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. Laat f,wo en w; voldoen aan de voorwaarden, gedefiniderd in (3.2.5)-(3.2.7)

op bladzijde 49 en 50 van dit proefschrift. Voor elke € en p die voldoen aan
0 < |e] < €9 € 1en p > 0 heeft het begin-randwaarden probleem, gedefiniéerd in
het stelsel vergelijkingen (3.2.1)-(3.2.4) op bladzijde 49 van dit proefschrift, een
unieke en drie keer continu differentiéerbare oplossing met een continue vierde
afgeleide naar z, voor alle (z,t) € O = {(2,8)|0<z <m,0<t < Lle7* },
met L een voldoende kleine positieve constante onafhankelijk van €. Deze unieke
oplossing hangt continu af van de gedefiniéerde beginvoorwaarden.

[Dit proefschrift, paragraaf 3.2]

. Voor het begin-randwaarden probleem, gedefiniéerd in het stelsel vergelijkingen

(2.1.4)-(2.1.7) op bladzijde 27 van dit proefschrift, geldt in de meeste gevallen
dat essentiéle energieuitwisseling plaatsvindt tussen eindig veel modes, wanneer
er voor ¢ = 0 in eindig veel modes energie aanwezig is. Voor het geval p? = 0
ontstaan er echter oneindig veel interne resonanties, d.w.z. energieuitwisselingen
tussen oneindig veel modes, en is truncatie naar één of meerdere modes niet
geldig.
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. 1t5 is niet zo maar een breuk. [Dit proefschrift, hoofdstuk 2]
. Wiskunde N Politiek N Telecommunicatie = 435!,

. Vier wur creatief werk per dag is zo ongeveer het mazimum voor een wiskundige.

G.H. Hardy

. Vrouwen die gelijk willen zijn aan mannen missen ambitie. Onbekend

Het is beter een kaars aan te steken, dan te klagen over de duisternis.
Een Chinese wijsheid

Politiek is eens omschreven? als de kunst om het onvermijdelijke mogelijk te
maken. Een gedreven politicus echter beheerst de kunst om het mogelijke on-
vermijdelijk te maken.

Door de eeuwen heen heeft de schijnbare tegenstelling tussen schoonheid en
intelligentie bij vrouwen aanleiding gegeven tot commentaar. Voorbeelden hier-
van zijn: Spreuken 11:22, Als een gouden ring in een varkenssnuit is een schone
vrouw zonder verstand 3, of meer recent, de onder (hoog opgeleide) mannen zeer
populaire ‘domme blondjes’ moppen.

De invoering van de ‘gratis’ OV-jaarkaart voor studenten heeft een positief effect
gehad op het ziekteverzuim van Delftse buschauffeurs.

In de Joodse traditie wordt aan de letters van het alfabet een getalwaarde toegekend (Gematria)
2Gaby van den Berghe (Vlaams journalist), ‘Aan de haak’, Albatros, Brussel, 1972
3Vertaling Nederlands Bijbelgenootschap
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. Suppose f, wo, and w, satisfy the conditions, as defined in (3.2.5)-(3.2.7) on

the pages 49 and 50 of this thesis. Then for every € and p satisfying 0 < |e| <
€0 < 1 and p > 0 the initial-boundary value problem, defined in the system
of equations (3.2.1)-(3.2.4) on page 49 of this thesis, has a unique and three
times continuously differentiable solution with a continuous fourth derivative
with respect to x for (z,t) € O = {(2,¢)|0 <z < 7,0 <t < L|e|~! }, with L
a sufficiently small, positive constant independent of e. This unique solution
depends continuously on the initial values. [This thesis, section 3.2

For the initial-boundary value problem, defined in the system of equations
(2.1.4)-(2.1.7) on page 27 of this thesis, it holds for most cases that there is
an essential energy exchange between a finite number of modes, if for ¢ = 0
there is energy present in a finite number of modes. For the case p? = 0 how-
ever, infinitely many internal resonances occur, i.e. energy exchange occurs
between infinitely many modes, and truncation to one or more modes is not
valid.

$93 is not just any fraction. [This thesis, chapter 2]

Mathematics N Politics N Telecommunication = 435%.

. Four hours of creative work a day is about the limit for a mathematician.

G.H. Hardy
Women who seek to be equal to men lack ambition. Unknown

It is better to light a candle than to complain about the darkness.
A Chinese saying

Politics has been described® as the art of making the inevitable possible. A
driven politician however masters the art of making the possible inevitable.

Throughout the ages the seeming contradiction between beauty and intelligence
of women has lead to comments. Examples are: Proverbs 11:22, As a jewel of
gold in a swine’s snout, so is a fair woman which is without good sense®, or more
recent, the among (highly educated) men very popular ‘dumb blonds’ jokes.

The introduction of the ‘free’ public transport card for students has had a

positive effect on the rate of absenteeism due to sickness among bus drivers in
Delft.

4In the Jewish tradition each letter of the alphabet has a numerical value (Gematria}
SGaby van den Berghe (Flamish journalist), ‘Aan de haak’, Albatros, Brussels, 1972
8 Authorised King James Version and The New English Bible
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Summary

Particular types of flexible structures, like tall buildings, suspension bridges
or iced overhead transmission lines with bending stiffness, are subjected to
oscillations due to various causes, such as (strong) winds or earthquakes.
A classic example is the Tacoma Narrows suspension bridge. Who has not
seen the video-film of the large-scale oscillations and the collapse of this
bridge, shown in high school physics classes? A more recent example is the
oscillation of the stays of the Erasmus Bridge in Rotterdam, during stormy
and rainy weather.

In this thesis we consider a (simplified) model for nonlinear oscillations of
a suspension bridge. For several (external) forces acting on the structure
an initial-boundary value problem is defined, which describes the vertical
displacement of the suspension bridge. For each case the initial-boundary
value problem is studied, using a multiple timescale perturbation method.
Formal approximations, i.e. functions that satisfy the differential equation
and the initial-boundary values up to some order in €, arc constructed in
the form of a power series for each case. Furthermore it is shown whether or
not internal resonances occur. In all cases a justification is given whether a
(so-called Galerkin) truncation of the infinite series for the formal approx-
imations of the solution is valid or not.

For one class of initial-boundary value problems the existence and unique-
ness of solutions and the asymptotic validity of approximations on a large
time-scale are proven, using Banach’s fixed point theorem.

The results of this thesis can, among other purposes, be used to consider
whether Galerkin truncation is applicable or not, when analysing this type
of problems (numerically). Also, using the results of this thesis, a justifica-
tion of the asymptotic validity of approximations can be given, and some
remarks can be made on the diffcrence between approximations and exact
solutions.
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Chapter 1

Introduction

1.1 Relevant literature

Particular types of flexible structures, like tall buildings, suspension bridges
or iced overhead transmission lines with bending stiffness, are subjected to
oscillations due to various causes, such as (strong) winds or earthquakes.
A classic example is the Tacoma Narrows suspension bridge. Who has not
seen the video-film of the large-scale oscillations and the collapse of this
bridge, shown in high school physics classes? A more recent example is
the oscillation of the stays of the Erasmus Bridge in Rotterdam, during
stormy and rainy weather. Simple models which describe these oscillations
involve nonlinear second order partial differential equations (wave equa-
tions), as can be seen for example in [1]-[4], second order ordinary coupled
differential equations, as can be seen in [5]-[8], or nonlinear fourth order
partial differential equations (beam equations), as can be seen for example
in {9]-[13].

Nonlinear beam equations are considered in various papers. In [14]-[19]
several experimental models are discussed, such as canti-levered beams
([14]-[17]), canti-levered pipes conveying fluid ([18]) or heat-exchanger tubes
([19]). In [20]-[25] several theoretical analyses are discussed.

In many cases perturbation methods can be used to construct approxima-
tions for solutions of this type of second or fourth order cquations. Initial-
boundary value problems for second order PDE’s have been considered for
a long time, for instance in [1]-[4], [26]-[30], using a multiple scales per-
turbation method, in [31]-[32], using a (Galerkin) averaging method, or in
[33]-[34], using both methods. More recently initial-boundary valuc prob-
lems for fourth order PDE’s have been considered, for example in [9]-[25].
We will discuss these papers in more detail in the next paragraph. For
fourth order strongly nonlincar PDE’s numecrical finitc clement methods
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can for instance be used, as is done for example in [35].
In [9] the following equation is given to describe the deflection of a suspen-
sion bridge modeled by a nonlinear beam:

Ut + Uggge + 0wy = —kut + W(z) + ef(z,t),

with simply supported boundary conditions for u, the vertical deflection of
the bridge, W (z) the weight of the bridge per unit length, f an external
forcing term, u* = u when u > 0 and = 0 when u < 0, § a damping
coefficient and & a spring constant. In [9] a single mode representation
is used, together with a numerical analysis. Some remarks are made on
existence and multiplicity of periodic solutions to linear PDE’s.

In [10] and [11] the following system of equations is used to describe the
galloping amplitude of canti-levered beams in a wind-field:

Elwl,wxxac + Cwl,t + mwy gy = D((L‘, t),
EI'LUQ,zzmz + CwQ,t + mwo e = L(-Eu t)a

where E1 is the flexural rigidity of the beam, C a damping coefficient, m the
mass of the beam per unit length, w; (w2) the deflection along (across) the
wind direction and D (L) a drag (lift) force. Single mode representations
are used for w; and wy and a multiple scales method is used to approximate
solutions to the system of equations.

In [12] an equation is given to describe nonlinear oscillations of a suspension
bridge:

Kouggpae + uyy — Kiugge + K3u+ =1+ ]{JCOS(.’I?) + Eh,(:l,', t),

with simply supported boundary conditions for u, the vertical deflection of
the bridge. K7, K, K3 and k are constants and h is an external excitation.
An eigenvalue problem is defined and some results on existence of solutions
in the nonlinear case are given.

In [13] a mathematical analysis of dynamical models of suspension bridges
is given. The following equations are given for the vibration z of the road-
bed of a suspension bridge in vertical direction and the vibration y of the
main cable of the suspension bridge from which the road-bed is suspended
by:

mbztt+aD4z+F0(y—z) = mpg + f1(t),
mcytt_BD2y+F0(y”z) = mng‘+‘f2(t)a

where D* denotes the spatial derivative of order k, m; and m,. are the
masses per unit length of the road bed and the cable respectively, o and 3
the flexural rigidity of the structure and the coefficient of tensile strength
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of the cable respectively, Fy a restraining force and fi, fo external, non-
conservative forces. The boundary conditions considered are clamped on
both edges or clamped-hinged. A variational method and an energy func-
tional are used to prove existence of solutions, a Cauchy problem is formu-
lated for a more general form of the nonlinearity considered and used to
prove existence of solutions and uniqueness of solutions when the nonlin-
earity satisfies certain conditions. Also some numerical results are given.
In [14]-[17] an elastic beam equation is considered with nonlinear boundary
conditions (clamped-free):

Dvgges = —muy — mVoy,

with v the lateral displacement of the beam relative to the support, Vg the
displacement of the clamped-end support, m the mass of the beam per unit
length and D the bending stiffness of the beam. A single mode Galerkin
expansion is used to approximate solutions of this beam equation and some
experimental results are given, stating that chaotic vibrations occur.

In [18] the nonlinear dynamics of planar motions of canti-levered pipes
conveying fluid are considered. The equations of motion of the pipe system
in horizontal and vertical direction arc

o'z 0 [0z 5 O%x D2x

g — M M = 0
EIaA B4 [8 (P+ EIk )} m8t2+ —(m+ M)g ,

oty 0 [0y 0%y D

9y, 2 M=y =
Eld4+d [() (P+EI/<;)]+mdz+ Dtl —(m+M)g 0,

where EI is the flexural rigidity of the pipe, z and y the horizontal and
vertical displacements of the pipe respectively, m and M are the pipe and
fluid mass per unit length respectively, g is the acceleration due to gravity,
P is the axial force exerted on the pipe and & is the curvature s the curvi-
linear coordinate along the centreline of the pipe, Dt +u 550 With u the
flow velocity of the fluid. The equations are coupled by the non-constant
term P + EIx?. A two-mode Galerkin representation and an eigenvalue
approach are used to analyze the coupled system of equations.

In [19] the dynamics of heat exchanger tubes is considered. The equation
of motion discussed in [19] is

Elwgppe + cwy + mwy + (5($ — ach)f(w) = F(’LU7 wt,wtt).

The system under consideration has clamped boundary conditions and a
loose support at the middle of the tube, at z = z. w is the cross stream
lateral displacement of the tube, ET the flexural rigidity of the tube, m the
mass of the tube per unit length, ¢ a damping coefficient, f the nonlinear
force due to the constraint at z = z3, with §(z—x) the Dirac delta function,
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zp the location of the constraint and F' the flow induced force. A Galerkin
mode expansion is used and some numerical results are given.
In [20] non-planar oscillations of a simply supported beam are described by

T
Ugt + Uggrs + Ut — [a + e/ (ui + vg)dw} gz = p(z,t),
0

s
Ut + Vpprr + Ut — [a + e/ (ui + vi)dw} e = q(z,t),
0

with simply supported boundary conditions for 4 and v, where u and v are
the displacements in z- and y-direction respectively, a a constant and p and
g the 2- and y-components of the external force considered. The coupled
system of equations is analyzed using a finite projection method, and some
results on existence of solutions are given. Also some results are given for
a rotating beam, using a finite truncation method.

In [21] time-periodic free vibrations of an extensible beam with rotational
inertia are discussed, using the following equation:

Cugy — Utz + Uggar + fl(ar,u, 'U'x) - ,—fg(a:,u,uz)
oz

-~ (/ uf(s,t)ds) Ugg = 0,
0

with simply supported boundary conditions for u, the transversal displace-
ment of the beam, C a constant and fi, fo nonlinear functions. A varia-
tional approach and a finite dimensional approximation are used to prove
the existence of infinitely many time periodic solutions.

In [22] nonlinear transversal vibrations of a uniform beam, which is axially
restrained and forced by a two-mode harmonic function, are considered.
The equation of motion for w, the deflection of the beam in transversal
direction, is

Eh !
Ei‘ I:/(; wzdy] Wyy = F(y> t)a

where w satisfies simply supported boundary conditions, [ is the length of
the beam, h the thickness of the beam, F Young’s modulus, I the moment
of inertia, p the mass density of the beam and F the lateral applied load.
A Galerkin expansion method and a finite difference method are used to
approximate solutions of the PDE.

In [23] the transversal deflection u of an extensible beam of length L is
given by

phwtt + Er Wyyyy —

L
Ut + QUgzey + (ﬂ +/0 “g(faf)ﬂﬁ) Uzz = 0,
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with @ and 3 constants, > 0. This equation is semi-linear since the
integral term can be seen as a function of £ only. Some results on existence
and uniqueness of solutions to this semi-linear equation are given using a
finite Galerkin expansion method.

In [24] the forced oscillations of beams with nonlinear damping are con-
sidered. The following equation for the transversal displacement u of the
beam is given:

Ut + Ugrzr + 5(“t) = f(.T, t)v

with u a 27-periodic function in ¢, which satisfies simply supported bound-
ary conditions, 8(u;) a super-linear increasing function of u; and f(z,t) a
2m-periodic linear function of . A one-mode Galerkin expansion, an eigen-
value approach and a difference method are used to approximate solutions.
In addition some numerical results are given.
In [25] vibrations of a beam resting on elastic foundations are considered.
The following equation is given for the lateral displacement w of the beam:
0

Elwypre — E (K1 ()wwg) + K(z)w = —pAwy,
where ET is the flexural rigidity of the beam, K (z) the Winkler foundation
stiffness along the beam, Ki(z) the second foundation parameter along the
beam, p the material density of the beam, A the cross-sectional area of
the beam. Various boundary conditions are considered. Truncation to one
mode is applied, a power serics method with a stiffness matrix and a finite
element method are used to approximate solutions to the PDE.
In most of the papers considered above a truncation to one or several modes
is applied, without giving a validation, and no remarks are madc on the
relation between the approximation and the exact solution.

1.2 Mathematical formulation of the problem

To derive the equations of motion for an elastic beam we will follow part of
the analysis given in [37]. We consider an elastic beam of length [, simply
supported at the ends, in vertical direction. An external force is be applied
at the ends of the beam such that no vertical displacement is possible.
Oscillations are possible due to the strain of the beam. The z-axis is taken
along the beam axis, such that the left end of the beam corresponds with
z = 0. The z-axis is taken vertically. The y-axis is perpendicular to the
(x, z)-plane. We assume that the beam can move in the z- and z-direction
only. We introduce the following symbols: p is the mass of the beam per
unit length, p the mass density of the beam, A the arca of the cross-section
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Q of the beam perpendicular to the z-axis (so u = pA), E the elasticity
modulus (Young’s modulus), I the axial moment of inertia of the cross-
section. The inertial axes of the cross-section Q are the y- and z-axes,
so I = | fQ 22dydz. The vertical displacement of the beam from rest is
w = w(z,t), the horizontal displacement of the beam is u = u(z,t). The
curvature of the beam in the (2, z)-plane can be approximated by w,, as
follows. We consider an element of the beam of length Az in static state.
In deformed state the arc length of this element is As, where As ~ RAgp,
with Ay the arc angle, as can be seen in Figure 1.1 and R the radius of

Figure 1.1: The bending of a line-element Az.

curvature of the beam axis in deformed state at position z. Furthermore,
Ap =~ tan Ap = Aw/Az and As ~ /(Az)? + (Aw)?. For Az — 0 this
gives us R = (1 + wg)% [Wzz. Assuming that w, is small with respect to 1,
we can approximate the curvature, which is equal to 1/R, by w,;. Using
this, the strain £45 due to ‘pure’ bending of a line-element of the beam at
a distance z from the line of centroids (the z-axis) is given by
Exx = (® Z),’?K‘p RAy = _% N —2Wgg-

Furthermore, the strain e;9 due to stretching of the line of centroids of
a line-element of the beam can be approximated by u; + %wg as follows.
From Figure 1.2 and the definition of strain due to stretching, which can
be found in any standard textbook on mechanics (see for example [38]) we
have the following expression for ¢,:

V(Az + Au)? + (Aw)? — Az
Ex) = .
AV >
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Figure 1.2: The stretching of a line-element Az.

For Az — 0 this gives us g5 = /1 + 2uy +u3 + w2 — 1. By assuming
that u2 is small with respect to ug, and by expanding the square-root as a
Taylor series, we have €9 ~ u; + 1/ ngzc. The total strain of a line-element
of the beam at a distance z from the z-axis is given by ¢, = €,0 + €22 =
Ug + %w% — 2wgy. It is shown in [37] that, using Hooke’s Law, the work
performed to deflect the beam from its initial position, is

1 ! 1,2 1 !
A(t) = —EA/ [uz + —wi] dx + —EI/ (wgz)? da. (1.2.1)
2 0 2 2 0
The kinetic energy of the beam is given by
1 !
Ex(t) = —u/ (1 +w?] de. (1.2.2)
2" Jo

Using (1.2.1) and (1.2.2) the Hamiltonian integral is

F = Flty) - F(ty) = / P (A() — Eu(t))dt (1.2.3)

t1
1 ta pl 1 - ) , i
1

Using Hamilton’s Principle, which states that the variation of F is equal
to 0, the Euler equations for this problem are

0 1
puy — EA—— [uz + §w§] = 0, (1.2.4)
) 1 2 =
pwy + Elwgper — EA% Wy Uy + iwm = 0. (1.2.5)

The system given by (1.2.4)-(1.2.5) can be simplified by the following as-
sumption, introduced by Kirchhoff (see [39]): the velocity of the beam in
z-direction, wuy, is small compared to w; and can be neglected in (1.2.3), so
F=3 ttf fé{EA[uz + 2w + EI(wyy)?—pw?]}dzdt. The system given
by (1.2.4)-(1.2.5) can now be simplified to

il - = 2.
EAaz [’U,I + 2wx] 0, (1.2.6)

1 .
pwg + Elwggp, — EAwg, [ul» + —jwi] = 0. (1.2.7)
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From (1.2.6) we get u, + %wi = g0 18 a function of ¢ only. Integrating ez
with respect to z from 0 to [ gives us [ (uy + 1w2)dz = e49l, which means
w(l,t) — u(0,t) + %fé widz = e50l = (ugy + $w2)l. Substituting this into
(1.2.7) gives us the following equation for the vertical displacement w:

,uwtt+EIwmm—T u(l,t) — u(0,t) + 5/0 wydz| wey = 0.  (1.2.8)

If other external forces are considered, the right-hand side of (1.2.8) be-
comes nonzero, as we will show in the next part.

In [9] a survey of literature on oscillations of suspension bridges is given.
Using a similar analysis, we will derive a simplified model for nonlinear
oscillations in suspension bridges, where the vertical displacement of an
elastic beam is given by (1.2.8). We model the suspension bridge as a
beam of length I. The stays of the bridge are treated as nonlinear springs,
as sketched in Figure 1.3. The torsional vibrations of the beam are not

F4

L

=0 z=1
Figure 1.3: A simple model of a suspension bridge.

taken into account (i.e. are considered to be small compared to the vertical
vibrations). We neglect internal damping. Furthermore, we consider a
uniform wind flow, which causes nonlinear drag and lift forces (Fp, Fr)
acting on the structure per unit length. We introduce Fj, the force per
unit length acting on the beam due to the springs, and W, the weight of
the bridge per unit length, which we consider to be constant, i.e. W =
1g, where g is the gravitational acceleration. The equation describing the
vertical displacement of the beam in this case is

pwy + Elwgzes + Fs(w) = (1.2.9)

EA 1,
—Hg+FD+FL+T u(l,t)—u(O,t)+§/() wwda: Wy

We assume that the spring force F; can be expanded in a Taylor series, with
F,(0) = 0 and can be approximated by the first two terms, Fy(w) = kjw +
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kow?, which means we assume that higher order terms can be neglected.
#1 and ko are spring constants. If ko # 0 we in fact assume that the springs
have a different behaviour for compression and expansion, i.e. for w < 0
and w > 0. In section 4 of [1] it has been shown that Fp + Fr, can be
approximated by

dv? a
Pa2 = ( + w4+ ——wlt + v—wf)

oo Vo 00

where py is the density of air, d is the diameter of the cross section of the
beam, v, is the uniform wind flow velocity and ag, a1, a2,as depend on
certain drag and lift coefficients and are given explicitly in [1].

Equation (1.2.9) will be simplified by eliminating the term —pug using
w = + Bs(z), where s(z) satisfies the following time-indcpendent linear
equation with boundary conditions:

(:c)—I-—s() EI’ 0<z<l,
s(0) = s(1) = 0, s@(0) =) =0.

It can be shown that s(z) = cos(Bz) cosh(Bz) + (sin(8l) sin(Bz) cosh(Bz) —

sinh(31) cos(Bz) sinh(Bz))/(cos(Bl) + cosh(Bl)) — 1, with 8 = (4EI)%. The
term 22s(z) represents the deflection of the beam in static state due to
gravity. Using the dimensionless variables

7r 0 4 ¢?
-1

EZ —Ct, U=—-—
l l'vgou’

with ¢ = T4 /%, (1.2.9) becomes

IN' & dlv
(—) 1 U pa = (ao + aywi + agwt + agwf)

T EI Y T C
1A [ l 2 [T
prltel <9§— <ﬂ(7r,f) —u(0,1) + —/ w%ﬂ) Wz + ’—@H),
41 cmn\cm 7 Jo K1
4
Ky (1 Vo | o g )
T - - 1.2.10
EI<7T) (cww +fflj ’ ( )

= (l, (m,t) —u(0,7) + g/ u‘)idm) 5(2)(£§:)
7 Jo T
+£ {/ w1 )(i ) die <U1m L BT € e )(lj)>
0

K1 1 v T

- 2
+3H€Ei / ((.;(U(ij)) dz (11_)“ + H_gzib(Q)(iT)) ,
T KL Vs [Jo w K1 1 v s
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and

l wcug2l
)+lvoo/~c1 (71' z)

J=2s(

Assuming that ve, the uniform wind velocity, is small with respect to 7
we put € = *2 = l , where € a small parameter. Furthermore, we assume that
the deﬂectlon of the beam in static state due to gravity, /i-‘ls is small with
respect to the vertical displacement @, which is of order €. This means we
assume that £ is O(€"), with n > 1, since s(z) is of order 1 (as well as

M(z) and s ( )), as can be seen from the expression for s which is given
a,bove. It can be shown easily that H = O(1) and J = O(1). Equation
(1.2.10) now becomes

IN® k1 pad,

4
g + Bazaz + (;) BI0= gt (ao + ayW; + aW? + agwf)

1A, (_ _ 2 (7 ke (1N,
+1762 (U(?T,E)—U(O,Z)-FE/O Wi d.fl?) wii_é(;) E’U)2

1A ~my ";2 l 4 ~Ma

In section 4 of [1] it has been shown that the first term in the right hand
side of (1.2.11) can be approximated as follows:

pad pad . _ _
%e (ao + aywr + agwt + ag'wf) ﬁe (awt- — bw%) + O(e™),

with mg > 1 and where a and b are specific combinations of drag and lift
coefficients which are given explicitely in [1], and are of order 1. This means
that (1.2.11) now becomes

N & d
Wi + Wzzzz + (—) g = 2% (au')t' - bw;?’)

w) EI 2
14, 2 (" 5 N\ ok (L)',
+4I6 ( (m,t) — Oﬂ+-7;/0 wjdm>wm—ﬁ(;) €
4
Yoy = 52 (LY o(em) 4 Pado(ems
+ 0( ) EI( ) o) + 0@, (1.2.12)

with m; > 2, my > 1 and m3 > 1. Using the transformation w = \/ 2o
and 4 = 24 (1.2.12) becomes

R . INY Ky d _[. 1.
wF+wizizi+<—) E—llw:%ae (w{—gwé—)’)

1Aa /. 2 (7 .\ . Ko 1)4 a .,
RN (u(wﬂ (”Hw/o widx) wﬁ_—f<7r V3
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2 (LA g em _2(1)4 cmzy , Pad o omg
+ a@Ime) 57 ) CE™+ 0@ ), (1.2.13)

with my > 2, mg > 1 and mg3 > 1. Taking

N _ Padvo ! 1.2.14
€1 o aé o 4, (1.2.14)
 l1Aa, 1A (v l\?3b i
@ = rnteir () T (1:2.15)
Ko (1 4 o Ko (1 4 ra Voo |
= = {2 — =21 — 1.2.1
© ET (7() 35° EI <7r> 3b ¢ 7’ (1.2.16)

(1.2.13) becomes
5 - 2, 5 Loy
Wg + Wzzzz +PW =€ | wg — gwt—

2 m
+ey (ﬂ('lr,f) —4(0,1) + = / ﬁ)id.i) gz + €310°
T™Jo
+€10(1) + 620(1) + 630(1),
4
%) % of order 1. Four different cases for €1, €2, €3 given by
(1.2.14)-(1.2.16) are considered in this thesis. The case e; < € and €3 < €
is considered in Chapter 2 (up to O(e}), n > 1). The case ¢ < €3 and
€9 K €3 is considered in Chapter 3 (up to O(ef§), n > 1), using a slightly
different scaling of w. The case ¢; € €y and €3 < €y is considered in
Chapter 4 (up to O(eh), n > 1), using a slightly different scaling of w. The
case €9 = €1 and €3 < € is considered in Chapter 5 (up to O(e?), n > 1).

with p? = (

1.3 An analytical approximation method

In this thesis we consider the following initial-boundary value problem,
which describes, up to O(e"), n > 1, the vertical displacement of an elastic
beam with certain external forces acting on the beam:

Wy 4 Wepps + pPw = eF(x,t,w, wy, Way), (1.3.1)
w(0,t) = w(m,t) =0, t >0, (1.3.2)

Wy (0,1) = weg(m, t) =0, t>0, (1.3.3)

w(z,0) = wo(z), wizr,0)=w(z), 0<z<m (1.3.4)

where different cases are considered for F, as we saw in the previous para-
graph. For all cases formal approximations, i.e. functions that satisfy the
differential equation and the initial-boundary values up to some order in
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€, of solutions of (1.3.1)-(1.3.4) are constructed. When straightforward e-
expansions are used to approximate solutions, secular terms can occur in
the approximations. To avoid these secular terms a two time-scales pertur-
bation method is used. The initial-boundary value problem (1.3.1)-(1.3.4)
is extended to an initial value problem by extending all functions in z.
The boundary conditions imply that w should be extended as an odd, 27#-
periodic function in z, i.e. we write w as a Fourier sine-series in x

o0

w(z,t) = Z dm (t) sin(mz). (1.3.5)

m=1

This extension implies that all terms in (1.3.1) should be extended as odd,
2m-periodic functions in z. In this thesis we consider four different cases
for F

(G) F=w;—1/3uw},
(1) F=w?
w €
(113) F = (u(m,t) —u(0,t) + 2/7r/ W)W,
0
(iv) F =w;—1/3w} + d(u(m,t) —u(0,t) + 2/ﬂ/ W2dT) Wy,
0

where § is a constant of order 1. For the cases (4), (474) and (iv) the extension
in z is straightforward, but for case (47) the nonlinearity on the right hand
side of (1.3.1) has to be rewritten as follows:

Wit + Weger + pPw = eh(z)w?, (1.3.6)

where the function h, defined on R, is given by h(z) =1 for 0 < z < m,
h(0) = h(m) = 0, and h is odd and 27-periodic in z. The function h(z) can
then be written as a Fourier sine-series

4 X sin((25 + 1))

h(z) = Wj; TSR (1.3.7)
We emphasize that these quadratic nonlinearities are usually not treated
correctly in the literature.
As stated above, terms that give rise to secular terms can occur in the
approximations. To eliminate these terms we introduce two timescales,
to =t and #; = €t, and assume that ¢, can be expanded in a formal power
series in €, that is, ¢,(t) = qno(to,t1) + €gn,1(to, t1) + €2gna(to,t1) + - .
Equations for ¢, 0,¢p 1, ... arc derived and can be solved one by one.
In the literature, for example in [27], similar systems are analysed using
muliple scale methods or averaging methods. In this thesis, however, we
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choose to use the method of multiple scales, because in our opinion this
method is more efficient and more pleasant to work with.

As stated above, we construct formal approximations of solutions of the
initial-boundary value problem (1.3.1)-(1.3.4). In Chapter 3 an asymp-
totic theory is presented for a restricted case of (1.3.1)-(1.3.4), where F =
f(z,t,w;€) and where the initial values (1.3.4) can also depend on e. We
will show that this initial-boundary valuc problem is well-posed in the clas-
sical sense, i.e. we will show that there exists a unique classical solution
for this initial-boundary value problem. Also the asymptotic validity of the
constructed approximations will be given for this case, which means that
in Chapter 3 an order e approximation for the solution of (1.3.1)-(1.3.4) is
constructed on a timescale of order 1/e.
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Chapter 2

A Weakly Nonlinear Beam
Equation with a Rayleigh
Perturbation'

Abstract In this chapter an initial-boundary value problem for a weakly non-
linear beam equation with a Rayleigh perturbation will be studied. It will be
shown that the calculations to find internal resonances in this case are much more
complicated than and differ substantially from the calculations for the weakly non-
linear wave equation with a Raylcigh perturbation as for instance presented in [1]
or [26]. The initial-boundary value problem can be regarded as a simple model
describing wind-induced oscillations of flexible structures like suspension bridges
or iced overhead transmission lines. Using a two time-scales perturbation method
approximations for solutions of this initial-boundary problem will be constructed.

2.1 Introduction

Flexible structures, like tall buildings, suspension bridges or iced overhead
transmission lines with bending stiffness, are subjected to oscillations due
to wind forces or other causes (e.g. earthquakes). Simple models which
describe these oscillations can involve nonlinear second and fourth order
PDE’s, as can be seen for example in [1] or [9]. In most cases asymptotic
methods can be used to construct approximations for solutions of this type
of equations. Initial-boundary value problems for second order PDE’s have
been considered for a long time, for instance in [26]-[29] and [33]. These
problems have been studied in [1]-[3],[31] and [32], using a two time-scales

tThis chapter is a revised version of [40] On Mode Interactions for o Weakly Nonlinear
Beam Eguation, Nonlinear Dynamics, 17 (1998), pp. 23 40
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perturbation method or a Galerkin-averaging method to construct approx-
imations. For example, in [1] an asymptotic theory for second order PDE’s
is presented for models describing the growth of wind-induced oscillations
of iced overhead transmission lines. For fourth order PDE’s the analysis
is more complex. In a number of papers ([9]-[11] and [43]) approximations
for solutions of initial-boundary value problems for fourth order PDE’s are
constructed using perturbation methods. In most cases single mode repre-
sentations are used, without justification. In this chapter approximations
are constructed using a two time-scales perturbation method and a justifi-
cation is given in which cases mode truncation is valid.

In [9] a survey of literature on oscillations in suspension bridges is given. We
will derive a simple model for nonlinear oscillations in suspension bridges
using Equation (18) from [9], with some modifications. We consider the
suspension bridge to be a beam of length I. The vertical displacement is
w = w(x,t). The stays of the bridge are treated as two-sided springs, as
sketched in Figure 2.1. We introduce the following symbols: p = pA the

z

LY

z=0 x=1
Figure 2.1: A simple model of a suspension bridge.

density of the beam per unit length, p the density of the beam, A the area
of the cross-section of the beam perpendicular to the x-axis, F the elasticity
modulus, I the axial momentum of inertia of the cross-section and k the
spring constant of the stays of the bridge. We neglect internal damping
and consider the weight W of the bridge per unit length to be constant
(W = g, g is the gravitational acceleration). We consider a uniform wind
flow in y-direction, which causes nonlinear drag and lift forces (Fp, Fy) to
act on the structure per unit length. The equation describing the vertical
displacement of the beam is

pwy + Elwggey + kw = —pg + Fp + Fp. (2.1.1)
In Section 4 of [1] it is shown that Fj, and Fy, can be approximated by

dv? a a a
Padvs (ao + Ly + —w? + ,—f’wf) : (2.1.2)
2 Voo V5o V3,
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where pj is the density of air, d is the diameter of the cross scction of the
beam, v is the uniform wind flow velocity in y-direction and ag, a1, a2, a3
depend on certain drag and lift coefficients and are given explicitly in [1].
Equation (2.1.1) will be simplified by eliminating the term —g using w =
w+ E2s(x), where s(z) satisfies the following time-independent linear equa-
tion with boundary conditions:
()()-i——Ek—Ié()— E’%, 0<z<l,
s(0)=s)=0, 20)=sD1)=0.

