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Abstract

In generalizing the concept of a pancyclic graph, we say that a graph is

‘weakly pancyclic’ if it contains cycles of every length between the length

of a shortest and a longest cycle. In this paper it is shown that in many

cases the requirements on a graph which ensure that it is weakly pancyclic

are considerably weaker than those required to ensure that it is pancyclic.

This sheds some light on the content of a famous metaconjecture of Bondy.

From the main result of this paper it follows that 2-connected nonbipartite

graphs of sufficiently large order n with minimum degree exceeding 2n/7 are

weakly pancyclic; and that graphs with minimum degree at least n/4 + 250

are pancyclic, if they contain both a triangle and a hamiltonian cycle.
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1 Introduction

We investigate the set of cycle lengths occurring in nonbipartite graphs with large

minimum degree. The girth of a graph G is the length of a shortest cycle, denoted

g(G), and the odd girth the length of a shortest odd cycle. The circumference is

the length of a longest cycle and will be denoted by K(G). A graph of order n is

said to be hamiltonian if the circumference is n. A graph is called weakly pancyclic

if it contains cycles of every length between the girth and the circumference. A

graph is pancyclic if it is weakly pancyclic with girth 3 and circumference n = |G|.
The investigation of pancyclic graphs was initiated by Bondy [8], who estab-

lished several sufficient conditions for a graph to be pancyclic. A special case of

one of them (see Theorem 2.10 below) is the following extension of Dirac’s famous

condition for hamiltonicity [17].

Theorem 1.1 (Bondy [8]) If graph G of order n has minimum degree δ(G) ≥
n/2, then G is pancyclic, or n = 2r and G = Kr,r.

This result is best possible: if the condition on the minimum degree is dropped

to below n/2, then the graph can be bipartite and/or nonhamiltonian. Over the

years the condition has been improved by replacing the minimum-degree condition

by conditions requiring only a few vertices to have large degree.

Most of the known sufficient conditions for pancyclic graphs involving degree

constraints can be derived from the following local condition.

Theorem 1.2 (Schmeichel & Hakimi [34]) Let G be a graph of order n con-

taining a hamiltonian cycle x1x2 . . . xnx1 where the degree sum d(x1)+d(xn) ≥ n.

Then G is either pancyclic, bipartite, or missing only an (n − 1)-cycle.

In the latter case much more can be said about the structure of the graph (see

[34]). But these conditions always require some vertices of degree at least n/2.

The first paper to investigate conditions without this requirement is due to

Amar et al. [2]. They showed the following.

Theorem 1.3 (Amar, Flandrin, Fournier & Germa [2]) Let G be a nonbi-

partite hamiltonian graph of order n ≥ 102. If δ(G) > 2n/5 then G is pancyclic.

Theorem 1.7 below shows that the conclusion is in fact true for all n. The result is

best possible since there are nonbipartite graphs of minimum degree δ(G) = 2n/5
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without triangles (the lexicographic products C5[Kr] of the 5-cycle with the empty

graph on r vertices). This result was extended slightly by Shi [38] who showed

that if G is a nonbipartite hamiltonian graph of order n ≥ 50 and for all pairs of

nonadjacent vertices u and v it holds that d(u)+d(v) > 4n/5, then G is pancyclic.

In this paper we introduce weakly pancyclic graphs as a relaxation of the

concept of pancyclic graphs. Our main result is a sufficient degree condition for a

nonbipartite graph to be weakly pancyclic.

Theorem 1.4 Let G be a 2-connected nonbipartite graph of order n with minimum

degree δ(G) ≥ n/4+250. Then G is weakly pancyclic unless G has odd girth 7, in

which case it has every cycle from 4 up to its circumference except the 5-cycle.

We make no attempt to obtain the best value of the additive constant. Since a

shortest odd cycle in a graph with minimum degree δ > 2n/7 has length at most

5 (easy exercise), we obtain the following consequence.

Corollary 1.5 If G is a 2-connected nonbipartite graph of sufficiently large order

n with δ(G) > 2n/7, then G is weakly pancyclic.

If we explicitly require the triangle and the hamiltonian cycle, it follows from

Theorem 1.4 that the above minimum-degree condition is sufficient to ensure that

the graph is pancyclic.

Corollary 1.6 If a graph G of order n with minimum degree δ(G) ≥ n/4 + 250

contains a triangle and a hamiltonian cycle, then it is pancyclic.

Observe that this bound is much smaller than the sufficient minimum degree

for a nonbipartite graph to be hamiltonian (δ ≥ n/2) or to contain a triangle

(δ > 2n/5).

Theorem 1.4 and Corollary 1.6 are best possible (up to the additive constant).

Take two copies of Km,m intersecting in one vertex and join one vertex on the

opposite side of the intersection vertex in one Km,m to such a vertex in the other

Km,m. This graph is hamiltonian, has minimum degree m = (n+1)/4 and contains

a triangle, but it contains no even cycle of length more than (n + 1)/2.

Corollary 1.5 is best possible, since the lexicographic product C7[Kr] for r ≥ 2

contains all possible cycles except the 3- and 5-cycle. Moreover, there are small

order examples such as the Petersen graph (which contains no 7-cycle) which

satisfy δ(G) > 2n/7 but are not weakly pancyclic.

For small-order graphs we can improve on the degree bound of Theorem 1.4.
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Theorem 1.7 Every nonbipartite graph G of order n with minimum degree δ(G) ≥
(n + 2)/3 is weakly pancyclic (of girth 3 or 4).

A proof is given in the first author’s thesis [12]; we do not include the proof here.

Note that this result implies the truth of Theorem 1.3 for every n. Furthermore

Theorem 1.4 implies Theorem 1.7 for 2-connected graphs of sufficiently large order.

It is interesting to note that there is no connectivity requirement in Theo-

rem 1.7. It is almost best possible since the graph formed by taking Km+1 and

Km,m and identifying one vertex (m ≥ 3) has minimum degree m = n/3 and all

even cycles up to 2m but no odd cycle on more then m + 1 vertices. There is also

a 2-connected 3-regular graph of order 8 which is not weakly pancyclic.

For triangle-free graphs with minimum degree exceeding n/3, the first author

[11] showed that the exact value of the circumference of a graph G can be deter-

mined in terms of the order and independence number α(G).

Theorem 1.8 (Brandt [11]) Let G 6= C5 be a nonbipartite triangle-free graph of

order n. If δ(G) > n/3 then G is weakly pancyclic with girth 4 and circumference

min{2(n − α(G)), n}.

Graphs which show that Theorem 1.8 is best possible are given in [11].

In the next section we discuss some of the consequences of Theorem 1.4 and

some related results about (weakly) pancyclic graphs. Thereafter, in Sections 3

through 7 we prove Theorem 1.4. Finally, in Section 8 we address algorithmic

issues and in Section 9 we discuss possible future work.

2 Some Consequences and Related Results

Using Theorems 1.4 and 1.7 one can take known sufficient conditions for a graph

to be hamiltonian and extend them to conditions for a graph to be pancyclic or

to have all cycles but the triangle.

Nash-Williams-type results. These are degree conditions involving the inde-

pendence number and the connectivity.

Corollary 2.1 Let G be a 2-connected graph of order n. If δ(G) ≥ max{α(G), (n+

2)/3}, then G contains all cycles between 4 and n, or n = 2r and G = Kr,r.
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Nash-Williams showed that the hypothesis implies that the graph is hamilto-

nian. Since every bipartite graph with δ ≥ α is complete bipartite and balanced,

the corollary follows from Theorem 1.7. An immediately consequence is that every

2-connected graph of order n with minimum degree δ ≥ max{α + 1, (n + 2)/3} is

pancyclic.

Corollary 2.2 Let G be a graph of order n with connectivity κ(G) ≥ 2. If δ(G) ≥
(n + κ(G))/3, then G is pancyclic, or n = 2r and G = Kr,r.

Häggkvist and Nicoghossian proved that graphs satisfying the hypothesis of

Corollary 2.2 obey the hypothesis of Corollary 2.1. Therefore such graphs contain

all cycles between 4 and n unless G = Kr,r (n = 2r). Now, suppose that G

contains no triangle. Then by [11, Lemma 3.1] δ(G) = κ(G) and thus δ(G) ≥ n/2,

so G = Kr,r.

Binding number. Another consequence of Theorem 1.7 is a result first proved

by Shi [36] showing that graphs with binding number at least 3/2 are pancyclic:

Corollary 2.3 Let G be a graph of order n. If for every subset S ⊆ V (G) the

cardinality of the neighborhood |N(S)| ≥ min{(3/2)|S|, n}, then G is pancyclic.

Note that the condition implicitly requires δ(G) ≥ (n + 2)/3. (Take S =

V (G) − N(v) for a vertex v of minimum degree.) This result was conjectured by

Woodall [43] who verified that graphs satisfying the hypothesis are hamiltonian.

For several years it was open whether the condition implies the triangle. This was

verified in an earlier paper of Shi [35] (for a short proof see [20]). The remainder

of the cycles are given by Theorem 1.7.

Regular graphs. Jackson [25] proved in 1980 that d-regular 2-connected graphs

with d ≥ n/3 are hamiltonian. This result has been refined and generalized by

several authors. The current best result is due to Broersma et al. [14], who showed

that 2-connected d-regular graphs of order n with d ≥ 2(n + 7)/7 are hamiltonian

unless they contain three vertices which do not lie on a common cycle.

