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a b s t r a c t

The development of thermal convection is studied for a viscoplastic fluid. If the viscosity is finite at zero

shear rate, the critical Rayleigh number for linear instability takes the value given by a Newtonian fluid

with that viscosity. The subsequent weakly nonlinear behaviour depends on the degree of shear thinning:

with moderate shear thinning, convective overturning for a given temperature difference is amplified

relative to the Newtonian case. If the reduction in viscosity is sufficiently sharp the transition becomes

subcritical (the relevant situation for many regularized constitutive laws). For an infinite viscosity at

zero shear rate, or a yield-stress, the critical Rayleigh number for linear instability is infinite. Nonlinear

convective overturning, however, is still possible; we trace out how the finite-amplitude solution branches

develop from their Newtonian counterparts as the yield stress is increased from zero for the Bingham fluid.

Laboratory experiments with a layer of Carbopol fluid heated from below confirm that yield strength

inhibits convection but a sufficiently strong perturbation can initiate overturning.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Thermal convection of viscoplastic fluids is important in many

industrial and geophysical applications. Perhaps the most famil-

iar example is the heating of porridge: “If porridge is cooked in a

single saucepan and not stirred it will burn at the bottom. It can

still be poured – it is still liquid, but at a certain stage of sticki-

ness convection currents can be prevented even when the bottom

is some hundreds of degrees hotter than the top.” [1].1 Jeffreys

attributed the lack of convection solely to high viscosity, but por-

ridge is viscoplastic [4] and its non-Newtonian rheology seems to

be important for suppressing convection. Although he did not rec-

ognize any application to porridge, Jeffreys [3] and several other

geophysicists contemplating the thermal convection of the Earth’s

mantle, were among the first to appreciate that a finite “strength” of

a fluid would have substantial effects on convection [5–7]. Orowan

[7] showed particular insight remarking that thermal convection

would not readily initiate if the fluid has a finite yield stress, but the

Newtonian solution is a reasonable approximation once convection

is underway.

∗ Corresponding author.

E-mail address: Alison.Rust@bristol.ac.uk (A.C. Rust).
1 Rumford [2] actually initiated the scientific study of thermal convection with a

recount of his bowl of rice porridge that after an hour on a stove became cold on

top but hot enough at the bottom to burn his mouth. As a result early articles often

referred to thermal convection as “the porridge problem” [3].

The onset of thermal convection in a layer of Newtonian fluid

confined between plates maintained at different temperatures (the

Rayleigh–Bénard problem) is a classic model of instability theory

and pattern formation. Indeed, the development of weakly non-

linear theory for the problem [8] laid part of the foundation for

the modern theory of dynamical systems. Our goal in the cur-

rent article is to map out a corresponding analysis for viscoplastic

fluid convection. Though one might at first sight imagine this to be

straightforward, details of the constitutive model can significantly

complicate the situation.

More specifically, a crucial detail of instabilities in viscoplastic

fluids is the impact of the yield stress: when patterns develop from

a motionless background state, as in the Rayleigh–Bénard prob-

lem, that equilibrium is always linearly stable because the yield

stress can only be overcome by a finite perturbation (cf. [9]). Yet,

as also remarked by Orowan, it seems reasonable that the nonlin-

ear convective state is not substantially affected by the yield stress,

especially when it is small. A similar situation arises for generalized

Newtonian fluids without a yield stress if the viscosity diverges at

zero shear rate, as for a shear-thinning power-law fluid.

In Section 2, we develop the weakly nonlinear theory. We

approach the problem by treating non-Newtonian effects as small.

This allows us to begin a perturbation expansion from the weakly

nonlinear Newtonian convection solution. We thereby build the

small non-Newtonian effects into the weakly nonlinear model at

the same stage of the expansion as the tuned linear instability and

nonlinear saturation (the key effects in the Newtonian problem

[8]). Importantly, this signifies that we perturb from a fully yielded
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convective state and we do not therefore have to face issues regard-

ing the breakup of the rigid plug characterizing the motionless

conductive equilibrium. Métivier et al. [10] propose an alternative

approach which adds a background shear flow.

The tools developed in Section 2 allow us to draw some general

conclusions regarding the effect of shear thinning on convection

for generalized Newtonian fluids without a yield stress (Section

3). We restore the yield stress and describe detailed results for

the Bingham fluid in Section 4, and compare the weakly nonlinear

results with computations of the fully nonlinear steady convec-

tive states, which also extends the solutions to higher amplitude

and further from the Newtonian limit. Section 5 deals with some

analytical solutions to the problem in the limit of short horizontal

scale, and Section 6 reconsiders Orowan’s “plastic convection”. We

also describe some laboratory experiments on the initiation of ther-

mal convection in Carbopol (Section 7). We conclude by discussing

some industrial and geological applications.

2. Weakly viscoplastic and nonlinear convection

2.1. Formulation

Our goal in this section is to detail a weakly nonlinear theory

for a mildly viscoplastic fluid. With that in mind, we consider an

incompressible, two-dimensional, Boussinesq fluid layer confined

between two horizontal plates held at different temperatures and

characterized by some (constant) kinematic viscosity, �0. The pre-

cise choice of this viscosity will become clear later, but for now its

introduction allows us to develop weakly nonlinear theory as for a

Newtonian fluid, and add non-Newtonian effects as a perturbation.

The configuration is described by a cartesian coordinate system (x,

z) in which z points upwards.