It can be shown that s(z) = cos(az) cosh(az) + (sin(d) sin(azx) cosh(azx) —
sinh(al) cos(az) sinh(az))/(cos(al) + cosh(al)) — 1, with a* = % The
term £2s(x) represents the deflection of the beam in static state due to
grav1ty We substitute w = w + 42s(x) into (2.1.1), divide by x, use (2 1.2)

and introduce the leleIISlOIl-leSS variables, T = lT t = lct w = T c

-,
Voo
with ¢ = T’/_u . Equation (2.1.1) now becomes

&

B E I\ padlv _ _ _
Wz + Wzzzz + Bl (;) w = % ?0 (ao + ar1wg + agwtg + (1,311)?) .(2.1.3)
Assuming v, the uniform wind velocity, is small with respect to Jc, we
put ¢ = ?=L with € a small parameter. In Section 4 of [1] it is shown that
the right hand side of (2.1.3) up to order € is cqual to ”—%76 (awy — bw?),
where a, b are specific combinations of drag and lift coefﬁuents which are

given explicitly in [1]. Using the transformation @ = \/ w (2.1.3) becomes

n l 4 k
Wi + Wzzzz + P w—e(wl )+O(E ), n > 1, where p? = (;) 77 and

€= %ae a small dlanSlOn—lebb parameter.

We can now introduce the following initial-boundary value problem, which
describes up to O(e"), n > 1, the vertical displacement of a beam with a
uniform wind flow (which causes nonlinear forces) acting on it:

1
wwrwmzﬁp?w:e(wt——wf), O<z<m, t>0, 2.1.4)

3 (
w(0,t) = w(m,t) =0, t>0, (2.1.5)
Wz (0,t) = Wy (m,t) =0, t>0, (2.1.6)
w(z,0) = wo(z), wi(z,0)=w(z), 0O0<z<m, (2.1.7)

where € and p are constants with 0 < |e] < 1 and 0 < p? < 10, w = w(z, t)
is the vertical displacement of the beam, z is the coordinate along the beam,
wo(z) is the initial displaccment of the beam in vertical direction and w) (a:)
is the initial velocity of the beam in vertical direction. All functions are
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assumed to be sufficiently smooth. The first two terms on the left hand
side of the PDE (2.1.4) are the linear part of the beam equation, pw
represents a linear restoring force and the right hand side is a so-called
Rayleigh perturbation, which describes an external (wind)force (see [1]).
The boundary conditions describe a simply supported beam. As we showed
above, the initial-boundary problem (2.1.4)-(2.1.7) can be considered as
a simple model for nonlinear oscillations in suspension bridges. In this
chapter formal approximations, i.e. functions that satisfy the differential
equation and the initial and boundary values up to some order in €, will be
constructed for the initial-boundary value problem (2.1.4)-(2.1.7), using a
Fourier mode expansion and a two time-scales perturbation method. The
interaction between the different modes will be considered. It will be shown
that for some specific values of p? ‘extra’ interactions occur that cause
complicated internal resonances. Resonances of this type are for example
analyzed in [2] and [36]. For these p?-values truncation to one or two
modes, as given in [10] or [11], is not valid in all cases. We will show that
for instance for p? = 9 energy transfer occurs between modes 1 and 3, and
for p® = % energy transfer occurs between the first four modes. To our
knowledge these mode interactions for weakly nonlinear beam equations
have not yet been studied thoroughly.

The outline of this chapter is as follows. In Section 2.2 a two time-scales per-
turbation method is applied to the initial-boundary value problem (2.1.4)-
(2.1.7). We show that for most p?-values mode interactions occur only
between modes with non-zero initial energy (up to O(¢)). For some spe-
cific values, p? = % and p? = 9, also modes with zero initial energy are
excited. In Section 2.3 we construct formal approximations for solutions
of the initial-boundary value problem for the cases p* €]0,10[\{232,9} and
p? = 9. To understand the transition from p® # 9 to p? = 9 we also study
the detuning case p? = 9 + ea with & € R. In Section 2.4 we make some
general remarks on these results and related literature: the surprising new
mode interactions, the difference between the results for the beam equa-
tion with a Rayleigh perturbation and the wave equation with a Rayleigh
perturbation, and the validity of the Galerkin-truncation of modes for ap-
proximations of solutions.

2.2 The Perturbation Method

In the next two sections we construct formal approximations for solutions of
the initial-boundary value problem (2.1.4)-(2.1.7). When straightforward
e-expansions are used to approximate solutions, secular terms may occur in
the approximations. To avoid these secular terms we use a two time-scales
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perturbation method.
The boundary conditions imply that w can be written as a Fourier sine-
series in z, i.e., w(z,t) = Y ov_; gm(t) sin(mz). Substituting this series into

(2.1.4), we obtain the following system of equations:

i (dm + (m* +p2)qm) sin(mz) = (2.2.1)
m=1

— . . I = . .. . . o
6(2 qmsm(mw)-g Z qmqkqjsm(m:c)sm(ka:)sm(ym)).

m=1 m,k,j=1

In the appendix we show that the equation for each ¢, then is

Gn + (n* + p*)gy = (2.2.2)

s m s e
n=m+tk—3 n=—m-—k+j n=m+k+j

for n=1,2,3,... . ¢, must satisfy the initial conditions given by (2.1.7)
gn(0) = 2 [ wo(z) sin(nz)dz, ¢,(0) = 2 = [y wi(x) sin(nz)dz. We introduce
the two time-scales, typ = ¢ and t; = et and assume that ¢, can be ex-
panded in a formal power-series in €, i.e., gn(t) = gn,0(to, t1) +€qn,1(to, t1) +
€2gna(to, t1) +- - - . We substitute this into (2.2.2) and collect equal powers
in e. The O( ,0) problem becomes

(‘)2

Frekil + Wi gno =0, t >0, (2.2.3)
an,0(0,0) = %/OW wo(z) sin(nz)dz, (2.2.4)
0 2 (7 )
%qmg(o, 0) = ;/() wy (x) sin(nz)dz, (2.2.5)
for n=1,2,3,... . The general solution for (2.2.3)-(2.2.5) is
qno(to,t1) = Anpo(t1) cos(wn,to) + Buo(t1) sin(wn, to), (2.2.6)

1
where wy,, = (n* +p?)2, and An o, Bn o satisfy the initial conditions

1 0
W, 810

An,O(U) = qn,(](()’o)a Bn,O(O) 7 Gn 0(0 O)

Next we consider the O(e!)-problem

0‘2 82

d
2 - _
%(IH,I +wnp(Jn,l = 81‘ e T dno T 8 -, 4n,0 (227)
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1 1 0 0 d
-7 Z - Z Y Z . In,0 77 49k,0 57 45,0,
4 (n—m+k—j n=—m-—k+j n:m+k+j) 8t0 3t0 at()
0 0
n,1(0,0) =0, 27 0n,1(0,0) = ———4,,0(0,0), 2.2.8
an,1(0,0) Bt 1(0,0) athn,o( ) (2.2.8)

forn=1,2,3,... . We substitute (2.2.6) into (2.2.7) and get

0? dA ) dB
BT 5qn,1 + wnpqn 1 = 2w, < dt?o sin(wn,to) — ﬁ cos(wnpto)) (2.2.9)

+Hn—%( > - X 5 X )HmHkHj,
n=m+k—3 n=—m-—k+j n=m+k+j

with Hy=w,, (By,0 cos(wy,to)—Ar0 sin(wy, to)). Since cos(wn, to) and sin(wn, to)
are part of the homogeneous solution of (2.2.9), we want the coefficients of
cos(wn,to) and sin(wy,to) on the right hand side of (2.2.9) to be equal to
zero (elimination of secular terms). This gives us equations for A, and
By 0. Finding solutions for A, ¢, By o and thus for g, o gives us a zero order
approximation of the exact solution of the initial-boundary value problem
(2.1.4)-(2.1.7). In the appendix we show that in order to find the equations
for Apnp, Bnp we have to determine the secular terms in (2.2.9), by solving
the Diophantine-like equations

{n=m+k——jVn:—m—k+jVn:m+k+j, (2.2.10)

+(nt +p2)7 = +(m? +p2)2 + (k* +p?)2 + (4 + p?)2.

Only specific combinations of m, k, j will give solutions to (2.2.10). In the
appendix we show that for some values of p? €]0, 10] there are solutions to
(2.2.10), which give additional contributions to the equations for Ay, Bp -
These values are p? = 822 and p? = 9. The case p = 0 also has solutions
which give additional contributions but will not be considered in this chap-
ter.

For p? €]0,10[\{423,9}, it is shown in the appendix ((2.5.11)-(2.5.12)) that
the contributions are similar to the wave-equation case, described in [26].
Introducing Zn,() = wp, Anp and En,O = wp, Bp,o we get the following equa-

tions for Zn,O, _Bn’oz

dAny  1- 1 o2 — 1& 1,
dAno 1y | (1 + = (Ao +Bog) - 72 (Aot Bi,o)> . (22.11)

dt, 2 16 =
dBny 1— 152 | w2 152 | =2
for n = 1,2,3,... . From (2.2.11)-(2.2.12) we can see that if A,(0) =

En,O(O) =0 then Zn,o(tl) = Bpno(t1) = 0 V#; > 0. So if we start with zero
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initial energy in the nth mode there will be no cnergy present up to O(e).
We say the coupling between the modes is of O(e). This allows truncation
to those modes that have non-zero initial energy. We will discuss (2.2.11)-

(2.2.12) in more detail in Section 2.3.1.

For p? = (1’23 extra contributions in the equations for A, and B,y occur

for n = 1,2,3,4. Introducing AnO = Wp, An,0 and Bn’o = wn,Bn,o we get
the followmg equations for A, g, By o:

dA 0 1— 1
—= = = Ang 1+—(A 0+Bn0)__Z(AkO+BkO)
dty 2 b
1 -
—ﬁfn(x‘h,o,Bl,o,AQ,O,BQ,o,As,o, B3z, A1, Bayo), (2.2.13)

dBno 11— 1 —»  —2 1 & —2 | =2
"~ =_B 1+ —(A B — A B
i 5 om0 ( + 16( not Bno) 1 1}5:':1( kot k,O))

1 -
+3_2gn(A1,07B1,07A2,07B2,0aA3,0733,07A4,0aB4,0)a (2.2.14)

for n < 4. F,,G, are given explicitly for n = 1,2,3,4 in the appendix
((2.5.13)). For n > 5 A, and By have to satisfy (2.2.11)-(2.2.12). In this
case there is an O(1) coupling between the modes 1,2,3,4. For instance,
if there is initial energy present in the first three modes, then in general
cnergy will be transfered to the fourth mode. In this case truncation to
three modes (or less) is not valid. All four modes have to be taken into
account. We will not discuss these equations in more detail.

For p2 = 9 cxtra contributions occur in the equations for A, o and B,
for n = 1,3. Introducing A4, = wn, Ano and En,D = wp,Bpo we get the
following equations for n = 1,3:

le 0 1— ( 3 —2 52 )
LA 1-— A B A B 2.2.15
i, 5410 16( 10t 10) 4( 30+ B3p) ( )
1— 1 /- -
—gAl,O > (Af o+ B 0) ~ 3 ((A? 0 B?,O)As,n + 24, oBl,OB’%,O) ;
k#1,3
dB1o 11— 3 2 =2 |
G~ 3P (1 — 16 Ao+ Bro) — 7 (Aso + 33,0)) (2.2.16)
1— — — 1 /- = — —2 9 =
—=Bip (Ai,o + Bé,o) +5 (2A1,031,0A3,0 + (B — Af,o)BL%,O) )
8 32
k#L,3
dAzy  1- | 3
220 o (1 - @+ Bly) - (A, + B )) (2.2.17)
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dB3o 1 32 | 5 S (A, + B
1— . — 1 = (=2 12
~gPs0 > (Ak,O + Bk,O) T geB1o (BI:O - 3A1’°) '

k#1,3

For n = 2,4,5,... A, and By have to satisfy (2.2.11)-(2.2.12). In this
case there is an O(1) coupling between the modes 1 and 3 which indicates
an internal resonance between these modes. This means that if there is
initial energy present in mode 1 an energy transfer occurs between modes
1 and 3. Truncation to one mode is not valid, both mode 1 and 3 have to
be taken into account. We will discuss (2.2.15)-(2.2.18) in more detail in
Section 2.3.2. As we saw above for p? €]0, 10[ internal resonances between
certain modes occur for p? = % or p? = 9. Truncation to a few modes is
not valid, unless all modes concerned have zero initial energy. For p? %
and p? # 9 the results found are similar to the results given in (26] for the
nonlinear wave equation. In the next section we will review these results
briefly in order to understand the detuning from the case p? = 9 better.
Since for the case p? = 9 the equations for modes 1 and 3 are examined in
more detail, we will also discuss the equations for modes 1 and 3 explicitly
in the case p? # 9. In this chapter we will only consider the case p? = 9
with detuning since this case seems to be less complicated than the case
p? = %. For p? > 10 other internal resonances can be found in a similar

way for specific values of p?.

2.3 Modal Interaction
2.3.1 The case p* €)0,10[\{2,9}

As stated above we only consider the equations for n = 1 and n = 3. We
introduce polar coordinates to transform (2.2.11)-(2.2.12)

App =7nco8(¢n) , Bno=rnsin(en) , (2.3.1)

with r, = r,(¢1) the amplitude and ¢,, = ¢, (¢1) the phase of the oscillation
and get the following equations for r1, 73, ¢, ¢p3:

1 3, 1

T = 57‘1(1 - ET% - ng)’ (2.3.2)
1 1 3

r3 = 57‘3(1 — ZT% - Iérg), (23'3)
Rbi=0, o 234

where a dot represents differentiation with respect to ¢;. We can anal-
yse (2.3.2)-(2.3.4) in the (ry,r3)-plane. Elementary analysis gives us the
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behaviour of the solutions of (2.3.2)-(2.3.4) in the (r;,r3)-phase plane as
shown in Figure 2.2. We see that depending on the initial values the system

1

Figure 2.2: Phase plane for p® €]0,10[\{$3,9
tends (as ¢ = o0o) to oscillate in only one mode. In the next subsection we
will consider the case p? = 9. We introduce polar coordinates for each mode.
The analysis of the equations for A;, A3, B1,0, Bsp can be brought back
to an analysis in a 3-dimensional space with 71,73 and ¥ = ¢3 — 3¢; as
variables. Looking at the above case in this 3-dimensional space will give
us the same behaviour as drawn in Figure 2.2 for every 1-value. We will
then have lines of critical points in the 3-dimensional space.

2.3.2 The case p? =9

In Section 2.2 (2.2.15)-(2.2.18) were given. Introducing polar coordinates
for each mode we transform these equations using (2.3.1)

) 1 3 1 1
fo= gn(l- 1—6T$ - 17"%) 327"17”3 cos(¢3 — 3¢1), (2.3.5)
. 1 1 3 1 _
ry3 = —2~r3(1 — 17% — ET%) 96T1 cos(pz — 3¢1), (2.3.6)
; 1

rigy = —3—27"173 sin(¢s — 3¢1), (2.3.7)
; 1

rags = 967‘17‘3 sin(¢h3 — 3¢b1). (2.3.8)

71,73 represent the changes of energy in the different modes and r d)l,
r3¢3 represent the changes of angular momentum, where a dot represents
differentiation with respect to t;. We can analyse (2.3.5)-(2.3.8) in the

(r1,73,1)-space, with ¢ = ¢3 — 3¢,

. 1 3 5, 1
T = —1"1(1—*2 T‘g)

1
5 T 1 —riry cos(¥), (2.3.9)

32
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1 1 3 1
oo Lo Lo 2 3 2.3.
73 27’3( T 16 r5) — o6 cos(1), (2.3.10)
w = %E (7’1 + 9?"3) Sin ('(/J) . (2311)

For r3 = 0 (no energy present in mode 3) (2.3.9)-(2.3.11) do not hold. In
that case we have to analyse the original differential equations (2.2.15)-
(2.2.18). We analyse (2.3.9)-(2.3.11) in the (r1,73,1) phase space. We find
two lines of critical points and three isolated critical points for ¢ € [0, 27]
(compared to 4 lines of critical points in the case p®€]0,10[\{%2,9}). The

1527
critical points are listed in Table 2.1. The behavior of the solutions of

Critical point Behavior
(0,0,) unstable 2d-node for each
(0, \/7 Y) stable 2d-node for cach ¢
(1.5930, 1.2625,0) 3d-saddle-node
(1.2249,1.8555, ) 3d-saddle-node
(2.2977,0.63794, ) stable 3d-node

Table 2.1: Critical points for p? = 9.

(2.3.9)-(2.3.11) in the (r1, 73, )-phase space is sketched in Figure 2.3. The
phase space is a 3d-projection of the behavior of the 4d-solutions of (2.2.15)-
(2.2.18). The system is 2m-periodic in ¢. In the plane ¢) = 0 there is a stable

v

Figure 2.3: Phase space for p? = 9.

node (0, 13—6,0) and a saddle (1.593,1.262,0). The rj-axis seems to attract,
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but as soon as a solution curve intersects this axis, a phase jump occurs
to the planc 9 = 7, imposed by the differential equations (2.2.15)-(2.2.18).

The line (0,0,¢) is a line of unstable singular points. The line (0, ?,'g/))

is a line of stable singular points, which is structurally unstable, as can

be seen in Section 2.3.3 (for o # 0 the line of singular points disappears).

The system tends (¢ — oo) to oscillate in the third mode with a phase
‘ depending on the initial values, or in a combined oscillation of the first and
third mode with a phase difference 7.

2.3.3 Thecase p? =9 +e, 0 #0

To understand the detuning from p?> = 9 we consider p?> = 9 + e with
¢ < 1and a# 0 of O(1). The equations for A 9, By, A3, B3, arc

dAjp 1 S R — 1o o
— <1 - —6(A1,0 + Bip) — Z(A:s,o + B3,0)>

dty 5
1 - - =
Bio + ((Bl 0~ A10)A30 — 2A1,031,033,0) , (2.3.12)

2\/_
dBl’O ].— —9 —2
d, 2310 ( 6(A10+Bl 0) — 4(A3,0+Bs,0))
- Ao+ : (221 oB104s0 + (B} — A1 0) By o) , (2.3.13)
2\/ﬁ 32 D LU : : ,
dzao e — 3 —2 =2
s A3 0 ( Z(Aw + Big) — E(Azs,o + B:s,o))
® 5 R R
— B —A 3B7,— A 2.3.14
+6\/ﬁ 370 + 96 1,0 (3 1,0 1,0) Y ( )
dBsg 1 1 — —2 3 —2 =9
at, §B30 <1 - ‘(A1 o0+ Big) — '1‘6(143,0 + Bs,o)>
3,0 + Bl 0 (Bl 0 32?(]) . (2.3.15)
()\/_ :

For n = 2,4,5,... (2.2.11) and (2.2.12) (with an extra c-term as above)
hold. We transform (2.3.12)-(2.3.15) by introducing polar coordinates, us-

ing (2.3.1)
. 1 3 1. 1
T = 57“1(1 - -1—67'12 - er) 3271r3 cos(¢p3 — 3¢1), (2.3.16)
. 1 1. 3 1
ry = 57’3(1 - er 6 r3) — 96“ cos(¢3 — 3¢1), (2.3.17)
r2q5 = L @ ! — 3y sin{¢s — 3¢1), (2.3.18)
) m BEV I G e

. 1 « 1
7“3(153 = \/_ 3 + 96r1r3 sin(¢g — 3¢1), (2.3.19)
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where the dot represents differentiation with respect to ¢;. We can analyze
(2.3.16)-(2.3.19) in the (r1,73,%)-space, with ¢ = ¢3 — 3¢

. 1 3 1 1
o= 5rl(l - Er]? — Zr%) - 3—27“%7‘3 cos(1)), (2.3.20)
. 1 1 3 1
fa = grall=gri = g7s) — ggTicostv), (2321)
. 4 « 1r .

For r3 = 0 (2.3.20)-(2.3.22) do not hold. In that case we have to analyze the
original differential equations (2.3.12)-(2.3.15). We examine the (rq,73,%)-
phase space for several values of a > 0. For o < 0 a similar analysis holds.
Numerical analysis indicates that for a > % the effects of the a-terms in
(2.3.20)-(2.3.22) are significant. We start with o = 5. The critical points
are listed in Table 2.2. The behavior of the solutions of (2.3.20)-(2.3.22)

Critical point Behavior
(0,0,) unstable 2d-node for each
(1.5928,1.2658, 6.0923) 3d-saddle-node
(1.2312, 1.8499, 3.3309) 3d-saddle-node
(2.2976,0.63438, 3.2675) stable 3d-node

Table 2.2: Critical points for p? = 9 + ea with a = %.

-~

N

Figure 2.4: Phase space for p> = 9 + ea with a = 1_16'

for a = % in the (ry,rs,1)-phase space is sketched in Figure 2.4. For a
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point on the line (0, 13—6,1p) we have 7| = 73 = 0 and ¢ > 0. This line
is no longer a line of singular points but is a line which attracts in the
r1, r3-direction and with movement in -direction. We see that compared
to the phase space for p?> = 9 the 3d-saddle-node in the plane 3 = 2w
moves downwards and the 3d-saddle-node in the plane ¥ = 7 upwards. It
can be shown that the stable 3d-node changes from to a 3d-spiral-node for
some value of @ > 0.1. With increasing o we see that the two 3d-saddle-
nodes move closer towards each other. The 3d-spiral-node moves upwards

and towards the plane r3 = 0. The line (O,\/g, ) is still an attracting
line with movement along it. The line (0,0,1)) remains a line of singular
points. The two 3d-saddle-nodes coincide for o =~ 0.5649 and vanish for
a > 0.5649. The critical points for o = 0.5649 are listed in Table 2.3.

We find the behavior of the solutions of (2.3.20)-(2.3.22) for a ~ 0.5649

Critical point Behavior
(0,0,%) unstable 2d-node for cach v
(1.5073,1.5200, 4.6874) higher order singularity
(2.2971,0.51108, 3.8717) 3d-spiral-node

Table 2.3: Critical points for p? = 9 + ea with « =~ 0.5649.

in the (r{,r3,1)-phase space as sketched in Figure 2.5. For « > 0.5649 a
separating surface remains. The 3d-spiral-node moves further upwards and

Vi

e
r

1

Figurc 2.5: Phase space for p? = 9 + ea with o ~ 0.5649.

towards the plane r3 = 0, and the line (0, %,1/}) remains an attracting
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line with movement along it. For « = 1 the critical points are listed in
Table 2.4. The behavior of the solutions of (2.3.20)-(2.3.22) for « = 1 in
the (r1,73,1)-phase space is sketched in Figure 2.6.

All the phases paces in this section are constructed by numerical integration
of the differential equations.

Critical point Behavior
(0,0,%) unstable 2d-node for each v
(2.3029,0.31905, 4.2651) 3d-spiral-node

Table 2.4: Critical points for p? = 9 + e with o = 1.

LA

Figure 2.6: Phase space for p? = 9 + ea with o = 1.

2.4 Conclusions

In this chapter we considered an initial-boundary value problem for a
weakly nonlinear beam equation. We have constructed formal approxima-
tions of order € and considered the interaction between different oscillation
modes. We showed that for most p?>-values the behavior of solutions of the
Rayleigh beam equation is similar to that of solutions of the Rayleigh wave
equation as presented in [26]. In that case mode interactions occur only
between modes with non-zero initial energy (up to O(e)). We then say the
coupling between the modes is of O(e), and truncation is allowed, restricted
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to those modes that have non-zero initial energy. We showed that for large
times the system will oscillate in only one mode up to O(¢). However,
for some p?-values extra mode interactions occur, which cause complicated
internal resonances. Physically this means that in some cases (depending
on the value of p2, which depends on the spring constant k of the stays
of the bridge and on certain properties of the beam), if the beam initially
oscillates in a high vibration modc lower vibration modes can be excited,
that can cause large amplitude oscillations of the suspension bridge. For
0 < p® < 10 these values arc p?> = 9 and p? = 82, For p? > 10 other
internal resonances can be found in a similar way for special values of p?.
For p? = 9 the equations have been studied in detail including the detuning
case p° = 9 + ea. Energy transfer occurs between modes 1 and 3 even if
mode 3 initially has zero energy. We call this coupling of O(1). Truncation
to one mode will give loss of information, and approximations will not be
valid. Examining the behavior of the oscillations, we showed that a new
equilibrium state arises, namely a combined oscillation of modes 1 and 3.
The analysis performed in this chapter can be extended to other p?-values.
In this chapter we constructed formal approximations that satisfy the PDE
and the initial conditions up to O(€?). In [1] an asymptotic theory is pre-
sented for a wave equation with similar nonlinearities. The formal approx-
imations constructed for that problem were shown to be asymptotically
valid, i.e. the difference between the approximation and the exact solution
is of order € on a time-scale of 1/¢ as € | 0. It is beyond the scope of this
chapter to give the asymptotic analysis for the beam equation we discussed.
We expect that the asymptotic validity of the constructed approximations
can be shown in a way similar to the analysis presented in [1].

2.5 Appendix - Determination and Elimination of
Secular Terms

In this appendix we construct equations for the functions g, such that no
secular terms occur in the approximations for the displacement function
w(z,t). In Section 2.2 the system of equations (2.2.1) is given

o0

Z (c'jm + (m* + pQ)qm) sin(mz) = (2.5.1)

m=1
o 1 oC
€ Z G sin(mzx) — 3 Z dmArg; sin(mz) sin(kz) sin(jz)
m=1 m,k,j=1

The last summation on the right hand side of (2.5.1) can be rewritten using
the goniometric formula sin(mz) sin(kz) sin(jz) = +(sin((m + k — j)z) —



40 Weakly Nonlinear Beam Equations: An Asymptotic Analysis

sin((m — k — j)z) — sin((m + j + k)z) + sin((m — k + j)z)).

We obtain the equations for ¢, by multiplying (2.5.1) with 2 sin(nz) and
then by integrating the so-obtained equation with respect to = from 0 to
m. Using orthogonality relations and the symmetry in m, &, j we obtain the
following equation for each gy:

gn + (n4 +p2)Qn = (2.5.2)
.1 1 s
€ |dn— 5 > - Y -3 > ] dmdnds|
n=m+k—j n=—m—k+j n=m-+k+j
for n = 1,2,3,... . To avoid secular terms in ¢,(¢) a two time-scales
perturbation method is introduced in Section 2.2 and ¢, (t) is expanded in

an(t) = gno(to,t1) + €qn1(to, t1) + €gna(to, 1) + -~ , where t; = ¢ and
t1 = et. It has been shown in Section 2.2 that g, has to satisfy (2.2.9)

2 2 dA ,0 Bn,O
Eg_q"’l + Wy, Gn,1 = 2wn, i sin(wn,,to) — a cos(wnpto)) (2.5.3)

1 1

+Hy — ( o3 -3 2 )HmHkHj,
n=m+tk—j n=—m—k+j n=m+k+j

with Hl =Wy, (Bl,O COS(wlpto) - Al,g sin(wlpto)) and Wn, = (n4 +p2)%. An,O

and By are still arbitrary functions in #;. The functions A, ¢ and By

will now be determined such that no secular terms occur in gy ;.
The term H,, H;H; in (2.5.3) can be expanded using goniometric formula’s

1
HpHiHj = |

(—C14;0 + CoBjp) cos (wmp + wk, + (Ujp) to)
+ (—C24,0 — C1Bjp) si ((wmp + wg, + wjp> to)

Win, Wi, Wy, | (2.5.4)

(
n
+ (C14;,0 + C2Bj ) cos ((wmp + wk, — wjp) to)
+ (C24,,0 — C1Bjo) sin ((wmp + wg, — wjp) to)
+ (C34;,0 + C4Bj) cos ((wmp — Wi, + wjp) to)
+(— C4AJ o+ C3B] 0) sin ((wmp — Wk, + w]p) t())
+(—=C34,0 + C4Bjg) co ((wmp - wj,,) to)
+ (C44A;,0 + C3Bj ) sin ((wmp — Wk, — wjp) to) |,

with

Ci = Apm0Bko + Bm oAk, Co = —Am0Ak0 + BmoBi,

C3 = —AmoBro + Brnpdko, Cs= AmpAro+ BmoBip.
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As stated in Section 2.2, cos(wy,to) and sin(wy,to) are part of the homoge-
neous solution of g,,1. We want the coefficients of cos(wy,,tg) and sin(wn,,to)
on the right hand side of (2.5.3) to be equal to zero in order to eliminate
secular terms. The terms in Hy, HyH; given in (2.5.4) can cause secular
terms if +(n* +p2)% = +(m’ +p2)% + (k* +p2)% + (54 +p2)%. To de-
termine the contribution of the summations in (2.5.3) to the coefficients
of cos(wn,ty) and sin(wy,to) on the right hand side of (2.5.3) we have to
examine the following Diophantine-like equations:

) n=m+k+7, 255
i(”4+P2)% ::t(’frb4+p2)%j:(k4 +p2)%i(j4+p2)%’ O,
n=-m-k+j ,

1I: 2.5.6

{ ot ) =t 4 )b £ )b a e, PP

n=m+k—j
17 2.5.7
{i‘” Y TSR

where p? €]0,10[ and m, k,j > 1. We want to find out which combinations
have solutions, and thus give rise to secular terms. In the following we will
use the inequality

o? < (2 +p)% .LQ_CL2+((14+p2)%, (2.5.8)

for > a. We will now determinc the solutions of (2.5.5)-(2.5.7). We will
show that there are some solutions that hold for all p?-values and some
solutions that hold only for certain values for p?. We can see dlrectly that
(2.5.5)-(2.5.7) do not hold if (n*+p ) = —(m* +p’ ) — (k* +p? )z -+
pz)%. This leaves us with the following possibilities:

Case I(i): n=m+k-+j, (n*+p2)2 = (m*+p?)7 + (k*+p?)2 + (j +p?)7.
From (2.5.8) we know that n? < (n! +p?)3 5 m? 4+ k2 + 52 —3+3(1+p?),
since n,m, k,j > 1. We also know n? = m? + k? + 52 + 2(mk + mj + kj).
This gives us: 2(mk +mj + kj) < 3((L +p )2 —1). On the other hand
n?—14+(1+ pQ)% > (n* + pz)% > m? 4+ k? + 42, which gives us 2(mk +
mj +kj) > —((1 +p2)% —1). Let A\ = 2(mk + mj + kj). Then we have
n? =m? + k% + j2 + ), with

o=

—((+pY)E 1) <A< 3((1+p2)2 —1). (2.5.9)

Since A is even and m,k,j > 1 we have A > 6. If p?> < 8 then (2.5.9)
does not hold, so there is no solution. For larger values of p solutions can
occur. If we take m—k =j=1, thenn—3 and (3* + p? )2 = 3(1 + p? )

has a solution for p? = 9. For p? €]0,10] it follows from (2.5.9) that
A < 3(v/11 = 1) < 7. On the other hand for m # 1, k # 1 or j # 1 we have
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A > 10. So for p? €]0,10[ there is only one solution: m = k = j = 1 with
p?> =9 (it can be shown that more contributions occur for p? > 10).

The case I(ii): n = m+k+j, (ni+p?)? = (m4+p2)%+(k4+p2)%—(j4+p2)%,
has no solutions. This can be shown using a similar analysis as in case I(3).
Due to symmetry there are no contributions for all cases with one minus
sign.

The case I(iii): n =m+k + 5, (n! +p)2—(m +p) (k4+p2)%—
(G*+ pQ)%, has no solutions. This can be shown using a similar analysis as
in case I(%). Due to symmetry there are no contributions for all cases with
two minus signs.

The case I, n = —m — k + j, is the same as I, w1th n and ] switched.
Case I11(z ): n—m+k 7 (n +p )é = (mi+p )2+(k4+p )2 +(j*+p )
We know n? = m? + k2 + j2 + 2(mk — mj — kj). We introduce A = 2(mk —
mj—kj)and N=n? , M=m?, K=k%,J=72.SoN=M+K+J+),
and

(N2 +p%)7 = (M? +p?)7 + (K2 + p?)% + (J% + p?)3. (2.5.10)
From (2.5.10) we see that K < N, so (proof similar to a proof in [26])
1 1
N+ (N2 1) K4 (K +p0)h
1 1 1
< + + )

K+ (K2+p2)2 M+ (M24+p2)2  J+ (J2+p2)2

=
(N2 4+ p?)7 < (M2 +p9) + (K2 +p?)2 + (J? +p?)% + A

We see that when A < 0 (2.5.10) cannot hold. We will show that for A > 0
solutions can exist, depending on the value of p?. In the same way as in
case I(i) we see that A must satisfy A < 3((1 + p )2 —1). We know ) is
even and > 0, so A > 2. With p? < 10 possible values of X are 2,4, 6.
We can show that it suffices to examine A = 2. Due to symmetry in m, &
we can assume m > k. For m =k, A\ = 2m(m — 2j), which means that
(2.5.10) has no solutions for A < 8 and 0 < p? < 10. So we can consider
m > k. From the definition of A\ we have m(k — j) = 2 + kj > 0, so
(k—=j) >0, k> j. This means m > k > j > 1, and therefore j > 1, k > 2,
m > 3 and n > 4. Using (2.5.8) we can improve the upper-bound of A:
n2 < (n*+p?)z <m?—9+ (3 4p?) 5 + k2 —4+ (244 pA)E + 52— 1+ (1+p?)3,
so A < (34+p?)7 + (24 +p?)2 +(1+p%)2 — 14. For p? < 10 this means \ <
3.95... . We now examine the case A = 2. This means mk —mj —kj = 1.
Ifj=1thenm=1+ % The only possible solution is m = 3, k = 2.
This can be continued for j > 2. It can be shown that for these solutions
p? > 10. This means that for p?2 < 10 we have only one solution j =1,
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k=2 m=3,n=4, with p> = ?gg Due to symmetry in m, k m and k

can be switched. It can be shown that more solutions exist for p? > 10.
The case ITI(ii)(a): n = m+k—j, (n* +p2)% = (m? —I—pQ)% + (k* +p2)% -
(* + p2)l has the obvious solutions £ = n A j = m. Due to symmetry in
m,k m and k can be switched.

The case III(n)(b): n=m+k—j, (n*+p )% (m* + )% - (k4+p2)% +
(*+p )2 has the obvious solutions m =n A j = k.

The case ITI(ii)(c): n = m+k — j, (n* + p’ )2 = —(m* +p2)"§’ + (k* +
pg)% + (5 +p2)’%, is the same as I11(4i)(b) with m and k switched.

Using a similar analysis as in case I7I() it can be shown that the solutions
given in I11(3i)(a) — (c) are the only solutions.

The case II1(#i)(a): n = m+k — j, (n* +p2)% = —(m* +p2)% — (k' +
pQ)% + (5 +p2)% is the same as I(i) with n and j switched

The case III(iz'i)( ):n=m+k—j, (n?+p? )2 = (m*+p ) — (k* +p2)% -
(j*+p )2 is the same as ITI(i) with n and m, k and j switched.

The case ITI(ii3)(c): n =m+k—j, (nt+p )2 = —(m? +p2)% + (k* +
pQ)% - (54 +p2)%, is the same as ITI(41)(b), with m and k& switched.

We will now determine the equations for A, o, B, ¢ in each case.

