fig. 9 compares two different members of 

non-local solitary wave for the phase speed c = the family: @ = 0 and @ = a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAW, where W is the 

0.1024, which corresponds to .S = 0.16. For this period of the far field oscillations. The difference 

moderate amplitude, the “wing” is easily visible. between these two extremes is approximately 

The oscillatory wing is nonetheless small in com- equal to the symmetric eigenmode of the New- 

parison to the single tall peak centered on the ton-Kantorovich equation (3.2). In the limit that 

origin. The core is approximately equal to the two phase shifts differ by an infinitesimal 

12~~ sech2(Ex), the shape of the Korteweg- amount, the difference between two distinct 

de Vries soliton. As c (and E(C)) decrease, the nanopterons is exactly this eigenfunction. Even in 

wings decrease exponentially fast and shrink into fig. 9, where the phase factors of the two modes 

invisibility; the wave more and more closely re- differ by the finite number, f W, the resemblance 

sembles the KdV soliton at all X. between the dotted difference curve and the 

-0.05 ’ I I I I I 1 I 

0 8 16 24 32 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

X 

Fig. 8. A graph of the symmetric nanopteron for t = 0.16 (i.e. 

c = 0.1024) with the parameter in the radiation basis function 

@ 3 :W , where W  is the spatial period of the far field 

oscillations, that is, W  = 25-r/~,). 

As stressed earlier, the symmetric nanopteron 

for a given phase speed c is a one-parameter 

family because one always has the freedom to 

add a multiple of the symmetric eigenmode of the 

Newton-Kantorovich equation (3.2). We com- 

pute a particular member of this family by speci- 

fying the parameter @ in the special radiation 

basis function defined by (4.8). @ is a phase shift 

for the far field oscillation; note, however, that 

the amplitude of the wings also changes with @ 

so that the shifted crests and troughs smoothly 

match the core. 
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- u(x): P=lO.5W 
---- u(x): P= IOW 
. . . . . . . . . . . Difference 

c 

-0.05 ’ 
I I I I I I I 

0 8 16 24 32 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

X 

Fig. 9. A comparison of the two extremes of the symmetric 

nanopteron for E = 0.16 (c = 0.1024): @ = 0 (solid) and 

@ = +W (dashed, same curve as fig. 8). The dotted curve is 

the difference between the two nanopterons; this difference is 

approximately equal to the symmetric eigenmode of the 

Newton-Kantorovich equation. 

eigenmode in fig. 5 is striking. Both are cosines, 

weakly modulated in the core region around X = 

0. 

Fig. 10 illustrates how the radiation coefficient 

(Y varies with the phase shift parameter @. (The 

phase speed c and E(C) are fixed.1 The huge peak 

at @ = 0.1 occurs because the far field oscillation 

of the nanopteron matches that of the symmetric 

eigenfunction of the Newton-Kantorovich equa- 

tion, e&X>. At this resonance, the Jacobian ma- 

trix is singular. For this one special value of @, 

the determinant of the Jacobian is zero in spite of 

the fact that specifying @ reduces the number of 

parameters by one. (Note that in section 3, 

we did not specify CD or impose any other con- 

straint on the far field behavior; the Newton- 

Kantorovich equation has its full spectrum of 

three eigenfunctions only in the absence of all 

symmetry and far field constraints.) 

It appears as though a(@) has a first-order 

pole at the resonance, but an analytical proof 

cd o- 
-0.01 - 

-0.02 - 

-0.03 - 

-0.04 - 

-0.05 - 

-0.06 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI  I  I  I  I  I  I  

-0.4 -0.2 0 0.2 0.4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Q/W 

6 

Fig. 10. The radiation coefficient (Y versus Q/W, where @ is 

the phase shift parameter in the radiation basis function, and 

W is the far field wavelength. 

is lacking. The third-order cnoidal matching, 

although very accurate for small (Y, becomes un- 

reliable as LY + CQ, so we have not attempted any 

numerical curve-fitting to characterize the reso- 

nance more precisely. Since the curve zooms off 

the graph, however, the trend is clear! 