As in the conventional development of the Newtonian problem,

the equations of motion are expressed conveniently in a dimen-

sionless form, using the depth of the fluid layer, d, in combination

with the thermal conductivity, �, to build units for length, speed

and time, and the temperature difference across the plates, T1 − T2,

to measure temperatures (where T1 and T2 denote the temperatues

of the lower and upper plates, respectively). In terms of a stream-

function, (x, z, t), describing the velocity field, (u,w) = (− z, x),
and a temperature perturbation, �(x, z, t), the equations are

1

�
[∇2 t + J( ,∇2 )] = ∇4 + R�x + N (1)

�t + J( ,�) = ∇2� + x, (2)

where J(f, g) = fxgz − fzgx and

� =
�0

�
and R =

g˛(T1 − T2)d3

�0�
(3)

are the usual Prandtl number and Rayleigh number, with g being

gravity, and ˛ the thermal expansion coefficient. The t, x and z sub-

scripts denote partial derivatives; we depart from this notation only

when considering the components of the stresses.

The quantity N originates from the non-Newtonian part of the

fluid stresses. More specifically, we denote the dimensional devia-

toric stress tensor by

� = ��0

[

�

d2

(

2ux uz +wx
uz +wx 2wz

)

+ ⌣
�

]

, (4)

which separates the characteristic viscous stresses from the dimen-

sionless non-Newtonian components,
⌣
� (scaled by ��0). Then,

N =
∂2⌣�xz
∂x2

−
∂2⌣�xz
∂z2

− 2
∂2⌣�xx
∂x∂z

. (5)

Note that we therefore assume that the motionless conduction state

is not pre-stressed in any way (so the stress � has no background

component). To allow us analytical inroads into the problem, we

solve the equations subject to periodic boundary conditions in x and

stress-free, impermeable conditions on the plates:  = zz = 0 on

z = 0 and 1. No slip conditions, = z = 0, are potentially more natu-

ral, but do not lead to analytical results. However, weakly nonlinear

theory can still be applied to that problem, yielding the ampli-

tude equation we derive shortly, but with coefficients that require

numerical evaluation.

2.2. Asymptotic expansion

We find a weakly nonlinear solution of the problem by introduc-

ing a small parameter ε≪ 1, together with the asymptotic scalings

and sequences,

∂

∂t
= ε2 ∂

∂T
, R = Rc + ε2R2, N = ε3N3, (6)

and

 = ε 1 + ε2 2 + ε3 3 + . . . , � = ε�1 + ε2�2 + ε3�3 + . . . (7)

The critical Rayleigh number, Rc, characterizes the onset of convec-

tion. The final relation in (6) amounts to a distinguished scaling in

which the non-Newtonian effects are tuned to enter the expansion

at a certain order, enabling a convenient evaluation of their effect.

How the distinguished scaling can be achieved will be described

later, when we consider some constitutive laws explicitly.

Via the usual asymptotic machinations, we isolate the terms

of equal order in ε, and solve the resulting hierarchy of equations

sequentially. At O(ε),

∇4 1 + Rc�1x = 0 (8)

∇2�1 + 1x = 0, (9)

which have the solution,

 1 = A sin(kx +̟) sin�z,

�1 =
�k2A

2(�2 + k2)
cos(kx +̟) sin�z, (10)

where A(T) and ̟(T) are not yet determined. For the very onset

of convection, we should take k = �/
√

2 and Rc = 27�4/4, which

corresponds to the normal mode that first becomes unstable in the

Newtonian problem [8]. However, the weakly nonlinear analysis

applies to modes with any horizontal wavelength so we avoid this

selection of k, except in considering specific examples. The critical

Rayleigh number is then Rc = (�2 + k2)
3
/k2.

At next order, we find

∇4 2 + Rc�2x =
1

�
J( 1,∇2 1) = 0 (11)

and

∇2�2 + 2x = J( 1, �1) =
�k2A2

2(�2 + k2)
sin 2�z, (12)

which can be solved with

 2 = 0, �2 = −
k2A2

8�(�2 + k2)
sin 2�z. (13)

At O(ε3),

∇4 3 + Rc�3x =
1

�
∇2 1T − N3 − R2�1x (14)

∇2�3 + 3x = �1T + J( 1, �2), (15)

dx.doi.org/10.1016/j.jnnfm.2008.07.012
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or

∇6 3−Rc 3xx = (1+�−1)∇4 1T+R2 1xx−Rc 1xx�2z−∇2N3. (16)

The solution requires the satisfaction of the solvability conditions,

̟T = 0 and

(1 + �−1)
(�2 + k2)

2

k2
AT

= R2A−
1

8
(�2 + k2)

2
A3 −

4

k2
(�2 + k2)〈N3 sin(kx +̟) sin�z〉,

(17)

where the angular brackets denote the integral average over the

domain, 0 < kx < 2� and 0 < z < 1. Eq. (17) is the desired amplitude

equation; without the non-Newtonian effects and for k = �/
√

2,

it predicts the supercritical onset of steady nonlinear states with

R2 = 9�2A2/16 (e.g. [8]). The final term is the non-Newtonian con-

tribution, which has been brought into the amplitude equation at

this order via the distinguished scaling, N = ε3N3. Had we chosen

a larger scaling, the non-Newtonian effect would have dominated

the combination of linear instability and nonlinear saturation.

3. Shear-thinning effects

Consider now a generalized Newtonian fluid with the nonlinear

viscosity,

�=�(
̇), 
̇=
√

4u2
x + (uz +wx)2 =

√

4 2
xz + ( zz − xx)2. (18)

We focus on onset and take k = �/
√

2, implying that, to leading

order,


̇ →
3�3ε|A|

2
√

2

√

8 cos2(kx+̟) cos2�z+sin2(kx+̟) sin2�z ≡ ε
̇1.