For p? €10, 10[\{%,9} the only solutions of (2.5.5)-(2.5.7) are the solutions
found in case ITI(i4). By eliminating secular terms we get the following
equations for 4, 0, Bno (Ano = Wn, Ano and Bno = W, Bn,o):

dA,g 1 (

= —A,,
dty 2

dByo _§ L@, )_li(f +B2,) ). 25.12)
dtl n,0 16 n,0 n,0 4 k,0 k,0

k=1
forn=1,2,3,.
For p? = ?g; the equatlons for A0, Bno, n < 4, are
dzn,o 1— 1 —o -2 1, 2 1
_:i? _ §An,0 14 E(An,o + Bn,O) -1 ];(Ak,o + Bk,()) - 3—2fn
dBno 1. 1 = 1& o !

For n > 5 Ap and B, have to satisfy (2.5.11)-(2.5.12). F,, and G,, satisfy

F = 2(—As0A30 + B20B30)A40 — 2(A2,0B3 0 + B2,y As3,0)Bay,
Fy=—2(A1 A4+ B1oB1o)As0 + 2(—A1 0B + Bi,0As10)Bay,
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Fy = —2(21,0Z4,0 + §1,0§4,0)Z2,0 +2
Fy =2(—A20A450 + B2oB3p)A10+ 2

—21,01_34,0 + §1,oz4,0)§2,0,
A20B3p + Ba,gAs0)Bi,

G1 = 2(A2,0B30 + B2,0A3,0)As0 + 2(— 429430 + B2yB3 ) By,

Go = 2(A1,0B1g — B1,9A40)As0 — 2(A10A410 + B19Bap)Bsp,

G3 = 2(A1,0B4o — B1,0A4,0) A0 — 2(A10A40 + B19Bap) B2y,

Gs = 2(A20B30 + Ba,oAs0) A1 — 2(—A20A30 + B2oBs0)B1o. (2.5.13)

For p? = 9 the equations for 4,9 and By, n = 1,3, are

dA. 1 1 — =2 1 =2 1
22n0 _ “Z,0 <1 + 76 @m0+ Boo) = 7 > (ko + Bk,0)> ~ g5 Mn

k=1
dBno 1+ | R S — 1 2 =2 1
dy ‘2‘Bn,0 (1 + E(An,o + B o) — 1 > (Ao + Bk,o)) + @jn
k=1

For n=2,4,5,... A, and By, satisfy (2.5.11)-(2.5.12). H,, T, satisfy
-2 52 - =5 5 1o 2 -2
Hi= (Ao — Bio)Aso +2410B1,0B30, Hz= §A1,0(A1,0 —~3Biy),

- 5 T 52 32 \p 11— = —2
Ji1 =2A10B10A430 + (B1g— A1 p)B3o, J3= 3B10(B1p ~341).



Chapter 3

An Asymptotic Theory for a
Weakly Nonlinear Beam
Equation with a Quadratic
Perturbation]

Abstract In this chapter an initial-boundary value problem for a weakly non-
linear beam equation with a quadratic nonlinearity will be studied. The initial-
boundary value problem can be regarded as a simple model describing free os-
cillations of flexible structures like suspension bridges. Using a two time-scales
perturbation method an approximation for the solution of this initial-boundary
problem will be constructed. For a class of initial-boundary value problems the
existence and uniqueness of solutions and the asymptotic validity of approxima-
tions on a large time-scale are shown. It will be shown that for specific values of
the beam parameters complicated internal resonances occur.

3.1 Introduction

Particular types of flexible structures, like tall buildings, suspension bridges,
or iced overhead transmission lines with bending stiffness, can be sub-
jected to oscillations due to various causes. Simple models which describe
these oscillations are given in the form of nonlinear second- and fourth-
order partial differential equations, as can be seen for example in [1] or [9].
Usually asymptotic methods can be used to construct approximations for

tThis chapter is a revised version of [41] An Asymptotic Theory for a Weakly Nonlinear
Beam Equation with a Quadratic Perturbation, SIAM J. Appl. Math., 60 (2000), pp. 602-
632



46 Weakly Nonlinear Beam Equations: An Asymptotic Analysis

z

=
F T

z=0 z=1

Figure 3.1: A simple model of a suspension bridge.

solutions of this type of second- or fourth-order partial differential equa-
tion. Initial-boundary value problems for nonlinear second-order partial
differential equations have been studied already for a long time, for ex-
ample, in [26]-[30], [33] and [34]. In [1]-[3], [31] and [32] these problems
were studied using a two time-scales perturbation method or a Galerkin-
averaging method to construct approximations. Asymptotic theories which
support these approximations are presented in [1]-[3], [28], [29], [31] and
[45]. For fourth-order partial differential equations the analysis becomes
more complex. In [12], [23] and [44] the existence of periodic solutions
for fourth-order partial differential equations is discussed, using an eigen-
value/eigenvector notation. In [9]-[11] and [43] approximations for solutions
of initial-boundary value problems for fourth-order partial differential equa-
tions are constructed using perturbation methods. Little or nothing is said
about the difference between the approximations and the exact solutions.
In most cases single-mode representations are used, without giving a justifi-
cation. To our knowledge an asymptotic theory, which shows the existence
and uniqueness of solutions as well as the asymptotic validity of constructed
approximations, has not yet been developed for fourth-order nonlinear par-
tial differential equations. In this chapter an asymptotic theory is presented
for an initial-boundary value problem for a weakly nonlinear beam equa-
tion, which can be seen as a simple model for free oscillations in suspension
bridges. In [9] a survey of the literature on oscillations in suspension bridges
is given. We will derive a simple model for nonlinear oscillations in suspen-
sion bridges, using model equation (18) from [9]. The equations of motion
for a beam can also be found in standard textbooks such as [37] or [38]. We
consider the suspension bridge to be modeled as a beam of length . The
vertical displacement is w = w(z,t). The stays of the bridge are treated
as nonlinear springs, as sketched in Figure 3.1. We introduce the following
notation: p is the mass of the beam per unit length, p the density of the
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beam, A the area of the cross-section of the beam perpendicular to the
z-axis (so 4 = pA), E the elasticity modulus, I the moment of inertia of
the cross-section, and F' the force per unit length acting on the beam due
to the springs. We neglect internal damping and consider the weight W of
the bridge per unit length to be constant (W = ug, ¢ is the gravitational
acceleration). Since we are interested in free oscillations, no external forces
are present. The equation describing the vertical displacement of the beam
is

pwg + Blwggy, + F(w) = —Hg. (3'1'1)

We assume that the spring force F' can be expanded in a Taylor series, with
F(0) = 0: F(w) = kw + bw? + --- , where k and b are spring constants.
We assume that the springs have a different behavior for compression and
expansion, i.e., for w < 0 and w > 0. Since we consider “small” (compared
to the length [) vertical displacements, we neglect all terms with order three
and higher. Substituting this into (3.1.1) and dividing by p gives us the
following equation:

Wy + gw”;mr + Ew + sz = —g. (3.1.2)

p peooop
We simplify (3.1.2) by eliminating the term —g using w = w+52s(x), where
s(z) satisfies the following time-independent linear equation with boundary
conditions:
s (x )+%s( ) = —%, 0<z<l,
s(0) = s(l) =0, s2(0) =sP (1) =0.

It can be shown that s(z) = cos(fz) cosh(Bx) + (sin(Hl) sin(fx) cosh(fz) —
sinh(B1) cos(Bz) sinh(Bz))/(cos(Bl) + cosh(Bl)) — 1, with 8 = (4E,) . The

term £2s(z) represents the deflection of the beam in static state due to grav-

A

ity. Using the dimension-less variables o = 4, 7 = Tz, t = (T )2 (}ff ) t,
(3.1.2) becomes

Wit + Wezzz (3.1.3)

14 bA bug (LN W (pg (L 2
+— ] (k11)~|—Tw +2-—= - (;T) w+1—4— (?9 <;T>) =0.

Assuming that the area A of the cross-section is small compared to the
length [, we put é = = w1th € a small parameter. Furthermore, we assume
that the deflection of the beam in static state due to gravity, £4s, is small
with respect to the vertical displacement w, which is of order €. This
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means we assume 25 is O(€") with n > 1. Setting e = —bé(%)‘l%, (3.1.3)
becomes Wy + Wzzzz + P20 = ew” + O(e"), with n > 1, p? = (L)* £, and
€ a small dimension-less parameter. We can now formulate the following
initial-boundary value problem, which describes, up to O(e"), n > 1, the

vertical displacement of a beam with a nonlinear spring force acting on it:

Wyt + Wepes + PPw = ew?, O<z<m t>0, (3.1.4)

w(0,t) = w(mt) =0, >0, (3.1.5)

Wez(0,1) = wez(m,t) =0, >0, (3.1.6)

w(z,0) = wo(z), wi(z,0)=wi(z), O0<z<m, (3.1.7)
where € and p are constants with 0 < |¢] < 1 and p > 0, w = w(z,t)

is the vertical displacement of the beam, z is the coordinate along the
beam, wo(x) is the initial displacement of the beam in vertical direction,
and wi(z) is the initial velocity of the beam in vertical direction. In this
chapter we will assume that p? < 100. All functions are assumed to be
sufficiently smooth. The first two terms on the left-hand side of (3.1.4)
are the linear part of the beam equation and p?w — ew? represents the
quadratic restoring force of the spring. The boundary conditions describe
a simply supported beam. Since there are no external forces considered, the
initial-boundary value problem (3.1.4)-(3.1.7) can be considered as a simple
model to describe free oscillations of suspension bridges, where the stays of
the bridge are modeled as two-sided springs with a quadratic nonlinearity,
which indicates a different spring behavior for w < 0 and w > 0.

In this chapter an asymptotic theory will be presented for a more general
case of (3.1.4)-(3.1.7), where the nonlinearity (of the springs or otherwise)
on the right-hand side of (3.1.4) is of the form f(z,t, w;e) and where the
initial values (3.1.7) can also depend on e. We will show that this initial-
boundary value problem is well-posed in the classical sense, i.e., we will
show that there exists a unique classical solution for this initial-boundary
value problem. We will also show the asymptotic validity of approxima-
tions, which are constructed using formal perturbation methods. We will
construct an order e approximation for the solution of (3.1.4)-(3.1.7), using
a Fourier mode expansion and a two time-scales perturbation method. The
interaction (energy exchange) between different oscillation modes will be
considered for different values of the parameter p%. For almost all values
of p? only an interaction of order ¢ between different oscillation modes will
occur on a time-scale of order e~!. It will be shown that only for certain
values of p?> mode interactions of order 1 will occur on an € ! time-scale,
i.e., energy transfer of order 1 occurs between two or more modes on an
e~ ! time-scale. For these p®-values, truncation to one or two modes, as for
instance performed in [10] or [11], is not valid in all cases. We will show
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that, for instance, for p? = % an energy transfer occurs between modes 2

and 3. For p? ~ —91+121/2457 an energy transfer occurs between modes 1,
2, and 4, and for p? ~ % an energy transfer occurs between modes 1, 2, 3,
and 4. For these three critical values of p? we will examine the interactions
for p* = p?, +ea, with @ = 0 and « # 0 (detuning). Resonances of this type
have been studied in [36], but to our knowledge these mode interactions for
weakly nonlinear beam equations have not yet been studied thoroughly.
The outline of this chapter is as follows. In Section 3.2 the well-posedness of
a more general case of the initial-boundary value problem (3.1.4)-(3.1.7) is
considered and established on a time-scale of order e~!. In Section 3.3 the
asymptotic validity of approximations of solutions of this general initial-
boundary value problem is studied. In Sections 3.4 and 3.5 the asymptotic
theory is applied to the specific initial-boundary value problem (3.1.4)-
(3.1.7). On a time-scale of order e~! an order ¢ asymptotic approximation,
as € — 0, for the solution of (3.1.4)-(3.1.7) is constructed using a two time-
scales perturbation method. We will show that for most p?-values no mode
interactions occur (up to O(¢)). For some specific values of p?, modes with
zero initial energy are also excited. For three different values of p? these
mode interactions are considered explicitly in Section 3.5. In Section 3.6
some conclusions and general remarks are given.

3.2 The well-posedness of the problem

In this section we consider the well-posedness in a classical sense of the
following class of weakly nonlinecar initial-boundary value problems for a
real valued function w(z,t):

Wy + Wegze + pPw = f (x,t, w;€), O<z<m t>0,(3.2.1)
w(0,t) = w(m,t) =0, >0, (3.2.2)

Wer(0,1) = wye(m,t) =0, >0, (3.2.3)

w(z,0) = wo(z;e), wi(z,0) =wi(z;e), O0<z<m, (3.2.4)

where ¢, p are constants, € € [—eg, €], and p > 0, and where f, wp, w; satisfy

f and all first-, second-, and third-order partial derivatives of f with

respect to z,t,w are € C([0, 7] x [0,00] x R X [—€g,€0], R), and

f£(0,t,05€) = f(m,t,0;¢) =0 for ¢ > 0, (3.2.5)
Owy Pwy FPwy *wy dw, H%un
wo, aT y 3.’1)2 y 8%3 ) 8114 , Wi, 8$ ) 0332 € C([Oa 7T] X ['—60760]7IR')7

0w 8wy

with ’LU()(U; 6) = ’LUO(7T; 6) = W(O, 6) = 0T2

(m;e) =0 and
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82’101

82’11)1
(0;¢) = W(ﬁ; €) =0, (3.2.6)

w1(0;€) = wy(m;€) = )

f and all first-, second-, and third-order partial derivatives of f with

respect to z,t,w are uniformly bounded for all z, ¢, e considered. (3.2.7)

We define a classical solution as a function that is three times continu-
ously differentiable on [0, 7] x [0,00], for which the fourth partial deriva-
tive with respect to z is continuous on [0, 7] x [0,00] and that satisfies
(3.2.1)-(3.2.4), where f,wp,w; satisfy (3.2.5)-(3.2.7). In order to prove ex-
istence and uniqueness of a classical solution of the initial-boundary value
problem (3.2.1)-(3.2.4) an equivalent integral equation will be used. We
obtam thls equatlon using the Green’s function G for the linear operator

W + 377 + p? with simply supported boundary conditions (see Appendix
A, (3.7.7)-(3.7.8)):

w(z,t) = (3.2.8)
[ [t ma 006 7,05 e + wile, t6) = (Tw) (a0,
0o Jo
where
G(§,’r'$ t) = (3.2.9)

Z \/71—44-_10_ sin [\/n‘l + p2(t — T)]H(t — 7)sinné sinnz

for £,z € [0, 7], 7,t > 0, where the Heaviside function H(a) is equal to 1
for a > 0 and equal to 0 for a < 0. It can be easily seen that G is uniformly

bounded and continuous in z,t. The solution of the initial-boundary value
problem (3.2.1)-(3.2.4) with f =0 is

wi(z,t; €) =/;{G(€,0;w,t)w1(£;f)—Gr(é,O;x,t)wo(é;E)}dﬁ- (3.2.10)

It can be shown elementarily that the integral equation (3.2.8) and the
initial-boundary value problem (3.2.1)-(3.2.4) are equivalent when three
times continuously differentiable functions with a continuous fourth deriva-
tive with respect to x (on [0,7] x [0,00]) are considered. This means
that if w(z,t) is a three times continuously differentiable solution of the
initial-boundary value problem (3.2.1)-(3.2.4) and wgzz is continuous, then
w(z,t) is also a solution of the integral equation (3.2.8) and that, if v(z,t)
is a three times continuously differentiable solution of the integral equa-
tion (3.2.8) and vy, is continuous, then v(z,t) is also a solution of the
initial-boundary value problem (3.2.1)-(3.2.4).
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We will start with some definitions. Let
o ={@t]o<s<mo<t <L}, (3.2.11)

with L a sufficiently small positive constant independent of €. Let the
Banach space B of all real-valued continuous functions w on £, be given
and let Cpr(€21) be the closed subset

Cu(Sdy) = {w €B

|w|| = max |w(z,t)] <M ;.
(wyt)EQL
We now state the following theorem.

Theorem 3.1 Suppose f, wo, and wy satisfy (3.2.5)-(3.2.7). Then for ev-
ery € and p satisfying 0 < |¢| < e9 € 1 and p > 0 the initial-boundary
value problem (3.2.1)-(3.2.4) has a unique and three times continuously dif-
ferentiable solution with a continuous fourth derivative with respect to x for
(@,t) € Qr, with L a sufficiently small, positive constant independent of €.
This unique solution depends continuously on the initial values.

Proof. As stated above the initial-boundary value problem (3.2.1)-(3.2.4) is
equivalent to the integral equation (3.2.8). To prove existence and unique-
ness of the solution of (3.2.8) a fixed point theorem will be used. Using the
fact that wy, 8;;”20, and w; are continuous on the closed and bounded inter-
val [0, 7] X [—ep, €9] and therefore uniformly bounded on that interval, and
using (3.8.10) obtained in Appendix B, it follows that there is a constant
M, independent of € such that, for fixed wy and w),

1
lwrll < 5 M, (3.2.12)

i.e., wy, given by (3.2.10), is bounded. Since f and gﬁ are assumed to be
continuous and uniformly bounded for those values of z,t, e under consid-
eration, there are constants M> and M3 independent of € such that

If(z,t,w;e)] < Mo, (3.2.13)
|f(z,t,v15€) — fz,t,v9;€)] < M|y — s (3.2.14)

for all (z,t) € Qy, € € [—€p,60], and w,vy,v2 € Cpy, (21). Since G is
uniformly bounded for those values of &, 7, z,{ under consideration, there
is a constant M, such that

|G, 752, 1)] < My (3.2.15)

for all (£,7) and (z,t) € Q. Since G, given by (3.2.9), is a continuous
function in 2 and ¢, and since f is bounded, it follows that the integral op-
erator maps C'y,(€27,) into the space of continuous functions on Q. Using
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(3.2.12), (3.2.13), (3.2.14), (3.2.15), and the fact that (z,t) € Q, we can
show that Tw € Cyr, (1), i.e., the integral operator T maps Cyy, (£21,) into
itself:

t pm
(Tw)(z,t)] < E/ / G, iz, t) f (&, 7, w; €)dédT| + |wi(z, t;€)]
0 Jo
t pm 1
< 1| [ [ 16675zl 56 mwselasar| + 3,
t pm )
< |€| / / M4M2d€d7- + =M,
0 J0 2
L 1
< leltmMyMo + §M1 < wLMyMy + -2—M1,

If the maximum of |T'w| on the left-hand side is taken for (z,t) € Qf, we
obtain

1
1Tw|| < tLMyMy + §Ml.

If we take the constant L such that n LMsM, < %Ml, it follows that
|Tw|| < My for all w € Cpr, ().

Hence it follows that T : Car, () — Car(21). In a similar way we
can show that the integral operator T is a contraction on Cps, (€21). Let
v1,v2 € Chr (21); then

(T (2, 2) — (Tw) (s, 1)
[ [ 6 man s nme - £erom0} dedr
0 JO

IA

lel

IA

le]

t Vs
/0 /0 IG(&, 73, )| f (6,7 015 €) — F(E, 7033 €)|dédr
< |ejtr MaMsl|jvy — vo|| < TLM3My|lvy — va|.

If we take the constant L such that nLMyM, < %Ml and tLM3My < k
with 0 < k < 1, it follows that

|Tvy — Twa|| < k|lvy — vo|| with 0 < k < 1 for all vy, ve € Car, (1),

i.e., T is a contraction on Cps, (2r). Then, Banach’s fixed point theorem
implies that the integral operator T has a unique fixed point w € Chy, (1),
i.e., a continuous function w on Qy, satisfying the integral equation (3.2.8).
It can be shown elementarily that 7' maps C* functions into C* functions for
i = 1,2,3. Furthermore, it can be shown that T maps C* functions into C3
functions that have a continuous fourth derivative with respect to z. So, the
unique solution of the integral equation (3.2.8) is a three times continuously
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differentiable function, with a continuous fourth derivative with respect
to z. Since the integral cquation (3.2.8) and the initial-boundary value
problem (3.2.1)-(3.2.4) are equivalent, it follows that the initial-boundary
value problem has a unique and three times continuously differentiable
solution w, with w4, continuous. This proves the first part of Theorem
3.1.

Next we will show that the solution of the initial-boundary value problem
depends continuously on the initial values. Let w(z, t) satisfy (3.2.1)-(3.2.4)
and let w(z,t) satisfy (3.2.1)-(3.2.3) and the initial conditions w(z,0) =
wo(z;€), wy(z,0) = wi(x;€), where wy and w; satisfy the same proper-
ties (3.2.6) as wy and wy. Using the equivalent integral equation (3.2.8),

(3.2.14), (3.2.15), (3.8.1), the fact that (z,t) € Q, and taking w,w €
Ch, (21) we obtain

lw(z,t) —w(z,t)|

/Ot /07r G iz, ) {f(€, 7wy €) — f(& 7,5 €)} dédT
+| [7 6160550 wn610) - w0 e

+| [ 66,052, {untes0 ~ (€ )} df

< e

ot T
< | /0 /0 (G, 5, 8)| [ (€, 7, wie) — F(€,7, 0 €)|dedr

+| [M16€ 00l 0 - i €

+

[ 166 05, (€5 — (s el

< eltw MyMs|lw — @] + 7 My |lwy — ||
2 62

X @wo(ﬂ’; €) — 8?@0(:6; €)

+7? max {p|w0(m;e) — wo(z;€)| +
<m

}

< wLM3Myl|w — 0| + wMy|lwy — by ]| + 7°p||lwo — o|
82'LU0 821E0

2
+7N a7 A
01? oz?

Oz? 0x?

- My - N
< kllw—w|| + 72 {7”“” — || + pllwe — wol| +

‘ Pwy i

}

for all (z,t) € €y, and with 0 < £ < 1. If the maximum of |w — | on the
left-hand side is taken for (z,t) € 0, we obtain
82’(1)0 8212)0

02 912

~ ™ -
|lw—w| < T & {wp”wg — Wyl + 7

+ My||w; — ﬁ]lll} .
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This means that small differences between the initial values cause small
differences between the solutions w and @ on §2y. This completes the proof
of Theorem 3.1. 0O

3.3 On the asymptotic validity of formal approx-
imations

In Section 3.4 we will construct an approximation of the solution of the
initial-boundary value problem (3.2.1)-(3.2.4) for f(z,t,w;e) = w?. This
approximation is a formal approximation, i.e., a function which satisfies the
partial differential equation (3.2.1) and the initial conditions (3.2.4) up to
some order depending on the small parameter €. The formal approximation
in Section 3.4 satisfies (3.2.1) and (3.2.4) up to O(e?). In this section we will
show that a formal approximation of the solution of the initial-boundary
value problem (3.2.1)-(3.2.4) is also an asymptotic approximation, i.e., the
difference between the formal approximation and the exact solution — 0
as € — 0, on a time-scale of 1/e.

Suppose we construct a three times continuously differentiable function
v(z,t;€) on £, with vyzz2 continuous and which satisfies

Vst + Voo + D20 = ef (z,t,v;€) + || Ry(z, t;€), 0 <z < m,t >0, (3.3.1)
v(0,t;¢) =v(m t;e) =0, t >0, (3.3.2)

V22(0, 1 €) = v(m, t5€) =0, t >0, (3.3.3)

v(z,0;€) = wo(x; €) + || 'Ry (z;€) = vo(xs€), 0 < z < T, (3.3.4)
vi(z,0;5€) = wi(z;€) + |e]™ ' R3(z;€) = vy (z3€), 0 <z <, (3.3.5)

with m > 1, where ¢, p, f, wy, w; satisfy the same conditions as in Section
3.2, equations (3.2.5)-(3.2.7) and where R, Ro, R3 satisfy
R, and all first-, second-, and third-order partial derivatives of R with
respect to z,¢ are € C([0,n] x [0,00] X [—€p, €], R) and
R1(0,t;¢) = Rq(m,t;¢) =0 for t > 0, (3.3.6)

n OR2 PRy BRy IRy IRz O*Rs
08 0x ) 0x3 ) 0zt Y 0z Ox?

€ C([0, 7] x [—€o, €], R)

) 0’R 9*Ry
with Ra(0;€) = Ro(m;€) = W(O; €) = W(w; €) =0, and
: O’R3 O*R; B
R3(0; 6) = R3(7T; 6) = 8_182(0’ 6) = W(T(;E) = O, (337)

R and all first-, second-, and third-order partial derivatives of Ry with

respect to x,t are uniformly bounded for all x,t, € considered. (3.3.8)
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We now state the following theorem.

Theorem 3.2 Let v satisfy (3.3.1)-(3.3.5), where f, wy, and w; satisfy
(3.2.5)-(3.2.7) and Ry, Ro, and Ry satisfy (3.3.6)-(3.3.8). Then for m > 1
the formal approxzimation v is an asymptotic approzimation (as € — 0)
of the solution w of the nonlinear initial-boundary value problem (3.2.1)-
(3.2.4), for (x,t) € Qr. This means that, as € — 0,

|w(z,t) —v(z, t;e)] = O(le|™ 1) for 0 <2 < 7 and 0 <t < Lle| ™!,
in which L is a sufficiently small, positive constant independent of .
Proof. Let f(z,t,v;€) = f(z,t,0;€) + |e|™ 'Ry (x, t;€), and let v, be
K
wlaytie) = [ G055, 001 (6 0) — Gr (€ 0w o€ ) de.

Suppose v satisfies ||v;|| < 1M; and f satisfies (3.2.13)-(3.2.14). It then
follows from Theorem 3.1 that (3.3.1)-(3.3.5) has a unique, three times
continuously differentiable solution v(x,t;€) on Qp, with vz, continuous;
v 1s also a solution of the equivalent integral equation

v(z, t;€) (3.3.9)
/ / G(&, 72, ) F(€, 7 v; ) dedr + vy, ts€) = (T, £ ).

Since the functions R, Re, R satisfy (3.3.6)-(3.3.8), it follows that there
are constants Ms, Mg, My, Mg such that

|R1(z,t;€)] < Ms,  |Ra(z;€)] < Mg, (3.3.10)
2 .
Q% < M7, |Rs(z;e)| < Mg (3.3.11)

for all (x,t) € Qp, € € [—€q, €0, and w, vy, vy € Car, (Q,). Subtracting the
integral equation (3.3.9) from the integral cquation (3.2.8), using (3.2.14),
(3.2.15), (3.3.10), (3.3.11), (3.8.1), the fact that w,v € Cpy, (), and the
fact that (z,t) € Q,, it follows that

lw(z,t) —v(z,t;€)

//"Garxt {16 mwie) = Fi&.m 00} dedr
0
—I-le z,t;€) — v, t;€)|

/G{,TT?‘ {f(&,mywse) — f(&,T,u5¢)} dédT
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el ‘/Ot /07r G(E, 730, )R (6, 73 €)dédr
+| [ 6000 {wiie o —v1<¢;e>}d£\

+| [ Gole 0120 {unlei ) - wales ) ]
[ [ 162,001 m036) - 167,00
™| [ [ 162 011Rs 6,75 dcar
6050l R ]

< el

+4€Vn—l

+46Vn—1

, )Rg(g;e)ds\

i L t pm
< | /0/0 MyMs||w — v||dédr +|e|m‘//0 M Msdédr
0

O?Ra(z;€) }
oz?

leftm M3 Ma|jw — v|| + |e|™tnMyMs + |e]™ 17 (MyMg + mpMg + 7M7)

TLM3My|lw — v|| + |e]™ 'n (LMyM;s + MyMg + mpMg + mM7)

El|lw — v + |e|™ 'n (LMyMs + MyMg + npMg + wM7)

++evn~1

/ M4M8d§} + le/™ 17? max {p|’R2(:c;e)| +
0 0<z<n

INIANIA

for all (z,t) € Qf and with 0 < k < 1. If the maximum of |w — v| on the
left-hand side is taken for (z,t) € 1, we obtain

s
lw =2l < |€|m_11—_,‘€‘ (LMyMs + MsMs + mpMg + nM7) .

So, for (z,t) € O, |w(z,t) — v(z,t;e)] = O(le|/™ ') as ¢ — 0. Hence,
for m > 1 the function v is an asymptotic approximation (as ¢ — 0) of
the solution w of the initial-boundary value problem (3.2.1)-(3.2.4). This
completes the proof of Theorem 3.2. 0

3.4 Construction of asymptotic approximations -
general case

In this and the following section we will construct an asymptotic approxi-
mation of the solution of the initial-boundary value problem (3.1.4)-(3.1.7).
When straightforward e-expansions are used to approximate solutions, secu-
lar terms can occur for specific values of p?. To avoid these secular terms we
use a two time-scales perturbation method. We extend the initial-boundary
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value problem (3.1.4)-(3.1.7) to an initial value problem by extending all
functions in z. The boundary conditions impose that w should be extended
as an odd, 2n-periodic function in z, i.e. we writc w as a Fourier sine-series
in z:

w(z,t) = Z gm (t) sin(mz). (3.4.1)
m=1

This extension implies that all terms in (3.1.4) should be extended as odd,
2n-periodic functions in z. For the nonlinearity on the right-hand side of
(3.1.4) this means that we have to rewrite (3.1.4) as

Wit + Wrgrs +p2w - Eh($)w27 (342)

where the function h, defined on R, is given by h(z) = 1 for 0 < z < m,
h(0) = h(r) = 0, and h is odd and 27-periodic in z. The function h(z) can
then be written as a Fourier sine-serics:

h(z) = 4 i sin((27 + l)ac)

: (3.4.3)
T 25 +1
By substituting (3.4.1) and (3.4.3) into (3.4.2), we obtain
e €
> (ﬁm + (m* + pz)qm) sin(mz) (3.4.4)

m=1

4 & & 1
= e z Z T [dm sin(ma) sin(kx) sin((25 + 1)z).

Using orthogonality properties of the sine-functions on [0, 7] it is shown in
Appendix C, equation (3.9.2), that the equation for each gy, is

Gn + (n4 + pQ)Qn (3.4.5)

:%(22—2Z+Z

n=m—k+2j+1 n=m—k—2j—1 mn=m+k-2j-1

1
o Z - Z ) 2]_+_1(Imqk7

n=m+k+2j+1 n=—m—k4+2j+1

for n =1,2,3,..., where ¢, must satisfy the following initial conditions:
2 (7 2 (7
qn(0) = —/ wyg(z) sin(nz)dz, ¢,(0) = —/ wy () sin(nx)dx .
m™Jo mJo

In the literature, for example in [27], systems similar to (3.4.5) are analyzed
using averaging methods. In this chapter, however, we prefer to use the
method of multiple scales for its efficiency and wider applicability.
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As stated above, terms that give rise to secular terms may occur in the
right-hand side of (3.4.5). To eliminate these terms we introduce two time-
scales, to =t and ¢; = et, and assume that ¢, can be expanded in a formal
power series in ¢, that is, ¢, (t) = ¢n0(to, t1)+€qn,1(to, t1) +€2qn 2(to, t1) +- - -
. We substitute this into (3.4.5) and collect equal powers in €. The O(e’)-
problem becomes

82

atQ a2dn0 + wnPQn 0=0,1t>0, (3.4.6)
dn0(0,0) / wo(z) sin(nz)dz, (3.4.7)
63 an,0(0,0) / wi () sin(nz)dz (3.4.8)

for n = 1,2,3,... with wp,, = v/n* + p?. The general solution for (3.4.6)-
(3.4.8) is

Qn,O(th tl) = An,O (tl) Cos(wnpt()) + Bn,O(tl) Sin(wnptO)a (349)
where A;, o, By, o satisfy the following initial conditions:
19
Wn,, Oty

An,O(O) = qn,O(O’O)a Bn,O(O) = Qn,O(Oa 0)

Next we consider the O(e!)-problem
52 9 52
- =-2— 3.4.10
at% n1 + W, qn,1 Bte0t qn,0 ( )

+§(zz-zz+z

n=m—k+2j+1 n=m—k-2j—1 n=m+k—-2j-1

1
- Z - Z )2]+1q'm0‘ﬂc0a

n=m+k+2j+1 n=—m—k+2j+1

0 0
Qn,l(oa 0) - Oa a_toqn,l(oa 0) - _a—thn,O(Oj O)a (3411)

forn =1,2,3,.... We substitute (3.4.9) into (3.4.10) and get

2 dAnyp .
7.2 In,1 +w Ldn,1 = 2wp,, < 0 sin(wp,,to) — 0 cos(wnpto)) (3.4.12)

n
ot dtq

+%(22—2Z+2

n=m—k+2j+1 n=m—-k—2j—1 n=m+k—-2j-1

-z—z)z—j{;y,

n=m+k+2j+1 n=—m—k+2j+1
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where
H = (Am,o cos(wm, to) + Bm,o sin(wm, to)) (Ak,o cos(wg,to) + By o sin(wk,to))-

Since cos(wy, to) and sin(wy, o) are part of the homogeneous solution of gn, 1,
we want the coefficients of cos(wn,to) and sin(wp,to) on the right-hand side
of (3.4.12) to be equal to zero (elimination of secular terms). This gives
us differential equations for A, ¢ and By, o. When A, o and By, o have been
determined, and thus ¢, o, we have constructed an approximation v of the
exact solution w of (3.1.4)-(3.1.7):

o0

v(z,t;e) = Z (qN,,O(thtl) + eqn,l(to,tl)) sin(nz)

n=1

with gp 0(to, 1) = An,o(t1) cos(wn,to) + Bn o(t1) sin(wy,to) and gn1(to, 1) =
q;"{l + An,1 €08(wn,to) + Bp,1sin(wn,to), with q%”{‘ the in-homogeneous so-
lution of (3.4.12). A, and B, can be used to avoid singular terms in
the O(e?) approximation. Since we are interested in the O(1) and O(e)
approximations, we consider the functions A, ; and B, to be constant. It

can be easily seen that v satisfies (3.1.4) up to order €*:

v+ oz + 970 — e” = [’ Ry, (3.4.13)
with
Rl (:1:7 t, E) =
- 0? 52
2— 042 L i 29
{nzz:l ( dtgoty qn,1 + 8tf %,0) ﬂn(nrr)

o0
- Z 2¢m 04k,1 sin(mz) sin(km)}

m,k=1

o 62 x>
+e Z (‘)—t%qn’l sin(nz) — Z Qm,1qk 1 Sin{mz) sin(kz) » .

n=1 m,k=1

v satisfies the boundary conditions (3.1.5)-(3.1.6) and the following initial
conditions:

v(x,0;€) = wo(z) + [e|Ra(z; €) and vi(z, 05€) = wi(z) + |e|Ra(x;€)(3.4.14)

with Ro(z;¢) = 0 and Rg(x;€) = |e| Yopn 2 4n1(0,0)sin(nz). It can be
n=1 9t; 1n,

easily seen that the functions R, Ro, and Ry satisfy (3.3.6)-(3.3.8). There-
fore, using Theorem 3.2, we know that the constructed approximation v,
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which satisfies (3.4.13)-(3.4.14) and (3.1.5)-(3.1.6), is an asymptotic ap-
proximation (as € — 0) of the exact solution w of the initial boundary
value problem (3.1.4)-(3.1.7), i.e.,

lw(z,t) —v(z,t;€)] = O(le/™ ') for 0 <z < mand 0 < t < Lie|™},

with L a sufficiently small, positive constant independent of ¢ and m = 2
in this case.