Together with Theorem 1.4 we derive the following:

Corollary 2.4 Every 2-connected d-regular graph of sufficiently large order n with

d ≥ 2(n + 7)/7 is pancyclic, unless it is triangle-free or it contains three vertices

which do not lie on a common cycle.
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It was conjectured by Häggkvist (cf. [25]) that d-regular k-connected graphs

with d ≥ n/(k + 1) are hamiltonian. Though false in the general case, this is

believed to hold for k = 3 (cf. [14]). This would imply that Corollary 2.4 holds

even with the bound d ≥ n/4 + 250.

Bondy’s metaconjecture. Bondy [9] conjectured that

almost any nontrivial condition on a graph which implies that the

graph is hamiltonian also implies that it is pancyclic except for maybe

a simple family of exceptional graphs.

The above results as well as other recent results shed some light on the metacon-

jecture.

Theorem 1.4 suggests that sufficient conditions for a nonbipartite graph to be

weakly pancyclic might be significantly smaller than those for being hamiltonian.

So once a hamiltonicity condition implies the triangle it follows that the graphs

are pancyclic. Theorem 1.2 is further evidence that once a nonbipartite graph is

hamiltonian the conditions to be pancyclic are weaker than that required to force

the hamiltonian cycle in the first place. This goes some way to explaining the

success of the metaconjecture.

But there are several conditions for graphs to be hamiltonian which apply to

large classes of triangle-free graphs. Consider, for example, the family of graphs

where Gi is the complement of the ith power of the cycle C3i+2 (i ≥ 1). So

G1 = C5 and G2 is an 8-cycle with the long chords. (Woodall [43] showed that

the binding numbers of these triangle-free graphs approach 3/2 from below.) The

lexicographic product Gi[Ks] (s ≥ 1) is a triangle-free r-regular graph with in-

dependence number α = r = s(i + 1) and connectivity r. So it satisfies the

famous hamiltonicity conditions given by Chvátal and Erdős [15] (α ≤ κ), by

Nash-Williams (cf. Corollary 2.1) (for s ≥ 2), and by Jackson [25] (2-connected

and r-regular with r ≥ n/3). But these graphs are not pancyclic.

The graph Gi[Ks] is weakly pancyclic though, which is a consequence of the

following more general result.

Theorem 2.5 (Lou [29]) If a triangle-free graph G satisfies α(G) ≤ κ(G), then

G is weakly pancylic with girth 4 and circumference n, unless G = Kr,r or G = C5.

And it is possible that a slight strengthening of the Chvátal–Erdős condition

implies that the graph is pancyclic.
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Conjecture 2.6 If a graph G satisfies α(G) < κ(G), then it is pancyclic.

Jackson and Ordaz [27] extracted this conjecture from a conjecture of Amar,

Fournier and Germa [3]. Note that the claim in [27] that this conjecture is a

consequence of Theorem 2.5 is incorrect.

Toughness. A graph is said to be t-tough if the removal of any cutset S of ver-

tices yields at most |S|/t components in G − S. Recently, Bauer, van den Heuvel

and Schmeichel [6] constructed triangle-free graphs which are t-tough with t arbi-

trarily large. This refutes a conjecture of Chvátal [16] of the existence of a con-

stant t0 such that every t0-tough graph is pancyclic. Their result was extended by

Alon [1] who proved that there are graphs with arbitrarily large girth and tough-

ness. We show here that there is also no sufficiently large value of toughness that

will ensure that a graph is weakly pancyclic.

Lemma 2.7 (Brandt [12]) For every t > 1 the line graph L(G) of a 2t-edge-

connected graph G with girth g(G) and maximum degree ∆(G) that satisfies g(G) >

∆(G) + 1 is t-tough and has cycles of length ∆(G) and g(G) but none in between.

Proof: The line graph L(G) is 2t-connected, as every vertex cutset of L(G)

corresponds to an edge cutset of G. Since L(G) is claw-free, its toughness is equal

to one-half its connectivity by a result of Matthews and Sumner [30]. Since the

edges incident with a vertex v in G form a clique in L(G) there is a cycle of length

∆(G) in L(G). The edges of a cycle of length g(G) in G form a cycle in L(G).

Now any subgraph of G on less than g(G) edges is a forest. So every subgraph

of L(G) induced by less than g(G) vertices is the line graph of a forest F , and

hence has circumference ∆(F ) ≤ ∆(G). This means that every cycle of length less

than g(G) in L(G) has length at most ∆(G). 2

To use Lemma 2.7 we need graphs of large connectivity whose girth exceeds

the maximum degree. Wormald [44, 45] showed that for any d ≥ 3 and any girth

g there is a d-regular d-connected graph of girth at least g. Thus we obtain the

following result.

Corollary 2.8 (Brandt [12]) There are t-tough graphs with t arbitrarily large

which are not weakly pancyclic.

If another famous conjecture of Chvátal [16] holds—saying that there is a

constant t0 such that every t0-tough graph is hamiltonian—then this is a condition
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which seriously violates Bondy’s metaconjecture, cited above. Recently, Bauer,

Broersma and Veldman [5] constructed examples showing that t0 must be at least

9/4 (thereby refuting the commonly stated conjecture that every 2-tough graph

is hamiltonian).

As a step towards this, Zhan [46] and Jackson [26] showed that every 7-

connected (or equivalently 3.5-tough) line graph is hamiltonian. This was recently

generalized to claw-free graphs by Ryjáček [33]. (In fact, using a closure concept

Ryjáček showed that if a given condition implies that line graphs are hamiltonian

and that condition is closed under the addition of edges, then the same condition

also implies that claw-free graphs are hamiltonian.) Perhaps it is true that claw-

free graphs of sufficiently large connectivity have a large range of cycles. A related

result was proven by Trommel, Veldman and Verschut [39] who showed that every

claw-free graph with δ >
√

3n + 1 − 2 is weakly pancyclic (with girth 3).

In light of the demise of Chvátal’s pancyclic conjecture, Bauer, van den Heuvel

and Schmeichel conjectured the following.

Conjecture 2.9 (Bauer et. al. [6]) If G is a t-tough graph of order n and δ(G) >

n/(t + 1), then G is pancyclic.

Note that the hypothesis is sufficient for a graph to contain a triangle. (Con-

sider S = V (G) − N(v) for v a vertex of degree δ(G): the hypothesis implies

that G − S has fewer than δ(G) components.) Furthermore, Bauer et al. [4] have

shown that a slightly weaker bound is sufficient for the graph to be hamiltonian. It

follows from Corollary 1.6 that the conjecture is true at least when t < 3−O(1/n).

Minimum size. We turn now to lower bounds involving the number of edges

in the graph. Bondy proved the following statement.

Theorem 2.10 (Bondy [8]) Every hamiltonian graph G of order n and size

e(G) ≥ n2/4 is pancyclic, or n = 2r and G = Kr,r.

Bollobás [7, Sec. III, Theorem 5.2] extended this to show that graphs with

circumference K, order n and size e(G) > K(2n − K)/4 are weakly pancyclic

(with girth 3).

The bound in Theorem 2.10 was improved for nonbipartite graphs.

Theorem 2.11 (Häggkvist, Faudree & Schelp [22]) Every hamiltonian graph

G of order n and size e(G) > (n − 1)2/4 + 1 is pancyclic or bipartite.
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The same size is sufficient without the hamiltonicity requirement to guarantee

that the graph is weakly pancyclic with girth 3.

Theorem 2.12 (Brandt [13]) Every nonbipartite graph G of order n and size

e(G) > (n − 1)2/4 + 1 contains cycles of every length between 3 and the circum-

ference of G.

Even smaller size might suffice, if we only want the graph to be weakly pan-

cyclic.

Conjecture 2.13 (Brandt [13]) Every nonbipartite graph G of order n and size

e(G) > (n − 1)(n − 3)/4 + 4 is weakly pancyclic.

3 Proof of Main Theorem: Outline

Our approach to proving Theorem 1.4 is to start with a shortest cycle of a graph G

and to enlarge the cycles we find. This process stops once we find a cycle C where

G−C consists of small order components. As C is not necessarily a longest cycle,

we have to start again with a longest cycle and work in the opposite direction.

The key to making this work is what we call a “bicycle”, a subgraph representing

two consecutive cycle lengths. This allows one to build up or down in steps of 1

or 2 vertices.

3.1 Bicycles

Let T be a shortest odd cycle of a nonbipartite graph G of order n and 2t+1 be its

length. By counting the edges joining T and G−T we get that δ(G) ≤ 2n/(2t+1)

for t > 1, since T is an induced cycle and no vertex of G can have more than two

neighbors in T . As we investigate graphs with δ ≥ n/4 we get t ≤ 3, so T is a 3-,

5- or 7-cycle.

We define a pair of vertices in T as antipodal if they are at distance t apart

on T . A k-bicycle of G is a subgraph consisting of a shortest odd cycle T and an

internally disjoint path of length k− t−1 joining a pair of antipodal vertices of T .

So a k-bicycle contains both a k-cycle and a (k − 1)-cycle (and a (2t + 1)-cycle).

See Figure 1 for an example.

The length of a k-bicycle is k, which can be different from its order k + t − 1.

We will refer to the path of length k − t − 1 (including its endvertices on T ) as

the standard path and call its vertices standard vertices. We say that:
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a k-bicycle is maximal if there is neither a (k+1)- nor a (k+2)-bicycle.

Note that maximality is a property of the length of a bicycle. In general, there

can be maximal bicycles of different lengths in a graph, but we will see that under

the hypothesis of Theorem 1.4 this is not the case.

Bicycles with T being a triangle were introduced and used extensively by Amar

et al. [2] (and thereafter exploited by Shi in [36] and [38]). Some of the ideas used

in our proof and the global approach were motivated by [2].