(19)

Thus, we identify the characteristic scale �0 =�(0), and then

the Taylor expansion of the viscosity law is � = �0 + �′(0)
̇ +
(1/2)�′′(0)
̇2 + . . . Thence,

N ≡

(

∂2

∂x2
−
∂2

∂z2

)

[(

�

�0
− 1

)

( xx − zz)
]

+ 4
∂2

∂z∂x

[(

�

�0
− 1

)

 xz

]

. (20)

Note that in writing the equation above, we must assume that �′(0)

is finite and that we can adjust the size of the coefficients �′(0) and

�′′(0) as needed to ensure that N = O(ε3). However, many constitu-

tive models such as the power-law fluid have �0 = 0 and �′(0) → ∞.

It is well appreciated that such behaviour is unphysical and a reg-

ularization procedure applied to limit the viscosity. The resulting

regularized model can then be analyzed as follows. Otherwise, one

must proceed down a similar avenue to that used for the Bingham

model in Section 4. (It is more difficult to perturb off a Newtonian

fluid for constitutive models like the power-law fluid.)

3.1. �′(0) = 0

If �′(0) = 0, we may write

�

�0
− 1 → −ε2�2
̇

2
1 , (21)

where �2 = −�′′(0)/2�0, with the sign included to reflect shear thin-

ning. The non-Newtonian term, N, automatically turns out to be

order ε3, and performing the needed integrals in the amplitude

equation (17) gives,

(1 + �−1)
9�2

2
AT = R2A−

9�2

32
A3

(

1 −
601�4�2

12

)

. (22)

Thus, the weakly nonlinear branch that bifurcates from the conduc-

tion state at the critical Rayleigh number is

R2 =
9�2

32
A2

(

1 −
601�4�2

12

)

. (23)

For a given Rayleigh number (temperature difference), shear

thinning therefore counterbalances the suppression of the mean

temperature gradient (the main Newtonian nonlinear effect) and

allows the unstable mode to grow to greater amplitude. Indeed,

if �2 is sufficiently large, the right-hand side of Eq. (23) becomes

negative, reflecting how the nonlinear solution appears at lower

Rayleigh numbers than the critical value. In other words, sufficient

shear thinning can make the transition to instability subcritical.

3.2. �′(0) /= 0

If �′(0) /= 0, we take �′(0)/�0 = −ε�1, to ensure that N = O(ε3).

The non-Newtonian contribution can be evaluated to give an ampli-

tude equation with the form,

(1 + �−1)
9�2

2
AT = R2A+�A2 sgn(A) −

9�2

32
A3

(

1 −
601�4�2

12

)

,

(24)

where � is a positive numerical constant proportional to �1. The

nonlinear steady branch is then

R2 =
9�2

32
A3

(

1 −
601�4�2

12

)

−� |A|. (25)

Sufficiently close to the bifurcation, the viscosity correction embod-

ied in� dominates the nonlinear terms and generates a subcritical

transition. Provided 1 > 601�4�2/12, the branch subsequently turns

around in a saddle-node bifurcation and becomes a stable nonlinear

branch. Sketches summarizing the results for�′(0) = 0 and�′(0) /= 0

are illustrated in Fig. 1.

3.3. Regularized constitutive laws

Regularized viscoplastic constitutive laws typically have the fea-

ture of replacing a singular character at zero shear rate with a

Newtonian, but strongly viscous, behaviour. In this situation, one

can identify the characteristic scale �0 as the regularized, zero-

shear-rate viscosity, and this viscosity dictates the linear instability

threshold. However, by definition, the constitutive law should be

extremely shear thinning in order to capture a sudden switch to the

unregularized viscoplastic model. Our results above then indicate

that the transition to instability must become subcritical.

For example, a possible regularization of the Bingham model is

incorporated in the law,

� = ��p

[

1 +
B

(ım + 
̇m)
1/m

]


̇, (26)

where �p is the equivalent plastic viscosity, m and ı≪ 1 are posi-

tive parameters (with ε≪ ı so as not to violate the ordering of the

asymptotic expansion of Section 2) and

B =
�yd2

��p�

dx.doi.org/10.1016/j.jnnfm.2008.07.012
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Fig. 1. Sketches of the bifurcating branches of steady convection for a Newtonian fluid and a shear-thinning material with (a) �′(0) = 0 and (b) �′(0) /= 0. In each case, two

non-Newtonian examples are given (labelled “mildly” and “strongly” thinning), showing the two possible behaviours.

is equivalent to a Bingham number based on the large shear rate,

effective yield stress, �y. We may define

�0 ≡ �p

(

1 +
B

ı

)

≫ �p,

as the characteristic viscosity, which therefore gives a critical

Rayleigh number much higher than that for a Newtonian fluid with

viscosity �p. (Alternatively we may keep �p as the characteristic vis-

cosity, in which case, B/ımust be taken O(ε3), as done explicitly in

the next section.)

For m = 2, �′(0) = 0 and the viscosity law Taylor expands to give

�2 ≡
1

2ı(B+ ı)
≈

1

2ıB
≫ 1. (27)

This factor easily overcomes the suppression of the mean tempera-

ture gradient to reverse the criticality of the transition to instability.