In Appendix C we show that to find the equations for A, o, By, o, we have
to determine the terms in (3.4.12) that give rise to secular terms in the
approximations by solving the Diophantine-like equations

n=m+kx(2j+1) Van=m=-kx(2j+1) v
n=-m-k+2j+1, (3.4.15)
+v/nt+p? = £/mt+p? £ k% + pl.

Only specific combinations of m, k, j, and p? will give solutions to (3.4.15).
In Appendix C we determine those values of p? € (0,100) (which we will
refer to as critical values) for which (3.4.15) admits solutions. Only for
these critical values of p?, i.e., p2., will the differential equations for Anp
and By, o be nontrivial and give rise to internal resonances (mode interac-
tions). In Table 3.1 the first seven values of p?, are given, together with
the corresponding interacting modes. For three different values of p?, we

ph =Y ~ 567 |{2,3)
= ~ 25.67 | {1,2,3,4}
pl = 10818 4 DVI211497 =~ 31.27 | {4,8,9}

P2 = —299 + 21/31369 ~ 55.23 | {2,4,5}

pZ = — 236393 4 10./560787241 ~ 72.16 | {6,18,19}

pZ = —91+ /2457 ~ 74.23 | {1,2,4}

pZ = -1 + 2,/1229761 ~ 93.63 | {2,5,6}

Table 3.1: Critical values of p? < 100 and corresponding interacting modes.

will discuss the differential equations for A, ¢ and By, o explicitly. For these
values (p2. = %, p, = —91 + % 2457, and p?, = g) it will be shown
that mode interactions occur between, respectively, two, three, and four
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modes. To understand the detuning from each of these values of p?., we
will consider p? = p?. + e with o € R and @ = O(1). The case where
(3.4.15) has no solutions, i.e., p? # p?,, is discussed briefly below.

In the general case (p? # p?,), there are no solutions to (3.4.15). As shown
in the last part of Appendix C this means the equations for A, o, By, o are

dAno  dBnp
dty  di

which means Ay o(t1) = Ano(0) and By, o(t1) = Bno(0) for all n. So, if
we start with zero initial energy in the nth mode, there will be no energy
present up to O(e) on a time-scale of order ¢ '. We say the coupling
between the modes is of O(e). This allows truncation to those modes that
have nonzero initial energy.

For p? = p?, + ea = % + ea extra contributions in the equations for A, o
and By o occur for n = 2,3. The equations for Ay, B2, A3, B30 can be
determined easily, as shown in the last part of Appendix C.

=0forn=1273,...,

dA20 87 16 1
0 Bog— ——— (AyoBso — ByoAsg), (3.4.16
dh 2/ gL 0 217r\/2_4+—p5( 2,083,0 — B2,0430), ( )
dBs g o 16 1
—_ = A —— (As A By oB ,(3.4.17
T - a0 Y air e (A2odso t BroBae) (3417)
dA3g « 16 1
0 _ Byp— — ——— (2450Bsy), 3.4.18
dtl 2./3 +pgr 3,0 217_‘_\/3—4_1_—1)5( 2,0 2,0) ( )
ng() (84 16 1 2 )
= A3 g+ ——+—— (A5, — B . 3.4.19
dt1 2./3 +pgr 3,0 2171_ \/m( 2,0 2,0) ( )
For n=1,4,5,..., App and B, o satisfy
dAn o Q dBpo «@

T \/mBn,o, i mAn,o. (3.4.20)
From (3.4.20) we see that if A,0(0) = B,o(0) = 0, then for all t; > 0
Ano(t) = Bpo(t1) =0 for n = 1,4,5,.... So if we start with zero initial
energy in the nth mode (n = 1,4,5,...), there will be no cnergy present
up to O(e) on a time-scale of order e !. We say the coupling between the
modes n = 1,4,5,... is of O(¢). This means that modes with zcro initial
energy do not have to be taken into account (for n = 1,4,5,...). On the
other hand, there is an O(1) coupling in this case between modes 2 and
3. This means that if there is initial energy present in mode 2 an energy
transfer occurs between modes 2 and 3. Truncation to one mode is not
valid: both modes 2 and 3 have to be taken into account, even if mode 3
has zero initial energy. We will discuss (3.4.16)-(3.4.19) in more detail in
Section 3.5.1.
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For p? = p2 +ea = —91 + %\/ 2457 + ea(= 74.23 + ea) extra contributions
occur in the equations for A, ,B,o for n = 1,2,4. The equations for
A0, By, A2, B20,A40,Bsp can be determined easily, as shown in the
last part of Appendix C.

d::tll’o N 2\/1—0;‘%7? Bio+ ‘15#‘1—1% (A2,0Bap — BapAsp), (3.4.21)
dftll’o - _2\/1C¥Tp5‘41a0 - ﬁ%ﬁg (A2,0A40 + B2oBay), (3.4.22)
dfzo - 2\/24—,” 1_05;1—\/;_’_71% (A1,0B40 — B1,0Asp), (3.4.23)
ddg;i’o - _2\/2_4_{.—1,2;’4270 - @32—\/2471% (A1,044,0 + B1,0Bsp) (3.4.24)
dAt410 - 2\/m TOM%—\/;JF—I% (A1,0B2,0 + B1,oA20) , (3.4.25)
dfti,o - _2\/LWA410 - ﬁ (A1,0A420 — B1,0Bap) (3.4.26)
For n = 3,5,6,..., Apo and By satisfy (3.4.20). In this case there is an

O(1) coupling between modes 1,2, and 4. If there is initial energy present
in only one of modes 1,2, and 4 no energy transfer occurs, but if there is
initial energy present in two of the three modes an energy transfer occurs
between these three modes. In that case truncation to one or two modes
is not valid: all three modes have to be taken into account, even if one
of them has zero initial energy. We will discuss (3.4.21)-(3.4.26) in more
detail in Section 3.5.2.
For p? = p. + e, p?, € {—191 4 L0/1211497, 299 + 2/31369, — 127+
1229761, — 238398 4 10, /560787241} the analysis is similar to the previous
case with modal interaction between three modes. We will not discuss these
cases in more detail.
For p? = p?,+ea = T +ea extra contributions in the equations for A, ¢ and
By, 0 occur for n = 1,2, 3,4. The equations for A, o, By 9, A2, B2, A3,0, B30,
A4, Bap can be determined easily, as shown in the last part of Appendix
C.

dAj o 12

» = Bio+ Ay 9Bsg — B1oAsp), 3.4.27
it oI o0 Byt ez AroBao ~ Brodso), - (3427)
dBlO (8 12

L A g— —————=(A19A30+ B10B3g), (3.4.28
) 2m WO GorTa g Cedse + BroBs), (3428)
dAsy 96

(A3,0B40 — B3pAsyp), (3.4.29)

dt;  2/28 +p07,,  135m/22 + pZ,
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dBs a 96

== - Ao+ ——————(A30449 + B3 B 3.4.30
dtl 2\/@2 2,0 1357r\/27+—pg( 3,0414.0 3,0 4,0)( )
dAszy . 12

(241,0B1,) (3.4.31)

(87
— By + ——rr——
dty 23 4L 0 453+ 2,
96 1
e (AsoBag — BopA
I35 /3T g, 20Peo ~ Brodeo),
dBs o 12 2 2
0 — Az g — Afyg—B
dt, 2/3  +p2 ! 457r,/31+p3,.( o~ Blo)
96 1
(A20A440 + B2,0Bsp),

+—._—__
1357 /3% 4 p2,
dA4’U _ (8] B _ 96
dty T 2/BE g Y s /ATt pl,

dByy 96

(07
= — Ao+ ——n
dty 2/A+ g 0 135my/A 1k,

(3.4.32)

(A2,0B30 + BapAzp), (3.4.33)

(A2,0A30 — BooBsy) (3.4.34)

For n > 5, App and B, satisfy (3.4.20). In this case there is an O(1)
coupling between the modes 1,2,3,4. This means, for example, that if
there is initial energy present in modes 1 and 2 an energy transfer will occur
between all four modes. Truncation to onc or two modes is not valid: all
four modes have to be taken into account. We will discuss (3.4.27)-(3.4.34)
briefly in Section 3.5.3.

As we saw above, internal resonances between certain modes occur for
special values of p? € (0,100). Truncation to one or scveral mode(s) is not
valid in general: all modes have to be taken into account. In the next section
we will discuss the behavior of the solutions for the differential equations
for A, and B, when p? = % + ea and p? = —91 + % 2457 + ea with
a = 0 and @ # 0 (detuning). We will also briefly discuss the behavior
of the solutions when p? = % + ea. It can be shown that other internal
resonances occur in a similar way for specific values of p? > 100.

3.5 Construction of asymptotic approximations -
specific p’-values

3.5.1 The case p° = p2, +ca = & + e

In this case there is an interaction between modes 2 and 3. We will therefore
consider only the equations for n = 2 and n = 3. We assume all other modes
have zero initial energy. This truncation is allowed, as stated in Section 3.4.
We transform (3.4.16)-(3.4.19) using A;(t1) = Cia;(7) and B;(t1) = C;bi(7),
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where
1
21 4 2 \2(94 2 1
b= o= (BEP G )} g g,
16 (& + p2)
and get the following equations:
. B
Gy = ———=bo — asb3z+ boag, (351)
V2T +p2,
i)Q = ——ﬂ—-az + asaz + babs, (352)
2% +per
d3 = ———/B—b?, - 2(1,21)2, (353)
3* +per
by = b + a3 — b2, (3.5.4)

——a
V3 +er 3

where 8 = 2;—2”(1 (the dot represents differentiation with respect to 7).
We introduce polar coordinates

an = Tn co8(¢n), bp = rpsin(én), (3.5.5)

with the amplitude function r,, = r,(7) and the phase function ¢, = ¢n(7).
In the polar coordinates (3.5.5) for n = 2,3, (3.5.1)-(3.5.4) become

To = —rorgsin(¢s — 2¢2), (3.5.6)
b = e el - 292) (35.7)
f‘3 = 7‘% Sin((f)g, - 2¢2), (358)
. A 2

¢3 = ——m———pgr + i cos(¢3 — 2¢2). (3.5.9)

Multiplying (3.5.6) with ro and (3.5.8) with r3 and adding both equations
we obtain rory + rgrs = 0, which means

rZ4r3=c2 (3.5.10)

Using (3.5.10) we can analyze (3.5.6)-(3.5.9) in the (r3, 1) phase space, with
P = ¢3 — 22

73 = (¢ —r3)sin(s), (3.5.11)

. 1
P o= v+ s (c% - 3r§) cos(v), (3.5.12)
where v = (— \/34l+pgr + \/fe“Qerzr)ﬂ' For r3 = 0, (3.5.11)-(3.5.12) do not

hold. In that case we have to analyze the original differential equations
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(3.5.1)-(3.5.4). We will determine the critical points of (3.5.11)-(3.5.12)
analytically for all values of 7. For several values of vy, phase spaces are
calculated using a numerical integration method.

We start withy = 0. We analyze (3.5.11)-(3.5.12) in the (r3, 1)) phase space.
The system is 2n-periodic in . We find four critical points: (%\/301,0)
and (%\/gcl,ﬂ), both centers, and (c1,3) and (c1, %), both saddles. The
behavior of the solutions of (3.5.11)-(3.5.12) in the (r3,) phase space for
v = 0 is given in Figure 3.2(a). For the sake of convenience, we have
taken ¢; = 1 in all phase spaces given below. The figures are essentially
the same for ¢; # 1. In the exceptional case, when r3 becomes 0, the
original differential equations (3.5.1)-(3.5.4) impose a phase jump for v, to
¥ = 7§, as can be seen in Figure 3.2(a). We see that the system oscillates
around an equilibrium state, which is a combination of two modes. Next
we consider the detuning from the previous case, i.e., v # 0. We start with
v > 0. As vy increases, one center starts moving toward the r3 = 0 axis
and the other center toward the r3 = ¢; axis. One saddle moves toward
(c1,0) and the other toward (ci,2n). For a certain value of v, v = 2¢;,
three critical points coincide. =~ We therefore start with 0 < v < 2¢;.
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with r3 (horizontal) from 0 to 1, ¢ (vertical) from 0 to 2.

Figure 3.2: Phase space for p? = % +ea, vy= (-

We again find four critical points: (73,0) and (73,7), both centers, and
(c1,%) and (c1,%), both saddles, where 73 = T+ é\/’y? +12¢2 > %\/gcl,

3= -3+ é\/’yz +12¢2 < 1\/_01, and where 1) and ibv are solutions of
cos(y) = 26 , with ¥ < 7 and d) > 3” The behavior of the solutions of
(3.5.11)-(3. 5. 12) in the (r3, ) phase space for 0 < v < 2¢; is given in Figure
3.2(b) for ¢; = 1. For v = 2¢; three critical points coincide, which means
two critical points remain: (c1,0), a higher order singularity, and ( C1,T),

a center. The behavior of the solutions of (3.5.11)-(3.5.12) in the (rg,z/))
phase space for y = 2¢; is given in Figure 3.2(c) for ¢; = 1. For v > 2¢;
only one critical point remains: (73, 7), a center, where 73 < %cl and 73
moves toward the 3 = 0 axis as vy increases. The behavior of the solutions
of (3.5.11)-(3.5.12) in the (r3, 1)) phase space for v > 2¢; is given in Figure
3.2(d) for ¢; = 1. For v < 0 a similar analysis can be given. The behavior
of the solutions of (3.5.11)-(3.5.12) in the (r3,1)) phase space for the cases
—2¢; <7 <0, v=—2c1, and y < —2c¢; is given in Figure 3.2(e)-(g).
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3.5.2 The case p* = p?, + e = —91 + 13—0\/2457 +ea =~ 7423 + e

In this case there is an interaction between modes 1, 2, and 4. We will
therefore consider only the equations for n = 1,2,4. We assume all other
modes have zero initial energy. This truncation is allowed, as stated in
Section 3.4. We transform (3.4.21)-(3.4.26) using A;(t;) = Cja;(r) and
Bi(t1) = Cibi(1), where

C = (1% +p2) (2% + p2)(4* + p2.)
b) T o T
(¢ + p2.)

_ 1057
17 739

1
1
T > fori=1,2,4,

and we get the following equations:

. p
G = ————=b1 + asby — boaya, (3.5.13)
VIT+pZ
; B
by = ————a1 — (a2a4 + b2b4), (3.5.14)
VIT+pZ
) B
s = — byt aiby — byay, 3.5.15
az T L 2 + a104 — 0104 ( )
bg = —L(LQ - ((L1(L4 + [)1[)4)7 (3516)
2%+ per
) B .
ay = —————=byg+asb + boay, (3517)
V4 +pgr
: B
by = ————aq — + b1bs, 3.5.18
4 \/?4—4—+—pg’ra4 a1az 192 ( )

where g = %a. (A dot represents differentiation with respect to 7.)
In the polar coordinates (3.5.5) for n = 1,2,4, (3.5.13)-(3.5.18) become

1 = rorgsin(ps — (d1 + o)), (3.5.19)
b= e = sl (14 ). (3.5.20)
To = rirgsin(ds — (d1 + ¢2)), (3.5.21)
b = - ﬁ% — 5 eos(ga = (91 + ¢2)) (3:5.22)
ry = —riresin{ds — (¢1 + h2)), (3.5.23)
b= i~ M cosla— (914 o). (3:5.24)

Multiplying (3.5.19) with »; and (3.5.23) with r4 and adding both equations
we obtain r7; + r4ry = 0. Applying the same procedure for (3.5.21) and
(3.5.23) gives us rorg + 1474 = 0. This means

2 _ 2 2 .
4y =ci, 13 +ri=ch. (3.5.25)
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Using (3.5.25) we can analyze (3.5.19)-(3.5.24) in the (r4,%) phase space
with ¢ = ¢4 — (¢1 + ¢2):

T4 = et —riy/c3 —r} sin(y), (3.5.26)
1

b = 7+T\/2_ - 2(r§(c§+c§ 2r2) (3.5.27)
4G Ty -1y

—(c =S — D)) cos(¥),

where

B 1 + 1 1 8
TV VR Vi)
From (3.5.25) it follows that r4 € [0,min(c;,c2)]. For r4 = 0 and r4 =
min(cy, ¢2), (3.5.26)-(3.5.27) do not hold. In these cases we have to analyze
the original differential equations (3.5.13)-(3.5.18). We will determine the
critical points of (3.5.26)-(3.5.27) analytically for all values of y. For sev-
eral values of 7, phase spaces are calculated using a numerical integration
method.
We consider two cases: ¢; = ¢g and ¢; # ¢9. For ¢; = ¢ we have r; =
re, ¢1 — o = constant. The analysis for this case is similar to the case
with mode interaction between two modes, as discussed in the previous
subsection and it will not be discussed further. For ¢; # co the analysis is
different. We start with y = 0. We analyze (3.5.26)-(3.5.27) in the (r4,)
phase space. We find two critical points: (N¢, ¢,,0) and (Ng,c,,7), both

c2+c2 .
centers, where N, ., = /252 — % ¢} — ¢33 + ¢3. The behavior of the

solutions of (3.5.26)-(3.5.27) in the (r4,) phase space for v = 0 is given in
Figure 3.3(a). For the sake of convenience, we have taken ¢; = 1 and ¢z = 2
in all phase spaces given below. The figures are essentially the same for
other values of ¢; and cs. Phase jumps occur for 4 =0, to ¢ = =L and for
r4 = min(c, ¢2), to ¥ = T, imposed by the original differential equatlons
(3.5.13)-(3.5.18). We see that the system oscillates around an equilibrium
state, which is a combination of three modes.

Next we consider the detuning from the previous case, i.e., v # 0. We start
with v > 0. Again we find two critical points: (74,0) and (74, 7), both
centers, where 74 and 74 are the two real roots of

97«2 — (12(0% + c%) + ) ry + (4c1 + 140102 + 4c§ + ’)/2(0% + C%)) 7":11

—c}c (4(0% +c3) +y ) ri + cjcy =0,

with 74 < Ne, ¢, and 74 > N, .,, and with 74 | 0 and 74 1 min(cy, c) as «y
increases. The behavior of the solutions of (3.5.26)-(3.5.27) in the (r4,%)
phase space for v > 0 is given in Figure 3.3(b)-(c).




A Quadratic Perturbation 69

(a)'y=0 c1=1,¢c0=2
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(d)y=-1,e1=1,¢c2=2
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(&)y=-5,c1=1,ca=2

Figure 3.3: Phase space for p? =~ 74.23 + ¢, 7 =

( 1 + 1 _
Y N
\/4T]+;7) 1%2” a, with r3 (horizontal) from 0 to 1, ¢ (vertical) from 0 to 2.




70 Weakly Nonlinear Beam Equations: An Asymptotic Analysis

For v < 0 a similar analysis can be given. The behavior of the solutions
of (3.5.26)-(3.5.27) in the (r4,) phase space for v < 0 is given in Figure
3.3(d)-(e).

3.5.3 The case p* = p%, +ea =T + e

In this case there is an interaction between modes 1, 2, 3, and 4. We
will therefore consider only the equations for n = 1,2,3,4. We assume all
other modes have zero initial energy. This truncation is allowed, as stated
in Section 3.4. We transform (3.4.27)-(3.4.34) using A;(t1) = Cja;(7) and
Bi(tl) = Czbl('r), where

1
_ s ((24 +pa) (3" + pgy) (4" +p2r)) :
= — y Z o

h=—g¢ ) fori=1,2,3,4,

and get the following equations:
a \/ﬂi;bl + \/_ 5(a1bs — bras), (3.5.28)
by = \/_17Tﬁ+:2a1 - %\/% (a1az + b1b3), (3.5.29)
as ﬁz@ — (agbs — byay), (3.5.30)
by = _\/Tﬂ?z_];ag + agaq + byby, (3.5.31)
ag = \/3_4ﬂ+_b3 + — \/_ 5(2a1b1) — (azbs — boay), (3.5.32)
by = ——3\/7%_71337113 - 3—32\/% (a? - b%) + agas + baby,  (3.5.33)
by = \/%pcrb“ _ (agbs + byag), (3.5.34)
by = _\/Té?;a“ + (agas — bybs), (3.5.35)

where 0 = 1{595; a. (The dot represents differentiation with respect to 7.)

By introducing polar coordinates for each mode, as done in the previous
subsections, the system (3.5.28)-(3.5.35) can be brought back to a four-
dimensional system of equations for two amplitudes (r3,r4) and two phase
combinations (¢, = ¢3—2¢1, P2 = ¢ps—(a+¢3)). For this four-dimensional
system the exact solution cannot be given, as far as we know. However, the
critical points in the (r3, 74, ¥, 1¥2) phase space can be determined and the
system can be linearized locally around these critical points to get an idea
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of the behavior of the solutions of (3.5.28)-(3.5.35). The system can also be
integrated numerically. It can be seen directly from (3.5.28)-(3.5.35) that if
mode 1 has zero initial energy, an energy transfer will occur between modes
2, 3, and 4 only (energy in mode 1 remains zcro). In this case the analysis is
similar to the case with mode interaction between three modes, as discussed
in Section 3.5.2. If mode 1 has nonzero initial energy but modes 2 and 4
have zero initial energy, an energy transfer will occur between modes 1
and 3 only (the cnergy in modes 2 and 4 remains zero). In this case the
analysis is similar to the case with mode interaction between two modes, as
discussed in Section 3.5.1. It can be easily seen from (3.5.28)-(3.5.35) that
if the initial energy in the subcases mentioned above is of O(d), with § a
small parameter, then the energy remains of O(d) on a e ! time-scale. This
means these subcases are structurally stable. In all other cases a combined
oscillation between modes 1, 2, 3, and 4 will occur.

3.6 Conclusions

In this chapter we consider an initial-boundary value problem for a weakly
nonlinear beam equation. We have constructed asymptotic approxima-
tions of order € and considered the interaction between different oscillation
modes. We presented an asymptotic theory which states that the con-
structed approximation is asymptotically valid on an e ! time-scale. In
general it is difficult to extend the asymptotic validity to longer time-scales
(e7™, n > 1). For very specific cases, for example, if there is an energy
conservation for longer time-scales, the cxtension of the asymptotic valid-
ity may be possible. However, this is not the case for this problem. We
showed that for most p?-values no mode interactions occur between differ-
ent modes up to O(e), which means that there is no energy transfer between
different modes up to O(e). We say the coupling between the modes is of
O(e), and truncation is allowed to those modes that have nonzero initial
energy. However, for some p?-values interactions between different modes
occur, which cause complicated internal resonances. Physically this means
that in some cases (depending on the value of p?, which depends on the
stay-characteristics of the bridge and on certain properties of the beam),
if the beam initially oscillates in a high vibration mode, lower vibration
modes can be excited, and an energy transfer occurs between the different
modes. For p? € (0,100) there are seven critical values, listed in Table
3.1. For p? > 100 other internal resonances can be found in a similar
way for special values of p?. For three different values of p?., p?, = 1:—%7,
pZ, = —91+ % 2457, and p?, = g, the equation has been studied in more
detail, including the detuning p? = p2, + ecv.
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For p?, = 1—37 it is shown that an energy transfer occurs between modes 2 and
3, even if mode 3 has zero initial energy. We call this a coupling between
the modes of O(1). Truncation to one mode will give loss of information,
and approximations will not be valid. Both modes have to be taken into
account. Examining the behavior of the oscillations in this case, we see that
the system oscillates around an equilibrium state which is a combination
of two modes (energy in both modes). There is no energy loss, as can be
expected, since no other external and damping forces are considered. The
detuning analysis shows that the system gradually changes from a combined
oscillation of two modes to an oscillation of mode 2 only, as p? moves away
from the critical value 13—7 (as can be seen in Figure 3.2). All this holds up
to O(€) on a time-scale of e 1.

For p?. = —91 + % 2457 it is shown that an energy transfer occurs be-
tween modes 1, 2, and 4, even if one of the modes has zero initial energy.
Truncation to one or two modes will give loss of information in this case,
and an approximation will not be valid. All three modes have to be taken
into account. Examining the behavior of the oscillations in this case, we see
that the system oscillates around an equilibrium state which is a combina-
tion of three modes (energy in all three modes) or reduces to a case which
is similar to the case p?, = %7 Also in this case detuning is considered.
The system gradually changes from a combined oscillation of three modes
to uncoupled oscillations of two of the three modes (one of the modes then
has zero energy) as the value of p? moves away from —91 + 13—0 2457 (as
can be seen in Figure 3.3).

For p?, = g it is shown that an energy transfer occurs between modes
1, 2, 3, and 4. It is shown that if mode 1 has zero initial energy, an
energy transfer will occur between modes 2, 3, and 4 only (energy in mode
1 remains zero). In this case the analysis is similar to the case p?, =
—91 + 104/2457 (mode interaction between three modes). If mode 1 has
nonzero initial energy but modes 2 and 4 have zero initial energy, an energy
transfer will occur between modes 1 and 3 only (the energy in modes 2 and 4
remains zero). In this case the analysis is similar to the case p?, = % (mode
interaction between two modes). In all other cases a combined oscillation
of all four modes occurs around an equilibrium state.

In this chapter an asymptotic theory is presented for an initial-boundary
value problem for a nonlinear beam equation with a nonlinearity f =
f(z,t,w), using a fixed point theorem and certain properties of f. We
expect that this theory can be extended to more complicated nonlinearities
(due to external forces), such as a Rayleigh perturbation (w;—w$). Formal
approximations for a nonlinear beam equation with this Rayleigh pertur-
bation are constructed in Chapter 2. A similar fixed point theorem (in a
different Banach space) can most likely be used for these approximations.
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3.7 Appendix A - Green’s function G and the in-
tegral equation

In this appendlx we want to construct the Green’s function G for the linear
operator —7 + a—tg + p? with simply supported boundary conditions. We
will also derlve the integral equation given in (3.2.8). The Green’s function
G(&,7;z,t) is defined as the solution of the following problem:

Gt + Gogge +p*G = 6(x — €t — 1), ,€ €)0,7[,t > 0,7 >0, (3.7.1)
G, 7;0,t) =G, m;7,t) =0, t>0,7>0, (3.7.2)
Gze(€,7;0,t) = Gpp(§,7;m,t) =0, t>0,7 >0, (3.7.3)
G, m;2,0) =0, 72>t (3.7.4)

The boundary conditions imply that G can be written as a Fourier sine
series in z:

x>

G, 1;z,1) :Z (&, 7;1) sin(nz).

Substituting this series into (3.7.1) and using orthogonality properties of
the sine functions, we obtain the following sct of equations for g, (where a
dot represents differentiation with respect to t):

gn + (0t +pNgn = 2/ d(z — &t — 7) sin(nz)dz, (3.7.5)
T J0
0<é<mt>0,7>0,
9n(&,750) = gu(&,m7) =0, O0<é<m, (3.7.6)

forn=1,2,3,.... (3.7.5)-(3.7.6) can be solved using the method of “vari-
ation of constants.” We find the following solutions:

gn(&,15t) = —ﬁ sin [\/714 +p2(t — T)] H(t — 7) sin(nf),

forn=1,2,3,..., and therefore
G(&T"I t) = (3.7.7)
sin |y/nt + p2(t — 7')} H(t — 1) sin(nf) sin(nz).
nzl vnt+ p? {

We find the integral equation (3.2.8) by multiplying G, 4+ Gegee + p’G =
§(z —&,t—7), (which is equal to (3.7.1)) with w({, 7) (where w satisfies the
simply supported boundary conditions (3.1.5)-(3.1.6)) and integrating over
0<é¢ <7 0< 7 <t Using integration by parts, the boundary conditions
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(3.7.2)-(3.7.3) for G and the boundary conditions (3.1.5)-(3.1.6) for w, we
obtain

w@,t) = [ [7 66,0076 wle,7);acdr (579
+ [ 4G(E 00, 0w1(656) = Grl6, 02, Oun €} d = (Tw)(,).

3.8 Appendix B - Integral inequalities

In this appendix two integral inequalities are derived. These inequalities
play an important role in the asymptotic theory presented in this chapter.
Let fi be a four-times continuously differentiable function on [0, 7] and f,
a twice continuously differentiable function on [0, 7]. We will show that for
all z,t € Qp, (defined in (3.2.11)) and p > 0 the following inequalities hold:

T ) z
[ erevnon@a) < o max {pm( i+ | g;;p}, (35.1)
/O ﬂG(f,O;:v,t)fQ(i)df < wzorgag | fo()]. (3.8.2)

To prove these inequalities we consider the following linear initial-boundary
value problem for a three-times continuously differentiable function w(z, t),
with wgzz, continuous:

Wrazs + Wit + p?w = 0, O<z<mt>0, (3.8.3)

w(0,t) = w(mt) =0, >0, (3.8.4)

Wez(0,1) = weg(m,t) =0, >0, (3.8.5)

w(z,0) = fi(z), wi(z,0)=folz), O0<z<m. (3.8.6)

Elementary calculatlons using Green’s function G for the linear operator
—a-; + —72- + p? with simply supported boundary conditions show that the
unique and three-times continuously differentiable solution of the initial-
boundary value problem (3.8.3)-(3.8.6), which has a continuous fourth
derivative with respect to z, is given by

’LU(ZL',t) = /Oﬂ {G(é.,O,fC,t)fQ(f) - GT(gaOaxvt)fl(i)}df (387)

To be able to estimate |w(z,t)| and thus the integral given in (3.8.7) we
will use the following energy equation related to the initial-boundary value
problem (3.8.3)-(3.8.6):

s
/0 {wtz(:z:, to) + p*w?(z, to) + wiz(m,to)} dz

w 2f (2 2
-/ {f3<m>+p2ff<x> - (i) }d
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We obtain this energy equation by multiplying (3.8.3) with w; and inte-
grating with respect to z and t over 0 < z < 7, 0 < ¢ < t¢, using the initial
and boundary conditions (3.8.4)-(3.8.6). On the other hand, we have, since
w, exists and is continuous,

w(z,t) = w(0,1) + /Oz we €, 1)dé = /Om we (€, t)dE. (3.8.8)

Since wy, exists and is continuous, and since w(0,t) = w(w,t) = 0 we know
that therc exists an n €]0, 7| with wz(n,t) =0, so

wy(z,t) = we(n, t) + /: wee (€, 1)d€ = /nr wee (€, t)dE. (3.8.9)

Using (3.8.9) and Holder’s inequality we now have

/w\wef(ﬁ,t)ldg‘ g/w|wm($7t)|d$
S(/ 12d:c) (/ wmdm) < %(/{

(o 1))
- ( , or?fé‘w{f%) WEHOR (d ({;gx)> }dx) 5

Y
< WOIg;LX {sz(m) +P2f12($)+ (d §;g$)> }

d*f1(z) }

dx?
Using (3.8.8) we now get the following inequality for |w(z,t)|:

|w$(m7t)| S

+ ptu? +w }dx)

I/\

A

<7 Jmax {|f2( N+p|fi(z)]+

s/o” <w {lfQ( )| +p| fi(o)] +

() g/om\wg(ﬁ,t)Idfg/ﬁwlwx(x,t)\dw (3.8.10)
d*f1(2) }

& f1(x) }) 0
Cdx?

dz?
< 7 max {If?( )| +plfilz)] +
Hence it follows from (3.8.7) and (3.8.10) that if fo(z) =0, then

[ Grte o ni€)de] < 7 {p\fl(wn e
0 0<a<m




76 Weakly Nonlinear Beam Equations: An Asymptotic Analysis

and similarly, if we take fi(z) =0, we get

| G600, 002(6)0de] < 7 wax 112(0)),

0<z<n

which proves that the integral inequalities (3.8.1) and (3.8.2) hold.

3.9 Appendix C - Determination and elimination
of secular terms

In this appendix we show which differential equations the functions g, have
to satisfy such that no secular terms occur in the approximations for the
displacement function w(z,t). In Section 3.4, (3.4.4) was given:

i (ém + (m* +p2)qm> sin(mz) (3.9.1)

m=1

— % Z 22 +lqmqks1n(m:v)sm(k$)sm((2] 1)z).

The last summation on the right-hand side of (3.9.1) can be rewritten using
the goniometric formula sin(mz)sin(kz) sin(lz) = (sin((m + k — l)z) —
sin((m —k —l)z) —sin((m + k +)x) + sin((m — k +[)z)), where [ = 2j +1
in this case. We obtain the equations for g, by multiplying (3.9.1) with
%sin(nz) and then by integrating the so-obtained equation with respect to
z from 0 to 7. Using orthogonality relations and the symmetry in m, k we

obtain the following equation for each g,, for n =1,2,3,...:

Gn + (n* + p)gn (3.9.2)

=§<2Z—2Z+Z

n=m—k+2j+1 n=m—k—-2j—1 n=m+k-2j-1

1
- Z - Z o 1 9mk-

n=m+k+2j+1 n:~m—k+2j+1) 25 +1
To avoid secular terms in g,(t) a two time-scales perturbation method is
introduced in Section 3.4 and g,(t) is expanded in ¢,(t) = gno(to,t1) +
€qn,1(to, t1) + e2qn’2(t0,t1) + ---, where ty) = t and t; = et. It has been
shown in Section 3.4 that ¢, ; has to satisfy (3.4.12):

dt?o cos(wnpto)) (3.9.3)

0 sin(wn,to) —

dty

+%(2Z—2Z+Z

n=m—k+2j+1 n=m—k—-2j—1 n=m+k—2j-1

2 9 dA,
a—t%Qn,l + Wy, qn,1 = 2wy,
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—z-z)ﬁj%%

n=m+k+2j+1 n=—m—k+2j+1

where
H = (A0 c08(Wm,to) + B o sin(wm, to)) (Ax,0 cos(wg,to) + By o sin(wg, o)),

with wy, =/ 1* + p?, and where A, o and By, are still arbitrary functions
in ¢;. The functions A, and B, will now be determined such that no
secular terms occur in gp, 1. The last term in (3.9.3) can be expanded using
goniometric formulas:

1
H = 3 (Am,0Ak,0 — Bm,oBk ) cos ([\/m4 +p2+ \/k4 -+ pQ] to) (3.9.4)
1 .
+§ (A'm,OBk:,O + Bm,gAk’o) sin ([\/m“ +p? + \/k4 + p2] to)

1
+§ (Am,OAk,O + Bm,OBm,O) coSs ([\/’rn’l + pQ - \/k:4 —|—p2:| t0>

1 . ;
+§ (—AHL’QB]Q,(} + Bm,ﬂAm,O) sin ([ m4 + pz - \/k'4 +p2} t(]) .