From the Stokes’ series (4.21, one can prove 

that 

u(X,c;a,@) =u(x,c; -a,@+ gv) (7.1) 

for all c and @. Thus, the positive and negative 

branches in fig. 10 represent the same solutions; 

to graph all nanopterons for a given phase speed 

c (or given E(C)), it suffices to present a single 

interval of length +W in @. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

8. Numerical results III: The nanopteroidal wave 

The spatially periodic generalization of the 

nanopteron, the nanopteroidal wave, is shown in 

fig. 11 along with the nanopteron of the same 
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Fig. 11. Dashed: the nanopteroidal wave for c = 0.1024 (E = 

0.16) and a spatial period P= 2OSW, where W  is the spatial 

period of the oscillatory wings (For this c, W = 6.009.) Solid 

curve: the corresponding nanopteron, computed on the infi- 

nite interval with phase shift @ = 0. One full period of the 

nanopteroidal wave is illustrated. 

phase speed and equivalent phase shift. At X = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP, 

where P is the spatial period of the nanopteron 

( = 123.18 here), the nanopteroidal wave rises to a 

peak identical to that at the origin whereas the 

wing of the nanopteron merely continues its small 

amplitude oscillation. In the neighborhood of this 

second peak, the nanopteron and nanopteroidal 

wave are obviously very different. On the interval 

X E [ - +P, +P], however, the nanopteron and 

nanopteroidal wave are almost indistinguishable 

as shown in fig. 12. 

For a given c and even with the restriction of 

symmetry with respect to X= 0, both the infinite 

interval and periodic solutions are one-parameter 

families. For the nanopteron, the parameter is @, 

the phase shift is the radiation basis function. For 

the nanopteroidal wave, the parameter is the 

period P. 

Let u, denote the nanopteron and up denote 

the periodic wave. Then if P z=== l/ e so that the 

cores of the nanopteroidal wave are well sepa- 

rated as in fig. 11, the correspondence between @ 
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Fig. 12. The difference between the nanopteroidal wave and 

the corresponding nanopteron. For all 1X11 ;P, the maxi- 

mum difference is more than 500000 times smaller than the 

maximum of the nanopteron, which is u(X = 0) = 0.332865. 

and P is given by 

u,(X,c;@) =u,(X,c,P), XE [-;P,;P], 

(8.1) 

where 

@ = $[(m + 4) - P/ W]W, m = integer. (8.2) 

The arbitrary integer m appears in (8.2) be- 

cause the nanopteron/nanopteroidal wave is a 

function only of P mod W. The reason is that 

because the oscillatory wings are periodic with 

period W, increasing P by W merely inserts one 

extra full wavelength of the wing oscillations be- 

tween neighboring core peaks. 

The phase shift parameter @ varies propor- 

tionally to +P (instead of the more obvious PI 

because the radiation basis functions are defined 

in (4.8) so that changing CD by 6@ moves the 

crests of the right wing 6@ to the left while those 

of the left wing are shifted 6@ to the left. Thus, 

increasing @ by i W increases the distance be- 

tween left and right crests by W. 
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9. Non-symmetric nanopterons tional to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASin(Kx): 

As noted earlier, the existence of three eigen- 

functions to the Newton-Kantorovich equation 

implies that for a given phase speed c, the 

nanopteron is a three-parameter family. The 

translational eigenfunction, however, may be 

safely ignored because it merely shifts the origin 

of the coordinate without changing the shape of 

the wave. For a given phase speed, there is only a 

two-parameter family of different shapes. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

%ine(X) e  

e,(x) - tan(6e) e,(X) 

cod + sin(6e) tan(6e) (9.3) 

- sin(fcX) as X-+ --03. 

It then follows that 

In earlier sections, we explored the changes in 

shape (and amplitude of the far field oscillation) 

which were controlled by the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsymmetric eigen- 

function, e,(X). However, it is also possible to 

add multiples of the asymmetric eigenfunction, 

e,(X), to create nanopterons which are neither 

symmetric nor antisymmetric about X= 0. In 

particular, by adding the proper amounts of e,(X) 

and e,(X) to a given symmetric nanopteron whose 

radiation coefficient is a(~; @), one may annihi- 

late the far field as X + -w to create a “single- 

wing” nanopteron. 

Usingle  w ing( x , = ‘sym( x> + aesine( x> * (9.5) 

This has only a single wing, i.e., only a far field 

oscillation to the right of the origin, because in 

the other direction 

‘single wing (X) -0+ @(a’) as X+ -03, (9.6) 

where the @‘(a2) term comes from the second- 

order terms in the Stokes series (4.2). 