If m = 1 on the other hand,

�′(0)

�0
≡ −

B

ı(B+ ı)
, (28)

which can be tuned to be order εby taking B = O(ε). Thus, either way,

the transition becomes subcritical, as illustrated by the “strongly

thinning” cases of Fig. 1. Note that the popular Papanastasiou [11]

regularization gives similar results to Eq. (28), but with �1 propor-

tional to the “stress growth parameter”.

The regularizations discussed above assume a strongly viscous

low-shear-rate behaviour. However, materials such as Carbopol also

display significant elasticity in this regime. A viscoelastic regular-

ization of the Bingham model actually allows for the possibility of

an oscillatory type of convective instability. In Appendix A we show

that this instability is unlikely in practice.

4. The Bingham model

4.1. Weakly nonlinear results

For the Bingham model, with plastic viscosity, �0, and yield

stress, �y,

� =
(

��0 +
�y


̇

)


̇, if �y <

√

�2
jk

2
, (29)

we have

⌣
� = B


̇


̇
, (30)

where the Bingham number is again B = �yd2/(���0). To ensure that

N = O(ε3), we therefore take B = ε3B3.

Eq. (29) applies when the fluid is yielded; otherwise, we set 
̇ =
√


̇2
jk
/2 = 0. The perturbation analysis assumes that the perturbed

state remains fully yielded. Indeed, it is straightforward to show

that, for the Newtonian normal mode, 
̇ = 0 only at distinct points.

However, it is conceivable that unyielded plugs develop about those

points when the yield stress is introduced. We return to this issue

below when we describe some fully nonlinear computations (see

also [9]); for now, we assume that the development of any plugs

does not affect the accuracy of the perturbation theory.

With this assumption, we perform the integral describing the

non-Newtonian contribution in the amplitude equation (17):

(1 + �−1)
(�2+k2)

2

k2
AT = R2A−

1

8
(�2 + k2)

2
A3 − B3� sgn(A), (31)

where

� ≡
4

k2
(�2 + k2)

×

〈
√

4�2k2 cos2 kx cos2 �z+(�2−k2)
2

sin2 kx sin2 �z

〉

(32)

≈ 78.32 if k =
�

√
2
. (33)

Note that, if A = 0, we should interpret sgn(A) = 0, which allows for

the conduction equilibrium solution in this equation.

The steady finite-amplitude solutions are now given implicitly

by

R2 =
1

8
(�2 + k2)

2
A2 +

B3�

|A|
. (34)

Fig. 2. Steady solutions to the amplitude equation (31) for varying values of� B3 (as

marked). Only the solutions with positive A are shown—the corresponding solution

branches with A < 0, are obtained by reflection about the R2-axis.

dx.doi.org/10.1016/j.jnnfm.2008.07.012
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Importantly, there is no longer any connection between the finite-

amplitude branches and the conduction state (A = 0). Instead, the

remnant of the stable nonlinear solution turns around in a saddle-

node bifurcation near the Newtonian linear onset, and proceeds off

to (R2, A) → (∞,0) as an unstable nonlinear solution branch (Fig. 2).

The saddle-node occurs for

A =

[

4B3�

(�2 + k2)
2

]1/3

and R2 =
3

2

[

1

2
B3� (�2 + k2)

]2/3

. (35)

The lower, unstable solution branch also has the asymptote,

|A| →
�B3

R2
, (36)

for large R2. In the simple dynamical system, in addition to deter-

mining the amplitude of the unstable mode, this is also the

threshold to which the mode amplitude must be kicked in order

to observe a transition to finite-amplitude convection on the stable

branch.

4.2. Numerical results

To complement the weakly nonlinear theory, we solve the steady

versions of Eqs. (1) and (2) numerically using the truncated Fourier

series,

 =
J

∑

j=1

N
∑

n=1

[A(1)
nj

sin(2j−1)kx sin(2n−1)�z+A(2)
nj

sin 2jkx sin 2n�z],

(37)

� =
J

∑

j=1

N
∑

n=1

[B(1)
nj

cos(2j − 1)kx sin(2n− 1)�z

+B(2)
nj

cos 2(j − 1)kx sin 2n�z], (38)

which preserve the Boussinesq symmetry. Projection of the gov-

erning equations onto each Fourier mode generates a system of

nonlinear algebraic equations that we solve by Newton iteration,

starting with guesses guided by the weakly nonlinear theory or

existing solutions. For simplicity, we take �→ ∞, which removes

the nonlinear advection terms from the momentum equations.

Results for B = 0 and 1 are shown in Fig. 3, which displays

the bifurcated branches of nonlinear overturning states on the (R,

A)-plane, where the amplitude, A = A(1)
11

(i.e. the first modal coef-

ficient in the Fourier expansion of  ). Except at the highest mode

amplitudes, the weakly nonlinear theory matches the nonlinear

computations.

Fig. 3. Amplitudes of nonlinear overturning states, defined as A = A(1)

11
(the first

modal in the Fourier expansion of  ). The solid (dotted) line shows the weakly

nonlinear result for B = 1 (B = 0). The dashed lines shows the corresponding asymp-

totic result for the regularized model (26) with B = ı= 1 and m = 2, but derived in the

limit B = O(ε3) and ı= O(ε). The points show the results of numerical computations

taking N = J = 16 and �→ ∞. The circle indicates the solution of Fig. 5.