As stated in Section 3.4, cos(wpn,tp) and sin(wy,,tg) are part of the ho-
mogeneous solution for ¢, 1. We want the coefficients of cos(wy,to) and
sin(wn,to) on the right-hand side of (3.9.3) to be equal to zero in order
to eliminate secular terms. The terms given in (3.9.4) can cause secular
terms if £1/n? +p2 = £y/m* +p? + /K" + p?2. To determine the contri-
bution of the summations in (3.9.3) to the coefficients of cos(wn,to) and
sin(wp,to) on the right-hand side of (3.9.3), we have to examine the follow-
ing Diophantine-like equations:

I - n=m-+k+A, (395
+y/nf+p? = £/m? 1 p? £ VET + 7, i

I n:n;H—k—A, 3.9.6)
+v/nt+p? = £y/m + p? £ VE +p?,
n=m-—k+ A\, ‘

T {i\/ﬁ4+p2::i:\/77n4 +p? + VK + p2, (3.9.7)
n:m—k;_)\,

v { :}:\/W::t\/,mfl +p2 + \/k)4 tp2, (3.9.8)

v n\:/_‘m__kH’ (3.9.9)
+v/nt+p? = £ymt +p? £ VR4 P2, -
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where A = 25 + 1 is odd and > 1, p? € (0,100), and m,k > 1. We want
to find out when (3.9.5)-(3.9.9) have solutions and thus give rise to secular
terms. In the following we will use the inequality

z? < y\Jat + p? < 2? — a? + \/at +p? (3.9.10)

for z > a. We will now determine the solutions of (3.9.5)-(3.9.9). We will
show that only for specific values of p? solutions of (3.9.5)-(3.9.9) can be
found. We can see directly that (3.9.5)-(3.9.9) do not hold if \/n% +p? =
—v/m?* + p? — \/k* + p2. This leaves us with the following possibilities.
Case I(i):

n o= m4k+A (3.9.11)

Yrt4p? = \fmtap 4kt 4 p2 (3.9.12)

From (3.9.10), (39 12), and n > 1, m > 1, k > 1, it follows that n? <
\/n4 +p < m? + k% -2+ 2/1+p2 It also follows from (3.9.11) that
n? =m? + k% + X2 + 2(mk + (m + k)A) = m? + k% + p, where p = X2 +
2(mk + (m + k)A). This gives us

p<2(y/14+p2—1). (3.9.13)

On the other hand, since A > 1 and odd and m > 1, k¥ > 1 we can see that
p > 7 and odd. When p? < I, (3.9.13) contradicts p > 7, so (3.9.11)-
(3.9.12) have no solutions. For larger values of p?, solutions can occur. For
instance, if we take m = k = 1 and A = 1, then it follows from (3.9.11)
that n = 3, and (3.9.12) can then be satisfied for p? = % For m # 1 we
can improve the lower and upper bounds for p. From the definition of u
it follows that for m > 2, k > 1, A > 1 we have p > 11. However, using
(3.9.10), we can show that u < /2% + p? + /1 + p2 — 5, which contradicts
p > 11 when p? < 55.72. So (3.9.11)-(3.9.12) have no solutions for m > 2,
k > 1, XA > 1. For larger values of p?, solutions can occur. For instance,
if we take m = 2, k = 1, and A = 1, it follows from (3.9.11) that n = 4,
and (3.9.12) can then be satisfied for p? = —91 + /2457 ~ 74.23. Due to
symmetry in m and k, k =2, m = A = 1, n = 4 is also a solution for p? ~
74.23. For m # 2 we can improve the lower and upper bounds for p. From
the definition of p it follows that for mm >3, £ > 1, A > 1 we have p > 15.
Conversely, using (3.9.10), we can show that u < /3% + p2+ /1 + p? - 10,
which contradicts g > 15 when p? < 100. So (3.9.11)-(3.9.12) have no
solutions for m > 3, k > 1, A > 1. For m # 1 and k # 1 we can improve
the lower and upper bounds for g. From the definition of yu it follows that
for m > 2, k > 2, A > 1 we have g > 17. On the other hand, using
(3.9.10), we can show that p < 2(1/2% + p? — 4), which contradicts pu > 17
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when p? < 100. So (3.9.11)-(3.9.12) have no solutions for m > 2, k > 2,
A > 1. For A\ # 1 we can improve the lower and upper bounds for .
From the definition of x it follows that for m > 1, £ > 1, A > 3 we have
w > 23. However, using (3.9.10), we can show that p < 2(y/1+ p? — 1),
which contradicts g > 23 when p? < 100. So (3.9.11)-(3.9.12) have no
solutions for m > 1, k > 1, A > 2. This means that for p? € (0,100),
(3.9.11)-(3.9.12) have the following solutions:

A=1, k=1, m=1, n=3, p2=Z‘Z7

A=1, k=1, m=2, n=4, p®>=7423.

Due to symmetry in m, k, m, and k can be switched. It can be shown that
more solutions exist for p? > 100.
Case I(ii):

n = m+k+A (3.9.14)

Yyl +p? = \/;14+p2—\/k4—|—p2. (3.9.15)

We show that (3.9.14) and (3.9.15) do not have any solutions, by con-
tradiction. Suppose both equations hold. From (3.9.14) we have n* =
(m+Ek+ X" > m*+ k% On the other hand, if we square (3.9.15), we
obtain 2v/m? + p2\/k* + p? = m* + k* — n* + p2. With n* > m" + £* we
have 2p? < 2/m™ + p?\/k* + p2 < p?. So (3.9.14)-(3.9.15) cannot hold.
Case I(iii): n = m+k+X, Vnt+p? = —/m? +p2+/k? + p? is equivalent
to Case I(ii) with m and k switched.

Case I1(i):

n = m+k—A (3.9.16)
Vnt+p: = \/m4 +p?+ \/;f‘L +p?. (3.9.17)

From (3.9.10) and (3.9.17) we know that n? < \/nT+p2 < m? +k?> -2+
2y/1+ pZ, since n, m, k > 1. We also know from (3.9.16) that n? = m? +
k2 4+ M2 +2(mk — (m+k)A) = m? + k% +v, where v = M2 +2(mk — (m+k)\).
This gives us

v < 2(/1+p2—1). (3.9.18)

From the definition of v we see that v is odd. We first show that for ¥ <0
(3.9.16)-(3.9.17) cannot hold. We introduce N = n?, M = m?, and K = k2.
This gives us the following:

N=M+K+u (3.9.19)
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From (3.9.20) we see that K < N. This means (the proof is similar to a
proof in [26])

1 1 1 1
< < + )
N+VN?2+p? K+VK?+p> K+ VK?+p? M+ /M?+p?
1 / 1 / /
42}}?( N2+p2—N><I—)5( M2+p2—M+ K2+p2—K>,

<=>\/N2+p2< M2+p2+\/K2+p2+u.

We see that when v < 0 (3.9.19)-(3.9.20) cannot hold. So only for v > 0
may solutions of (3.9.16)-(3.9.17) occur. From (3.9.18) we see that for
p? < 100 we have v < 18.10.

We can improve this upper bound of v. Since n? = m2+k?+v with v > 0
we have n > m and therefore k > A (from (3.9.16)). Due to symmetry in
m and k we can assume m > k. Thismeansn >m >k >A>1s0 A > 1,
k>2 m>2 n >3 Using (3.9.10) we now obtain n? < /n? +p? <
m? +k? — 8+ 2/27 + p?, so v < 2(v/2%1 4 pZ — 4). For p? < 100 we then
have v < 13.54. Since v is odd and > 0 it suffices to examine the cases
vr=13,5"7911,13for A>1,m>k>2 n>3.

Suppose A=1. From the definition of v we can derive m =1+ Z(k 1) For

v=1lm=1+ k 7- The only possible solution is k = m = 2. Then it
follows from (3.9.16) that n =3, and (3.9.17) can be satisfied for p?
Forv=3, m=1+ = k - The two possible solutions are k = 2, m = 3 and
m = 2, k = 3. Due to symmetry in m, k it suffices to examine the case
k =2, m = 3. Then it follows from (3.9.16) that n = 4, and (3.9.17) can be
satisfied for p? = % Forv=5 m=1+ % The two possible solutions
are k =2, m =4 and m = 2, k = 4. Due to symmetry in m, k it suffices to
examine the case k = 2, m = 4. Then it follows from (3.9.16) that n = 5,
and (3.9.17) can be satisfied for p? = —299 + 21/31369 ~ 55.23. For v =7,
m=1+ E4—_1' The three possible solutions are k =2, m =5, m =2, k = 5;
and k = m = 3. Due to symmetry it suffices to examine the cases k = 2,
m =25, and k =m = 3. When k£ =2, m =5 it follows from (3.9.16) that
n = 6, and (3.9.17) can be satisfied for p? = —2937 4 2,/1220761 ~ 93.63.
When £ = m = 3 it follows from (3.9.16) that n = 5, but in that case
(3.9.17) can be satisfied only for p? > 100. This analysis can be continued
for v = 9,11,13. No more solutions are found for p? < 100.

For A # 1 we can improve the upper bound of ». We now have A > 3, k > 4,
m > 4, n > 5. Using (3.9.10) we now obtain v < 2(y/4% + p% — 16), and
for p? < 100 we then have v < 5.74. This upper bound can be improved
even further since it can be shown that m # k for v < 5. So we have
A>3, k>4, m>5n>6, and v < /5% +p2 + /41 + p? — 41, and for
p? < 100 we then have v < 4.79. This means that for A = 3 it suffices
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to examine the cases ¥ = 1,3. From the definition of v we can derive
m=3+ ﬂ% Forv=1,m=3+ 1:573 The two possible solutions are
k=4, m=28and m =4, k =8. Due to symmetry it suffices to examine
the case k = 4, m = 8. Then it follows from (3.9.16) that n = 9, and
(3.9.17) can be satisfied for p? = —181% 4 2/1211T497 ~ 31.27. For v = 3
a similar analysis holds, but no solutions are found for p? < 100.

We continue with A = 5. With a similar analysis as above the upper bound
for v can be improved. We obtain v < 2(1/6* + p? — 36), and for p? < 100
we then have v < 2.73. This means that for A = 5 it suffices to examine
the case ¥ = 1. From the definition of v we can derive m = 5+ 22(15c—+-g§ For
v=1m=5+ % The two possible solutions are ¥ = 6, m = 18 and
m = 6, k = 18. Due to symmetry it suffices to examine the case k = 6,
m = 18. Then it follows from (3.9.16) that n = 19, and (3.9.17) can be
satisfied for p? = —@ + %\/ 560787241 ~ 72.16. This can be continued
for A > 7. It can be shown that no more solutions exist for p> € (0, 100).
So for p? € (0,100), (3.9.16)-(3.9.17) have the following solutions:

A=1, k=2, m=2, n=3 p2=%,
A=1, k=2 m=3 n=4 pzzg,
A=3, k=4, m=8, n=9 p®~3127,
A=1, k=2 m=4, n= p? ~ 55.23,
A=5 k=6, m=18 n=19 p?=~72.16,
A=1, k=2 m=5 mn=6 p=~x~93.63.

Due to symmetry in m, k, m and k can be switched. It can be shown that
more solutions occur for p? > 100.

Case I1(ii): n = m+k— A, vnt+p? = /m?* + p2 — /k? + p? is equivalent
to Case 1(i) with n and m switched and A replaced by X\ + 2k, and to Case
II(i) with n and m switched and A replaced by —\ + 2k.

Case (iii): n = m+k—X\, \/nt + p?2 = —/mT + p?+/kT + p? is equivalent
to Casc II(ii) with m and k switched.

Case III(i): n = m—k+ A, /ni + p2 = /m* + p2 + /k* + p? is equivalent
to Case I(i) where X is replaced by A + 2k and to Case II(i) where X is
replaced by —\ + 2k.

Case II1(ii): n = m—k+ X, /n' + p? = /m* + p2 — /k? + p? is equivalent
to Case II(i) with n and m switched.

Case [1(iii): n =m —k+ X, V/n? +p? = —/m* + p2 + /k? + p? is equiv-
alent to Case II1(ii) with m and k switched.

Case IV(i): n=m—k— X, Vn' + p?2 = /m® + p2 + /k* + p? is equivalent
to Case 1(ii) with n and rn switched.
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Case IV(ii): n = m—k— A, V/nt +p? = Vm* + p? — Vk* + p? is equivalent
to Case I(i) with n and m switched.

Case IV(iii): n =m —k — X, /ni +p2 = —/m? + p?2 + VK + p? is equiv-
alent to Case IV (ii) with m and k switched.

Case V(i): n = —m—k+\, v/n?+p? = /m* + p2+/k* + p? is equivalent
to Case 1(i) where X is replaced by A + 2k + 2m and to Case II(i) where A
is replaced by —A + 2k + 2m.

Case V(ii): n = —m—k+\, /nt +p?2 = /m? + p2—/k* + p? is equivalent
to Case V(i) with n and m switched.

Case V(iii): n = —m —k+ A\, vVnt+p2 = —/m* +p> + VEk' +p? is
equivalent to Case V(ii) with m and k switched.

Using these results the secular terms in the right-hand side of (3.9.3) can
be determined explicitly: In the general case the summations in (3.9.3)
do not give any contributions and the only secular terms on the right-
hand side of (3.9.3) are 2wy, ;t sin(wy,to) and 2wnpd—5t—=— cos(wp,to)-

For p? = p2, + ea, o a detuning parameter, and P2, € {137, 737, —l%;— +

DV/1211497, —299 + 21/31369, — 23693  10,/560787241, —91 + 21/2457,
—1937 4 2,/1229761} extra secular terms occur and the total of secu-

lar terms on the right-hand side of (3.9.3) is (2wnp o —at T aBnp +f)

sin(wn,, o) + (— 2wy, dg; L tadn o+ Q) cos(wn,,, to), where F and G can

be determined explicitly by substituting the possible combinations found
above for m, k, j for every p?, into the last term on the right-hand side of
(3.9.3). The equation for A, (resp., Bn) can then be easily determined
by setting the coefficients of sin(wy,_to) (resp., cos(wn,_ to)) equal to zero.




Chapter 4

A Weakly Nonlinear Beam
Equation with an Integral
N onlinearityT

Abstract In this chapter an initial-boundary value problem for the vertical
displacement of a weakly nonlinear elastic beam with an harmonic excitation in
horizontal direction at the ends of the beam will be studied. The initial-boundary
value problem can be regarded as a simple model describing oscillations of flexible
structures like suspension bridges or iced overhead transmission lines. Using a two
time-scales perturbation method an approximation of the solution of the initial-
boundary problem will be constructed. Interactions between different oscillation
modes of the beam will be studied. It will be shown that for certain external exci-
tations, depending on the phase of an oscillation mode, the amplitude of specific
oscillation modes changes.

4.1 Introduction

Flexible structures, like tall buildings, suspension bridges or iced overhead
transmission lines with bending stiffness, are subjected to oscillations due
to different causes. Simple models which describe these oscillations can in-
volve nonlinear sccond and fourth order PDE’s, as can be seen for example
in [1] or [9]. In many cases perturbation methods can be used to construct
approximations for solutions of this type of second or fourth order equa-
tions. Initial-boundary value problems for second order PDE’s have been
considered for a long time, for instance in [26]-[30],[33] and [34]. These

TThis chapter is a revised version of [42] On Interactions of Oscillation Modes for a
Weakly Nonlinear Undamped Elastic Beam with an Ezternal Force, accepted for publica-
tion in J. Sound and Vibration and scheduled to appear in August 2000
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problems have been studied in [1]-[3],[31],[32],[40] and [41], using a two
time-scales perturbation method or a Galerkin-averaging method to con-
struct approximations. For fourth order PDE’s the analysis is more com-
plex. In a number of papers ([9]-[11] and [43]) approximations for solutions
of initial-boundary value problems for fourth order weakly nonlinear PDE’s
are constructed using perturbation methods. In most cases the solutions
are approximated by a single mode representation, without justification
whether truncation to one mode is valid. In this chapter approximations
are constructed using a two time-scales perturbation method. The inter-
action between the different oscillation modes is studied and a justification
is given in which cases mode truncation is valid. For fourth order strongly
nonlinear PDE’s numerical finite element methods can be used, as is done
for example in [35].

In this chapter we will consider the following initial-boundary value prob-
lem, which describes, up to O(e), the vertical displacement of an elastic
beam with a linear spring force and a constant gravity force acting on it,
and with an external force F'(t) acting on the ends of the beam in horizontal
direction:

2 m
Wit + Woges + PW = € (F(t) + ;/ wgdm) Wee,0 < T < m, t>0,(4.1.1)
0
w(0,t) = w(m,t) =0,t >0, (4.1.2)
Wzz(0,1) = wye(m,t) = 0, >0, (4.1.3)
w(z,0) = wo(z),w(z,0) = wi(z),0 <z <, (4.1.4)

where F(t) = u(n,t)—u(0,t) and € a small dimensionless parameter. For
the derivation of this problem we refer to Section 4.2.

In this chapter formal approximations, i.e. functions that satisfy the differ-
ential equation and the initial and boundary values up to some order in ¢,
will be constructed for the initial-boundary value problem (4.1.1)-(4.1.4),
using a Fourier mode expansion and a two time-scales perturbation method.
The interaction (energy exchange) between the different oscillation modes
will be considered for the cases F(t) = 0 (no external forcing, that is, the
ends of the beams are fixed in horizontal direction, i.e. the case of free
vibrations) and F(t) = C cos(wt) (external forcing). It will be shown that
in the case F(t) = 0 the amplitudes of the different modes are constant and
the only interaction between the modes occurs in the phases of the different
oscillations modes (for example mode n causes a phase shift of the phases
of all other modes m # n). No internal resonances occur. In this chapter
we mean by internal resonance that there is an energy transfer from one
oscillation mode to another oscillation mode. So by no internal resonance
we mean no energy transfer occurs between the different oscillation modes
(up to O(e) on a time-scale of order ¢~!). The case F(t) = Ccos(wt) is
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more complicated. It will be shown that for most values of w the analysis
is similar to the case F(t) = 0. The influence of F(t) in that case is of
O(€) on a time-scale of order ¢!, and extra terms appear in the O(e)-
approximation. However, for specific values of w, i.e. w ~ 2wg,, where wy,
is an eigenfrequency of the linearized system (e = 0), the influence of F(t)
is of O(1) on a time-scale of order ¢ '. The amplitude of mode & is no
longer constant, but the amplitudes of all other modes remain constant.
The mode interactions remain restricted to phase-shifts of the phases of
the different oscillation modes. Similar mode interactions have been stud-
ied for example in [36],[40],[41] and [46], but to our knowledge these mode
interactions for weakly nonlinear beam equations have not yet been studied
thoroughly. The analysis presented in this chapter holds for all p-values,
which is different from the analysis in Chapter 2 or Chapter 3, where mode
interactions and internal resonances occur for specific p>-values.

The outline of the chapter is as follows. In Section 4.2 the initial-boundary
value problem (4.1.1)-(4.1.4) will be derived. In Section 4.3 we apply a
two time-scales perturbation method to the initial-boundary value prob-
lem (4.1.1)-(4.1.4). We show that for most values of w the amplitudes of
the different oscillation modes remain constant. For specific w-values the
oscillation of specific modes changes and the amplitudes of certain modes is
no longer constant. We construct a formal approximation of O(e) for solu-
tions of the initial-boundary value problem for the cases F'(t) = 0, F(t) =
C cos(wt) with w # 2wk, + e and F(t) = C cos(wt) with w = 2wy, + ea,
where o € R is a detuning paramcter. In Section 4.4 the mode interactions
between the different oscillation modes will be studied in detail for the
three cases mentioned above. In Section 4.5 some conclusions and general
remarks will be given.

4.2 Mathematical Formulation Of The Problem

To derive the equations of motion for an clastic beam we will follow part of
the analysis given in [37]. We consider an elastic beam of length [, simply
supported at the ends, in vertical direction. An external force is be applied
at the ends of the beam such that no vertical displacement is possible.
Oscillations are possible due to the strain of the beam. The z-axis is taken
along the beam axis, such that the left end of the beam corresponds with
z = 0. The 2-axis is taken vertically. The y-axis is perpendicular to the
(z, z)-plane. We assume that the beam can move in the z- and z-direction
only. We introduce the following symbols: p is the mass of the beam per
unit length, p the mass density of the beam, A the area of the cross-section
Q of the beam perpendicular to the z-axis (so p = pA), E the elasticity
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modulus (Young’s modulus), I the axial moment of inertia of the cross-
section. The inertial axes of the cross-section () are the y- and z-axes,
soI = [f, z?dydz. The vertical displacement of the beam from rest is
w = w(x,t), the horizontal displacement of the beam is u = u(z,t). The
curvature of the beam in the (z, z)-plane can be approximated by wg, as
follows. We consider an element of the beam of length Az in static state.
In deformed state the arc length of this element is As, where As = RAgp,
with Ay the arc angle, as can be seen in Figure 1.1 and R the radius of

1
T T+ Az T

Figure 4.1: The bending of a line-element Az.

curvature of the beam axis in deformed state at position z. Furthermore,
Ap = tan Ap =~ Aw/Az and As = /(Az)? + (Aw)2. For Az — 0 this
gives us R = (1 + wg)g /Wze. Assuming that w, is small with respect to 1,
we can approximate the curvature, which is equal to 1/R, by wy;. Using
this, the strain £,; due to ‘pure’ bending of a line-element of the beam at
a distance z from the line of centroids (the z-axis) is given by

R —z)Ap —RA
( z)Ap <P=_iz_zwm‘

Faz = RAp R

Furthermore, the strain €, due to stretching of the line of centroids of
a line-element of the beam can be approximated by u, + %wg as follows.
From Figure 4.2 and the definition of strain due to stretching, which can
be found in any standard textbook on mechanics (see for example [38]) we

have the following expression for ¢,:

V(Az + Au)? + (Aw)? — Ax

€0 = Az
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Figure 4.2: The stretching of a line-element Az.

For Az — 0 this gives us ;0 = /1 + 2u; + u2 + w2 — 1. By assuming
that u2 is small with respect to u,, and by expanding the square-root as a
Taylor series, we have ;9 =~ u, +1/ 2w§. The total strain of a line-element
of the beam at a distance z from the z-axis is given by €, = €0 + €z =
Uz + 3w2 — 2Wgy. It is shown in [37] that, using Hooke’s Law, the work
performed to deflect the beam from its initial position, is

1 ! 1,12 1 !
A(t) = —EA/ [um + —wg} dxr + —EI/ (wze)? diz. (4.2.1)
2 0 2 2 0
The kinetic energy of the beam is given by
1 )
Exft) = —p / [u% +w%] d. (4.2.2)
2" Jo
Using (4.2.1) and (4.2.2) the Hamiltonian integral is
t2
F o= Flts) - Fh) = /t (A(t) = Ex())dt (4.2.3)
1

1 t2 { 1 ‘ ‘
~ 9 ] /0 {EA[ug + E“’?E]Q + Elr(ww)2 - M[Uf + Wf]}dardt.
31

Using Hamilton’s Principle, which states that the variation of F is equal
to 0, the Euler equations for this problem are

0 1
gy — EA£ [u@ + sz] =0, (4.2.4)
o] 1,
pwy + Elwgppr — EA% Wg |Ug + 5We| 0 = 0. (4.2.5)

The system given by (4.2.4)-(4.2.5) can be simplified by the following as-
sumption, introduced by Kirchhoff (see [39]): the velocity of the beam in
z-direction, uy, is small compared to w; and can be neglected in (4.2.3), so
F=3 ttf S EAlu, + 3w2)? + EI(wyy)?—plwi]}dzdt. The system given
by (4.2.4)-(4.2.5) can now be simplified to

9 1
EAS [ux + iwi] =0, (4.2.6)

1 .
pwy + Elwyyrr — EAwy, [uz + 5?04 = 0. (4.2.7)
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From (4.2.6) we get u; + %w% = €40, a function of ¢ only. Integrating £

with respect to x from 0 to [ gives us fol (ua; + %w%) dzx = e40l, which means

u(l,t) —u(0,t) + %fé w2dr = ezl = (Uz + %wg) I. Substituting this into
(4.2.7) gives us the following equation for the vertical displacement w:

EA W
i+ Bl — = |u(l 1) — u(0,1) + /O wldz| wee = 0. (4.2.8)

If other external forces are considered, the right-hand side of (4.2.8) be-
comes nonzero.

In [9] a survey of literature on oscillations of suspension bridges is given.
Using a similar analysis, we will derive a simplified model for nonlinear
oscillations in suspension bridges, where the vertical displacement of an
elastic beam is given by (4.2.8). We model the suspension bridge as a beam
of length [. In this chapter the stays of the bridge are modeled as two-sided
springs, as sketched in Figure 4.3. In Chapter 3 the stays of the bridge are

/.

z

Lv.,

z=0 =1
Figure 4.3: A simple model of a suspension bridge.

modeled as two-sided springs with a small nonlinearity (ew?). A next step
would be to model the springs using w* and w—, as is done for example in
[9]. The torsional vibration of the beam is not taken into account (that is, is
considered to be small compared to the vertical vibration). We introduce
the following symbols: &, the spring constant of the stays of the bridge,
and W, the weight of the bridge per unit length, which we consider to be
constant, i.e. W = ug, with g the gravitational acceleration. The equation
describing the vertical displacement of the beam then is

pw + Elwggr, + kw (4.2.9)
EA 1 !
= —ug+ e u(l,t) — u(0,t) + -2—/ wgda:] Wy
0

Equation (4.2.9) will be simplified by eliminating the term —pg using
w = + £s(z), where s(z) satisfies the following time-independent linear
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equation with boundary conditions:

@ e _K
()+Elb() B 0<z<l,

s(0) = s(l) =0, s2(0) = sP () =o0.

It can be shown that with 8 = (%)%, s(z) = cos(fBz)cosh(fz) — 1 +
(sin(31) sin(Bz) cosh(Bz) — sinh(Bl) cos(Bz) sinh(Bz))/(cos(BL) + cosh(HL)).
The term £2s(z) represents the deflection of the beam in static state due
to gravity. Using the dimension-less variables

ot 1= G ()-8’
=AY l l 7 P U=T\a) 7

(4.2.9) becomes

l
AA /1A 2 [T 5. 1
=57 ZT( (m,t) — a(0,1) + = /()’ll)%d.’l,‘)u}mx—FZ% ),
with
2 (™ 5.\ @,!-
H= u7rﬂ—u()f)+—/ widT | $\Y (=)

7 Jo T

l

4 [ [7 [ 4 l
2 s V(a7 (en + P9 L (225 )]
+7T [/0 Wz S (w£)d (w”-i- P (Wx)

Assuming that the area A of the cross-section is small compared to the
length I, we put € = ?, with € a small parameter. We assume w, and
therefore 1, to be of @(€). Furthermore, we assume that the deflection
of the beam in static state due to gravity, £2s, is small with respect to
the vertical displacement w, which is of order €. This means we assumne
B4 js O(€"), with n > 1, since s(z) is of order 1, as can be seen from
the expression for s which was given above (as well as s()(z) and s (x)).
Since H = O(1), (4.2.10) becomes

_ _ 9 _
Wi + Wrzzz + P°W

[62 (a(n, t) —a(0,7) + % /;T wid:fr> Wz + 0(?”)] ;

with m > 2 and p? = (%)4ﬁ Setting € = %%527 we can now introduce
the following initial-boundary value problem, which describes, up to O(€"),
n>1, the vertical displacement of an elastic beam with a linear spring force
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and a constant gravity force acting on it, and with an external force F(t)
acting on the ends of the beam in horizontal direction:

wtt+wmm+p2w:e(F )+ — / 2d:r)wm,0<:z:<7r t>0,(4.2.11

(

w(0,2) = w(m 1) = 0, ¢ >0, (4.2.12
Wy (0,1) = wey(m,t) =0, ¢ >0, (4.
’LU((L',O) = WO($),wt($,0) = ’w]_(il»'), 0<z< T, (

where F(t) = u(n,t)—u(0,t) and € a small dimension-less parameter. In
this chapter we are interested in an harmonic excitation of the ends of the
beam in horizontal direction, which means we take F(t) = C cos(wt), with
C a constant # 0 which represents the amplitude of the external excitation
and w the frequency of the external excitation. Since we consider u; small
compared to w;, it can be shown that w must be of O(1). Furthermore,
w can be taken positive without loss of generality. Furthermore, € and
p are constants with 0 < ¢ < 1 and p > 0, w = w(=z,t) is the vertical
displacement of the beam, xz is the coordinate along the beam, wy(z) is
the initial displacement of the beam in vertical direction and w1 (z) is the
initial velocity of the beam in vertical direction. All functions are assumed
to be sufficiently smooth. The first two terms on the left-hand side of
(4.2.11) are the linear part of the beam equation, p?w represents the linear
restoring force of the spring, (f;’ w2dz)w,, is due to the strain of the beam
and F(t)wgy is due to an external force acting on the ends of the beam in
horizontal direction. The boundary conditions describe a simply supported
beam. As we showed above, the initial-boundary value problem (4.2.11)-
(4.2.14) can be considered as a simple model for nonlinear oscillations in
suspension bridges. In the next section a formal approximation will be
constructed of the solution of (4.2.11)-(4.2.14).

4.3 Construction Of Formal Approximations -
General Case

In this and the next section we construct a formal approximation of the solu-
tion of the initial-boundary value problem (4.2.11)-(4.2.14). When straight-
forward e-expansions are used to approximate solutions, secular terms can
occur in the approximations. To avoid these secular terms we use a two
time-scales perturbation method.

The boundary conditions imply that w can be written as a Fourier sine-

series in z: w(z,t) = }_; gn(t)sin(mz). Substituting this series in
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(4.2.11), we obtain the following system of equations:
oo
Z (q;c +(K* +p )qk) sin(kx)

T (o B

k=1

Using orthogonality propertics of the sine functions on [0, 7] it can be shown
easily that the equation for each gy is

x0
dn + (0 +p?)gn = —¢ (F(t) +> mzq?n) nqn, (4.3.1)

m=1

for n = 1,2,3,... , with F(t) = Ccos(wt) and where ¢, must satisfy the
following initial conditions:

qn(0) = %/07( wo () sin(nz)dz, §,(0) = 2 /7r w1 (z) sin(nz)dz .

T Jo
As stated above, terms that give rise to secular terms may occur in the right
hand side of (4.3.1). To eliminate these terms we introduce two time-scales,
to =t and t; = €t, and assume that ¢, can be expanded in a formal power
serics in € i'e'a QH(t) = qn,O(thtl) + a]n,l(t()atl) + 62Qn72(t0’tl) +--- . We
substitute this into (4.3.1) and collect equal powers in e. The O(e®)-problem
becomes

82

im0t wh qno =0, 1 >0, (4.3.2)
4n,0(0,0) / wy(z) sin(nz)dz, (4.3.3)
iqno(() 0) = —/ wi(z) sin(nz)dz, (4.3.4)
Oty 7 Jo

forn =1,2,3,... , with w,, = /n? + p?. The general solution for (4.3.2)-
(4.34) is

qn,o(t(), tl) = A”’()(t] ) COS(wnpto) + Bn,O(tl) sin(wnpto), (435)
where Ay o, Bp o satisfy the following initial conditions:

0

An,O(O) = %,0(07 0)7 Bn,O(O)
w,,P 8t0

=, 4n 0(0 0)
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Next we consider the O(e!)-problem

o? 9
(‘?_t%qn’l +wp_Gn,1 (4.3.6)
0 o, 2 2 2
= —QW%,O - (CCOS(WtO) + mz::] m Qm,0> 1 qn,0,
0,00=0,  2401(0,0) = =24, 6(0,0) (43.7)
qn,1(Y, — Y, atoqu,l 3 - 8t1 qn,0(Y, V), .
forn=1,2,3,... . We substitute (4.3.5) into (4.3.6) and get

32

dAno . dB
8—%‘%,1 + w,%pqn,l = 2wy, ( dt? Sln(wnpto) - dt?o cos(wnpto)) (4.3.8)

o0
- (C cos(wty) + Z mzjm) n? (An o c08(wn,to) + Bnp sin(wy, to)) ,

m=1

with

1 .
+ - (A72n,0 — Bfn,o) c0s(2wm, t0) + Am,0Bm,0 sin(2wpn,, to)-

Since cos(wy,to) and sin(wy,to) are homogeneous solutions of ¢, ;, we want
the coefficients of cos(wp,to) and sin(wp,to) on the right-hand side of (4.3.8)
to be equal to zero (elimination of secular terms). This gives us equations
that Ay and By, o have to satisfy. In appendix 4.6 we show that for specific
values of w, the term C cos(wtp) gives rise to secular terms. This means
that for specific values of w, i.e. w = 2wy, + O(€) (k = 1,2,3,... ), extra
terms appear in the equations for Ao and By (for n # k the equations
remain the same).

For F(t) = 0 it can be seen easily from (4.6) (see appendix 4.6) that the
equations for A, ¢ and B, g are

dAny0 n’ 3 9 42 2 9 ( A2 9

= B3 B Ao+ B 4.3.
oy, 02" (450 + n,o)+1§nm (420 + Bro) |, (4.3.9)
dBn,O _ —n? 3 9 9 9 9 9 9

Tt ———4wnpAn,0 DIk (An,0+Bn,o) +"§nm (Am,0+Bm,0) , (4.3.10)

forn =1,2,3,.... From (4.3.9)-(4.3.10) we see that if A, ¢(0) = B, (0) =
0 then V¢; > 0 A, 0(t1) = Bpo(t1) = 0. So, if we start with zero initial
energy in the n-th mode, there will be no energy present up to O(e€) on a
time-scale of order ¢ '. We say the coupling between the modes is of O(e).
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This allows truncation to those modes that have non-zero initial energy.
In this case there is an interaction between all modes with non-zero initial
energy, but this interaction does not give rise to internal resonances. It will
be shown in Section 4.4.1 that all modes oscillate with a constant amplitude
and a linearly changing phase, depending on the initial amplitudes of the
oscillation modes. We will discuss (4.3.9)-(4.3.10) in more detail in Section
4.4.1.

For F(t) = C cos(wt) with w # 2wy, + ea it can be seen easily from (4.6)
that the equations for A, o and B, o are the same as for the case F'(t) = 0,
i.e the equations are given by (4.3.9)-(4.3.10). The only influence F(t) has
is of O(€) on a time-scale of order e~! in the inhomogeneous solution for
gn,1, as is shown at the end of this section.

For F(t) = C cos(wt) with w = 2wy, + e, where a € R of O(1), it can be
seen from (4.6) that the equations for Ay ¢ and By are

dAg o 1 k? 3 9 9 9 ) ) )
g = a5 Bro |gh (Ako+ B A2+ B
B = i Do |9 (Mot Blo) + 32 m? (40 + Bro)
1 k? .
— 15 C (Argsin(atr) + By cos(atr)) (4.3.11)
kP
dBy 1 k2 3 00 , )l )
= = ———A ~k“(A B A B
dty 4wy, 0|2 (4k0+ k’0)+n§km (42,0 + Bao)
1 k? .
— 15— C (Agpcos(atr) — Bypsin(atr)) (4.3.12)
k!’