3.2 Proof of Theorem 1.4

Theorem 1.4 is a consequence of the following three results which will be proven

in subsequent sections.

Proposition 3.1 If G is a nonbipartite graph with δ ≥ n/4+250, then G contains

a bicycle C with standard path of length 3 or 4, and cycles of every even length

less than the length of C.

Proposition 3.2 If G is a 2-connected nonbipartite graph with δ ≥ n/4 + 250,

then G misses no two consecutive bicycles between its shortest and longest.

Proposition 3.3 If G is a 2-connected nonbipartite graph with δ ≥ n/4 + 250

and circumference K, then G contains a k-bicycle for some k ≥ K − 9 and every

cycle length between k and K.

We now derive Theorem 1.4 from the above three propositions.

Suppose that G is 2-connected with δ(G) ≥ n/4 + 250, and has circumference

K and odd girth 2t + 1. We have to show that G contains even cycles of every

length k between 4 and K and odd cycles of every length k between 2t + 1 and

K. Let g0 and K0 be the length of a shortest and longest bicycle, respectively. By

Proposition 3.1 we have g0 ≤ t+5. Let k be a cycle length in the indicated range.

If k < g0 − 1 and even then, by Proposition 3.1, G contains a cycle of length k.

The only required odd cycle length in this range is 2t + 1, which is present. If

g0 − 1 ≤ k ≤ K0 then, by Proposition 3.2, G contains a k- or (k + 1)-bicycle,

which both contain a k-cycle. Finally, by Proposition 3.3, G contains cycles of

every length between K0 and K. 2

Most of the remainder of the paper is devoted to establishing these three

propositions.
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3.3 More propositions

Proposition 3.1 is straightforward. But the other two propositions require a lot

more work.

In the investigation of cycles contained in a graph it has proven useful to

examine for a cycle C the structure of G − C. The same features are useful

for bicycles. Following Veldman [41] we call a (bi)cycle C a Dλ-(bi)cycle, if all

components of G−C have order less than λ. So a D1-cycle is a hamiltonian cycle

and a D2-cycle is what is called a dominating cycle.

The proof of Proposition 3.3 when G is 3-connected uses the following result

on the structure of longest cycles in G.

Theorem 3.4 (Jung [28]) If G is a 3-connected graph with δ ≥ (n + 6)/4, then

every longest cycle is a D3-cycle.

In Proposition 3.6 below we prove the same result for maximal bicycles (with a

larger additive constant). Proposition 3.2 will be deduced from the following four

results.

Proposition 3.5 Let G be a graph with δ ≥ n/4 + 250 and connectivity 2 ≤ κ <

80. Then G contains a triangle and a bicycle of every length from 4 up to the

circumference of G.

Proposition 3.6 Let G be a 3-connected graph with δ ≥ n/4 + 250. Then every

maximal bicycle of G is a D3-bicycle. If G is triangle-free then every maximal

bicycle is a D2-bicycle.

Proposition 3.7 Let G be a 3-connected graph with δ ≥ n/4 + 250. If C is a

maximal bicycle of G then |C| ≥ min{n − 2, 3δ − 10, n − α + δ − 6}.

Proposition 3.8 Let G be a graph with δ ≥ n/4 + 250. If G contains a k-bicycle

for some k in the range k > min{3δ, n − α + δ} − 10, then G contains a (k − 1)-

or a (k − 2)-bicycle.

Note that Propositions 3.5, 3.6, and 3.7 are also used in the proof of Proposi-

tion 3.3. The remainder of the proof is performed in the following four sections:

• In Section 4 we establish some basic lemmas.
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• In Section 5 we prove Proposition 3.1.

• In Section 6 we prove Proposition 3.2 by proving Propositions 3.5, 3.6, 3.7

and 3.8.

• In Section 7 we prove Proposition 3.3.

That will complete the proof of Theorem 1.4.

4 Lemmas and Notation

For a vertex, v we define N(v) to be the set of neighbors of v, and d(v) to be

the degree of v. If H is a fixed subgraph, then NH(v) = N(v) ∩ V (H) and

dH(v) = |NH(v)|.
We often assign a fixed orientation to a cycle C; the orientation is arbitrary

unless explicitly specified. For a vertex a we denote by a+ and a− the successor

and predecessor of a on C, and by a+i and a−i the i-th successor and predecessor

of a on C, respectively. We denote by C[a, b] the segment aa+ . . . b−b of the cycle.

4.1 Double sweeps

An important tool is what we call a “double sweep”. A version for cycles is

described in the following lemma.

Lemma 4.1 (Double sweep of a cycle) Let G be a graph containing a k-cycle

C of G which is oriented. Let u, v be vertices in G − C each of which has no

consecutive neighbors on C, and ε an integer. If dC(u) + dC(v) > k/2, then u has

a neighbor z and v has a neighbor z+µ for some µ in the range ε ≤ µ ≤ ε + 2.

Proof: For every z ∈ C, let ez be the number of edges present in G among the four

potential edges uz, uz+, vz+ε+1, vz+ε+2. Clearly
∑

z∈C ez = 2(dC(u)+dC(v)) > k,

so there must be a z with ez ≥ 2. Since neither u nor v has consecutive neighbors

on C, either z+ or z is the desired neighbor of u. 2

See Figure 2. More useful will be the following technical-sounding extension

to path systems.

Lemma 4.2 (Double sweep of paths) Let P =
⋃

1≤i≤r Pi be a collection of r

vertex-disjoint paths of a graph G, each of them oriented, with a total of k vertices.
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Suppose u, v are vertices in G−P each of which has at most c pairs of consecutive

neighbors in P, and let integer ε ≥ −1 be given. If

dP(u) + dP(v) > k/2 + r(ε + 2)/2 + 2c,

then there exists a path Pi where u has a neighbor z and v has a neighbor z+µ for

some µ in the range ε ≤ µ ≤ ε + 2.

Proof: Link the paths Pi together to form a cycle C whose orientation agrees

with the orientation of the paths, by inserting an auxiliary path of length ε + 3

(ε + 3 new edges and ε + 2 new vertices) between the endvertices of consecutive

paths. So C has length k + r(ε + 2). Now delete for every pair of consecutive

neighbors of u and v an edge so that in the resulting graph neither u nor v has

consecutive neighbors on C. This decreases the degree-sum of u and v by at most

2c. By Lemma 4.1, u has a neighbor z in C such that v is adjacent to z+µ for

ε ≤ µ ≤ ε + 2. By the construction of C, the vertices z and z+µ are on the same

path Pi, as required. 2

We call the ordered pair (u, v) the beacons in the double sweep.

4.2 Paths joining specified vertices

Here we prove several lemmas on the length of paths joining specified vertices given

particular conditions. When dealing with bicycles, it simplifies the arguments if

we leave the short cycle fixed and try to vary only the standard path. In many

cases we have a path of length p joining two vertices u and v, and we want to find

a (u, v)-path of length p + 1 or p + 2.

The basic tool in many of our arguments below is the first lemma: the “Comb

Sweep Lemma”.

Lemma 4.3 (Comb Sweep) Let P be a (u, v)-path of length p in a graph G,

and let Q be a path in G − P of length q. If the number of edges between Q and

P exceeds p + q + 1, then u and v are joined by a path of length p + 2 which uses

only vertices of P and Q.

Proof: Suppose there is no (u, v)-path of length p + 2 through vertices of P and

Q. Say P = a0a1 . . . ap and Q = w0w1 . . . wq. Consider the set Ai = { j : wjai+j ∈
E(G) } for −q ≤ i ≤ p. If j, j′ ∈ Ai where j < j′ then we obtain a (u, v)-path
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a0 . . . ai+jwj . . . wj′ai+j′ . . . ap of length p + 2. So |Ai| ≤ 1 for every i. But
∑

i |Ai|
is the sum of the degrees from Q to P . See Figure 3. 2

Lemma 4.4 Let G be a graph containing two vertex-disjoint paths, one joining

vertices u and x and one joining vertices v and y, that use all n vertices of G. If

d(x) + d(y) ≥ n + 1 then G contains a hamiltonian (u, v)-path.

Proof: The result is trivial if x and y are adjacent, so assume otherwise. Construct

G′ from G by adding the edge uv (if necessary). So, in G′, x and y are joined

by a hamiltonian (x, y)-path through uv. By the degree condition, there are two

consecutive vertices z− and z on the path, with z 6= v, such that x is adjacent to

z and y to z−. So we obtain a hamiltonian cycle through uv in G′, and hence a

hamiltonian (u, v)-path in G. 2

Lemma 4.5 Assume P = a0a1 . . . ap (p ≥ 3) is a (u, v)-path in a graph G. Sup-

pose for some i (0 ≤ i ≤ p − 3), x and y are distinct neighbors of ai and ai+3,

resp., in G − P , and

d(x) + d(ai+1) + d(ai+2) + d(y) ≥ n + p + 5.

Then G contains a (u, v)-path of length p + 1 or p + 2.

Proof: The degree bound is chosen such that one of the following three possi-

bilities must occur. The first possibility is that two of the four vertices have a

common neighbor in G − P , but that trivially yields a longer (u, v)-path. See

Figure 4. The second possibility is that the pair {x, ai+1} has degree-sum at least

p + 3 on the paths a0 . . . aix and ai+1ai+2 . . . ap. Then the result follows from

Lemma 4.4 applied to the graph induced by the two paths. The third possibility

is that the pair {y, ai+2} has degree-sum at least p + 3 on the paths a0a1 . . . ai+2

and yai+3 . . . ap. Again the result follows from Lemma 4.4. 2

Lemma 4.6 Let P be a (u, v)-path of length p in a graph G, and let x, y be vertices

in G − P with dP (x) + dP (y) ≥ p/2 + 3.

a) If xy ∈ E(G), then either G contains a (u, v)-path of length p + 1 or p + 2

using all but at most two edges of P , or for some w ∈ P there are the four edges

xw, yw, xw+3, yw+3.
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b) If xy ∈ E(G) and G is triangle-free, then G contains a (u, v)-path of length

p + 2 spanning V (P ) ∪ {x, y}.
c) If x and y have a common neighbor z in G−P , then G contains a (u, v)-path

of length p + 1 or p + 2.