To connect the current analysis with Section 3, we also include in

Fig. 3 results for the regularized model (26) with m = 2. The weakly

nonlinear results assume B = O(ε3) and ı= O(ε) in the regularization,

so the non-Newtonian contribution to the amplitude equation (17)

can be written as

12A−1B3〈
̇2
1 (ı2 + 
̇2

1 )
−1/2

〉. (39)

For large amplitude, this contribution becomes small and we

recover the Newtonian solution, but for A → 0, the regularized vis-

cosity dominates to give a linear damping term that corrects the

critical Rayleigh number. The results in Fig. 3 are computed with the

somewhat larger value, ı= 1, but the weakly nonlinear predictions

nevertheless match the numerical computations.

Two planforms of nonlinear solutions are illustrated in

Figs. 4 and 5. These pictures show a solution along the upper

branch of stable nonlinear states, and one along the unstable lower

branch, respectively. In both cases, the plots of the total deforma-

tion rate, 
̇ , suggest that small plug regions may develop near the

boundaries and middle of the layer (the former being allowed by

the stress-free boundary conditions). These regions are not par-

ticularly well captured by our numerical scheme and cause the

Fourier series to converge slowly. Indeed, to improve the conver-

gence, it is helpful to include the regularization described above

(but with ı= 10−3 or so, which assists the convergence by sup-

pressing the tails of the spectra, whilst not overly smoothing the

solutions). Nevetheless, the plugs remain localized near onset and

do not appear to influence the accuracy of the weakly nonlinear

results. Further from onset, extensive plug regions can develop, as

Fig. 4. Numerical solution for B = 1 and R = 5.1667Rc along the upper branch of nonlinear overturning states. Panels (a) and (b) show the temperature perturbation, �, and

shear rate, 
̇ , as densities on the (x, z)-plane. The dotted contours indicate the streamfunction,  .

dx.doi.org/10.1016/j.jnnfm.2008.07.012
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Fig. 5. Numerical solution for B = 1 and R = 1.375Rc along the lower branch of nonlinear overturning states. The panels are as represented in Fig. 4.

illustrated by the short wavelength patterns described in the next

section.

5. Short-wavelength patterns

5.1. Vertically localized rolls

The nonlinear solutions constructed above have k = �/
√

2, in

line with the most unstable modes of the Newtonian problem. We

now depart from that choice of wavelength and illustrate a family of

solutions with short horizontal scale which can be constructed ana-

lytically: As illustrated in Fig. 6, in the limit of k ≫ 1, the numerical

solutions become dominated by a single horizontal wavenumber

and occupy a localized, yielded region centred in the fluid layer.

Above and below this layer, the fluid is unyielded and stagnant.

As shown in Appendix B (and illustrated in Fig. 6), these layered

solutions are approximately given by

 = � (z) cos kx, (40)

with

� (z) =

{

4

3�
BM−2

[

1 + cos M
(

z −
1

2

)]

,

∣

∣

∣

z −
1

2

∣

∣

∣

≤ �M−1

0, elsewhere
(41)

and

M =

√

R− k4

3k2
. (42)

which are valid for R ∼ k4 and M ∼ k (Rc ≈ k4 for k ≫ 1).

5.2. Viscoplastic elevators

A second analytically accessible family of solutions are the peri-

odic arrays of “elevators” considered by Gershuni & Zhukhovitskii

[12] which are the z-independent solutions to (1) and (2) for an

infinitely deep layer. The fluid yields and shears in localized zones

separated by uniformly ascending and descending plugs. The ele-

vator system is illustrated in Fig. 7, and, in the current notation, can

be described as follows. If we centre one of the sheared zones at

x = 0, the streamfunction there is

 = A
(

cosmkx

cosm˙
+

cosh mkx

cosh m˙

)

for −˙ ≤ kx ≤˙, (43)

and the plugs bordering this zone are given by

 = 2A

[

(�/2) − kx
˙ − (�/2)

]

, over ˙< |kx|< � −˙. (44)

Here, m = R1/4/k, and the scaled half-width of the sheared region,

˙, is given implicitly by the relation,

2 = m
(

�

2
−˙

)

(tan m˙ − tanh m˙). (45)

The amplitude, A, is determined from

A=
k2B

R

m

(�/2)−˙

[

2

3
m

(

�

2
−˙

)

+ tan m˙ + tanh m˙
]−1

. (46)

Fig. 7 shows how � and A vary with m. Note that (˙, RA/k2B) →
(�/2,1/2) as m → 1 (the onset of convection in the Newtonian ver-

sion of the problem), and (˙,RA/k2B) → ((6/�)
−1/3m−4/3,6/�2)

Fig. 6. Short-wavelength, layered solutions for k = 1000 and three values of R (as indicated); B = 1. The regularization, ı= 0.01, has been included to help compute the solutions.

The main panel shows the streamfunction, , divided by cos kx, at 10 positions in x to emphasize how the solution is dominated by a single wavenumber. The dashed lines show

the asymptotic result in (41). The insets show plots of the corresponding temperature perturbations, �(x, z), as densities on the (x, z)-plane, with superimposed streamlines.
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Fig. 7. Viscoplastic elevator solutions. Panel (a) shows part of a sample elevator system, with the shaded region indicating the yielded zones, the dashed line showingw, and

the solid curve showing (as given by (43)–(46), with m = 1.6 and˙ =�/4). Panel (b) shows the solutions to (45) and (46) for˙ and RA/k2B as functions of m. The solutions

for Newtonian case and for m → ∞ are shown with starts and dotted lines, respectively.

as m → ∞. Also, the combinations, m4 = R/k4, k2 B/R and kx, are all

independent of the layer depth, d, for a fixed background temper-

ature gradient, (T1 − T2)/d. Thus, the solution does not depend on

that lengthscale (as must be the case) and the problem could be

scaled differently at the outset.