For n # k equations (4.3.9)-(4.3.10) still hold. We see that for F(t) =
C cos(wt) with w = 2wy, + ea the influence of F'(t) is of O(1) on a time-
scale of order e~! and extra terms appear in the equations for Ay 0, Bro- We
see that if An,o(O) = Bnﬂo(O) = 0 then for all £, > 0 An,O(tl) = Bn,O(tl) =0,
which holds for all n. So, if we start with zero initial energy in the n-th
mode, there will be no energy present up to O(€) on a time-scale of order
e~!. We say the coupling between the modes is of O(e). This again allows
truncation to those modes that have non-zero initial energy. In this case
there is an interaction between all modes with non-zero initial energy and
this interaction does not give rise to internal resonances. It will be shown
in Section 4.4.2 that for all modes n # k the oscillation has a constant
amplitude and a linearly changing phase, depending on the initial values of
the oscillation modes. Mode k, however, oscillates with changing amplitude
and phase, due to the influence of F(t). We will discuss (4.3.11)-(4.3.12) in
more detail in Section 4.4.2.

When 4,0 and B;, o have been determined, and thus g, o, we have con-
structed an approximation v of the exact solution w of the initial-boundary
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value problem (4.2.11)-(4.2.14)
oo
v(z,t;¢€) Z gno(to, t1) + €qn,1(to, 1)) sin(nz), (4.3.13)

with qn,0 (to, tl) = An,O (f,l) COS(wnpto) +Bn,0(t1) sin(wn t()) and qn, 1(t0, tl) =
gt (to, t1) + An1 (t1) co8(wn,to) + Bn,1 (1) sin(wn,to), with ¢’} an inhomo-
geneous solution of (4.3.8). Ay 1(t1) and By 1(t1) can be constructed such
that secular term in the O(e?) approximation are eliminated. Since we are
interested in the O(1) and O(e) approximations, we consider A, ; and By
to be constant functions which depend on the initial values for g, 1 which
are given in (4.3.7). From equation (4.6) in appendix 4.6 it can be shown
elementary that, for w # 2wy, + €a, q}l”f is of the following form

qfl"{‘ = D1 cos(3wn,to) + D2 sin(3wn, to) + Z Ey i c0s((2wm, — wn,)to)

m#n
+ Z B m sin((2w, — wn,)to) + Z Fy 1, cos((2wm, + wn,)to)
m#n m#n
+ Z Fy m sin((2wm,, + wn, )to)
m#n
+G1C cos((w — wp, )to) + G2C sin((w — wp, )to), (4.3.14)

where Dy, Dy, Eq p, Eo iy Fi m, Fom, G1,G2 can be determined easily as
functions of A, g, Bn o, Am,0, Bmo- For w = 2wy, + ea th is given by
(4.3.14) with G; = G5 = 0. The approximation v given by (4.3.13) sat-
isfies (4.2.11)-(4.2.14) up to order e. In Chapter 3 an asymptotic theory
for a similar problem has been presented. This asymptotic theory implies
that approximations v as constructed above are O(€) approximations of the
exact solution on a time-scale of order ¢ '.

In the next section we discuss the behavior of the solutions for Ay, o, By, o for
three different cases: F(t) =0, F(t) = C cos(wtp) with w # 2wy, + e and
F(t) = Ccos(wtp) with w = 2wy, + ea, with & = 0 and « # 0 (detuning).

4.4 Modal interactions

4.4.1 The case F(t) =0

In the previous section equations (4.3.9)-(4.3.10) were given for A4, ¢ and
By, . We introduce polar coordinates to transform these equations

Anp =rncos(¢p) , Bno=rpsin(¢y) , (4.4.1)
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with the amplitude r, = r,(¢1) and the phase of the oscillation ¢,, = ¢, (¢1).
We get the following equations for r,,, ¢, for n = 1,2,3,...:

m#En

. j 1n? 13 5, 2,2
=0, = —>— 3T+ > mr |, (4.4.2)

where the dot represents differentiation with respect to ;. The solution for
(4.4.2) is

1n? |3
— . _ 2.2 2.2
Tn = Cl,n, b = T i 5” Cimt Z Mol m | T + C2,
Tp m#£n
forn =1,2,3,... , where ¢ 5,2, are constants of integration determined

by the initial values Ay ((0) and By 0(0). In the phase space (rp,¢,) we
have the orbits given by r, = ¢, and g{;n < 0. In this case the interaction
between the oscillation modes is restricted to interaction between the phases
of the modes. This interaction depends on the initial values. This means
the following: if we increase the initial amplitude of mode n, then due to the
interaction with for instance mode m the frequency of mode m becomes
higher, and mode m then has a shorter period. There are no internal
resonances and no oscillation modes with initial encrgy zero are excited (as
was for instance the case in Chapter 2 or Chapter 3.

4.4.2 The case F(t) = Ccos(wty) with C #0

In appendix 4.6 it is shown that only for specific values of w extra inter-
actions occur between the different oscillation modes. These values arc
w = 2wy, with k = 1,2,3,... . We therefore consider the following cases
separately.

The case w # 2wy, + ex

As stated in the previous section, the equations for A, g, By, o for all n, are
equal to the equations for the case F'(t) = 0. There is no extra interaction
between the different oscillation modes due to the external force F(t).

The case w = 2wy, + €

In the previous section equations (4.3.11)-(4.3.12) werc given for Ao and
Byo. For A,o,Bnpo, n # k (43.9)-(4.3.10) hold. We transform these
equations using (4.4.1) and get the following equations for the oscillation
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modes k and n(# k):

1 k?
T = _Z—ch sin(2¢y + aty), (4.4.3)
Wy
: 1 K2 3 -
o = ——— 21 E m°r;, + Ccos(2¢, + aty) |, (4.4.4)
4w,
m#k
Fn = 0, n#k, (4.4.5)
) 2
b = —1m F22+§:m }, £k (4.4.6)
4wy,
m#£n

We start our analysis of (4.4.3)-(4.4.6) by assuming there is initial energy
present in mode k only, which means the initial conditions are such that
initially the system oscillates in one mode only (mode k). That is w(z,0) =
qx(0) sin kz, wy(z,0) = 4(0) sinkz, i.e. 7,(0) = 0 Vn # k. We introduce
¥ = 2¢ + at1. This means we get the following equations for ry and :
1 k? - 3 Kk 1 k?

= ———1C —a——ri— - 4.4.7

Tk Tor, r,C sin(1)), h=a Tor r Zuon, Ccos(v), ( )
We consider the cases C' > 0 and C' < 0 separately. We start with C' >
0. The critical points of (4.4.7) are given in Table 4.1, where 1,1 are

a-range # cr. points cr. points behavior
a<—z£-C 0 - _
2wy,
o= _zf,:p ¢ 1 (0, ) h.o. singularity
“"22%0 <a< %C 3 (0,%) saddle
(0, 12;) saddle
(Fk, ) center
a= 2£2p c 2 (0,0) h.o. singularity
(g, ) center
a> 253; C 2 (7%, 0) saddle
(Fg, ) center

Table 4.1: Critical points for C>0

2w, k

solutions of cos() = =& and where T, = \/# a4+ 2w C), 7 =

2wk

4 . T .
\/ %} C). The system is 2w-periodic in 1, so we consider i €
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[0,27[. We see that it makes a difference (different bifurcation from critical
value) whether w approaches the critical value 2wy, from above or below,
Le. a different behaviour for « < 0 and a > 0. For C < 0 the analysis
is similar, where % is shifted with a factor 7. The behavior of solutions of
(4.4.7) in the (rg, %) phase space is given in Figure 4.4 for —10 < a < 0.
and Figure 4.5 for 0 < a < 10.

These phase spaces have been constructed using a numerical integration
method. For the sake of convenience, we have taken p> =0, k=1, C =1
(ie. wg, = 1). A similar behaviour is obtained for p? > 0, k # 1 and
C # 1. It can be shown that the larger C' becomes, the larger the range of
« in which interaction occurs.

It should be noted that a first integral can be obtained for (4.4.7)

2wk, 3k%
e 4C

1
cos(2¢y, + aty) = 2

where «y is a constant of integration depending on Ay ¢(0), By 0(0), k2, Wk, C.
Next we consider the case with initial energy present in two modes, m
and k, which means the initial conditions are such that the system ini-
tially oscillates in two modes only (modes m and k). That is w(z,0) =
g (0) sinkz + gm(0) sinmz, wi(z,0) = ¢(0)sinkz + ¢,,(0) sinmz and so
m7(0) = 0 Vn # k,m. We have the following equations (see (4.4.3)-(4.4.6)):

1 k?

T = _Z_ch sin(2¢y, + aty), (4.4.8)
kP

= —c— T -— --—C t 4.4.9

o Buwn, Th 4Wkpm Th, dur, cos(2¢x + at1), )

7"771 = Oa (4410)

3nt , 1m? o,
= ———r — = . 4.4.11
¢m 8(-Ump Tm 4 wmp k /"k ( )

From (4.4.10) we can see that r,, = ¢, with ¢, a constant. Furthermore
¢m does not appear in the equations for 74, ¢, so we can analyse the
behaviour of solutions of (4.4.8)-(4.4.11) in the (rg,+) phase space (with
% = 2¢y + at1). The analysis is similar to the analysis for one mode. The

only difference is an extra constant term in the equation for 1, —z wk—mchn,

which means a phase shift for 1, which depends on the initial values of mode
m. We will not discuss these equations in more detail.

For initial energy present in more than two modes a similar analysis holds.
The behaviour of solutions can again be analysed in the (g, 1) phase space.
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Figure 4.4: Phase space for —10 < a < 0, with r; (horizontal) from 0 to
2.5 and 9 (vertical) from 0 to 27.
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Figure 4.5: Phase space for 0 < a < 10, with r; (horizontal) from 0 to 2.5
and 1 (vertical) from 0 to 2.
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4.5 Conclusions

In this chapter we consider an initial-boundary value problem for the verti-
cal displacement of a weakly nonlinear elastic beam with an external force
acting in horizontal direction on the ends of the beam. We have constructed
formal approximations of order ¢ and considered the interaction between
different oscillation modes. The analysis presented in this chapter holds
for all p € R. In Chapter 2 and Chapter 3 it has been shown that certain
values of p? can cause internal resonances. We have shown that in this case
this does not occur. We showed that for all cases mode interactions occur
only between modes with non-zero initial energy (up to O(e)). That is, no
modes with zero initial energy are excited up to O(¢). We then say the
coupling between the modes is of O(e) and truncation is allowed to those
modes with non-zero initial energy.

We considered the case with no external forcing (F'(¢)=0) and the case
with external forcing (F(t)=C cos(wt)). For F(t)=0 and F(t)=C cos(wt)
for most w-values, the mode interaction between the modes with non-zero
initial energy is restricted to an interaction between the different phases:
phase shifts occur due to the interaction. The amplitudes of the oscillating
modes remain constant and depend on the initial values only. We showed
that for specific values of w, i.e. w = 2wy, special interactions occur. The
mode interactions between the different oscillation modes is still restricted
to an interaction between the different phases but the amplitude of mode
k is no longer constant: the amplitude of mode k& now oscillates around an
equilibrium state. This also holds for w = 2wy, + € where « a detuning
parameter. The detuning is considered in Section 4.4.2. It has been shown
how the system detunes from the case w = 2wy, to the case w # 2wy, + €a.
In this chapter we considered an harmonic external force of the form F'(t) =
C cos(wt). This analysis can be extended to a more general form of F(t),
where F is a T-periodic force, F(t) = % + Y, (an c08(vnt) + by sin(vpt))
with v, = 2Z%. This has been discussed in [46] for elastic beams or strings,
where truncation to one or two oscillation modes is applied, without giving
a justification. We have shown that in the cases discussed in this chapter
truncation is valid up to O(e). As can be seen in Chapter 2 and Chapter
3, truncation to one or two oscillation modes is not valid for all cases. For
some cases discussed in those papers, mode interactions occur and more
modes have to be taken into account. In a way similar to the methods in
Chapter 2 and Chapter 3 the problem with a more general form of F(t)
can be studied. The analysis will essentially be the same (depending on the
function F'), however, the equations will become a bit more complicated. A
justification can be given whether truncation is allowed in those cases. This
elementary straightforward analysis is beyond the scope of this chapter.




An Integral Nonlinearity 101

4.6 Appendix - Determination and Elimination of
Secular Terms

In Section 4.3 we obtained the following equation for cach g¢y:

[ee)
Gn + (n* + p*)gn = —¢ (F(t) +> k2q/%> nqn,

k=1

for n = 1,2,3,... . To avoid secular terms in g,(¢) a two time-scales
perturbation method was introduced and g, (t) was expanded in g,(t) =
gno(to,t1) + €qn1(to,t1) +. .., where ty = £ and t; = €t. It has been shown
that ¢,,1 has to satisfy

sin(wp,to) — n.0 cos(a)npto)> (4.6.1)

2 dA
2 _ n,0

(C cos(wtg) + Z m2jm> An o cos(wn,to) + Bn,osin(wp,to)) ,
with
CRIIRLY
+§ (A%n,o ~ B,Qn’o) c08(2wm,to) + Am,0 Bm,0 sin(2wm,,to).

and wy, = vn*+ p?. The equations for the functions A4, and B, will
now be determined such that no secular terms occur in g, ;. The right-hand
side of (4.6.1) can be cxpanded using goniometric formula’s and becomes

dAn o dB,
Qwp, ——20 —— sin(wy, to) — 2wy, Ocos(wnpto)

" dty dt;
—ln 34,0 (A2 o+ B2 ) cos(wn, to) + 3B (A2 + B? ) sin(wn,to)
4 n,0 Np n,0 n,0 n,0 np

+An (A2 = 3B2 ) cos(3wn,to) + Bng (342 — B2 ) sin(3wn, to) }

- Z n 'm - [ (2Bn,0Am,0Bm,0 . An,() (B;Zn,o - Afn,())) COS((2wmp - Wnp)to)

m#n
— (Buo (42,0 = Blio) —~ 2404m0Bin ) sin((2wm, — wn,)lo)
+ (An 0 (A Bm 0) - 2B, oAm,()Bm70> c0s( (2w, + wy, )t0)
+(24004m0Bmo + Buo (410 = Birg) ) sin((2wim, +wa,)to)

+2An.0 (A?,L,O + B,Q,L,U> cos(wn,to) + 2Bn <Afn’0 + B;Zn,o) sin(wn,to) ]
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1 .
_”250 An,O COS((W - wnp)tO) - Bn,O Sln((w - wnp)tO)

+Ap 0 cos((w + wn,)to) + Bnosin((w + wy, )to) | - (4.6.2)

As stated in Section 4.3, cos(wn,to) and sin(wp,tp) are homogeneous solu-
tions of g, 1. We want the coefficients of cos(wp,tp) and sin(wn,ty) in (4.6)
to be equal to zero in order to eliminate secular terms. This gives us equa-
tions for A, o and By o. From (4.6) it can be seen that we have to consider
two cases for w: w # 2wy, and w = 2wy, as is done in Section 4.3 and
Section 4.4. When the secular terms on the right-hand side of (4.6.1) have
been eliminated, the remaining terms are the inhomogeneous part of the
equation for g, ; and an inhomogeneous solution for ¢, ; can be determined
easily.




Chapter 5

A Weakly Nonlinear Beam
Equation with a Rayleigh
Perturbation and an Integral
Nonlinearity

Abstract In this chapter an initial-boundary value problem for the vertical dis-
placement of a weakly nonlinear elastic beam in a wind-field is studied. At the ends
of the beam a harmonic force in horizontal direction acts on the beam. The initial-
boundary value problem can be regarded as a simple model describing oscillations
of flexible structures like suspension bridges or iced overhead transmission lines
in a wind-field. Using a two time-scales perturbation method an approximation
of the solution of the initial-boundary value problem is constructed. Interactions
between different oscillation modes of the beam are studied. It is shown that for
specific values of the parameters internal resonances occur. The aim of this chapter
is to see whether the applied (harmonic) horizontal excitation can act as a damp-
ing force on the oscillations of the beam. In this chapter the effects of the external
excitation are studied for a small range of the parameters involved. It is shown
that for the cases considered in this chapter no damping effect, but rather the
opposite effect occurs and that the ultimate amplitudes of the oscillation modes
become larger.

5.1 Introduction

Flexible structures with bending stiffness, like tall buildings, suspension
bridges or iced overhead transmission lines, are subjected to oscillations
due to different causes. Simple models which describe these oscillations
can involve nonlinear second and fourth order partial differential equations




104 Weakly Nonlinear Beam Equations: An Asymptotic Analysis

(PDE’s), as can be seen for example in [1] or [9]. In many cases perturbation
methods can be used to construct approximations for solutions of this type
of second or fourth order equations. Initial-boundary value problems for
second order PDE’s have been considered for a long time, for instance in
[26]-[30],[33] and [34]. Only recently initial-boundary value problems for
fourth order weakly nonlinear PDE’s have been considered, for instance in
[9]-[11] and [40]-[43]. These problems for second and fourth order PDE’s
have been studied in [1]-[3],[9]-[11],[31],[32] and [40]-[43], using a two time-
scales perturbation method or a Galerkin-averaging method to construct
approximations. In [9]-[11] and [43] the solutions for fourth order PDE’s
are approximated by a single mode representation, without justification
as to whether truncation to one mode is valid or not. In this chapter
approximations for solutions of an initial-boundary value problem for a
fourth order PDE are constructed using a two time-scales perturbation
method. The interaction between the different oscillation modes is studied
and a justification is given in which cases mode truncation is valid. For
fourth order strongly nonlinear PDE’s numerical finite element methods
can be used, as is done for example in [35].

The equations of motion for a linear beam can be found in standard text
books, such as [37] or [38]. The derivation of the equations of motion in
[37] is also discussed in Chapter 4. Oscillations are possible due to the
strain of the beam. The z-axis is defined to be the horizontal axis. The
z-axis is defined to be the vertical axis. The y-axis is perpendicular to
the (z,z)-plane. We introduce the following symbols: p is the mass of
the beam per unit length, p the mass density of the beam, A the area of
the cross-section Q of the beam perpendicular to the z-axis (so p = pA),
E the elasticity modulus (Young’s modulus) and I the axial moment of
inertia of the cross-section. The inertial axes of the cross-section Q are the
y- and z-axes, so [ = [ fQ 2?dydz. We assume that the beam can move
in the z- and z-direction only. Furthermore, we assume that the vertical
displacement of the beam from rest is given by w = w(z,t) and that the
horizontal displacement of the beam is given by u = u(z,t). In Chapter 4
the following equation, describing the vertical displacement w of an elastic
beam, is derived:

EA 1t
pwy + Elwggry — - u(l,t) —u(0,t) + 5/0 wydz | wge = 0. (5.1.1)

In [9] a survey of literature on oscillations of suspension bridges is given.
Using a similar analysis, we will derive a simplified model for nonlinear
oscillations of a suspension bridge in a wind-field, where the vertical dis-
placement is described by an equation like (5.1.1). We model the suspension
bridge as a beam of length /. In this chapter the stays of the bridge are
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FA

L2,

=0 z=1
Figure 5.1: A simple model of a suspension bridge.

modeled as linear, two-sided springs, as sketched in Figure 5.1. In Chapter
3 the stays of the bridge were modeled as (almost linear) two-sided springs
with a small nonlinearity (ew?). The torsional vibrations of the beam are
not taken into account (i.e. are considered to be small compared to the
vertical vibrations). We neglect internal damping. Furthermore, we con-
sider a uniform wind flow in y-direction, which causes nonlinear drag and
lift forces, given by Fp and FJ, respectively, and acting on the structure per
unit length. We introduce the following symbols: x, the spring constant of
the stays of the bridge, and W, the weight of the bridge per unit length,
which we consider to be constant, i.e. W = ug, where g is the gravitational
acceleration. The following equation describes the vertical displacement of
the beam:

pwi + Elwgges + kw = (5.1.2)

EA 1 /!
—pg+ Fp + FL + - [u(l,t) —u(0,t) + 5/0 wgdav] Wyy-

In Section 4 of [1] it has been shown that Fp + F7, can be approximated by

padv,
2

where py is the density of air, d is the diameter of the cross-section of the
beam, v is the uniform wind flow velocity in y-direction and ag, a1, a9, a3
depend on certain drag and lift coefficients and are given explicitly in
[1]. Equation (5.1.2) will be simplified by eliminating the term —pg us-
ing w = w + £4s(x), where s(z) satisfies the following time-independent
linear equation with boundary conditions:

ay az ag
((Lo + —wy + T’UJ? + Tw? y
Voo Ve, V3

D)+ E o) = -
s\ (x) + EIS(.L‘) T

s(0) = s(1) =0, sP(0) =s21) =0.

It can be shown that s(z) = cos(Bz) cosh(Bz) + (sin(8l) sin(Bz) cosh(Bz) ~
sinh(3!) cos(fz) sinh(Bx))/(cos(Bl) + cosh(Bl)) — 1, with g = (4—%)% The

O<z <l
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term £2s(z) represents the deflection of the beam in static state due to
gravity. Using the dimensionless variables

_ ®c¢ . _ T 7 ; 4 2
wW=-—-—w, T=-zI, t=—ct, 4=-—u,
l voo l [ v

_ - INY Kk dlv _ _ _
wt—+'wimi + (;) E[— = —g?r—‘u——zg (a0+a1wt-+a2wtg +a3w:t—3) (513)
1Avee ! (vl [ _ 2 Mm 5\ “g
+1_I—T7r( e (U(W,E)_U(Oat_)‘*'?r/o widx) Wzz + . H)a

with
7 i 2 202} @~ |
H = {a(m,t) —u(0,t) + —/ WzdT | s\ (—1)
7 Jo s
4 YL Ry pgm C gy 1 _
+=— / wzs\ (=Z)dZ | wzz + (=7)
T Jo m £ 1 v T

Assuming that v, the uniform wind velocity, is small with respect to 76
we put e="= %, where € is a small parameter. Furthermore, we assume that
the deflection of the beam in static state due to gravity, £2s, is small with
respect to the vertical displacement @, which is of order €. This means
we assume that £2 is O(é"), with n > 1, since s(z) is of order 1 (as well
as s!)(z) and s (z)), as can be seen from the expression for s which is
given above. It can be shown easily that H = O(1). Equation (5.1.3) now
becomes

o AN d. _ _ }
Wi + Wzzzz + (;) ﬁw = %6 (ao + ajwi + ag’w% + (13‘11)?) (514)
1A 2 (7 1A
+-=82 (ﬂ(w,f) —a@(0,%) + —/ m%d&;) Wgz + = =OE™), my > 2.
471 7 Jo 471

In Section 4 of [1] it has been shown that the first term in the right hand
side of (5.1.4) can be approximated as follows
pad, (a0 + @15 + a9} + azn}) = pad, (ae — b5}) + OE™), my > 1
2” t Rhad 2# t ’
where a and b are specific combinations of drag and lift coefficients which
are given explicitely in [1], and are of order 1. This means that (5.1.4) now
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becomes
_ _ A pad_ s _ e Pad . -m
Wi + Wezzz + (;) T ?8;-6 (awg — bw;—s) + —2-2— (€™2) (5.1.5)
1A ,/_ _ 2 (™ 5.\ _ 1A
+1762 (u(w,f) —u(0,1) + ;/0 w%dw) Wzz + ZT@(E’"“),

with m; > 2 and mo > 1. Using the transformation w = \/i—bw and 4 = 37:’12
(5.1.5) becomes

R " l 4 K pad . n IA.
W + Wzzzz + (g) Y= Eaf (w[ - gwg) (5.1.6)
1Aa 5 (. . 2 (7 9\ .
+ZY£€2 (u(ﬂ,f) —4(0,%) + ;/0 w%dw) Wzz
3b (pad oy LA o my )
a <2H (6 )+ 4 1'(9(6 ) bl

. . 1.
Wi + Wzzzz +P°W = € <wt- - gwg)
X N 2 [T 9\ .
+eo | G, t) — 4(0,1) + ;T-/ WEdT | Wz + €10(1) + e20(1),
0

. 4 A .
with p? = (%) % of order 1. Three different cases can be considered

for €1, € given by (5.1.7). The case € < €3 was considered (up to O(e%),
n > 1) in Chapter 4, using a slightly different scaling of w. The case €; > €
was considered (up to O(el), n > 1) in Chapter 2. In this chapter we will
discuss the casc €; = €9, which means we assume €7 and ey are of the same
order of magnitude, i.e. ea = de;, with 6 of order 1.

We can now introduce the following initial-boundary value problem, which
describes, up to O(e"), n > 1, the vertical displacement of an elastic beam
with a linear spring force and a constant gravity force acting on it, with an
external force F(t) acting on the ends of the beam in horizontal direction
and with a uniform windflow acting on the entire beam:

Wit + Wegze + PPW (56.1.8)

€

=€ wt—lw'3 +o{F(t —{-E w2dz | wep|, 0 <z <, t>0,
3t 0 xT

™
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w(0,t) = w(m,t) =0, t >0, (5.1.9)
Weg(0,8) = way(m,t) =0, ¢t >0, (5.1.10)
w(z,0) = wo(z), we(z,0) =wn(z), 0<z <, (5.1.11)

where F(t) = u(m,t) — u(0,t) and € a small dimension-less parameter.
In this chapter € and p are constants with 0 < J¢] < 1 and 0 < p? <
10, § € R of order 1, w = w(z,t) is the vertical displacement of the
beam, z is the coordinate along the beam, wo(z) is the initial displacement
of the beam in vertical direction and w;(z) is the initial velocity of the
beam in vertical direction. All functions are assumed to be sufficiently
smooth. The first two terms on the left hand side of the PDE (5.1.8) are
the linear part of the beam equation, p?w represents a linear restoring force,
wy — %w? is a so-called Rayleigh perturbation, which describes an external
(wind)force (see [1]), (ff w2dz)wy, is due to the strain of the beam and
F(t)wg, is due to an external force acting on the ends of the beam in
horizontal direction. The boundary conditions describe a simply supported
beam. As we showed above, the initial-boundary problem (5.1.8)-(5.1.11)
can be considered as a simple model for nonlinear oscillations in suspension
bridges. The aim of this chapter is to analyze if the forcing term F'(f) can be
used as a damping term for the nonlinear oscillations due to the Rayleigh
perturbation. We are interested in a harmonic excitation of the ends of
the beam in horizontal direction, which means we take F(t) = C cos(wt),
with C a non-zero constant which represents the amplitude of the external
excitation and w the frequency of the external excitation. To obtain (5.1.1)
we assumed that u; is small compared to w;. It can be shown that this
means that w must be of O(1). Furthermore, w can be taken positive
without loss of generality.

In this chapter formal approximations, i.e. functions that satisfy the differ-
ential equation and the initial-boundary values up to some order in €, will
be constructed for the initial-boundary value problem (5.1.8)-(5.1.11), us-
ing a Fourier mode expansion and a two time-scales perturbation method.
The interaction (energy exchange) between the different oscillation modes
will be considered for different cases for p? and F(t). As shown in Chapter
2, certain values of p? give rise to complicated interactions which cause
internal resonances. In this chapter we mean by internal resonance that
there is an energy transfer of order 1 on a time-scale of order e~ from
one oscillation mode to another, even if one of the modes has zero initial
energy We will consider the cases p? €]0, 10[\{??3 9} and p? =~ 9. With
p? €]o, 10[\{?2;,9} we mean p? €]0,10] A p? 152 +eBADPE # 9+ €8,
where 3 is a detuning parameter. This notation will be used throughout
this chapter. For these values of p? we will consider the cases F(t) = 0 (no
external forcing) and F(t) = C cos(wt) (external forcing). It will be shown
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that for most values of w the case F'(t) = C cos(wt) is similar to the case
F(t) = 0, which means F(t) has no influence on the oscillations (up to O(e)
on a time-scale of order e~!). For specific values of w, w = 2wy, , where
wk, is an eigenfrequency of the linearized system (e = 0), the influence of
F(t) is of O(1) on a time-scale of order ¢~!. The amplitude of oscillation
mode k changes due to F'(t). The mode interactions caused by F(t) remain
restricted between those modes that have non-zero initial energy (whereas
due to specific values of p? also an energy transfer to modes with zero initial
energy can occur). Similar mode interactions have been studied for exam-
ple in [40],[41],[46] and [36], but to our knowledge these mode interactions
for weakly nonlinear beam cquations with a combination of external forces
have not yet been studied thoroughly. Similar to the analysis in Chapter
2 and Chapter 3, it is shown that truncation to one or two modes as for
example performed in [10]-[11], is not valid for all cases.

The outline of the chapter is as follows. In Section 5.2 we apply a two time-
scales perturbation method to the initial-boundary value problem (5.1.8)-
(5.1.11). We show that for most values of p? and w mode interactions occur
only between modes with non-zero initial energy (up to O(e)). For some
specific values of p?, ie. p? = % and p? =~ 9 (in this chapter we only
consider the latter case), also modes with zero initial energy are excited
up to O(1) on a time-scale of order ¢ !. For some specific values of w,
ie. w = 2w, the interaction between the different (non-zero) oscillation
modes changes. We construct formal approximations of O(e€) for solutions
of the initial-boundary value problem for the cases

(4). p? €]0,10\{88 9}, F(t) = 0 or F(t) = C cos(wt) with w # 2wy, +ea,
(i5). p® €]0,10[\{2 9}, F(t) = C cos(wt) with w = 2wy + e,

(#33). p> =9+ €B, F(t) =0 or F(t) = C cos(wt) with w # 2wy, + €,

(iv). p* =9+ €B, F(t) = Ccos(wt) with w = 2wy, + €c,

where a and § € R are detuning parameters. In Section 5.3 the mode
interactions between the different oscillation modes will be studied in detail
for the four cases mentioned above. In Section 5.4 some conclusions and
general remarks will be given.

5.2 Construction of formal approximations -
general case

In this section and in the next section we will construct formal approxima-
tions of the solution of the initial-boundary value problem (5.1.8)-(5.1.11).
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When straightforward e-expansions are used to approximate solutions, sec-
ular terms can occur in the approximations. To avoid these secular terms
we use a two time-scales perturbation method.

The boundary conditions imply that w can be written as a Fourier sine-
series in z: w(z,t) = Y. ov_; gm(t)sin(mz). Substituting this series into
(5.1.8), we obtain the following system of equations:

(oo}

> (G + (k* + p*)gi ) sin(kz) =
k=1

o0 1 x
€ [(Z g sin(kz) — 3 Z dm3kgj sin(maz) sin(kz) sin(ja:))
k=1 m,k,j=1

o0

) <Z ( )+ Z m? ) K2y, sm(kx))]
k=1

Using orthogonality properties of the sine-functions on [0, 7] it can be seen

easily from the results obtained in Chapter 2 and Chapter 4 that the equa-

tion for each g, is

Gn + (n' +p?)gn = (5.2.1)
€ |:qn — 41_1 ( Z - Z —é Z ) Gmdkq;

n=m+k—j n=—m—k+j n=m+k+j

- (F(t) + io: m2q3n> WQQn] :
m=1

forn =1,2,3,... , with F(t) = C cos(wt) and where ¢, must satisfy the
following initial conditions:

an(0) = %/Oﬂ wo(x) sin(nz)dz, ¢,(0) = —72;/0” w1 (z) sin(nz)dz

As stated above, terms that give rise to secular terms may occur in the right
hand side of (5.2.1). To eliminate these terms we introduce two time-scales,
to =t and t; = €t, and assume that g, can be expanded in a formal power
series in €, that is, ¢, (t) = qn0(to,t1) + €qn,1(to, t1) + €2gn 2(to, t1) +--- . We
substitute this into (5.2.1) and collect equal powers in e. The O(®)-problem
becomes

62
atz A:99n,0 + wnPQn 0=0,¢t> 0 (522)
dn.0(0,0) / wy(z) sin(nz)dz, (5.2.3)

B 9 7 ,
S n0(0.0) = = /0 w1 () sin(nz)dz, (5.2.4)
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forn =1,2,3,..., with w,, = \/n* + p2. The general solution for (5.2.2)-
(5.2.4) is

an,0(to,t1) = Ano(t1) cos(wn,to) + Bro(t1) sin(wn,to), (5.2.5)
where A, o, B3, o satisfy the following initial conditions:

1 0

An,O(O) = Qn,O(Oa 0)1 Bn,O(O) ()t

Y 0(0,0).

Next we consider the O(e!)-problem
o? 5 ? 0 5
_ + 2.6
o2 ! Wt = at Btgot, 0T By In0 (5.2.6)

1 1 0 0 0
_Z( >o- > = 3 )dtoqmo() 0,0 g, 450

n=m+k—j n:—m—k—{—j 3n:m+k+j

<C’ cos(wtp) + Z m q?n,o) n2Qn,07

o 0
a—toqn,l(0,0) = —8—t1qn,o(o,0), (5.2.7)

forn=1,2,3,... . We substitute (5.2.5) into (5.2.6) and get

dn,1 (0, O) =0

+Hn—%( > - Y —% > )’Hmﬂmj,

n=m+k—j n=—m—k+j n=m+k+j

cos(wnpto)) (5.2.8)

o0
- (C cos(wtg) + Z mzjm> n? (Anp c08(wn,to) + Bposin(wn,to)) ,

m=1
with
Him = wWm, (Bmo cos(wm,to) — Am,o sin(wm, o)) ,
1
Im = 2 (A?n,o + an,o)
L0422 B2 Y cos(2wmto) + Ay oB in(2wy ¢
+§( m,0 m,O) cos( Wmyp, 0) + m,05m,0 sin( Wrny, 0)-

Since cos(wy,to) and sin(wy,ty) are homogencous solutions of ¢y 1, we want
the coefficients of cos(wy, to) and sin(wp, to) in the right-hand side of (5.2.8)
to be equal to zero (elimination of sccular terms). This gives us equations
that A, and B, have to satisfy. In Chapter 2 we show that in order to
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find the equations for A,, o, By, o we first have to determine the secular terms
due to the cubic term in (5.2.8), by solving the Diophantine-like equations

n=m+k—jVn=-m-k+j3Vn=m+k+j 599

st 4t = amt 4 £ K42 gt O
Only specific combinations of mn, k, j will give solutions to (5.2.9). In Chap-
ter 2 we show that for some values of p? €]0,10[ there are solutions to
(5.2.9), which give additional contributions to the equations for A, g, By .
These values are p? = 0, p? = % and p?> = 9. In this chapter we will
only consider the cases p? €]0,10[\{%%2,9} and p? ~ 9. In Chapter 4 we
show that for specific values of w, the term C cos(wtp) also gives rise to
secular terms. This means that for specific values of w, ie. w = 2w,
(k=1,2,3,... ), extra terms occur in the equations for Ao and By (for
n # k the equations remain the same).
Case (i): For p? €]0,10[\{%2,9} and F(t) = 0 or F(t) = C cos(wt) with
w # 2wy, +€ea (where a € R of O(1)), it can be seen easily from the results
obtained in Chapter 2 and Chapter 4 that the equations for A, ¢, By o (with
A, 0= wn,Anp and B, 0 = Wn,Bnyo) are

dAno 1 3 (—2 =2 1~ (52 | 72
G = 5 Ano (1——1—6(A 0+ Bng) -7 (Am,0+Bm,O)) (5.2.10)

m#n
1 n? 3n? ;—9 o m? ;o —2
+37—DBno |55 (An,O + Bn,O) + ) N (Am,O + Bm,o) ;
p Np m#n =~ Mp
dB 0 1— 3 2 =2 1 & /-2 =32
Bus s, (13 () L3S (4 B20)) 020
1 m#n
1 n? 3n? ;o —2 m? -2 =2
—6>——Ano | z—5 (A, 0+ Bno) + —— (Aot Bnpo
4wnp 2(,_)72117 ( n, n, ) rgﬁ:n w?ﬂp ( m m )
for n = 1,2,3,... . From (5.2.10)-(5.2.11) we see that if A,o(0) =

Bpo(0) = 0 then Vt; > 0 Apo(t1) = Bno(ti) = 0. So, if we start with
zero initial energy in the n-th mode, there will be no energy present up to
O(e) on a time-scale of order e~!. We say the coupling between the modes
is of O(e). This allows truncation to those modes that have non-zero initial
energy. In this case there is an interaction between all modes with non-zero
initial energy, but this interaction does not give rise to internal resonances.
We will discuss (5.2.10)-(5.2.11) in more detail in Section 5.3.1.