Proof: a) Label each vertex of the path P with its degree to {x, y}. (This is

either 0, 1 or 2.) If there is a segment of P with labels of the form (≥1,≥1),

(2, 0,≥1), or (≥1, 0, 2), then a (u, v)-path of length p + 1 or p + 2 results. So

assume otherwise. Partition the vertices of P into segments Si (apart from the

first) starting with a vertex labelled 2 and containing no other vertex labelled 2.

Every segment, except the first and last, starts with a vertex labelled 2 followed

by at least two vertices labelled 0 and every segment, except the first and last,

ends with two vertices labelled 0. The other vertices, if any, are labelled 0 and 1,

but no two consecutive vertices are labelled 1. So an internal segment Si has at

most |Si|/2 edges between {x, y} and Si, unless Si has the label sequence (2, 0, 0).

Similar arguments show that at most (|S1| + 1)/2 edges join {x, y} to the first

segment S1 and at most (|St|+3)/2 edges join {x, y} to the last segment St. Since

dP (x) + dP (y) ≥ p/2 + 3 there must be an internal segment labelled (2, 0, 0); thus

the first vertex of this segment is the desired vertex w.

b) There exists a segment ww+ of two successive vertices of P where there are

two edges between xy and ww+.

c) If x or y has a pair of consecutive neighbors on P then we are done. Oth-

erwise, make a double sweep of P with beacons (x, y) and ε = 1 (and c = 0). By

Lemma 4.2 there is a vertex w1 of P such that xw1, yw+µ
1 ∈ E(G) where 1 ≤ µ ≤ 3.

To avoid a path of length p + 1 or p + 2 via z, we get µ = 1, and neither w1 nor

w+
1 can have another neighbor in {x, y}. W.l.o.g. we may assume that w+2

1 has

no neighbor in {x, y}, as if both vertices w−
1 and w+2

1 have a neighbor in {x, y}
then a (u, v)-path of length p + 1 results. By performing a double-sweep of P in

G−xw1, we get by the same reasoning a pair of edges xw2, yw+
2 ∈ E(G) with the

sets {w1, w
+
1 } and {w2, w

+
2 } disjoint. But then we obtain a (u, v)-path of length

p + 2 through V (P ) ∪ {x, y} (which does not use z). See Figure 5. 2

Lemma 4.7 Let G be a graph with δ ≥ n/4+8 containing a (u, v)-path P of length

p and an (x, y)-path Q of length q with P and Q vertex-disjoint. If 3 ≤ q ≤ p/6+2

then G contains a (u, v)-path of length p + 1 or p + 2, or an (x, y)-path of length

q + 1 or q + 2 in G − P .
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Proof: Assume that G contains no (u, v)-path of length p + 1 or p + 2. Let

Q = a0a1 . . . aq and Ai = {ai, ai+1, ai+2, ai+3}.

First assume that q ≤ 6. By Lemma 4.3 (with Q = A0) we have
∑

w∈A0
dP (w) ≤

p + 4. So

∑

w∈A0

dG−P−Q(w) ≥ 4δ − p− 4− 4q > n− (p + 1)− (q + 1) + 6 = |G− P −Q|+ 6.

So there are two vertices a, a′ of A0 which have two common neighbors b, b′ in

G − P − Q. If a and a′ are adjacent on Q then we are done, so assume that a

and a′ are at distance 2 or 3 on Q. Then the vertices of B = {b, b′, a1, a2} are on

a common path of length at most 5 in G − P . So by Lemma 4.3, it follows that
∑

w∈B dP (w) ≤ p + 6. Therefore

∑

w∈B

dG−P−Q(w) ≥ 4δ − p − 6 − 4q − 2 > n − (p + 1) − (q + 1),

and so two vertices in B must have a common neighbor in G − P − Q. It can

easily be verified that this implies an (x, y)-path of length q +1 or q +2 in G−P ,

as required.

So we may assume that q ≥ 7. By Lemma 4.3 there are at most p+q+1 edges

between P and Q. Consider the edges a2j−1a2j for 1 ≤ j ≤ b(q − 1)/2c. For one

of these edges, say ai+1ai+2, we have dP (ai+1) + dP (ai+2) ≤ 2(p + q + 1)/(q − 2).

If dP (ai)+dP (ai+3) > (p+5)/2, then proceed as follows. We know that there is

an (ai, ai+3)-path of length 4 or 5 in G−P , as we have already verified this Lemma

for q = 3. By performing a double-sweep (Lemma 4.2) with beacons (ai, ai+3) of

P with ε = 3 (and c = 0), we obtain a pair of independent edges joining ai, ai+3

to P whose ends on P have distance 3 ≤ µ ≤ 5. If 3 ≤ µ ≤ 4 then we obtain a

(u, v)-path of length p + 2 or p + 1 through the path aiai+1ai+2ai+3 in G − P ; if

µ = 5 then we obtain a (u, v)-path of length p + 1 or p + 2 through the path of

length 4 or 5 joining ai and ai+3 in G − P ; either way a contradiction.

So assume dP (ai)+dP (ai+3) ≤ (p+5)/2. We get
∑

w∈Ai
dP (w) < p/2+2p/(q−

2) + 6. Hence

∑

w∈Ai

dG−P−Q(w) > 4δ − p

2
− 2p

q − 2
− 6 − 4q ≥ n − (p + 1) − (q + 1) + 6,

as 7 ≤ q ≤ p/6+2 and the expression 4q +2p/(q−2) is maximized at an extremal

value of q. Again, this implies that there are two vertices of Ai at distance 2 or 3 in
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Q which have two common neighbors b, b′ in G−P −Q. As b and b′ are joined by a

path of length 2 in G−P , we obtain by Lemma 4.6c that dP (b)+dP (b′) < p/2+3.

So for B = {b, b′, ai+1, ai+2} we obtain

∑

w∈B

dG−P−Q(w) > 4δ − p

2
− 2p

q − 2
− 7 − 4q − 2 ≥ n − (p + 1) − (q + 1).

Hence there must be two vertices in B which have a common neighbor in G−P−Q.

Again we obtain an (x, y)-path of length q + 1 or q + 2 in G − P , as required. 2

Lemma 4.8 Let G be a graph of order n with δ ≥ n/4+7 containing a (u, v)-path

P of length p ≥ min{3n/4, 5n/4 − α}. If G − P contains a path of length at least

3 then G contains a (u, v)-path of length p + 2. If G−P contains a path of length

2 then G contains a (u, v)-path of length p + 1 or p + 2.

Proof: Let Q be a longest path of G − P and let q be its length. If q = 2 then

by Lemma 4.6c applied to the endvertices of Q we obtain a (u, v)-path of length

p + 1 or p + 2. So we may assume that q ≥ 3.

We note that q ≤ p− n/2. For, if p ≥ 3n/4 this follows from p + q < n; and if

p ≥ 5n/4 − α then this follows from n − α ≥ (p + q)/2, as only (r + 2)/2 vertices

of an independent set can be in a path of length r.

Observe that a vertex of G − P − Q is adjacent to neither endvertex of Q

and it cannot be adjacent to two consecutive vertices of Q. If q is odd then let

Q′ = V (Q). If q is even then let Q′ be all the vertices of Q except for the neighbor

of one endvertex. Let q′ = |Q′|. Then the number of edges between Q′ and the

vertices of P is bounded by

e(Q′, P ) ≥ q′(δ − q) − (n − p − q − 2)(q′/2 − 1).

Since p ≥ n/2 + q, it follows that

e(Q′, P ) − (p + q + 1) ≥ q′(δ − n/4 + 1) − 4q − 3 > 0.

As there are more than p + q + 1 edges joining Q to P , by Lemma 4.3 (Comb

sweep) a (u, v)-path of length p + 2 results. 2

Lemma 4.9 Let G be a graph with δ ≥ n/4 + 3 containing a (u, v)-path P of

length p but no (u, v)-path of length p + 1 or p + 2. If there is an (x, y)-path of

length at least 3 in G − P , then there is an (x, y)-path of length q in G − P for

some q with 3 ≤ q ≤ 9.
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Proof: Let Q = a0a1 . . . aq be a shortest (x, y)-path among the (x, y)-paths

in G − P of length at least 3. Suppose q ≥ 10. Consider the initial segment

Q′ = a0a1 . . . a9 and the set A = {a0, a3, a6, a9}. By Lemma 4.3 there are at most

p + 10 edges joining (Q′ and hence) A to P . So, by the minimum degree bound,

two vertices in A have a common neighbor in G − P . If the common neighbor is

not in Q′ then we replace the segment between the respective vertices of A by their

common neighbor—this contradicts the minimality of Q. If the common neighbor

is in Q′ then we use a shortest chord of Q′ to obtain a shorter (x, y)-path of length

at least 3—again a contradiction. 2

The following result is a special case of a result of Bondy and Jackson.

Theorem 4.10 (Bondy & Jackson [10]) If G is a 3-connected graph with min-

imum degree δ, then any pair u, v of vertices are joined by a path of length at least

2δ − 2.