If we define the residual of the FKDV equa- 

tion to be 

R(u) =Uxxxx+Uxx+(~U-C)U (9.7) 

To illustrate this construction, let us start with 

the symmetric nanopteron for the particular phase 

shift, @ = 0. This has the asymptotic behavior 

then 

R(UGngle wing (X)) = B(a2). (9.8) 

usYm( X; E, 0) - sgn( X) sin( KX) as IX1 -+ co, 

(9.1) 

where sgn(X> is 1 for all positive X and - 1 for 

all negative X. As shown in section 5, the two 

non-translational eigenfunctions of the Newton- 

Kantorovich have the asymptotic behavior (see 

(5.4)) 

Adding an arbitrary B(a) perturbation to a 

nanopteron like u,,(X) would normally produce 

an B((Y) error. Because the perturbation is a sum 

of eigenfunctions of the linearized FKDV equa- 

tion, however, the error is only @((Y*>. Eq. (9.6) 

gives a consistent, one-sided solution to lowest 

order in (Y. 

e,(X) -cos[~X-66~sgn(X)], 

e,(X) -Sin[KX_66~sgn(X)]. (9.2) 

By applying trigonometric identities to (9.2), we 

can form a linear combination of these two eigen- 

functions whose asymptotic behavior is propor- 

A more subtle question is: Does the single- 

wing nanopteron exist at all orders? Can the 

@((r2) error be eliminated by a few Newton- 

Kantorovich iterations? 

We attempted to answer this question by apply- 

ing a couple of modifications to the numerical 

procedures described earlier. First, we added an- 

tisymmetric rational Chebyshev functions to the 

basis set. The translational eigenmode, which is 

also antisymmetric, was suppressed by using anti- 

(9.4) 
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symmetric basic functions that had second-order 

zeros at the origin. This forced the core to have 

its maximum at X = 0, thus eliminating the free- 

dom to translate the wave. Pinning the maximum 

at X = 0 requires modifying (9.5) by adding an 

P(a) contribution from the translational mode to 

shift the maximum back to X= 0. Since the 

translational mode has a “far field” which is 

&‘(a) smaller than the magnitude of the core of 

this mode, it follows that such a shift does not 

alter either (9.6) or (9.8): adding eigenmodes gives 

an approximation to the single-wing nanopteron 

which has an error no worse than @(a’). 

The second modification was to replace the 

symmetric radiation basis function (4.8) by a 

one-sided function by deleting the term H( -X + 

@) u,.( -X + @; A) in (4.8). We also modified the 

smoothed step function H(X + @) slightly so that 

the basis function had zero slope at X = 0, as 

true of all the other basis functions, so as to force 

the maximum of the numerical solution to be at 

X= 0. 

The third modification was to allow the phase 

@ to be an unknown like the radiation coefficient 

LY. The condition of zero oscillation as X + -SC is 

equivalent to two conditions, the vanishing of the 

amplitudes of both sin(KX) and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcod, even in 

the linearized analysis that led to (9.5). This elim- 

inates @ as the free parameter it was for the 

symmetric nanopteron. We used the asymptotic 

behavior as X + 50 to predict @ and CY to initial- 

ize the Newton-Kantorovich iteration. 

Fig. 13 shows the result: the iteration con- 

verged, but to the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsymmetric nanopteron. The 

rational coefficients of the symmetric rational 

Chebyshev functions fall off rapidly (to @(10p7) 

for the 60th symmetric coefficient). In contrast, 

the antisymmetric coefficients decrease only for 

small n and then level off at a magnitude of 

8(10-3). What happens is that the antisymmetric 

Chebyshev functions converge to a (crude) ap- 

proximation to the left wing of the nanopteron. 

This wing is missing from the radiation basis 

function oscillation, but is nevertheless clearly 

present in the numerical solution (solid). 
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Fig. 13. Solid curve: the result of a (failed!) attempt to com- 

pute a “single-wing” nanopteron by using a radiation basis 

which asymptotes to zero as X + -z. Dashed curve: the 

symmetric nanopteron for the same amplitude and same 

phase in the right wing (@ = 0). The single-wing ‘calculation 

converged, but to the symmetric. double-wing nanopteron 

instead. 

This success would seem to invalidate the high 

praise heaped on the special basis function algo- 

rithm in section 4. In reality, the quality of the 

numerical solution is poor unless the radiation 

basis function is used to approximate both wings 

of the symmetric nanopteron. The sharp-eyed 

reader will note that even though sixty antisym- 

metric basis functions are used, the wings have 

phase errors of lo-20% and the crests have irreg- 

ular shapes instead of being smooth. Because the 

coefficients have leveled off, this error would de- 

crease very slowly with N as the number of 

Chebyshev functions is decreased - probably as 

@(l/N). In contrast to this algebraic conver- 

gence, the error decreases as an exponential func- 

tion of N when the radiation basis function is 

used as shown in figs. 3 and 6. 