Case (4i): For p? €]0,10[\{$2,9} and F(t) = C cos(wt) with w = 2wy, +ea,
where a € R of O(1) is a detuning parameter, it can be seen easily from
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the results obtained in Chapter 2 and Chapter 4 that the equations for
Ak,0, B, are

Ay 1 32 .3\ s .7
dtkl,o _ §Ak,0 (1 - (AZ’O +Bz’0) ~1 Z (Afn,o + B72n,0)> (5.2.12)

3
*
>

(ot Bha) + X 2 (£,0+ B

1 k?
——w—5C’ (A,c osin(aty) + By o cos(aty) ),
kp

N——

1 k? ol
_Zw_kpd(] (A,c ocos(aty) — B g sin(atl)) .

For n # k equations (5.2.10)-(5.2.11) still hold. We see that for F(t) =
C cos(wt) with w = 2w, + ea the influence of F(t) is of O(1) on a time-
scale of order ¢! and extra terms occur in the equations for Ak, Bro- We
see that if A, (0) = By 0(0) = 0 then for all t; > 0 A, 0(t1) = Bno(t1) =0,
which holds for all n. So, if we start with zero initial energy in the n-th
mode, there will be no energy present up to O(e) on a time-scale of order
e~1. We say the coupling between the modes is of O(¢). This again allows
truncation to those modes that have non-zero initial energy. In this case
there is an interaction between all modes with non-zero initial energy and
this interaction does not give rise to internal resonances. We will discuss
(5.2.12)-(5.2.13) in more detail in Section 5.3.1, for k = 1, 3.

Case (i4i): For p2 = 9+ €83 (where 3 € R of O(1) is a detuning parameter)
and F(t) =0 or F(t) = Ccos(wt) with w # 2wy, + ea, extra contributions
occur in the equations for A,y and Bpo for n = 1 and 3. It can be
seen easily from the results obtained in Chapter 2 and Chapter 4 that the
equations for Zn,0,§n70 now are:

w(—( )—iéuowmo))

1 n? 3 —
m#n

o (A0 + Do)

m,,
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ot : Bnp, (5.2.14)
2wy,
dBnO ]__ 3 2 —9 1 oo
dy o (l 16 (Ano +Bo) = 3 2 (4o +Bm0))
m#£n
1n?2 - |3n% 0 9 2
4wy, n0 |5 %p( n,0 nO) Enw?np( m,0 m())
G~ 2ﬁ Bno, (5.2.15)
W,
forn=1,2,3,... , where
l - Y — —_ —_—
=5 (A% — Bl As0 + 2414B1,0Bsy) , (5.2.16)
1 S} -2 I p—
G = 33 (2A1,OBL0A3,0 +(Big — Al,O)B3,0) , (5.2.17)
1_ 9 .
2 —2
G3 = %Bl 0 (Bl,O - 3A1’0) s (5219)
Fn = Gp= 0, for n 7& 1,3. (5.2'20)

In this case there is an O(1) coupling between the modes 1 and 3 which
indicates an internal resonance between these modes. This means that if
there is initial energy present in mode 1 an energy transfer of O(1) on a
time-scale of order e~! occurs between modes 1 and 3. Truncation to one
mode is not valid, both mode 1 and 3 have to be taken into account. We
will discuss (5.2.14)-(5.2.15) in more detail in Section 5.3.2 for n =1, 3.
Case (iv): For p? = 9+ €3 (where 8 € R of O(1) is a detuning parameter)
and F(t) = Ccos(wt) with w = 2wy, + ea (where @ € R of O(1) is a
detuning parameter), it can be seen easily from the results obtained in
Chapter 2 and Chapter 4 that the equations for Zk’o, Ek,o are

dAro  1— 3 /9 o 1 & /=2 —=2

S (@ + Bl + T I (2 + B)

kp mtk mp

1 k?
———0C (Ak osin(aty) + By cos(atl)) +
W,

B E}c’o-l—fk, (5.2.21)

kp

et o (135 (B4 7)1 S (B 1)

m#k
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1 k? 3 k2 m? /—9 =2
—51 w—Ak 0|57 7 (Ak o+ By, 0) + 1%&:1; 2 (Am,O + Bm,O)
1 k2

_Zw—dC (Ak 0 cos(atl) Ek,O Sin(atl)) - %F}c’o + gk, (5.2.22)

where F, and Gy satisfy (5.2.16)-(5.2.20). For n # k equations (5.2.14)-
(5.2.15) still hold. We see that in this case the influence of F(t) is of O(1)
on a time-scale of order ¢ ! and extra terms occur in the equations for
A0, Bro. Furthermore there is an O(1) coupling between modes 1 and 3
which indicates an internal resonance between these modes. This means
that if there is initial energy present in mode 1 an energy transfer occurs
between modes 1 and 3. Truncation to one mode is not valid, both mode 1
and 3 have to be taken into account. The interaction between the different
oscillation modes due to the influence of F(t) is restricted to the modes
that have non-zero initial energy, i.e. this interaction does not give rise
to internal resonances. This again allows truncation to those modes that
have non-zero initial energy, with the restriction that even if only one of
the modes 1 or 3 has non-zero initial energy, both modes have to be taken
into account. The most interesting cases to examine are the cases £ = 1
and k = 3. We will discuss (5.2.21)-(5.2.22) in more detail in Section 5.3.2.
When A, and B, have been determined, and thus ¢, o, we have con-
structed a formal approximation v of the exact solution w of the initial-
boundary value problem (5.1.8)-(5.1.11)

o0
v(z,t€) = Y (gno(to, t1) + egn,1(to, t1)) sin(nz),

n=1
with g 0(to, 1) = Ano(t1) cos(wn,to) + Bno(t1) sin(wy, to) and gy 1(to, t1) =
Gt (to, 1) + An,1 (t1) cos(wn, to) + Bp,1 (t1) sin(wy, to), with qm”l an inhomo-
geneous solution of (5.2.8). A, (t1) and By, 1(t1) can be constructed in
such a way that sccular terms in the O(e?) approximation are eliminated.
Since we are only interested in the O(e) approximations of the (exact) solu-
tion, we take A, and By, ) equal to their initial values A, ;(0) and By, 1(0)
respectively.
In the next section some of the interesting features of the solutions for
An 0, Bnyo are given for four different cases as described before.

5.3 Modal interactions

In Section 5.2 it has been shown that for p* # p2. + €8, where 3 is a

detuning parameter of O(1) and p?, € { %,9} the coupling between the

different oscillation modes is of O(¢), that is, if we start with zero initial
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energy in an oscillation mode, no energy will be present in that mode up to
O(e) on a time-scale of order ¢~!. This allows truncation to those modes
that have non-zero initial energy. For p? = 9 + €0 there is a coupling
between modes 1 and 3, and both modes have to be taken into account.
Therefore we assume initial energy present in modes 1 and 3 only, and for
all other modes we have A, ¢(0) = By, 0(0) = 0. In this section we consider

the cases p? €0, 10[\{%, 9} and p? = 9 + ¢ in more detail.

5.3.1 The case p* €]0,10[\{3,9}

1527

As shown in Section 5.2, there is no extra coupling of O(1) between modes
1 and 3 due to the Rayleigh perturbation term in (5.1.8). However, due
to the integral term in (5.1.8) interactions occur between those modes that
have non-zero initial energy. These interactions are restricted to phase
shifts of those oscillation modes that have non-zero initial energy. Due to
the F(t) term in (5.1.8) extra interactions can occur between the different
oscillation modes for specific values of w, w = 2wy, k = 1,2,3,... . Again
these interactions can only occur for oscillation modes with non-zero initial
energy. We consider the cases F(t) = 0, F(t) = Ccos(wty) with w #
2wy, +€a or w = 2wg, +€a, k=1and k =3 (where « is a detuning
parameter of O(1)).

The case F(t) =0 or F(t) = C cos(wtp) with w # 2wy, + ea

In Section 5.2 (5.2.10)-(5.2.11) have been given for A, g, Bno. As stated
above we only consider the equations for n = 1 and n = 3. We introduce
polar coordinates to transform (5.2.10)-(5.2.11)

ZH,O = 1y co8(¢n) , En,O =y sin(¢y) , (5.3.1)

with 7, = 7,,(¢1) the amplitude and ¢, = ¢, (t1) the phase of the oscillation
and we obtain the following equations for ry,73, @1, ¢3:

o1 3o la o] 1, )
o= 27"1(1 16 1 r3), T3 = 21"3(1— Zrl 16r3), (5.3.2)
. 36 , 9 0 L U3 S, 9 5,

= , - - , 5.3.3
2 8wl dwel, i ds =g §T3 4w%pw3pr1 (53.3)

where a dot represents differentiation with respect to ¢;. Equations (5.3.2)-
(5.3.3) only have trivial critical points (r; = 0, r3 = 0 and ¢y, ¢3 arbitrary).
However, we can analyze (5.3.2)-(5.3.3) in the (r1,73)-plane, since (5.3.3)
are independent of ¢1, ¢3. In this space we have four ‘critical points’, which
are listed in Table 5.1. Elementary analysis gives us the behavior of the
solutions of (5.3.2)-(5.3.3) in the (r,r3)-phase plane as shown in Figure
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Critical point Behavior
(0,0) unstable 2d-node
(0,/16/3) stable 2d-node
(1/16/3,0) stable 2d-node
(v/16/7,4/16/7) 2d saddle

Table 5.1: Critical points of (5.3.2).

“

N

)

~

Figure 5.2: Phase plane of (5.3.2).
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5.2. In the next subsections we will analyze most equations in a 3d- or
4d-space for 11,3 and one or two phase angles.

The case F(t) = C cos(wty) with w = 2wy, + ea

In Section 5.2 equations (5.2.12)-(5.2.13) and (5.2.10)-(5.2.11) have bcen
given for Zk,OaEk,o and Ay g, Bno, n # k respectively. As stated above we
only consider the equations for n = 1 and n = 3. We consider two cases in
this subsection, £k =1 and k = 3.

The case F(t) = C cos(wty) with w = 2ws3, + €
Introducing polar coordinates as defined in (5.3.1) for each mode, we trans-

form (5.2.12)-(5.2.13) for k = 3 and (5.2.10)-(5.2.11) for n = 1:

71
T3

1

3 1
1-— E'f‘% — Z’r%),

1 3 90C
1- 17% 1—67%) - Z;)?p'rg sin(2¢3 + «dy),
0 o 9 & o
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: M35, 9 &
= — Ty — = ——T
93 8 wi 3 40} w3, 1

9 6C
— 222 cos(2 t
iws, cos(2¢3 + aty).

We introduce 13 = 2¢3 + at; and obtain the following system for ry,r3, 13:

. 1 3 1
fo= gmi(l= e r 4r§) (5.3.4)
1 1 3 946C

. — - 1 _ 2 2 M . .r
3 2T3( T T3) = 4;g:T38HKdB), (5.3.5)
, 236 , 9 & ., 94C

= ———FTq— ——F—7r7 — —— COS 536
¢3 4 wgp 3 2"‘"%,, w3p 1 92 w3p (wB) ( )

From a practical point of view it is impossible to consider all different cases
for 6 and C € R. To give an idea how the solutions of (5.3.4)-(5.3.6)
can behave we will take 4 = C = 1 in this subsection. For § # 1 and
C # 1 a similar analysis can be applied. Furthermore, we take p? = 8,
since we consider p?> = 9 in the next subsection and we are interested in
detuning from this case. In the appendix some results for p? # 8 (with
p? €]0,10[\{522,9}) are given. The critical points of (5.3.4)-(5.3.6) for
a > 0 are listed in Table 5.2 and for @ < 0 in Table 5.3.

a—range # points critical points behavior

0<a<ag, 6 (0,0,x1) unstable 3d-node
(0,0, x2) 3d saddle-node

(\/1673, 0, x3) 3d saddle-node

(v/16/3,0, X4) 3d saddle-node

0,75, x&) 3d saddle-node

(0,73, X6 ) stable 3d node

a~a;1 5 (0,0,0) h.o. singularity
(+/16/3,0,x3) 3d saddle-node

(v/16/3,0,x4) 3d saddle-node

0,74, xd) 3d saddle-node

(0,73, X ) stable 3d node

azn’l <a<ozj,n’6 4 (v/16/3,0,x3) 3d saddle-node
(+/16/3,0, x4) 3d saddle-node

0,7F,xd) 3d saddle-node

(0, r3 ' X6 ) stable 3d node

a:a;';’ﬁ 4 (v/16/3,0, x3) 3d saddle-node

\/16 OX4 7"1,T3,X5)
(0 7ﬂ3 7X6)
(0,75, X6 )

h.o. singularity
3d saddle-node
stable 3d node
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+

+
O‘(:7",6 <a<acr,5

1
a—acr,.S

+

+
O507",5<O‘<acr,3

_ T
O‘_O[c'r,3

+

+
acr,3<a<acr,4

.
a—acr,Ll

+ +
acr,4 <a<acr,2

JT
cry2

+
Ay 9<Q

a=x

[=>}

w

—

(7

(V 16/370ax3)
(V 16/370’ X/l)
(71,73, X5)
(0,75, xg)
(0,75, x5 )
(V 16/3aoax3)
(V16/3,0, x4)

(71 » 73, X5 )

(U,f;,xg_):((),f;—, X’)+)

(0,75, ¢ )
(v16/3,0, x3)
(v16/3,0, x4)

(ffa@»x;)

(71,73, X5)

(Oafé’vaéF)

(0,73, X6 )
(+/16/3,0,0)

(ff,ﬁ;,x;)

(ffaf:?»XE)

(0,75, x¢)

(0,75, Xg )

(7:1{—7;;-’)(;)

(P 275, X5)

(0,757, x¢)

oy (07 xe)

(0>7*3+»X§)
(O’f§7xg)
(0,73, x¢)
(0,73, Xg)

(0,73, x¢)=(0,73, x5 )

1,77;',)(;):(7'1_,7:5,)(5_

3d saddle-node
stable 3d-node
3d saddle-node
3d saddle-node
stable 3d node
3d saddle-node
stable 3d-node
3d saddle-node
h.o. singularity
stable 3d node
3d saddle-node
stable 3d-node
3d saddle-node
3d saddle-node
3d saddle-node
stable 3d node
h.o. singularity
3d saddle-node
3d saddle-node
3d saddle-node
stable 3d node
3d saddle-node
3d saddle-node
3d saddle-node
stable 3d node
h.o. singularity
3d saddle-node
stable 3d node
3d saddle-node
stable 3d node
h.o. singularity

Table 5.2: Critical points of (5.3.4)-(5.3.6) for p* = 8 and F(t) = cos(wty)

with w = 2w3, + €a, with o > 0.
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a-range # points critical points behavior
a<og 0 — —
=0, | 1 (0,0,m) h.o. singularity
Q<< 5 2 (0,0,x1) unstable 3d-node
(0,0, x2) 3d saddle-node
a=0y, 3 3 (0,0,x1) unstable 3d-node
(0,0, x2) 3d saddle-node
(v/16/3,0,) h.o. singularity
Qe 3 <<y 4 4 (0, 0 Xl) unstable 3d-node
(0,0, x2) 3d saddle-node
(v/16/3,0,x3) 3d saddle-node
(v/16/3,0,x4) stable 3d-node
a=ay, 4 5 (0,0,x1) unstable 3d-node
(0,0, x2) 3d saddle-node
(v/16/3,0,x3) 3d saddle-node
(v/16/3,0,x4) stable 3d-node
(75, x3H)=07, 73, x35) h.o. singularity
Qo 4 <O<Qpp o 6 (0,0,x1) unstable 3d-node
(0,0, x2) 3d saddle-node
(v/16/3,0,x3) 3d saddle-node
(1v/16/3,0,x4) stable 3d-node
(7,7, x3) unst. 3d spiral-node
(P, 75 ,X5) 3d saddle-node
=0 o 7 (0,0,x1) unstable 3d-node
(0,0, x2) 3d saddle-node
(v/16/3,0, x3) 3d saddle-node
(1/16/3,0, x4 stable 3d-node
(7 ,7'3 ,x3) unst. 3d spiral-node
7, x5) 3d saddle-node
0,75, x&)=(0,73, x5 ) h.o. singularity
er2<a<ag s 8 (0,0,x1) unstable 3d-node
(0,0, x2) 3d saddle-node
(1/16/3,0,x3) 3d saddle-node
(1/16/3,0,x4) stable 3d-node
(FF, 75, x3) 3d saddle-node
(F1 755 X5 ) 3d saddle-node

(0,75, x3)
(Oa T35 X6 )

3d saddle-node
stable 3d node
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=g 5 7 (0,0,x1) unstable 3d-node
(0,0, x2) 3d saddle-node
(1/16/3,0, x3) 3d saddle-node
(1/16/3,0,x4) stable 3d-node
0,7F, x$)=(F, 77, x3) h.o. singularity
(71,75 s X5 ) 3d saddle-node
(0,73, Xg ) stable 3d node
A s<a<age T (0,0,x1) unstable 3d-node
(0,0, x2) 3d saddle-node
(v/16/3,0, x3) 3d saddle-node
(v/16/3,0, x4) stable 3d-node
(F{ ,Fg’ , x;) 3d saddle-node
0,7F, xd) 3d saddle-node
(0,73, X6 ) stable 3d node
=, 6 (0,0,x1) unstable 3d-node
(0,0, x2) 3d saddle-node
(v/16/3,0, x3) 3d saddle-node
(1/16/3,0, X4 7"1 ,T3,X5) h.o. singularity
0,74, xd) 3d saddle-node
(0,73, Xg ) stable 3d node
g e<a<0 6 (0,0,x1) unstable 3d-node
(0,0, x2) 3d saddle-node
(\/16/3,0,X3) 3d saddle-node
(v/16/3,0, X4 3d saddle-node
0,75, xd) 3d saddle-node
(0,75, X5 ) stable 3d node

Table 5.3: Critical points of (5.3.4)-(5.3.6) for p? = 8 and F(t) = cos(wtp)
with w = 2w3, + ea, with a <0.

In Table 5.2 and Table 5.3 the following parameters are defined:
16 18 16 27
~ ~+ : +
7 =4/—= 11— sin =4/= 11+ 3 ),
! ¢7( ¢@‘?“) s = ¢7< 289 X8

16 9

N : +

T3 =4/ |1— sinxg |,

BT ( 2v/39 “X6>
21/89

X1 = arccos( a), X2 = 2™ — X1,
16

2/89
x3 = arccos( g ¥~ E),m =27 — X3,
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™ — arcsin(S},) @, 4 << ag,s,
Xg— = arCSin(Sia) at—:f;’,S Sa< Ao as
not defined for all other a-values,
(7 — arcsin(S) ,) o, s <a<agg
- 2 + arcsin(S; ) ol o <a<agy,
XS — < . _ ? o +a
arcsm(Sl,a) Qe g <a< Qep s
| not defined for all other a-values,
(7 — arcsin(S3,) Oga < a<agy,
" arcsin(Sy,) o, <a<alg,
X6 = 9 ot ¥ ¥
2m + arcsin(Sy,) g < @< g,
| not defined for all other a-values,
T — arcsin(S, ,) A, Sa< ajm,
Xg =4 27+ arcsin(S,,) afr<a<af,,
not defined for all other a-values,
with
Si, = —L\/@(sso?\/@ — 15156)
e T 2798396505
623
————— V89 —1229747923602 + 746981984/ 89 1788831769,
310932945 vasy @ @
72
+ /20
= —— 89 — 324
S%0 = " 509045 v89(89 )
89 \/7
oo V/891/ —25096896402 + 20531232v/89 + 28234089,
7289505
and
9
+ _ 4 Y +
O = £ -2 VB9, ok 2= T s Yo (648V/89 + 9v/309945 ) ,
1
+ _ 1 +
oty = 534\/@(16 +£27), ot = 110894 (3368v/89 + 9v/34548105 ),
+ +
o= m\/— (972 +89v235), ok, = 4806\/_ (144 £ 9v373),
162 1
+ +
2 = 59 £ 584) .
%t = g7 (2VEIE9), = e VEI (95 )

The critical points of (5.3.4)-(5.3.6) for p? # 8 (with p® €]0,10[\{%3,9})
can be found in a similar way, and are listed in Table 5.8 of the appendix.
The system is 27-periodic in 13, so we consider 93 € [0, 2r[. The behavior
of the solutions of (5.3.4)-(5.3.6) for p> = 8 (in a neighborhood of every
critical point) in the (ry,rs3,3) space is given in Figure 5.3, for o < 0.
For a = 0 system (5.3.4)-(5.3.6), with p? = 8, has six critical points: two
critical points in the r; = 0 plane (one stable 3d-node and one 3d-saddle-
node), two 3d-saddle-nodes in the r3=0 plane (on the line r; = /16/3)
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Figure 5.3: Phase space of (5.3.4)-(5.3.6) for p? = 8, for several a-values.
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and two critical points on the 13-axis (one unstable 3d-node and one 3d-
saddle-node). For a < 0 there are two 3d-saddle-nodes in the (rq,rs,3)
space: one for @ = «, ¢, bifurcating from one of the saddle-nodes in the
r3 = 0 plane (which then becomes a stable 3d-node for a < ) and one
for a = Qg 5, bifurcating from the 3d-saddle-node in the r; = 0 plane.
As o decreases further one of the saddle-nodes in the (r1,73,13) space
changes into an unstable 3d-spiral-node. Also, for decreasing «, the two
critical points in the ;1 = 0 plane move closer to each other, coinciding for
@ =y, , and then disappearing. For a < a, , there exists an attracting
curve in the r; = 0 plane, which moves closer to the line (0, /16/3,13) as
a decreases further. Also, for a < @, 9, the two unstable critical points
in the (r1,73,3) space move closer to each other, coinciding for @ = a4
and then disappearing. As « decreases further the two critical points in the
r3 = 0 plane (on the line r; = 1/16/3) move closer to each other, coinciding
for @ = a,, ; and then disappearing. For a < «, 5 the two critical points
on the t3-axis move closer to each other, coinciding for @ = o, ; and
disappearing. We see that for a < o, (and for o > acr o) there are
no critical points for (5.3.4)-(5.3.6) (with p? = 8). However, we have two
‘critical’ lines ((1/16/3,0,3) and (0,0, 3)), i.e. lines for which 7y =73 =0
and 13 #). The line (,/16/3,0,1)3) is an attracting line. Furthermore,
an attracting curve remains in the r; = 0 plane, which comes in a small
neighborhood of (but does not coincide with) the line (0,/16/3 wg) for
o K g, (or a > af,). We see that for o < Qg q (or a > acr o) the
phase space analysis connects to the case w # w3, + e, considered in the
(r1,73,%3) space. In the (r1,rs,3) space system (5.3.2)-(5.3.3), which has
been considered in Section 5.3.1, becomes

T = 57"1(1 1671 47'3) (5.3.7)

.1 1, 3,

ry = 27'3(1 bl Z'rl ]_6 3) (5.3.8)

. 243 § 9 4

3 = a-— ————r% -2 ,2 (5.3.9)
4 wgp wapw;;p L

In this case system (5.3.7)-(5.3.9) has no critical points, but we have four
‘critical’ lines, for which 7y = 73 = 0 and 3 #0. These lines are: (0,0, 3),

(v/16/3,0,43), (0,/16/3,13) and (1/16/7,/16/7,13). This case connects

to the case considered above for large values of .

The case F(t) = C cos(wty) with w = 2wy, + ex
Introducing polar coordinates as defined in (5.3.1) for each mode, we trans-
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form (5.2.12)-(5.2.13) for k = 1 and (5.2.10)-(5.2.11) for n = 3

. 1 3 1 146C
o= 57-1(1 — ET% 47'3) 4w]pr3 sin(2¢; + aty),
r3s = 57’3(1 - 47"1 167'3)7
- 36 , 9 6 , 16C
= 202t 0 42 SO os(2 t),
&1 Swi”pm 4w1pw§p73 Ton, cos(2¢; + aty)
| . M3, 9 5
by = )
8 w§ 4wf w,

We introduce 19 = 2¢; + at; and obtain the following system for r1,r3,1:

. 1 3 1 1oC . .
T = 57"1(1 —1-677"% 1 r3) — Zw—lpwsm(%), (5.3.10)
. 1 1o 3,

_ 5.3.11
iy = grall—grt= b, (5:3.11)
. 346 5 9 & 5 16C

- - = S 5.3.12
b = e ot go - g cosle) (5:3.12)

From a practical point of view it is impossible to consider all different cases
for § and C' € R. Again, as done in the previous subsection, we will con-
sider the case § = C = 1. Furthermore, we take p?> = 8 as was donc in the
previous subsection. It can be seen easily from the symmetry in 7; and r3
that the results for this case are similar to the results given in the previ-
ous subsection. The only difference are the constants in the equations for
71,73,%3 which contain different powers of w;,,ws,. A numerical analysis
of system (5.3.10)-(5.3.12) gives us results, which are similar to the results
obtained for w = 2ws3, + € in the previous subsection (with r, and r3
exchanged). Also, for § # 1 and C # 1 a similar analysis can be applied.

5.3.2 The case p> =9+ €3

As shown in Section 5.2 an interaction occurs between oscillation modes 1
and 3 if p? = 9. Furthermore, due to the integral term in (5.1.8), inter-
actions occur between those modes that have non-zero initial energy. Due
to the F(¢) term in (5.1.8) extra interactions can occur between the dif-
ferent oscillation modes for specific values of w, w ~ 2w, k= 1,2,3,... .
Again these interactions can only occur for oscillation modes with non-zero
initial encrgy. We consider the cases F(t) = 0, F(t) = C cos{wtg) with
w # 2w, + € or w = 2w, +ea, k= 1,3.
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The case F(t) =0 or F(t) = Ccos(wtp) with w # 2wy, + ea

In Section 5.2 equations (5.2.14)-(5.2.15) have been given for A, o, By o. As
stated above we only consider the equations for n = 1 and n = 3. Intro-

ducing polar coordinates as defined in (5.3.1) for each mode, we transform
(5.2.14)-(5.2.15) forn =1,3

) 1 3 1 1

M= gl gert = gra) = gyrivs coslds = 3u),

. 1 1 3 1

'r3 = 57'3(1 - ZT% - Erg) 96T1 CO§(¢3 - 3¢)1)’

. 348 5, 1§ 1 : p

o = —%\/——7‘1 0 \/_7"3 - 3—2T1T3 sin(¢s — 3¢1) — 2V10°
9 § 2 3 0 2 'B

; 1
¢3 = 80\/— T3 — 0 /io 1+ Sm(¢3*3¢1) g\/_l_ﬁ

We introduce ¥; = ¢3 — 3¢ and obtain the following system for rq,r3,1;:
3 o 1, 1

. 1

o= Erl(l T Zr3) 321"%7“3 cos(91), (5.3.13)
; 1 1 3 1 ]

ry = 57’3(1 - ZT% 16 32,) 967‘1 COS("/Jl) (5314)
4B 1n . 3.0 o

'(Pl = 53 + — 96 7 ( r{ + 9'['3) Sln(¢1) + %\/—1—0(7'1 - 7'3)~ (5-3-15)

For r3 = 0 (5.3.13)-(5.3.15) do not hold. In that case we have to analyze
the original differential equations (5.2.14)-(5.2.15) for n = 1,3. We analyze
(5.3.13)-(5.3.15) in the (r1,7rs3,v;1) space. We assume d = 1. For § #1 a
similar analysis can be applied.

We start with 3 = 0. The critical points of (5.3.13)-(5.3.15) with 8 =0 are
listed in Table 5.4. For a point on the line (0,,/16/3,11) we have 7y =73 =0
and 91 > 0, which means we have an (attracting) line with flow along it.
The behavior of the solutions of (5.3.13)-(5.3.15) for 8 = 0 in the (r1,73,¢1)
space is sketched in Figure 5.4. We next examine the behavior of solutions
of (5.3.13)-(5.3.15) in the (r1,73,11) space for several values of 5 > 0. For
B < 0 a similar analysis holds.

For 8 > 0 the two saddle nodes in the (ry,r3,%1) space move closer to
each other. Furthermore, the stable 3d-node in the (r1,73,11) space moves
closer to the r3 = 0 plane. At some point, for G = 0.03715, one of the
saddle-nodes in the (r1,73,11) space changes singularity and becomes an
unstable 3d spiral-node. The stability analysis in the (ry,73,1) space does
not change, since this critical point remains unstable. Numerical analysis
indicates that for 8 > 1/10 the effects of the a-term in system (5.3.13)-
(5.3.15) are significant. We therefore start our analysis with 8 = 1/10. The
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Critical point Behavior
(0,0,11) unstable 2d-node for each 1
(1.5930,1.2627, 6.2328) 3d-saddle-node
(1.2267,1.8538, 3.0389) 3d-saddle-node
(2.2975,0.6312, 3.3146) stable 3d-node

Table 5.4: Critical points of (5.3.13)-(5.3.15) for 5=0.

—=173

'd

1

Figure 5.4: Phase spacc of (5.3.13)-(5.3.15) for 5 = 0.

critical points are listed in Table 5.5. For a point on the line (0,1/16/3,11)
we still have 71 = 73 = 0 and 1/'11 > (0. The behavior of the solutions of
(5.3.13)-(5.3.15) for B =1/10 in the (r1,73,1) space is sketched in Figure
5.5. As 3 increases further the two unstable points in the (ry,r3,11) space
move closer to each other. Furthermore the stable 3d-node moves closer
ot the r3 = 0 plane. At some point, for 4 =~ 0.1860, thc 3d-node changes
sigularity to a 3d spiral-node. The stability analysis in the (rq,73,11) space
does not change, since this critical point remains stable. As [ increases
further the two unstable points in the (rq,r3,%1) space move closer to
each other, coinciding for 8 ~ 0.5675 and then disappering. The critical
points for 3 = 0.5675 are listed in Table 5.6. The behavior of the solutions
of (5.3.13)-(5.3.15) for B =~ 0.5675 in the (r1,73,11) space is sketched in
Figure 5.6. The line (0,,/16/3,41) remains a ‘critical’ line, i.e. we have
71 = r3 = 0 and 1/)1 > 0. For # > 0.5675 a separating surface remains in
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Critical point Behavior
(0,0,%1) unstable 2d-node for each 1;
(1.5927,1.2678,6.0418) 3d-saddle-node
(1.2262, 1.8544, 3.2277) unstable 3d spiral-node
(2.2971,0.6173, 3.4431) stable 3d-node

Table 5.5: Critical points of (5.3.13)-(5.3.15) for g = 1/10.

—=T'3

Figure 5.5: Phase space of (5.3.13)-(5.3.15) for 8 = 15.

the (ry,73,11). The stable point in the (ry,73,11) space move closer to the
r3 = 0 plane as 3 increases further. For 3 = 1 the critical points are listed
in Table 5.7. The line (0,1/16/3,1;) remains a ‘critical’ line. The behavior
of the solutions of (5.3.13)-(5.3.15) for 8 = 1 in the (r1,73,%1) space is
sketched in Figure 5.7. For 8 > 1 the stable point in the (r1,73,%1) space
is in a small neighborhood of the r3 = 0 plane. It can be easily seen that for
8 >» 1 the phase space behavior connects to the behavior in the case p? # 9
and w # 2wy p, considered in the (rq,73,1)1) space (see also Section 5.3.1).
In the (ry,73,13) space system (5.3.2)-(5.3.3), which has been considered
in Section 5.3.1, becomes

o132 1 31
T 27'1(1 167"1 47"3)7 (5.3.16)
. 1 1 3

r3 = 5’[‘3(1 - Z’I‘% — -1—67"%), (5317)
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Critical point Behavior
(0,0,41) unstable 2d-node for each
(1.4935,1.5435,4.6165) h.o. singularity
(2.2989,0.4399, 4.0419) stable 3d spiral-node

Table 5.6: Critical points of (5.3.13)-(5.3.15) for 8 = 0.5675.

—>T3

T

Figure 5.6: Phase space of (5.3.13)-(5.3.15) for 8 ~ 0.5675.

. 27 46 9 4
'(‘bl = w3 (2W3p — lep) T'g + o 3 ((x)3p - 2&)1p) T'%. (5318)

8 wy Wi, 8 wy, w3,

In this case system (5.3.16)-(5.3.18) only has trivial critical points (r; = 0,
r3 = 0, 11 arbitrary). However, we have three ‘critical’ lines, for which
71 = 73 = 0 and 43 # 0. These lines are: (1/16/3,0,41), (0,/16/3,4;)
and (1/16/7,/16/7,11). This case connects to the case considered above
for large values of |3|.

The case F(t) = Ccos(wtp) with w = 2wy, + ea

In Section 5.2 equations (5.2.21)-(5.2.22) and (5.2.14)-(5.2.15) have been
given for Zk,o,ﬁk,o and Zn,o,ﬁn,g, n # k, respectively. As stated above we
only consider the equations for n = 1 and n = 3. We consider two cases in
this subsection, £ =1 and k& = 3.
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Critical point Behavior
(0,0,%1) unstable 2d-node for each 1,
(2.3044,0.2764,4.3326) stable 3d spiral-node

Table 5.7: Critical points of (5.3.13)-(5.3.15) for g = 1.

v i
f“% """""""""""" yoo
' %i’ _______________________ |
SO N
L

—=7T3

2

Figure 5.7: Phase space of (5.3.13)-(5.3.15) for g = 1.

The case F(t) = C cos(wty) with w = 2w3, + €xx
Introducing polar coordinates as defined in (5.3.1) for each mode, we trans-
form (5.2.21)-(5.2.22) for k = 3 and (5.2.14)-(5.2.15) forn =1

= %m(l - f_ﬁr% - ir%) 312r1r3 cos(d3 — 3¢1),
g = l7~3(1 - }Ir% - %rg) 916r1 cos(p3 — 3¢1) — %-6—\/%7‘3 sin(2¢3 + aty),
$1 = _83_0_51(‘)1‘? - 116\/%7% - 3%7"1?‘3 sin(¢3 — 3¢1) — Q—ﬂ’m,
by = gt = Bt o in(gn - 34
—% - Z\/—C_ cos(2¢3 + aty).