Although the elevator solutions appear irrelevant for a layer of

finite thickness, it is conceivable that these solutions may form the

basis of roll solutions with boundary layers adjacent to the bound-

ing plates (though we have been unable to verify this numerically).

6. Scalings and plastic convection

The results presented above indicate that, although strongly

unstable convective systems might be linearly stable, there is a

finite amplitude instability. Moreover, the threshold in amplitude

above which the system must be kicked to initiate convection

becomes increasingly lower as the Rayleigh number increases. Once

convection begins, yield stresses become less significant and the

convective states likely resemble the Newtonian counterparts.

The results further suggest that there are unstable steady states

whose amplitude in  or � scale like B/R (Table 1). The amplitude

scaling also incorporates an additional geometrical factor which

allows for the possibility that the solutions become spatially local-

ized, with convective cells separated by rigid plugs. Though it is not

guaranteed, it seems plausible that the amplitude of these steady

states furnishes an estimate of the threshold for finite-amplitude

instability (as in the weakly nonlinear theory). The dimensionless

amplitude threshold can then be written as

B

R
=

�y

�g˛(T2 − T1)d
, (47)

which can be viewed alternatively as the ratio of yield stress to

buoyancy. Thus, for example, the introduction of a perturbation

with an associated temperature perturbation of order �y/(�g˛d),

ought to be sufficient to initiate convection.

Note that the asymptotic scaling, ( ,�) ∼ B/R, of the low-

amplitude unstable solutions also suggests a limiting behaviour for

Table 1

Estimates of amplitudes of stable branches

Model Amplitude

Weakly nonlinear (Section 4.1) � B/R ≈ (78B/R) if k = kc = �
√

2

Layered solution (Section 5.1) 8k2B/�R

Viscoplastic elevators (Section 5.2) 12k2B/�2R

R → ∞ described by the system,

�x + R−1N = ∇2� + x = 0, (48)

which was previously considered by Orowan [7] for thermal con-

vection in a perfectly plastic medium. Orowan suggested that this

type of convection was realized physically, whereas here we see

that this is unlikely given that the solutions are unstable.

7. Qualitative laboratory experiments

To test the notion that the yield stress replaces a supercritical

transition at finite Rayleigh number with a subcritical threshold,

we conducted a set of preliminary experiments with Carbopol 940

in a rectangular tank. The tank consists of four glass walls, each

30 cm wide, bonded with silicone sealant to the top of a hollow

metal box, which could be heated to temperatures up to 80 ◦C by

a hot water circulation system. The tank was partially filled with

Carbopol to a depth (d) between 4 and 11 cm. After a transient, the

basal temperature (T1) was held constant; however, the tempera-

ture at the top of the Carbopol (T2) was not controlled and gradually

warmed up from room temperature. Temperatures at several points

within the fluid were monitored with thermocouples, and temper-

ature perturbations at the top surface were seen as colours on a

temperature-sensitive liquid–crystal-coated polyester sheet float-

ing atop the Carbopol.

Four concentrations of Carbopol were used: 0.05, 0.06, 0.075

and 0.1 wt.% dry Carbopol dispersed in distilled water and neutral-

ized with NaOH. The density and thermal properties are essentially

the same as for pure water, and the viscosity and apparent yield

strength variations with temperature are small compared to varia-

tions with shear rate and Carbopol concentration. Estimates of yield

stress based on 1◦, 4 cm diameter cone-and-plate rheometry, and

the sinking of spheres of different sizes and densities [13] are given

in Table 2.

The different concentrations of Carbopol showed marked differ-

ences in their ability to convect: Experiments where 0.05% Carbopol

(�y < 0.1 Pa; Table 2) was heated from below lead to convection

without imposing any external trigger. The ratio of yield stress to

buoyancy (B/R) is very low for this concentration, and the rise of

a few air bubbles, slight lateral variations in temperature, or other

external vibrations might easily be responsible for overcoming the

threshold for convection. Indeed, we estimate that temperature

fluctuations of less than 1 ◦C are necessary to initiate convection

in this fluid (see the final column of Table 2, which estimates the

threshold described in Section 6).

By contrast, none of the other concentrations spontaneously

began to convect if left undisturbed. For the range of fluid depths

dx.doi.org/10.1016/j.jnnfm.2008.07.012
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Table 2

Summary of conditions and results for a subset of the experiments

Carbopol (wt.%) �y (Pa) d (m) T1 − T2

(◦C)

Convects? B/R �y/(�g˛d)

(◦C)

0.05 <0.1 0.044 27 Yes <0.04 <1

0.05 <0.1 0.113 36 Yes <0.01 <0.4

0.06 0.3 0.1 50 No/Yes* 0.03 1.5

0.075 2 0.1 50 No 0.2 10

0.1 10 0.1 50 No 1 49

The two 0.05 wt.% Carbopol experiments quote the temperature difference recorded

at the onset of convection, whereas the temperature differences for the three other

experiments are the maxima imposed. The lengthscale d is used where necessary,

which underestimates the characteristic perturbation amplitude of the final col-

umn, �y/(�g˛d) (see Section 6), if the relevant lengthscale is actually the growing

boundary-layer thickness rather than d. The * indicates when tank-scale convection

was only initiated with a major perturbation.

and temperature limits described above, convection was only ini-

tiated with the 0.06% Carbopol (�y ≈ 0.3 Pa) if the system was

substantially perturbed by methods such as injecting large air bub-

bles at the base, or mixing up a column of fluid in the tank with a

stirrer. Attempts to destabilize the 0.075 and 0.1% Carbopol (�y ≈ 2

and 10 Pa, respectively) by such methods caused only local tran-

sient temperature perturbations and did not generate any thermal

plumes or tank-scale convection. Thus, the experiments also sug-

gest that yield stress suppresses convection but can be overcome

with a sufficient kick to the system. Furthermore, the amplitude

of the perturbation required to initiate convection increases with

increasing yield strength. Nevertheless, a proper quantitative com-

parison with the theoretical results of Sections 3 and 4 requires

experiments with better controls on the temperature of the top

surface.