In addition, the Chebyshev functions cannot 

represent an infinite number of oscillations, so at 

large negative X-off the graph in fig. 13 -the 

“single-wing” solution asymptotes to zero. Thus, 

the approximation is not uniform in A’ unless 
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the radiation basis function is used to represent 

both wings of the nanopteron. 

It is a tribute to the great power of spectral 

methods that it is possible to obtain any sort of a 

solution, however bad, without the radiation basis 

function. However, when a wing is represented 

only by Chebyshev functions, the numerical solu- 

tion is crude, inaccurate, poorly convergent and 

not very trustworthy. 

The physical significance of fig. 13 is more 

ambiguous. The fact that the numerical solution 

converges to a symmetric nanopteron even when 

the radiation basis was modified to force a 

single-wing solution strongly suggests that asym- 

metric nanopterons do not exist. 

Unfortunately, we cannot equate fig. 13 with a 

proof of nonexistence, even a purely numerical 

proof. The reason is that in the 120-dimensional 

coefficient space of the pseudospectral method, it 

is possible that the radius of convergence of the 

single-wing nanopteron is very tiny. A different 

first guess, closer to the hypothetical nanopteron, 

might converge to it instead of the symmetric 

solution. 

Consequently, many different initial conditions 

were tried, but without success: the only good 

solutions obtained were quasi-symmetric like the 

solid curve in fig. 13. However, the possibility that 

further tries might be successful cannot be com- 

pletely ruled out. 

So we must end with a conjecture: only sym- 

metric nanopterons exist in a strict sense, that is, 

with an error smaller than @(LX’>. It would by 

very interesting to have a rigorous proof of this 

hypothesis. It would be even better if analysis 

could explain why the nanopteron must be sym- 

metric. 

10. Summary 

In this article, we have numerically computed 

both infinite interval and spatially periodic solu- 

tions to a one-dimensional wave equation which 

models capillary-gravity waves. By using a special 

radiation basis algorithm, we calculate the 

nanopteron with spectral accuracy. We are able 

to extrapolate to the limit of E + 0, where E is 

the amplitude parameter to confirm the matched 

asymptotics theory of Pomeau, Ramani, and 

Grammaticos [18]. However, their result is nu- 

merically accurate to within 25% only when the 

amplitude of the radiation coefficient (Y is smaller 

than 10-14. For moderate amplitude, the 

Chebyshev/ radiation pseudospectral method is 

essential. 

Via a Fourier series algorithm, we also com- 

puted the spatially periodic solution, the 

nanopteroidal wave, with an accuracy that in- 

creases exponentially fast with N, the size of the 

basis set. We show that when the period is large 

in comparison to the width of the central peak, 

the nanopteroidal wave is very accurately approx- 

imated by the nanopteron of the same phase 

speed. 

One remarkable complication of the non-local 

character of the FKDV nanopterons is that the 

linearized (“Newton-Kantorovich”) wave equa- 

tion has three eigenfunctions. In contrast, the 

linearization of the ordinary Korteweg-de Vries 

equation has only a single eigenmode. The extra 

symmetric eigenmode implies that for fixed phase 

speed, the nanopteron is a one-parameter family. 

This parameter controls the amplitude and phase 

of the small oscillations that are the “wings” of 

the nanopteron, but has only a small (relative) 

effect on the “core”. We are able to numerically 

compute the complete one-parameter symmetric 

family. 

The non-translational antisymmetric eigen- 

mode implies that the wave equation also has 

nanopterons which are not symmetric about the 

origin including waves that have only a single 

wing, that is, oscillations only on one side of the 

“core”. We prove that asymmetric nanopterons 

exist at lowest order in perturbation theory. How- 

ever, our numerical attempts to compute single 

wing nanopterons to all orders were unsuccess- 

ful. 
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The ideas developed here for capillary-gravity 

waves can be applied to other “non-local” soli- 

tary waves as catalogued in table 1. Boyd [.5-91 

gives illustrations. 

[41 

[51 

The most interesting open problem is that of 

proving the existence or (more likely) non- 

existence of asymmetric nanopterons. Hunter and 

Scheurle [15] have rigorously proved that the 

FKDV equation has symmetric solutions which 

are “arbitrarily small perturbations of solitary 

waves”. It still remains, however, to extend their 

analysis to unsymmetric waves. 
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