We introduce 9; = ¢3 — 3¢ and 3 = 2¢3+at;, and obtain the following
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(autonomous) system for 7, r3, 11, P3:

r o= %rl(l — % 3 ir%) lerlrr; cos(91), (5.3.19)
fy = ro(l = g7 = erd) — ot cos() - %%m sin(is),  (5.3.20)
o = %% + %T_; (rf + 97‘%) sin(1;) (5.3.21)
+§%%(T% —r3) %j—% cos(¢3),
thy = — 3% — f—O\/% (3r3 +2r7) (5.3.22)
2 dinn) — 29 conus).

48 14 210

For r3 = 0 (5.3.19)-(5.3.22) do not hold. In that case we have to analyze
the original differential equations (5.2.14)-(5.2.15) for n = 1 and (5.2.21)-
(5.2.22) for k = 3. From a practical point of view it is impossible to consider
all different cases for § and C € R. To give an idea how the solutions of
(5.3.19)-(5.3.22) can behave we will take § = C' =1 in this subsection. For
0 #1 and C # 1 a similar analysis can be applied.

We see that in this subsection system (5.3.19)-(5.3.22) has to be analyzed in
a 4d phase space, a reduction to a lower dimension seems to be impossible.
Furthermore, we have two detuning parameters in (5.3.19)-(5.3.22), o and
B. In this section we only consider the cases 3 = 0, # 0 and 3 # 0, a = 0.
The (numerical) analysis can be extended to the case 8 # 0, o # 0, but is
much more complicated and beyond the scope of this chapter.

We start with 8 = 0. We counsider « = 0 and a > 0 (the case o < 0 is sim-
ilar). The behavior of some solutions of (5.3.19)-(5.3.22), projected on the
(r1,73) plane, is given in Figure 5.8 for some values of o € [0,10]. Fora =0
we have two critical points, (r1,73,1,%3) = (2.0667,1.0133,4.2568, 3.5320)
and (1.9999,0.91953, 5.0557, 3.6226), which are 4d saddle-nodes. Further-
more, we have two ‘critical’ lines, for which 7| = 73 = @b; =( and w'] > 0:
the lines (0,2.4964,;,3.5047) and (0,1.7584,1,2.0531). The first line is
an attracting line, the second one is ‘unstable’. Also, we have two lines
of unstable critical points, (0,0,v¢1,7/2) and (0,0,%1,37/2). For a > 0
the two 4d saddle-nodes move closer to each other. The two lines in the
r1 = r3 = ) plane are no longer lines of critical points, but are ‘critical’
lines (i.c. 71 =0, 73 = 0, 45 = 0 and 91 # 0). The t3-values of the lines
in the r; = r3 = 0 plane change with «, and the two lines move closer to
each other as « increascs. Furthermore, for « > 0, the rs-values of the
lines in the r; = 0 space change and the lines move away from cach other.
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Figure 5.8: Phase space of (5.3.19)-(5.3.22) for 8 = 0, for several values of
«, with r; (horizontal) from 0 to 2.5, r3 (vertical) from 0 to 2.5.

At some point, for o =~ 0.1995, the rz-value of the ‘unstable’ line reaches a
minimuin, (0,1.6744,4;,7/2). As « increases further, the rz-value of the
unstable line in the r; = 0 space becomes larger again. Furthermore, the
two 4d saddle-nodes keep moving closer to each other, as do the lines in
the r1 = r3 = 0 plane. At some point, for o = (0.4743, the two lines in the
r1 = r3 = 0 plane coincide to (0,0,,0) and then disappear. However, an
unstable surface, (0,0,1,13), for which 7y = 73 = 0 and 1/}1 £ 0, i3 # 0,
occurs for a > 0.4743. As « increases further the two 4d saddle-nodes
keep moving closer to each other. Furthermore, the r3-values of the lines
in the 7y = 0 space become larger. At some point, for @ =~ 0.5595 the
rs-value of the attracting line in the r1 = 0 space reaches a maximum,
(0,2.8041,;,37/2). As « increases further, the r3-value of the attracting
line in the r; = 0 space becomes smaller again and the two lines in the
r; = () space move closer to each other. Also, as « increases further the two
4d saddle-nodes move closer to each other, coinciding for o = 0.7098 and
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then disappearing. A separating surface remains. As « increases further
some kind of periodicity occurs, for o = 0.7233, with r;-values between
1.59 and 2.31, r3-values between 0.43 and 1.44, /;-values between 2.23 and
3.45 and with 1/)3 > 0. This periodic phenomenon becomes smaller as «
increases. As « increases further the two lines in the r; = 0 space move
closer to each other, coinciding for o ~ 0.8868, and then disappearing.
However, some kind of periodicity occurs with r; = 0 and values of r3
between 1.78 and 2.76. This periodic phenomenon becomes smaller as «
increases, and the rs-values come in a small neighborhood of 1/16/3 for
large values of ae. Furthermore, the other periodic phenomenenon becomes
smaller as « increases, and the r{,r3,1; values come in a small neighbor-
hood of 2.29,0.63,3.31 respectively. Also a separating surface remains in
the (r1,r3,1,13) space.

We see that for o > 1 (or a < 1) the phase space analysis connects to the
behavior in the case p? = 9, w # w3 , + €, considered in the (r1,r3,%1,v3)
space (see also Section 5.3.2). In the (ry,73,11,%3) space system (5.3.13)-
(5.3.15), which has been considered in Section 5.3.2, becomes

1 3 1 1
1 1 3 1
T3 = 51“3(1 — Zr% —16r§) —967"% cos(¥1), (5.3.24)
H 4 ,6 ]. 'r'l 3 5 2 2

_4 02— 3.2
D=5 5 g U+ ) sin() + g5 s} — 1), (5:325)
: B 3 4 2 2 1 7’:1)’ .

= o — _— 2 —_— . 9.
do=a— i - (33 + 2r7) + 5, ) (5.3.26)

In this case system (5.3.23)-(5.3.26) only has trivial critical points (for
a = (3 =0). However, we have an attracting line (2.2975,0.6312, 3.31, ¢3),
for B = 0, for which 7, = 3 = t; = 0 and ¢j;3 # 0, and an attracting surface
(0,/16/3,41,43), for which 71 = 73 = 0, ¥y # 0 and v3 # 0. Further-
more, we have two ‘unstable’ lines (for 8 = 0), (1.5930,1.2627,6.2328,3)
and (1.2267,1.8538, 3.0389,13). This case connects to the case considered
above for large values of |o.

Next we consider 8 < 0 and a = 0, since we want to analyze detuning from
the case p? = 9 to the p? = 8, which was discussed in Section 5.3.1. For
(B > 0 a similar analysis holds. The behavior of some solutions of (5.3.19)-
(5.3.22) projected on the (r1,r3) plane is given in Figure 5.9, for —100 <
B < 0. For 8 <0 system (5.3.19)-(5.3.22) has no critical points. However,
a separating surface occurs in the (ry,73,1193) space. Also, for 5 < 0 the
r3-value of the attracting line in the 7, = 0 space increases. The rs-value of
the attracting line has a maximum for § = —5.3076. As 3 decreases further,
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(e) B==7.0 (f) 8 = —8.4131
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(g) B=-10.0 (h) B8 = —50.0

° 05 1 15 2 25

(i) 8 = —100.0

Figure 5.9: Phase space of (5.3.19)-(5.3.22) for a = 0, for several values of
B, with r; (horizontal) from 0 to 2.5, r3 (vertical) from 0 to 2.5.

some kind of attracting periodicity occurs (for § = —7.0), with values of
r1,73 in the neighborhood of 2.3,0.5 respectively. As (3 decreases further
this periodic phenonmenon becomes smaller and moves closer to the r3 =0
space. For # =~ —8.4131 the two lines in the 7; = 0 space coincide and
disappear for 8 > —8.4131, but an attracting periodic phenomenon occurs
with values of r3 ‘oscillate’ around r3 = /16/3. As 3 decreases further this
periodic phenomenon becomes smaller and the r3-values come in a small
neighborhood of 1/16/3. The periodic phenomenon with values of r{,r3
which initially were in a neighborhood of 2.3,0.5 respectively, comes in a
small neighborhood of r; = 1/16/3 and r3 = 0.

We see that for 5 <« —8.4131 the phase space analysis connects to the case
PP #9+efw= w3 p + €a, considered in Section 5.3.1. ws, is taken = /90
in this subsection, whereas the w3, considered in Section 5.3.1 is based
upon the assumption that p? = 8, i.e. w3y = v/89. In order to compare
both cases, we have to take @ > 0 in the case considered in Section 5.3.1.
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The case F(t) = C cos(wty) with w = 2wy, + ex

Introducing polar coordinates for each mode we transform (5.2.21)-(5.2.22)
for k =1 and (5.2.14)-(5.2.15) for n = 3, using (5.3.1)

2

) . 1
71 - —7'1(1 - —7'1 - _7'3) - 3—2T1r3 COS(¢3 - 3¢1)

__—~'r'1 sin(2¢1 + atl)a

410

) 1 1. 3 1
ryg = 57"3(1—17'5 16 r3) — 967“1 cos(¢3 — 3¢1),
: 30 4, 16 1 :
¢ = TR0 E——’l_ﬁr?’ BETHE sin(¢s — 3¢1)
3 16C
———— — ———=cos(2¢;1 + aty),
5716~ 1716 (2¢1 + aty)

9 ) 9 3 0 2 1 T3 /3
—Somrg 20 V10 1+ sm(d> —3¢)) — 610"

We introduce 1; = ¢35 — 3¢1 and ¢y = 2¢; + at;, and obtain the following
system for r1,73, 11, 1a:

s =

. 1 3 1 16
P = 5rl(l - T 4r§ 32r%73 cos(yn) — Z\/T r1sin(¢2), (5.3.27)
. ]. 1 2 3 2 ]- |4
T3 = 57‘3(1 EIET T3) — 967“1 3 cos(v1), (5.3.28)
. 4 p 17 .
V1= 5715t Gy U1+ 9) sint) (5.3.29)
3 0 o 30
+§67 T3 4—\/2 cos(9h2),
. g 1 ¢

1 1
—1—67"1739111(1,01) 2\/_C'cos (12).

For r3 = 0 (5.3.27)-(5.3.30) do not hold. In that case we have to analyze
the original differential equations (5.2.14)-(5.2.15) for n = 3 and (5.2.21)-
(5.2.22) for k = 1. From a practical point of view it is impossible to consider
all different cases for ¢ and C € R. To give an idea how the solutions of
(5.3.27)-(5.3.30) can behave we will take § = C' = 1 in this subsection. For
0 #1 and C # 1 a similar analysis can be applied. We see that in this
subscction system (5.3.27)-(5.3.30) has to be analyzed in a 4d phase space,
a reduction to a lower dimension seems to be impossible. Furthermore, we
have two detuning parameters in (5.3.19)-(5.3.22), « and 8. In this chapter
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we only consider the cases f = 0,a # 0 and 3 # 0, = 0. The (numerical)
analysis can be extended to the case § # 0,0 # 0, but is much more
complicated and beyond the scope of this chapter. We start with G = 0.
We consider a = 0 and o > 0 (the case a < 0 is similar). The behavior of
some solutions of (5.3.27)-(5.3.21) projected on the (r1,r3) plane is given
in Figure 5.10 for some values of a € [-10, 10].

(e) & =0.2399 (f)a=1.0




(g) =50 (h) a=10.0

Figure 5.10: Phase space of (5.3.27)-(5.3.30) for 8 = 0, for several values
of a, with 71 (horizontal) from 0 to 2.5, 3 (vertical) from 0 to 2.5.

For o« = 0 system (5.3.27)-(5.3.30) has no critical points. However, we
have two ‘critical’ lines, for which 7 = 73 = z/}z = 0 and z/}l > 0: the
line (0,+/16/3,1,2.1333) and (0,+/16/3,41,4.1499). The second line is
an attracting line, the first one is ‘unstable’. Also some kind of periodicity
exists, with r -values between 2.03 and 2.49, rs-values between 0.49 and
0.88, 11-values between 2.57 and 4.03 and with 1212 > 0. Furthermore, we
have two lines of unstable critical points, (0,0,;,7/2) and (0,0, ¢, 37/2).
Also, a separating surface exists in the (rq,73,11,12) space. For a > 0 the
two lines in the 7, = r3 = 0 plane are no longer lines of critical points,
but are ‘critical’ lines (i.e. 71 = 0, 73 = 0, % = 0 and ¥ # 0). The
1hg-values of the lines in the r; = r3 = 0 plane change with «, and the two
lines move closer to each other as « increases. Furthermore, for a > 0,
the two lines in the r} = 0, r3 = \/16/3 plane move closer to each other.
Also, for @ > 0, the periodic phenomenon seems to collapse to a point,
for @ = 0.0144. As « increases further, the ri-value of the point which
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arose from the periodic phenomenon becomes larger, reaches a maximum
for a =~ 0.1318 and then becomes smaller again. As « increases further the
two lines in the r; = r3 = 0 plane move closer to each other, coinciding
for a = 0.1581 to (0,0,,0) and then disappearing. However, an unstable
surface, (0,0,;,12), for which 7/, = r3 = 0 and 1/)1 # 0, Py # 0, occurs
for a > 0.1581. At some point, for a ~ 0.2399 the periodic phenomenon
reappears, with rj-values between 2.08 and 2.49, r3-values between (.44
and 0.76, 1,-values between 2.71 and 4.00 and with 1), > 0. As « increases
further the two lines in the r;1 = 0,73 = 1/16/3 plane move closer to each
other, coinciding for o = 0.2424 to (0, 1/16/3,1,0) and then disappearing.
However, an attracting surface, (0,1/16/3,1,2), for which 7y = 73 =
0 and 1,51 # 0, 1/}2 # 0 occurs for @ > 0.2424. As « increases further
the periodic phenomenon becomes smaller and for large values of o the
r1,73, 1 values come in a small neighborhood of 2.29,0.63,3.31 respectively.
Furthermore, the attracting surface (0,/16/3,11,12) still exists. Also a
separating surface remains in the (r1, 73,11, 12) space.

We see that for a > 1 (or a < 1) the phase space analysis connects to the
behavior in the case p? = 9, w # w; , + €a, considered in the (71,7311, 2)
space in a similar way as considered in (5.3.23)-(5.3.26) (see also Section
5.3.2).

Next we consider 8 < 0 and o = 0, since we want to analyze detuning
from the case p? = 9 to the p? = 8, which was discussed in Section 5.3.1.
For 8 > 0 a similar analysis holds. The behavior of some solutions of
(5.3.27)-(5.3.30) projected on the (r1,73) plane is given in Figure 5.11, for
—100 < 8 < 0. For B > 0 the two lines in the ry = 0, r3 = 1/16/3
plane move closer to each other. Furthermore, for § < 0, the periodic
phenomenon seems to collapse to a point, for 3 =~ —0.0545. As [ decreases
further, the r-value of the point which arose from the periodic phenomenon
becomes smaller. Also, the two lines in the 7, = 0,r3 = \/16/3 plane move
closer to each other, coinciding for 8 =~ —0.7667, and then disappearing.
However, for 8 < —0.7667 we have an attracting plane r; = 0,r3 = 1/16/3
with 71 = 73 = 0 and 1/}1 # 0, 1/}2 # 0. As [ decreases further, the
periodic phenomenon reappears, for 8 =~ —1.0226. For # < —1.0226 this
periodic phenomenon becomes smaller, moves to the r3 = 0 space and
comes in a small neighborhood of r; = {/16/3 and r3 = 0. We see that for
B <« —1.0226 the phase space analysis connects to the case p? # 9 + €3,
w = wip + €, as considered in Section 5.3.1. wyp is taken = V10 in this
subsection, whereas the w; , considered in Section 5.3.1 is based upon the
assumption that p? = 8, i.e. wy, is taken = v/9. In order to compare both
cases, we have to take « >> 0 in the case considered in Section 5.3.1.
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05

(h) B = —50.0

(i) B = —100.0

Figure 5.11: Phase space of (5.3.27)-(5.3.30) for a = 0, for several values
of 3, with r; (horizontal) from 0 to 2.5, r3 (vertical) from 0 to 2.5.

5.4 Conclusions

In this chapter we considered an initial-boundary value problem for the
vertical displacement of a weakly nonlinear elastic beam with a Rayleigh
perturbation due to a wind force and a harmonic excitation in horizon-
tal direction at the ends of the beam. The PDE considered contains the
parameters p?,C,d, w and € (0 < € € 1).

For some specific values of the parameters (0 < p? < 10, C = § = 1)
we have constructed formal approximations of order € and considered the
interaction between different oscillation modes. The aim of this chapter
was to see whether the applied (harmonic) external excitation can act as
a damping force on the oscillations of the beam. We considered the cases
p* €]0, 10[\{?2% ,9} (with p? = 8 as an example) andp = 9 (with detumng)
With p? €]0, 10[\{423, 9} we mean p? €]0,10] Ap? # 88 L eBADPE #£9+€B,
where § is a detuning parameter of order 1. For these cases of p? we
considered three possible cases for F(t): F(t) = 0 or F(t) = C cos(wtp)
(with w # 2w, + €a), F(t) = Ccos(2wspto), F(t) = C cos(2wi pto), with
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detuning.

For p? €]0, 10[\{823,9} we have shown that for the case F(t) = 0 A F(t) =
C cos(wto) (w # 2wy, +€a) no significant changes occur due to the external
excitation, and the analysis is similar to the case with no external excita-
tion as considered in Chapter 2. For the cases F(t) = C cos(2w; pt¢) and
F(t) = Ccos(2wy pty) we have shown that, with § = C = 1, the behavior
of the oscillation modes changes due to the external excitation. The sys-
tem will still oscillate in one mode only for large times (on a time scale
of order €), as was the case with no external excitation, but the ampli-
tude of oscillation has changed, i.e. is larger. Numerical analysis indicates
that this effect occurs for all values of C' € R. Also it is expected that
for F(t) = Ccos(wty + ¢) the effect is the same for all values of ¢. The
case § # 1 is expected to be more complicated to analyze, and is beyond
the scope of this chapter. This means that for p? €]0,10[\{$2,9} and
d = C = 1, the external excitation does not work as a damping force but
the amplitude of oscillation becomes larger. To understand the effect of
the external excitation better we have analyzed detuning from the specific
values of w considered, i.e. F(t) = Ccos(wtp) with w = 2w3, + e (or
w=2w, +e€a), « € R.

For p* = 9 we have shown that for the case F(t) = 0 A F(t) = C cos(wtg)
(w # 2wg,) no significant changes occur due to the external excitation, and
the analysis is similar to the case with no external excitation as considered
in Chapter 2. For the case F(t) = Ccos(2wsptp), with § = C = 1, we
have shown that the behavior of the oscillation modes changes duc to the
external excitation. The combined oscillation of the two oscillation modes
considered (modes 1 and 3), which was found in Chapter 2, has disappeared.
The amplitude of the (stable) oscillation of the third mode has become
larger, due to the external excitation. Again it can be shown numerically
that this effect occurs for all values of C' € R. Also it is expected that for
F(t) = C cos(wty+ ) the effect is the same for all values of ¢. The case § #
1 is expected to be more complicated to analyze, and is beyond the scope
of this chapter. This means that for p? = 9 and § = C = 1 the cxternal
excitation does not work as a damping force but the amplitude of oscillation
becomes larger. We have shown that if we consider detuning from w = 2ws,
(that is w = 2w3, + €a, @ € R), the combined oscillation appears again
for a, the detuning parameter, # 0. For the case F(t) = C cos(2wi pto),
with § = C = 1, we have shown that the behavior changes due to the
external excitation. The combined oscillation of the two oscillation modes
considered (modes 1 and 3), which was found in Chapter 2, still exists,
but the amplitudes of oscillation are no longer fixed: the stable combined
oscillation has changed into some kind of periodic phenomenon in the phasc
space considered. The amplitude of the (stable) oscillation of the third
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mode remains unchanged. For this case the external excitation has no
significant effects on the amplitudes of oscillation and certainly no damping
effects occur (for § = C = 1). We have shown that if we consider detuning
from w = 2w, (that is w = 2w, + e, @ € R), the periodic phenomenon
collapses to a point as @ moves away from 0, but reappears again for larger
as a changes further. To compare the analysis for the case p? = 9 with the
analysis for the case p? = 8 we considered detuning, i.e. p? = 9+¢83, 8 < 0.
We have shown that for the combination of the two effects considered in
this chapter (a Rayleigh perturbation due to a wind force and a harmonic
excitation in horizontal direction at the ends of the beam) the phase space
analysis of the approximations of solutions of the PDE considered is much
more complicated than the analysis performed in the separate cases, as
considered in Chapter 2 and Chapter 4, and many bifurcations occur when
detuning is considered.

As was done in Chapter 2, Chapter 3 and Chapter 4, we have shown for
which cases truncation to one or more modes is valid. Again, similar to the
results found in Chapter 2, we have shown that in specific cases internal
resonances occur, truncation to one mode gives loss of information and
approximations are no longer valid.

The analysis in this chapter can be easily extended to larger values of p?,
i.e. p? > 10. Furthermore, the influence of the different nonlinear terms
can be changed by taking the parameters 4 and C' # 1 in the PDE. The
analysis can be performed in the same way as presented in this chapter.

5.5 Appendix - Critical points for p? €]0, 10[\{£2, 9}
and F(t) = C cos(wty) with w = 2w3, + ea -

general case.

In Section 5.3.1, the case p? €]0,10[\{$2,9} and F(t) = C cos(wty) with
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w = 2w3, +ea is discussed, analyzing (5.3.4)-(5.3.6) for r1,73,%3. In Section
5.3.1 the critical points of (5.3.4)-(5.3.6) are given for p*> = 8, in Table

5.2 (for @ > 0) and Table 5.3 (for @ < 0). In this appendix we give

a more general analysis of the critical points of (5.3.4)-(5.3.6), for p? €
693
For p? # 8 the critical points and the range of « in which they are occur,

are listed in Table 5.8.

In Table 5.8 the following parameters were defined

16 9
At : +
T3 = J%— (1— st—mSlnx(i),
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Critical points  a-range

(0703X1,2) (rl Sag awl
(1/16/3,0,x3.4) r3la< ozcrg
(0 Ta’Xs) (‘r2<a<aj:r.2
(TIF’TB’XS) 4<a<acr5/\acr5<a<acr4
(771'7,,*:37’)(5—) cr4<a<acrﬁ/\acrﬁ<a<arr4

Table 5.8: Critical points for p* €]0,10[\{3,9} and F(t) = C cos(wto)

with w = 2w, + €c.

and
cos X2 = u:;’pa, COS X34 = 26093’1) - 312 )
w],p
sin X{%
T2y (8w, — 8102, )(Twd Wl o — 36(2w2,, + 27w ) + Twl wd ()7
- 9(1296(8w3 , — 81wt )% + 49wt w§ ’
with () = —4w} , (7w} i 0 — 36(2w3 , + 27w? p))2
+81 (1296(8w3 , — 81w} ,)? + 4901 05, ),
sin —648w3,p(wd o - 32423 +wd, ()2 |
9(104976 + o )
with () = —4w§ ,0” + 259205 o + 8503056 — 419904w3 , + 815
and
o, = :!:233,12, gy = % + icsz,‘/wgvp + 104976,
24 9
a“ir’g - w‘f’pwg,p 2w3
;4 = 14w;pw4 (8&]3’1](2w§’p + 27wip)

3.p
+/1296(83 , — 81w? )2 + 49w1‘,pw§,p) ;

243 1 24 1 .
+ / 2 + / 2
= —— 324 — , O = + 729 — dws .
Aers 3 dws, Wapr Yer6 w%’pw.’i,p 6uws., 3.p
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The order in which the critical points from Table 5.8 (dis)appear depends
on the value of p2. The values of p? for which the order of appearance of the
critical points of (5.3.4)-(5.3.6) changes can be found easily when analyzing
the critical values of a as functions of p? and are listed in Table 5.9.

p*-value a-values - p*-value a-values
02751 ag, =o0g,, 34302 o ,=alg
0.5259  af 3 =aky, 37059  af,=af,
0.7945 o}y = g3, N gy = Ogp g,
0.9670  of., = ag, 4.3333 Qg3 =0,
L1150 of =g, 48032  af,=af,,
1.3603 a5 = agg 5.9662  a..5=a.s,
1.6667 of, =oag, 60868 ol =alg,
20692  of | =ag, 6.1106 o, = g3,
2.0803  of 4 =of 6.3926 g6 =0,
24335 ag,=agn,  TI6TL ol =al,
2.9634 o, =ags Aag g, =ag s,

Table 5.9: Values of p? for which order of appearance of critical points

changes.




Chapter 6

Conclusions

The purpose of this chapter is to give some concluding remarks, and to
present some possibilities for future research by extending the analysis as
presented in this thesis.

In this thesis we considered initial boundary value problems for four cases
of weakly nonlinear beam equations (with four different kinds of nonlinear-
ities). We constructed formal approximations of order e for the four cases
involved in this thesis, and considered the possible interactions between the
different oscillation modes. Furthermore, in all cases a justification is given
whether truncation of the infinite series for the formal approximations of
the solution is valid or not. We showed that for some specific values of the
parameters involved complicated mode interactions can occur.

In Chapter 2 we considered an initial-boundary value problem for a weakly
nonlinear beam equation with a Rayleigh perturbation. We showed that
for most p?-values the behavior of solutions of the Rayleigh beam equation
is similar to that of solutions of the Rayleigh wave equation as presented
in [26]. We showed that truncation is allowed for most p?-values, restricted
to those modes that have non-zero initial energy. However, for some p?-
values extra mode interactions occur, which cause complicated internal
resonances. For 0 < p? < 10 these values are p®> ~ 9 and p? ~ 893 For
p? > 10 other internal resonances can be found in a similar way for special
values of p?. A so-called coupling of @(1) occurs and truncation to a few
modes can give loss of information, and approximations may possibly not
be valid on large time-scales. The analysis performed in this chapter can
be extended to other values of p?.

In Chapter 3 we considered an initial-boundary value problem for a weakly
nonlinear beam equation with a quadratic nonlinearity. We presented
an asymptotic theory which states that the constructed approximation is
asymptotically valid on an ¢! time-scale. We showed that, up to O(e), for
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most p?-values no mode interactions occur between different modes. Trun-
cation in that case is allowed to those modes that have non-zero initial
energy. However, for some p?-values interactions between different modes
occur, which cause complicated internal resonances. For p? €]0,100[ seven
critical values are given. For p* > 100 other internal resonances can be
found in a similar way for special values of p?. A so-called coupling of O(1)
occurs and truncation to one mode will give loss of information, and ap-
proximations will not be valid. Also in Chapter 3 the stays of the bridge are
modeled as two-sided springs with a small nonlinearity (ew?). A next step
would be to model the springs using w* and w™, as is done for example in
[9].

In Chapter 4 we considered an initial-boundary value problem for the ver-
tical displacement of a weakly nonlinear elastic beam with an harmonic
excitation in horizontal direction at the ends of the beam. The analysis
presented in this chapter holds for all p € R. In Chapter 2 and Chapter 3
it was shown that certain values of p? can cause internal resonances. We
showed that in Chapter 4 this does not occur. We showed that for all cases
mode interactions occur only between modes with non-zero initial energy
(up to O(e)). These mode interactions are restricted to an interaction be-
tween the different phases. The amplitudes of all oscillation modes are
constant. Truncation in that case is allowed to those modes with non-zero
initial energy. We considered the case with no external forcing (F(t) = 0)
and the case with external forcing (F'(t) = C cos(wt)). For F(t) = 0 and
F(t) = Ccos(wt) for most w-values, the mode interaction between the
modes with non-zero initial energy is restricted to an interaction between
the different phases. We showed that for specific values of w, i.e. w & 2wy,
special interactions occur. The mode interactions between the different os-
cillation modes are still restricted to an interaction between the different
phases but the amplitude of mode £ is no longer constant. Also, in Chapter
4 we considered an harmonic external force of the form F(t) = C cos(wt).
This analysis can be extended to a more general form of F(t), where F is a
T-periodic force, F(t) = % + 3, (an cos(vpt) + by sin(vnt)) with v, = 7,
This has been discussed in [46] for elastic beams or strings. In [46], trunca-
tion to one or two oscillation modes is applied, without giving a justification.
We showed that in the cases discussed in this chapter truncation is valid
up to O(e). In a way similar to the methods in Chapter 2 and Chapter 3
the problem with a more general form of F(t) can be studied. The analysis
will essentially be the same (depending on the function F'), however, the
equations will become a bit more complicated. A justification can be given
whether truncation is allowed in those cases or not.

In Chapter 5 we considered an initial-boundary value problem for the ver-
tical displacement of a weakly nonlinear elastic beam with a Rayleigh
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perturbation due to a wind force and a harmonic excitation in horizon-
tal direction at the ends of the beam. The PDE considered contains the
parameters p?,C,d, w and € (0 < ¢ < 1). For some specific values of
the parameters (0 < p? < 10, C = § = 1) we constructed formal ap-
proximations of order € and considered the interaction between different
oscillation modes. The aim of this chapter was to see whether the applied
(harmonic) external excitation can act as a damping force on the oscil-
lations of the beam or not. We considered the cases p? €]0,10[\ {22, 9}

1521
(with p> = 8 as an example) and p?> =~ 9 (with detuning). For these
cases of p? we considered three possible cases for F(t): F(t) = 0 or

F(t) = Ccos(wty) (with w # 2wy, + €a), F(t) = Ccos(2w3pto), F(t) =
C cos(2wi pto), with detuning. For p? €]0,10[\{823,9} we showed that for
the case F(t) = 0 A F(t) = Ccos(wty) (w # 2wy, + €a) no significant
changes occur due to the external excitation, and the analysis is similar
to the case with no external excitation as considered in Chapter 2. For
the cases F(t) = C cos(2w3pto) and F(t) = C cos(2w; pto) we showed that,
with § = C = 1, the behavior of the oscillation modes changes due to
the external excitation. The amplitude of oscillation has changed, i.e. is
larger. This means that for p? €]0,10[\{%23,9} and § = C = 1, the exter-
nal excitation does not work as a damping force. For p? ~ 9 we showed
that for the case F(t) = 0 A F(t) = Ccos(wtg) (w # 2wy, ) no significant
changes occur due to the external excitation, and the analysis is similar to
the case with no external excitation as considered in Chapter 2. For the
case F'(t) = Ccos(2wspto), with § = C = 1, we showed that the behav-
ior of the oscillation modes changes due to the external excitation. The
amplitude of the (stable) oscillation of the third mode has become larger,
due to the external excitation. This means that for p> ~9and 6 =C =1
the external excitation does not work as a damping force. For the case
F(t) = Ccos(2wy ptp), with § = C = 1, we showed that the behavior
changes slightly due to the external excitation. For this case the external
excitation has no significant effects on the amplitudes of oscillation and
certainly no damping effects occur (for 6 = C = 1). We showed that for
the combination of the two effects considered in this chapter (a Rayleigh
perturbation due to a wind force and a harmonic excitation in horizontal
direction at the ends of the beam) the phase space analysis of the approxi-
mations of solutions of the PDE considered is much more complicated than
the analysis performed in the separate cases, as considered in Chapter 2 and
Chapter 4, and many bifurcations occur when detuning is considered. As
was done in Chapters 2, 3 and 4, we showed for which cases truncation to
one or more modes is valid. Again, similar to the results found in Chapter
2, we showed that in specific cases internal resonances occur, truncation to
one mode gives loss of information and approximations are no longer valid.
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The analysis in Chapter 5 can be easily extended to larger values of p?,
i.c. p? > 10. Furthermore, the influence of the different nonlinear terms
can be changed by taking the parameters § and C' # 1 in the PDE. The
analysis can be performed in the same way as presented in this chapter,
but is expected to be more difficult for the case § # 1.

We expect that the asymptotic theory, presented in Chapter 3, can be
extended to the other equations considered in this thesis. For example the
Rayleigh perturbation, w; — %wf Formal approximations for a nonlinear
beam equation with this Rayleigh perturbation were constructed in Chapter
2. A similar fixed point theorem (in a different Banach space), where the
vector (w,w;) is considered in stead of w, can most likely be used in this
case.

In the derivation of the beam equation as given in the introduction of this
thesis, the so-called Kirchhoff assumption was applied (the velocity of the
beam in z-direction, u;, is small compared to w; and can be neglected).
This assumption reduced the coupled system of PDE’s to a single PDE. A
next step would be to consider the case where the Kirchhoff assumption
does not hold, and the coupled system of two PDE’s in v and w must be
analyzed.

Also in the derivation of the beam equation as given in the introduction of
this thesis, the rotation of the beam is not taken into account, i.e. the effects
of rotation are taken to be small compared to the vertical displacement of
the beam. The analysis of the problems considered in this thesis can be
extended to the case where rotation is also taken into account.
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Samenvatting

Bepaalde typen buigzame bouwwerken, zoals hoge gebouwen, hangbruggen
of met ijs bedekte elektriciteitsdraden, staan, door verschillende oorzaken,
zoals (sterkc) wind of aardbevingen, bloot aan trillingen. Een klassiek
voorbeeld is de Tacoma narrows hangbrug. Wie heeft niet de video-film
gezien over de grootschalige trillingen en de ineenstortingen van deze brug,
getoond tijdens natuurkundelessen op de middelbare school. Een meer
recent voorbeeld is het trillen van de tuien van de Erasmus Brug in Rot-
terdam, tijdens stormachtig en regenachtig weer.

In dit proefschrift bekijken we een (vereenvoudigd) model voor niet-lineaire
trillingen van een hangbrug. Voor verschillende (externe) krachten uitge-
oefend op het bouwwerk is een begin-randwaarden probleem gedefinieerd,
dat de verticale uitwijking van de hangbrug beschrijft. Voor elk geval is het
begin-randwaarden probleem bestudeerd, door een meer-tijdschalen sto-
ringsmethode te gebruiken. Formele benaderingen, d.w.z. benaderingen
die voldoen aan de differentiaalvergelijking en de begin- en randwaarden
tot op zeker orde in €, worden voor elk geval geconstrueerd in de vorm
van een machtreeks. Verder wordt aangetoond of er interne resonanties
ontstaan of niet. Voor alle gevallen wordt een rechtvaardiging gegeven van
de (zogeheten Galerkin) truncatie van de oneindige reeks van de formele
benaderingen van de oplossing.

Voor één klasse van begin-randwaarden problemen wordt de existentie
en eenduidigheid van oplossingen en de asymptotische geldigheid van be-
naderingen voor bepaalde goed-gedefinieerde tijdschalen bewezen met be-
hulp van de dekpuntstelling van Banach.

De resultaten van dit proefschrift kunnen onder andere dienen om te be-
kijken of Galerkin truncatie, die vaak gebruikt wordt als dit type problemen
(numerick) bekeken wordt, toepasbaar is of niet. Ook kan, met behulp van
de resultaten van dit proefschrift, een rechtvaardiging gegeven worden van
de asymptotische geldigheid van benaderingen, en kan er iets gezegd worden
over het verschil tussen benaderingen en exacte oplossingen.
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