4.3 Paths and bipaths of all lengths

For graphs with minimum degree exceeding n/2, we obtain stronger results. Let a

bipath be any subgraph obtainable by removing an edge from the standard path of

a bicycle. The standard paths of a bipath are analogously defined as for a bicycle;

note that a bipath has two of them. A bipath obtained from a bicycle of length k

in the indicated way is said to have length k − 1.

A graph G is said to be panconnected if every pair of vertices in G are joined

by a path of length p for all 2 ≤ p ≤ n − 1. It is bipath-connected if every pair of

vertices in G are joined by a bipath of length k for all 3 ≤ k ≤ n−1. By definition

bipath-connected graph cannot be triangle-free.

Theorem 4.11 (Faudree & Schelp [18]) If G is a graph with δ ≥ n/2 + 1,

then G is panconnected.

Lemma 4.12 If G is a graph with δ ≥ n/2 + 2, then it is bipath-connected.

Proof: Let u and v be any pair of vertices. There exist vertices x, y 6= v such that

uxy forms a triangle. By Theorem 4.11 the graph G′ = G−{u, x} is panconnected.

So in G′ there are (v, y)-paths of lengths 2 through n − 3, and thus bipaths in G

joining u and v for every length p with 4 ≤ p ≤ n. Since u and v have a common

neighbor w and u and w have a common neighbor z 6= v, we also obtain the bipath

of length 3. 2
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5 Short Bicycles

In this section we prove Proposition 3.1.

It is well-known that a graph which satisfies δ2 − δ + 1 > n has a 4-cycle. The

remainder of the proof of Proposition 3.1 is given by the following lemma. Recall

that every nonbipartite graph with δ > n/4 has an odd cycle of length at most 7.

Lemma 5.1 Let G be a nonbipartite graph of order n with minimum degree δ ≥
n/4 + 250.

a) If G has a triangle then G contains a 5- or a 6-bicycle.

b) If G is triangle-free then G contains a 7-bicycle.

Proof: a) Let T = {x1, x2, x3} be a triangle of G, and set Xi = N(xi) and

X = X1 ∪ X2 ∪ X3. If some Xi contains a path P of length 3 then V (P ) ∪ {xi}
contains a 5-bicycle. Similarly, if there is an edge joining a vertex yi ∈ Xi to a

vertex yj ∈ Xj (i 6= j) then V (T ) ∪ {yi, yj} contains a 5-bicycle as well.

Otherwise, choose distinct vertices y1, y2, y3 such that yi ∈ Xi and yi has at

most 2 neighbors in Xi (such vertices exist, since for every v ∈ Xi the vertex v

itself or a neighbor w ∈ Xi of v has at most two neighbors in Xi, to avoid a path

of length 3 in Xi). Since d(y1) + d(y2) + d(y3) ≥ 3n/4 + 750 > |V (G) \ X| + 15,

two vertices yi, yj , i 6= j, have a common neighbor z in V (G) \ X, which implies

a 6-bicycle through V (T ) ∪ {yi, yj , z}.
b) Fix a shortest odd cycle T . By the minimality of T , any vertex is adjacent

to at most two vertices of T and these two must be distance two apart on T .

First suppose T = C5. Since there are at least 5n/4 + 990 edges joining T

to G − V (T ), there are at least 16 vertices in G − V (T ) each of which has two

neighbors on T . Four of these must have the same two neighbors on T . By the

degree requirement two of the four have a common neighbor in G − V (T ), so we

obtain a 7-bicycle.

Finally suppose T = C7. Since there are more than 7n/4 + 1000 edges joining

T to G − V (T ), there is a set S of at least 3n/4 vertices in G − V (T ) each of

which has two neighbors on T . Within S there must be an edge, which implies a

7-bicycle. 2
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6 Lengthening and Shortening Bicycles

In this section we prove Propositions 3.5, 3.6, 3.7 and 3.8 in succession. It is then

straightforward to deduce Proposition 3.2.

In the proofs of the propositions we investigate graphs with minimum degree

δ ≥ n/4 + 250. Moreover we may assume that

n > 988,

since for n ≤ 988 we have δ ≥ n/2 + 3, so by Lemma 4.12 the graph is bipath-

connected. So for any edge e we get bicycles of every length between 4 and n

through e, which implies the truth of all the indicated propositions.

6.1 Proof of Proposition 3.5

Here we investigate the case when the connectivity of the graph is less than 80.

We start with a lemma which provides, starting from a cycle C, bicycles of many

consecutive lengths, and, in particular, a bicycle containing all vertices of C.

Lemma 6.1 Let G be a graph of order n with δ ≥ n/4+250. Suppose G contains

a vertex-cutset S with |S| ≤ 81 and H is a component of G − S with order less

than n/2. If C is a cycle which has an edge in common with H, then G contains

bicycles C− and C+ with the following properties:

• C− and C+ contain all edges of E(C) − E(H),

• C− has only paths and bipaths of length at most 3 in common with H,

• C+ satisfies V (C+) = V (C) ∪ V (H).

Moreover, G contains bicycles of every length k for |C−| ≤ k ≤ |C+|.

Proof: Let v1, w1, v2, w2, . . . , vr, wr be the endvertices of the paths of length at

least 1 in the intersection of C and H. Let X0 be the set of endvertices of the

paths which H has in common with C (i.e. both endvertices of paths of length at

least 1 and the single vertices of the length-0 paths). Then |X0| < 2|S|. Define

iteratively sets Xj for 1 ≤ j < r, where Xj is obtained from Xj−1 by adding a

common neighbor yj /∈ Xj−1 of vj and wj in H. Such a common neighbor exists,

as for each j the graph Hj = H − (Xj−1 \ {vj , wj}) satisfies δ(Hj) > |Hj |/2 + 3.

By the same count, Hr is bipath-connected by Lemma 4.12.

For j < r replace the (vj , wj)-segment of C by vjyjwj . By replacing the

(vr, wr)-segment by a bipath of Hr of every length p for 3 ≤ p ≤ |Hr| − 1, we
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obtain the indicated bicycles C− (p = 3), C+ (p = |Hr|− 1), and bicycles of every

length between |C−| and |C+|. 2

In order to prove Proposition 3.5, we need to show that if G has connectivity

2 ≤ κ < 80, then G contains a triangle and a bicycle of every length from 4 up to

the circumference of G.

Let S be a smallest cutset of G and let G1 be a smallest order component

of G − S. Certainly, G1 is 3-connected and contains a triangle, as any graph H

with δ(H) > |H|/2 has these properties. As δ(G1) ≥ |G1|/2 + 3 we can apply

Lemma 4.12 to two adjacent vertices of G1 and obtain that G1 and therefore G

contains k-bicycles for every k with 5 ≤ k ≤ |G1|. Consider the graph G′ =

G − S − G1.

First assume that G′ is 3-connected. We show next that G contains k-bicycles

for every k with n/4 + κ + 3 ≤ k ≤ min{n − κ, 3(δ − κ)}.
Since G is 2-connected there are two vertex-disjoint paths Pv, Pw, each linking

a vertex of G1 to a vertex of G′, which have no further vertex in common with

V (G1) ∪ V (G′). Let v1, w1 be the endvertices of Pv, Pw in G1, and v2, w2 be the

endvertices in G′.

Let q denote the length of a longest (v2, w2)-path in G′. By Theorem 4.10 it

follows that q ≥ min{|G′| − 1, 2(δ − κ) − 3}. Next we show that there cannot be

a gap of n/4 consecutive lengths of (v2, w2)-paths in G′. That is, for every r with

n/4 ≤ r ≤ q there is a (v2, w2)-path in G′ of length ` satisfying r − n/4 < ` ≤ r.

Otherwise there is a maximum r for which the condition is violated. Then G′

contains a (v2, w2)-path P of length r +1. Let P ′ be a subpath of P of length n/4

centered at the center of P . The endvertices x, y of P ′ have only one neighbor

each in P ′, and at most 2 common neighbors in P −P ′ because every short chord

of P yields a suitable shorter (v2, w2)-path. Therefore

dG′−P (x) + dG′−P (y) ≥ 2(δ − κ) − r + n/4 − 5 > |G′| − r − 1.

Thus x and y have a common neighbor in G′ − P . So we obtain a (v2, w2)-path

of length r − n/4 + 2 avoiding the interior of P ′, a contradiction.

Since G1 is bipath-connected, we obtain bicycles of every length between n/4+

κ + 3 and q + |G1| + 3 by a suitable combination of (v1, w1)-bipath in G1 and

(v2, w2)-path in G′. It follows that G has every bicycle up to min{n−κ, 3(δ−κ)}.
Now take a longest cycle C of G. We know that |C| ≥ min{n − κ, 3(δ − κ)},

since G contains a bicycle of at least that length. So C shares an edge with both
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components of G−S, in particular with G1. By Lemma 6.1 we obtain k-bicycles,

for every k in the range of |C−| ≤ |C| − |G1| + 4|S| ≤ k ≤ |C| = |C+|, and since

|C|−|G1|+4|S| ≤ min{n−κ, 3(δ−κ)} for n > 988, we have found all the required

bicycles.

So we may assume that G′ is not 3-connected. Hence there is a set T , with

0 ≤ |T | ≤ 2, such that G′ − T consists of two components G2 and G3. Both of

these components are 3-connected and have order less than n/2.