8. Summary and applications

In this article we have explored how the steady, weakly non-

linear, overturning solutions of the Newtonian Rayleigh–Bénard

problem are modified when the fluid is made viscoplastic. Shear

thinning amplifies the overturning states for a given temperature

difference, and can make the transition to instability subcritical if

the degree of thinning is sufficiently large. The introduction of a

yield stress suppresses the linear convective instability entirely.

Instead, an unstable, subcritical branch of nonlinear convective

states bifurcates from infinite Rayleigh number. That branch turns

around in a saddle node near the onset of Newtonian convection to

generate stable overturning solutions corresponding to the orig-

inal Newtonian convective states. The theory suggests that the

unstable branch has a (dimensionless) amplitude scaling of B/R,

which suggests that a temperature perturbation of order �y/(�g˛d)

is necessary to kick the system off the conducting state into finite-

amplitude convection.

According to weakly nonlinear theory, the turn-around in the

saddle-node occurs at Rayleigh numbers of order B2/3, where B is

a Bingham number based on the velocity scale, �/d (Section 3.3).

This suggests that stable convective solutions cease to exist when

the yield stress becomes as high as

�y ∼
�[g˛(T2 − T1)]3/2d5/2

(�0�)1/2
. (49)

In other words, convection is turned off by a sufficiently high

yield stress. Nevertheless, two other types of solutions that we

have described (viscoplastic elevators and vertically localized rolls)

extend down to the Newtonian onset. Though these solutions are

unstable, their existence casts some doubt on the estimate in (49).

These results are relevant to understanding and controlling flow

and heat transfer in a wide range of industrial and geophysical

settings where viscoplastic thermal convection may occur. These

include ice slurries in refrigeration systems and around extrater-

restrial bodies [14], drilling muds and gels [15,16], various magma

bodies [17,18], and mud volcanoes [19]. Although geophysicists

interested in convection of the Earth’s mantle were amongst the

first to consider the effect of yield strength on convection (Section

1), the mantle is now generally thought to have a power-law or

Newtonian rheology with significant dependence on temperature

and pressure. However, yield strength (with highly viscous or elas-

tic sub-yield-stress deformation) has recently been considered in

attempts to explain superficial plate-like behaviour (e.g. [20,21]).

Our results suggest that in all of these applications, yield

strength will inhibit convection and heat transfer, and that the

greater the yield strength, the larger the perturbation required to

initiate convection. Furthermore, unlike the Newtonian case, the

conditions (temperature difference and lengthscale) required to

initiate convection can be quite different from those required to

perpetuate convection. This disparity can be particularly important

for applications where the fluid rheology could change from New-

tonian to viscoplastic with time as is indeed the case with porridge.

As another example, we discuss thermal convection of crystal-rich

magmas.

Understanding the role of crystals in magma convection has

implications for the generation of some types of economic ore

deposits [22] as well as volcanic eruption triggers and magma

degassing [18,23]. Magmas composed of pure melt (silicate liquid),

or melt with dilute suspensions of crystals, are viscous, Newtonian

fluids. However, magmas containing substantial volume fractions

of crystals are generally considered to be viscoplastic, and the yield

strength can be estimated, for instance, from the shapes of lava

domes slowly extruded from volcanic vents (e.g. [24]). As a magma

cools (or in some circumstances decompresses), the crystal content,

and thus the viscosity and yield strength, increase [25]. Hence there

may be circumstances where crystal-rich magma can continue to

convect despite a significant yield strength, because the magma

was Newtonian (or had a substantially lower yield strength) when

convection began, as might occur in magma chambers beneath

volcanoes or in open-channel lava flows [26]. Moreover, for the

mobilization of a stagnant layer that is already crystal-rich, it is

not sufficient to consider the Newtonian criterion for convection

(as done by [23]). In this scenario, yield strength may prevent or

substantially delay instability, and convection may be limited to

the hotter (less crystalline) portions of the magma chamber.

This picture of magma convection is entirely qualitative. Accu-

rate quantitative predictions of the critical Rayleigh number and

perturbation required for onset are not yet feasible in natural sys-

tems where the geometry and boundary conditions are not ideal,

and rheology varies substantially both spatially and temporally.

Even in our more simplistic Carbopol experiments, the changing

upper boundary condition precludes quantitative agreement with

theory. Before tackling complex natural problems, experiments

approximating the ideal conditions of the theory are required.
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Appendix A. Viscoelastic oscillatory instability

Many viscoplastic fluids, including Carbopol, exhibit viscoelas-

tic behaviour at low stresses [27]. However, the ability of the yield

stress to suppress the linear convective instability follows in part

because viscoplastic constitutive laws like the Bingham model
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neglect any deformation below the yield stress. If this behaviour

is regularized by adding a low-shear-rate viscosity, the critical

Rayleigh number becomes finite. This leads one to wonder how

the dynamics might be affected by viscoelasticity below the yield

stress, as might be important in materials like Carbopol. In this

situation, the linear convective instability is controlled by a com-

bination of the viscosity and an elastic relaxation rate. Although

the latter does not influence the transition to steady convection, it

does lead to the possibility of another type of convective instability

in which rolls overturn in an oscillatory fashion [28,29].