Take a longest cycle C of G. As G is 2-connected the length of C is at

least min{2δ, n} (Dirac [17]). So C shares an edge with at least two of the three

components of G−(S∪T ). Starting from C we will construct k-bicycles, for every

k in the range 5|S ∪ T | ≤ k ≤ |C|.
Apply Lemma 6.1 to the first component Gi which shares an edge with C. We

obtain bicycles of every length from |C| down to a bicycle C−, which contains all

edges of C outside this component, and has only paths and bipaths of lengths at

most 3 in Gi. Now take C− as the new cycle, and apply Lemma 6.1 to the second

component which shares an edge with C (and hence with C−). Continuing in the

same way also for the third component (if this shares an edge with C), we obtain a

short bicycle C ′, which has only paths and bipaths of length at most 3 in common

with each component, and bicycles of every length between |C ′| and |C|. Since

|C ′| ≤ 5|S ∪ T | ≤ δ − κ ≤ |G1| as n > 988, the proof is complete. 2

6.2 Proof of Proposition 3.6

We need to show first that if G is 3-connected, then for any maximal bicycle C

each component of G − C has order 1 or 2.

For 3 ≤ κ < 80 this follows from Theorem 3.4 and Proposition 3.5; so we may

assume that G has connectivity at least 80.

Let C be a maximal bicycle with standard path P of length p. Let u and v

be the endvertices of P . Consider the graph G′ obtained from G by deleting the

vertices of C which are not on the standard path P . Observe that G′ has at least

n − 5 vertices. (Note that G′ − C = G − C.)

For 3 ≤ p < 495 we can apply Lemma 4.5 to P in G′, since every vertex on that

path has two neighbors in G′ − C, to show that no such bicycle can be maximal.

So we may assume p ≥ 495.

Let H be a largest order component of G − C. We will show that:
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if H has order at least 3, then one can find a (u, v)-path of length p+1

or p + 2 in G′.

This will contradict the maximality of C.

Let Q be a longest path in H and x, y be its endvertices. As H has order at

least 3, the path Q has length q ≥ 2. If q = 2 then dP (x)+dP (y) ≥ 2δ−6 > p/2+3,

so by Lemma 4.6c we obtain a (u, v)-path of length p + 1 or p + 2. Hence we may

assume that q ≥ 3.

By Lemma 4.7 it follows that q > p/6+2 ≥ 80. Since G is 80-connected, there

must be 80 vertex-disjoint paths, each with one endvertex in C and one endvertex

in Q and every interior vertex in G − C − Q. Call this collection R. We will use

two of these paths to find two independent edges ab and a′b′ with a, a′ ∈ P and

b, b′ ∈ H such that a and a′ are distance µ apart on P , for µ in a suitable range,

and b and b′ are connected by a path of length µ or µ − 1 in H. This will yield

the desired (u, v)-path.

Orient P and Q. Consider segments of P of length p/6. Since at least 75 of

the paths in R have an endvertex on P , there must exist such a segment, say P ′,

where there are endvertices of at least 13 of the paths. Let A be the set of the first

three endvertices of paths ending in P ′ and A′ the set of the last two endvertices.

(This ensures that a vertex of A and a vertex of A′ are at least distance 9 apart

on P .)

Let B and B′ be the respective sets of neighbors on R of A and A′. We claim

that there exist vertices b ∈ B and b′ ∈ B′ which are joined by a path of length

at least 3 in H. For, let z1, . . . , z5 be the endvertices of the five paths on Q in

order; then among the pairs (z1, z4), (z1, z5), (z2, z5) there must be a pair where

one vertex belongs to a path ending in a ∈ A and the other to a path ending

in a′ ∈ A′: the respective neighbors b and b′ of a and a′ on these paths suffice.

Observe also that a and a′ have distance µ for 9 ≤ µ ≤ p/6 in P .

Now, assuming that there is no (u, v)-path of length p + 1 or p + 2, we obtain

by Lemma 4.9 that b and b′ are joined by a path of some length ` for 3 ≤ ` ≤ 9

in G′ − P . By repeated application of Lemma 4.7 there are (b, b′)-paths of length

r − 1 or r whenever ` ≤ r ≤ p/6 + 2; so, in particular, for r = µ. By replacing

the (a, a′)-path of length µ in P by the (a, a′)-path of length µ + 1 or µ + 2 in

G′ − P through b and b′, we obtain a (u, v)-path of length p + 1 or p + 2. This is

a contradiction.

Hence we have shown that C is a D3-bicycle.
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It remains to show that if G is triangle-free then C is a D2-bicycle. But suppose

there is a component {x, y} of G−C; then by Lemma 4.6b we obtain a bicycle of

length 2 more than C. This is a contradiction. 2

6.3 Proof of Proposition 3.7

We need to show that one can bound the length k of a maximal bicycle from below

by min{n − 2, 3δ − 10, n − α + δ − 6}. This follows from Proposition 3.6 using

standard “long-cycle” arguments.

We may assume that k < n−2 otherwise we are done. First assume that there

is a k-bicycle C which is not dominating. By Proposition 3.6 the components

of G − C have cardinality at most 2. Consider a component of two vertices x

and y. If there is a segment S of 3 vertices on the standard path P of C such that

dS(x) + dS(y) > 2, then a bicycle contradicting the maximality of C results. So

2(δ − 3) ≤ dP (x) + dP (y) ≤ 2(k + 1)/3.

Hence k ≥ 3δ − 10.

So we may assume that every bicycle of length k is dominating. Fix v ∈
V (G−C). We will show that: N+

P (v)∪V (G−C) is an independent set, where P

is the standard path of C.

There is no edge between vertices of G−C. By the maximality of k, certainly

v cannot have two consecutive neighbors on P . Also, if there exist neighbors a

and b of v such that a+b+ ∈ E(G), then there is a (k + 1)-bicycle.

Finally, suppose that there is some vertex w ∈ V (G−C) such that va, wa+ ∈
E(G). Then perform a double sweep (Lemma 4.2) of P with v and w as beacons

and ε = 1 (c = 0). We obtain a (k + 2)- or (k + 1)-bicycle, or a k-bicycle with an

edge outside the bicycle, a contradiction (see Figure 6).

Hence

α ≥ δ + n − k − 6,

so that k ≥ n − α + δ − 6, as required. 2

6.4 Proof of Proposition 3.8

We start with a technical lemma.
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Lemma 6.2 Let G be a graph with δ ≥ n/4 + 250. Let µ ≥ 2 be an integer and

assume G contains a k-bicycle C, and a path Q of length q ≥ µ in G − C, where

k + q − µ ≥ min{3δ, n − α + δ} − 10. If for every pair of edges a−a, a+ra+r+1 of

Q with r ≥ µ

dC(a−) + dC(a) + dC(a+r) + dC(a+r+1) ≥ k + q + 11,

then G contains a (k + q − µ + 1)- or a (k + q − µ + 2)-bicycle.

Proof: Let P be the standard path of C and let p be its length. Set G′ =

G − (V (C) \ V (P )). For a fixed value of µ the proof uses induction on q.

If q ≤ µ + 1 then we can apply Lemma 4.8 to G′ and P as p ≥ k − 4 ≥
min{3δ, n − α + δ} − 15 ≥ min{3|G′|/4, 5|G′|/4 − α(G′)} and δ(G′) > |G′|/4 + 7.

So we obtain a (k+1)- or a (k+2)-bicycle if q = µ = 2 and a (k+q−µ+2)-bicycle

otherwise.

Assume q ≥ µ+2. Let P = a0a1 . . . ap and Q = b0b1 . . . bq. Since the edges b0b1

and bq−1bq satisfy the degree-sum condition, there are at least k+µ+3 edges joining

b0, b1, bq−1, bq to P . Consider the four potential edges b0ai, b1ai+1, bq−1bi+µ, bqai+µ+1

for −(µ + 1) ≤ i ≤ p. As every edge joining b0, b1, bq−1, bq to P occurs for exactly

one i, there must be an i for which two of the four potential edges are present.

If the edges are incident with b0 and b1, or with bq−1 and bq, then we can insert

the edge b0b1 (bq−1bq, resp.) into C to obtain a (k + 2)-bicycle C ′ containing all

vertices of C, and a path Q′ of length q − 2 in G − C. The subgraphs C ′ and Q′

satisfy the inductive hypothesis. Hence, by induction, we obtain a (k + q−µ+1)-

or (k + q − µ + 2)-bicycle. In the other four possible incidences, we obtain a

(k + q − µ + 1)-bicycle immediately. 2

We need to show that if G is nonbipartite and contains a k-bicycle C for some

k in the range k > min{3δ, n − α + δ} − 10, then there is either a (k − 1)-bicycle

or a (k − 2)-bicycle.

The above lemma suggests the following approach: Find a shorter bicycle

which avoids a short subpath of the standard path of the original bicycle such

that every pair of distant edges of the short subpath sends many edges to the new

bicycle. There are three cases.

• C is a spanning bicycle.

Let aa+s be a shortest chord of the standard path of C. So G contains a bicycle C ′

which avoids the induced path Q = a+ . . . a+s−1. If s ≤ 3 then C ′ is the desired
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bicycle of length K − 1 or K − 2; otherwise we obtain the bicycle by applying

Lemma 6.2 to C ′ and Q with µ = 2. (The degree sum to Q is at least n + 11.)

• Every vertex of G − C has less than k/6 + 6 neighbors on C.

It follows that k > 3n/4. Otherwise k > n−α+δ−10 so that α > 5n/4−k+6 and

for a maximum independent set I we have |I ∩V (G−C)| > 5n/4− 3k/2+6; thus

every vertex of I∩V (G−C) has more than δ−(n−k−5n/4+3k/2−6) > k/6+6

neighbors on C.

In particular, every vertex in G−C has more than n/4− k/6 + 3 neighbors in

G − C. This implies that n − k > n/10 and that δ(G − C) > (n − k)/2 + 3. By

Theorem 4.11 the graph G − C is panconnected.

As n−k < n/4, each vertex of G−C has at least 250 neighbors in C. So there

are at least 248n/10 edges joining G−C to the standard path P . This means that

there is a segment S of P of length at most k/10 with more than 248n/100 > 4|S|
edges joining S to G − C. Hence there are two independent edges ux, vy where

u, v ∈ V (G−C) and x, y ∈ S where x and y are at some distance µ apart in S with

5 ≤ µ < n/10. We obtain a bicycle of length k − 1 by replacing the subpath of S

joining x and y by a path through ux, vy and G − C that is one vertex shorter.

• Some vertex v of G − C has at least k/6 + 6 neighbors on C.

Therefore v has r ≥ k/6+4 neighbors on the standard path of C. Let x1, x2, . . . , xr

be its neighbors in order, and let yi = x3i+1 for 0 ≤ i ≤ (r − 1)/3.

The vertices yi split the standard path into more than k/18 segments Si =

C[yi, yi+1]. Let S be the set of such segments of length less than 36. Certainly

|S| > k/36. For every segment Si ∈ S find a minimal subsegment S′
i with the

properties that (i) S′
i has length at least 3, and (ii) the endvertices of S′

i have a

common neighbor in G − C. As S itself satisfies (i) and (ii), S′
i is well defined.

Define S ′ = {S′
i : Si ∈ S }.

Suppose that there is a set B of 14 vertices in G − C each of which has a

pair of consecutive neighbors in at least 14 segments of S ′. Let S′ be the shortest

segment in S ′: it has length at most 17. Then we obtain a bicycle C ′ of length

k′ with k − 1 ≥ k′ ≥ k − 15 by replacing the interior path of S′ by the common

neighbor w in G − C of the endvertices of S′. If k − k′ ≤ 2 then we have found

the desired bicycle. Otherwise we obtain the bicycle by inserting k − k′ − 2 ≤ 13

vertices of B (none of which is w) into distinct segments distinct from S′.

So, apart from at most 13 vertices, every vertex of G − C has a pair of

consecutive neighbors in at most 13 segments of S ′. So there are less than
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13|S ′| + 13(n − k) < 13|S ′| + 13k pairs (x, S′
i) where x ∈ V (G − C) is adja-

cent to two consecutive vertices of S′
i ∈ S ′. Hence, as |S ′| > k/36, there is a

segment where less than 481 vertices of G − C have a pair. Call this segment S′.

Consider the bicycle C ′ of length k′ ≥ k−33 obtained by replacing the interior

path of S′ by the common neighbor in G − C of the endvertices of S′. Let Q be

the interior path of length k − k′ of S′ that is in G − C ′.

Consider a pair of edges a−a, a+ra+r+1 at distance r ≥ 3 in Q. By the mini-

mality of S′ every vertex in G − C is adjacent to at most two of the four vertices

a−, a, a+r, a+r+1, and if it is adjacent to two of the four, then the two neighbors

are consecutive on S′. So the number of edges between G − C and the foursome

is at most (n − k) + 481. Thus

dC′(a−) + dC′(a) + dC′(a+r) + dC′(a+r+1) ≥ 4δ − (n − k) − 481 − 132 > k + 36.

Thus we can invoke Lemma 6.2 with C ′, Q and µ = 3 to obtain a bicycle of length

k − 1 or k − 2. 2

6.5 Proof of Proposition 3.2

Consider graphs with δ ≥ n/4 + 250.

Proposition 3.5 shows that for such graphs of connectivity 2 every maximal

bicycle has length equal to the circumference of G.

For 3-connected graphs Proposition 3.7 shows that every maximal bicycle has

length at least T where T = min{n, 3δ− 10, n−α + δ− 6}. Proposition 3.8 shows

that there are no maximal bicycles of length between T and K0 − 1 where K0

is the length of the longest bicycle. Thus the only maximal bicycles are ones of

maximum length.

7 Long Cycles and Bicycles

The aim of this section is to prove Proposition 3.3.

7.1 Creating a long bicycle

The following lemma is based on an idea from [2]. Call a vertex insertible into a

path P (cycle C), if it is adjacent to two consecutive vertices of P (C, resp.).
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Lemma 7.1 Let P and P ′ be paths. If every vertex of P ′ is insertible in P , then

there exists a path Q with the same endvertices as P that contains all vertices of

P and P ′.

Proof: Let v and u be the endvertices of P ′ and suppose v is insertible at the edge

yy+ in P . Let w be the vertex of P ′ (not necessarily distinct from v) at largest

distance in P ′ from v with the property that w is insertible at the same edge yy+

in P . Insert P ′[v, w] into P at yy+ to obtain a path P ′′. (That is, replace yy+ by

yvv+ . . . wy+.) Every vertex of P ′[w+, u] is insertible in P ′′, and so by induction

we can insert the vertices of P ′[w, u] into P ′′. 2

The most difficult task in this section is to prove that the graph contains a

(K−1)-cycle where K is the circumference of the graph. The most complex parts

of the proof occur in the following lemma, which is proved by using a kind of

hopping technique for edges.

Lemma 7.2 Suppose G is a graph with girth 3 and δ ≥ n/4+250, and among all

cycles which share an edge with a triangle let C be a longest. If C is dominating

then there is a bicycle of length at least |C| − 1.

Proof: Assume |C| = k. If C shares two edges with a triangle then it is the

bicycle we seek. Otherwise, consider the third vertex of a triangle that shares an

edge with C. If it is outside C we obtain a contradiction of the maximality of C

immediately. So we may assume that the third vertex of the triangle is in C.

Call a vertex of C multi-insertible if it is adjacent to at least 4 pairs of consec-

utive vertices of C. Suppose C[u, v] is a segment of C which satisfies the following

properties:

• u+ is insertible in C, and

• every vertex (if any) of C[u+2, v−] is multi-insertible.

If C[u, v] contains a chord, then we obtain a k-bicycle as follows. Let xy be a

shortest chord in C[u, v], and let C ′ be the cycle obtained by using the edge xy

and the path C[y, x]. Let {w, w+} be a consecutive pair of neighbors of x+ on C

and hence on C ′. Then every vertex of C[x+2, y−] is insertible into C ′[w+, w]. By

Lemma 7.1 we obtain a path with endvertices w+ and w which uses every vertex

in C except x+; this yields a k-bicycle. Thus we may assume that C[u, v] has no

chords.
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Moreover, we may assume that no vertex in G − C has two neighbors x and

y in C[u, v], since otherwise we obtain a (k + 1)-bicycle by a similar reasoning.

(Construct C ′ using the xy path of length 2 instead of the xy chord.)

Now take a segment C[u, v] which satisfies the above two properties, and,

additionally,

• neither u nor v is multi-insertible.

Such a segment exists, since there is some vertex with two consecutive neighbors

on C (cf. the first paragraph of the proof), and by the above reasoning we may

assume that on each side of every chord there is at least one vertex that is not

multi-insertible.

Let ww+ be a pair of consecutive neighbors of u+. Let P be a longest path

which contains C[v, u] as a subpath and avoids the interior of C[u, v]. Let u′ and

v′ be the endvertices of P . Since C is dominating, u′ is either u or a neighbor of

u in G − C; similarly v′ is either v or a neighbor of v in G − C. By the above

reasoning and the maximality of C and P , the endvertices of P have no neighbor

in G−P , and each of them has at most 3 pairs of consecutive neighbors on C[v, u].

Now perform a double sweep (Lemma 4.2) of the paths C[v+, w] and C[w+, u−]

with beacons (u′, v′) and ε = 1 (c = 3, r = 2). As the result we obtain edges

u′z, v′z+µ for some µ with 1 ≤ µ ≤ 3. Hence there is a cycle C ′ in 〈P 〉 (the

subgraph induced by the vertex set of P ) through ww+ which misses only the

interior vertices of C[z, z+µ] (see Figure 7). By inserting u+ at ww+ and the

vertices of C[u+2, v−] at other places into this cycle (using Lemma 7.1), we obtain

a bicycle. This bicycle has length at least k − 1, as required, unless µ = 3, u = u′

and v = v′.

The latter case requires more work. It suffices to show that:

〈P 〉 contains a cycle through the edge ww+ of length at least |P | − 1

such that every vertex of C[u+2, v−] is multi-insertible into that cycle.

Let e0 denote the edge z+z+2 of C disjoint from C ′. Let us rename its endpoints

to be y0 and y+
0 . Now, we construct a sequence (ei = yiy

+
i ) of edges of C, one

edge at a time, by taking for ei+1 = yi+1y
+
i+1 any edge of C with the following

properties:

• ei+1 is an edge of C[v+, w−] or C[w+2, u−];

• y−i+1yi+1y
+
i+1y

+2
i+1 is disjoint from e0, e1, . . . , ei; and

30



• the predecessor y−i+1 and successor y+2
i+1 of ei+1 on C are both adjacent to

both ends yi and y+
i of ei.

Let j0 be the smallest index for which one of the following situations occurs:

(1) ej0 has a neighbor in G − P − u+;

(2) ej0 has a neighbor in ei for an i < j0; or

(3) there is no suitable edge ej0+1.

Since C is finite such a j0 must exist.