A simple Maxwell model provides a concise illustration since for

the linear instability calculation, all we need is a linear constitutive

law. More specifically, we interpret �0 as a solvent-like viscosity,

and
⌣
�ij as the contribution from some equivalent polymeric (elastic)

stresses, with

⌣
� +�⌣

�t = �
̇. (A.1)

In this dimensionless equation, the parameters � and � repre-

sent, respectively, the ratio of polymer to solvent viscosities and

the polymer relaxation time scaled by the diffusion timescale d2/�.

On combining this model with the linearized versions of (1) and

(2), looking for normal modes of the form, ( ,�) ∝ eiωt+ikx sin n�z,

and demanding that ω is purely real, we arrive at the critical con-

ditions,

ω = 0, R = Rst = (1 +�)
K6

k2
(A.2)

or

ω2 =
��[(1 +�)K6 − k2R]

K2(K2 + �K2 +�)
,

R = Rosc =
K2

k2

(

�

�
+ K2

)(

K2 +�+
���

1 + �

)

, (A.3)

where K2 = n2�2 + k2. The onset of steady convection, as given by

(A.2), is therefore modified according to the increase in total viscos-

ity (the factor 1 +�). Moreover, steady convection can be preceded

by the onset of oscillatory convection if the smallest value of the

critical Rayleigh number, Rosc, in (A.3) over all k lies below the mini-

mum of Rst. The most unstable modes for either steady or oscillatory

convection have n = 1—the tallest vertical modes. The most unstable

horizontal wavenumber remains k = �/
√

2 for steady convection;

the corresponding value of k for oscillations depends on the detailed

parameter settings.

For a sub-yield-stress viscoplastic fluid, one envisions that the

polymeric stresses are relatively large, so that the material behaves

almost like a rigid solid. That is, the parameters� and� should be

large. In that limit, onset is given by either

Rc,st = Mink(Rst) →
27�4�

4
and k = kc =

�
√

2
(A.4)

or

Rc,osc=Mink(Rosc) →
��2

1 + �
and k = kc ∼

(

�2�

�

)1/4

≫ 1. (A.5)

Thus, the onset of oscillatory convection is unlikely to precede

steady convection. In other words, steady convection is favoured

if a sub-yield-stress viscoplastic fluid is to behave almost rigidly.

Appendix B. Short-wavelength and low-amplitude layered

solutions

To understand the structure of the short-wavelength, low-

amplitude, layered solutions, we return to the governing

dimensionless equations without the nonlinear advection terms.

We introduce another small parameter, �= k−1 ≪ 1, characterizing

the relatively short wavelength. We then rescale the horizon-

tal coordinate and perturbations to suit the short scale: x =��,
(u,w) = (U(�, z), �−1W(�, z)), p =�−1 P(�, z) and � =��(�, z). More-

over, since the short-scale solutions become unstable for R ∼ k4, we

put R =�−4 +�−2r. Thence,

U� +Wz = 0, (B.1)

0 = −P� + U�� + �2Uzz + �2∂�Txx + �2∂zTxz, (B.2)

0 = −�2pz+(1 + �2r)�+W�� + �2Wzz + �2∂�Txz + �4∂zTzz, (B.3)

0 =��� + �2�zz +W, (B.4)

where the yield-stress terms have been rescaled so that

(
⌣
�xx,

⌣
�xz,

⌣
�zz) = (�Txx, Txz,−�Txx), and

Txz =
2BU�

√

(W� + �2Uz)
2 + 4�2U2

�

,

Txz =
B(W� + �2Uz)

√

(W� + �2Uz)
2 + 4�2U2

�

. (B.5)

A standard asymptotic expansion can be used to solve this set of

equations: let U = U0 +�2U2, W = W0 +�2W2, and so on. To leading

order,

p0� = U0��, 0 =�0 +W0��, 0 =�0�� +W0, U0� +W0z = 0.

(B.6)

Thus, the solution is dominated by a single wavenumber:

W0 =�0 = � (z) cos �, U0 = −� ′(z) sin �, P0 = −� ′(z) cos �.

(B.7)

Note that, to leading order,

Txz → B sgn(W0�) = −B sgn(� sin �). (B.8)

The vertical structure function, ˚(z), follows from considering the

order �2 equations, and, in particular,

W2�� +�2 = −(2� ′′ + r� ) cos � + B∂�[sgn(� sin �)], (B.9)

�2zz +W2 = −� ′′ cos �. (B.10)

At this stage, the system does not admit a solution that is periodic in

� unless we apply a solvability condition, obtained on multiplying

the relations by cos � and averaging over the horizontal wavelength.

This demands that � satisfies the differential equation,

3� ′′ + r� = −
4B

�
sgn(� ). (B.11)

To match the numerical solutions described in the main text, we

solve this equation subject to the boundary conditions that (� ,

� ′) → 0 at the edges of the yielded region, which is centered in the

layer. This gives the solution quoted in Section 5. The fluid above

and below the centered yielded region is held rigid by the yield

stress. Although the numerical scheme converges to a solution that

is centered in the layer, in principle the asymptotic solution could

be off-centered with rigid layers of arbitrarily thickness above and

below.
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