Let Γ(i) denote the set of “neighboring edges” of the edges e0, e1, . . . , ei in C,

viz. {y0y
−
0 , y+

0 y+2
0 , y1y

−
1 , . . . , y+

i y+2
i }. We now show that 〈P 〉 contains a series of

spanning subgraphs:

(i) For 0 ≤ j ≤ j0 there is a spanning path P (j) starting at v and ending with

ej which contains all edges of P except some of Γ(j);

(ii) For 0 ≤ j ≤ j0 there is a cycle C(j) which together with the vertex-disjoint

edge ej contains all vertices of P and all edges except some of Γ(j);

(iii) For 0 ≤ i < j ≤ j0 there is a spanning bipath P (i, j) starting with ei followed

by a common neighbor of the ends of ei and ending with ej , which contains

all edges of P except some of Γ(i).

To see (i), observe that the statement is true for j = 0, since

P (0) = v . . . y−2
0 y−0 uu− . . . y+

0 y0 is a path containing all edges of P except for a

neighboring edge of e0. Now suppose we have found a path P (j). Note that the

segment y−j+1yj+1y
+
j+1y

+2
j+1 is a segment of P (j) (though perhaps oriented the other

way). Figure 8 shows how to construct P (j + 1) from P (j) by using an edge from

a neighbor of ej+1 to the end of P (j).

To see (ii), observe that this is true for j = 0, since

C(0) = C ′ = vy+2
0 y+3

0 . . . uy−0 y−2
0 . . . v is a cycle containing all edges of P except

e0 and its neighboring edges. Now suppose we have found a cycle C(j). Note

that the segment around ej+1 is a segment of C(j). Figure 9 shows how to obtain

C(j + 1) from C(j) by simply replacing ej+1 with ej .

To verify (iii), start with C(i) and use the obvious way to find P (i, i + 1). To

derive P (i, j + 1) from P (i, j) we can refer to the same Figure 8 as above.

Observe that every vertex of C[u+2, v−] is still (multi-)insertible in P (j0), C(j0)

and P (i, j0) (since we terminate the construction of the sequence if (1) occurs).
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We conclude the proof by showing how to find the desired bicycle from each of

the three “accidents” (1) – (3).

Suppose that (1) occurs. The first possibility is that ej0 has a neighbor in

C[u+2, v−]. Take the first such neighbor z in C[u+2, v−]. Form a cycle of length

at least |P | − 1 by starting at v, going along P (j0) to ej0 , then to z (possibly

skipping a vertex of ej0), and back to v along C[z, v]. By inserting u+ at ww+ and

C[u+2, z−] elsewhere (Lemma 7.1) this yields a bicycle of length at least k − 1, as

required.

The other possibility is that ej0 has a neighbor in G−C. Then take the cycle

C(j0) and insert u+ and C[u+2, v−] into C(j0) as above. The result is a (k − 2)-

bicycle C ′′ with a component of cardinality at least 3 in G−C ′′. By Proposition 3.6

this bicycle is not maximal; hence, in particular, there must be a longer bicycle.

Assume that (2) occurs: ej0 has a neighbor in ei for an i < j0. By the definition

of P (i, j0) we can start it with either end of ei since both are adjacent to the third

vertex on the path. Hence adding the edge between ej0 and ei to P (i, j0) yields

a bicycle in 〈P 〉 of length at least |P | − 1, into which we can reinsert u+ and

C[u+2, v−] as above to obtain a bicycle of length at least k−1. So we may assume

that neither (1) nor (2) occurs.

Suppose that (3) occurs: there is no suitable edge ej0+1. Apply Lemma 4.6a

to ej0 and the path C(j0)[w
+, w]. Either we obtain a longer cycle in 〈P 〉 using all

but at most two edges of C(j0)—in which case we obtain a bicycle of length at

least k−1 after inserting u+ and C[u+2, v−] as above—or for some a ∈ C(j0) both

ends of ej0 are adjacent to both a and a+3. We know that neither a nor a+3 is a

vertex of any ei (since accident (2) did not occur). If both a+ and a+2 are disjoint

from every ei, then the segment aa+a+2a+3 must be a segment of C disjoint from

every ei, and so we could have taken a+a+2 for ej0+1. Hence one of the vertices

a+, a+2 is an end of some ei. Since C(j0) goes through ei, in fact a+a+2 is the

edge ei. By the construction of C(j0), the two neighbors of ei in C(j0) are y−i+1

and y+2
i+1. That is, both ends of ej0 are adjacent to both y−i+1 and y+2

i+1.

Finally, we go back to the original cycle C. We make a cyclic replacement of

edge ei+2 by ei+1, ei+3 by ei+2, . . . , ej0 by ej0−1 and ei+1 by ej0 . That is, we

replace the segment y−i+2yi+2y
+
i+2y

+2
i+2 by y−i+2yi+1y

+
i+1y

+2
i+2, etc. Note that both

yi+1 and y+
i+1

are adjacent to both y−i+2
and y+2

i+2
, so we obtain a k-bicycle (see

Figure 10). If i + 1 = j0 we had a bicycle, anyway. 2
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Now, let G be a nonbipartite graph with odd girth t0. For t < t0 define kt as

the length of a longest cycle which shares a segment of length at least t with a

t0-cycle. Clearly K ≥ k0 ≥ k1 ≥ . . . ≥ kt0−1 ≥ t0. Note that if t0 = 3 then k2 is

the length of a longest bicycle.

Proposition 7.3 Suppose G is a 3-connected nonbipartite graph with δ ≥ n/4 +

250, odd girth t0 and circumference K. Then k0 = K and kt ≥ kt−1 − 1 for t ≥ 1.

Moreover, G contains a dominating kt-cycle sharing a segment of length t with a

t0-cycle, unless t0 = 3 and kt = k2.

Proof: Let C be a cycle of length K. By Theorem 3.4 C is a D3-cycle. In

particular, C has a vertex in common with every t0-cycle, and so k0 = K.

If C is not dominating, i.e. there is an edge xy in G−C, then by Lemma 4.6a

and the maximality of C, for some w on C there are the four edges xw, yw, xw+3, yw+3.

This yields a triangle and a K-bicycle (by replacing the segment ww+w+2w+3 of

C by wxyw+3). It follows that k2 = K and t0 = 3, and the required conclusions

are established.

Hence we may assume that C is dominating. We now proceed by induction on

t. Assume that t ≥ 1. We prove the case t0 6= 3 and the case t0 = 3 and t = 1,

and then appeal to the above lemma for the case t0 = 3 and t = 2.

• (t0 6= 3), or (t0 = 3 and t = 1).

Take a dominating kt−1-cycle C sharing a segment a0a1 . . . at−1 with a t0-cycle T .

If C shares a longer segment with a t0-cycle then we are done; so, in particular,

we may assume that C does not share an edge with a triangle. Fix an orientation

of C where a1 = a+
0 if t > 1; otherwise any orientation will do.

Let at denote the other neighbor of at−1 in T . If at ∈ V (C) then set P ′ =

a+
t−1a

+2
t−1 . . . atat−1 . . . a0a

−
0 . . . a+

t ; otherwise set P ′ = a+
t−1a

+2
t−1 . . . a−t−1at−1at. The

path P ′ includes all vertices of C and at, and shares the segment S = a0a1 . . . at

with T .

Let P be a longest path of G containing P ′ as a subpath and let u and v be

its endvertices. Since C is dominating, P is at most two vertices longer than P ′.

Perform a double sweep (Lemma 4.2) of the segment(s) of P −S −{u, v} with

beacons (v, u) and ε = 1 (and c = 0, r ≤ 2). The result is a neighbor x of u such

that v is adjacent to a vertex x−µ, where 1 ≤ µ ≤ 3. Hence we obtain a cycle C ′

of length at least kt−1 − 2 sharing S with T . Moreover, if C ′ has length kt−1 − 2

then C ′ misses both ends of the edge e = x−2x− of C. Since a longest cycle is
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at least as long as a longest bicycle, we get |C ′| ≥ min{n, 3δ, n − α + δ} − 20 ≥
min{3|G−S|/4, 5|G−S|/4−α(G−S)}+ |S|. If e has a neighbor in G−C ′ then

we can apply Lemma 4.8 to G−S to extend the path C ′−S by at least one vertex.

If e has no neighbor in G − C ′ then we can extend C ′ − S by at least one vertex

by Lemma 4.6a. This implies that kt ≥ kt−1 − 1.

Now consider a cycle C ′′ of length kt sharing a segment S of length t with

T . If follows from Proposition 3.7 that kt > min{n, 3δ, n − α + δ} − (10 − t). By

Lemma 4.8 applied to C ′′ − S, G − C ′′ consists of independent vertices or edges.

If there is an edge in G − C ′′ then, as in the second paragraph of the proof, it

follows that t0 = 3 and kt = k2.

• t0 = 3 and t = 2.

Let C be a k1-cycle sharing an edge with a triangle. As, by induction, C is

dominating, Lemma 7.2 completes the proof. 2

7.2 Proof of Proposition 3.3

We start with a lemma to handle the case of odd girth 7.

Lemma 7.4 Let G be a graph with odd girth 7 and δ ≥ n/4 + 250. If C is a

maximal k-bicycle, then G contains a (k + 1)-cycle.

Proof: Note that G is 3-connected by Proposition 3.5, so C is dominating by

Proposition 3.6.

Let u and v be the endvertices of the length-2 path P of nonstandard degree-2

vertices in C. The removal of P from C leaves a (k − 1)-cycle C ′. If neither u nor

v has two neighbors in G−C, then we make an “unusual” double sweep of C ′ with

beacons u, v: we consider the edges of type ua, va+, va+2, ua+3 (see Figure 11).

Since u and v are joined by a path of length 2 outside C ′, and there is neither a 3-

nor 5-cycle, up to symmetry the two edges must be ua and va+2. This adds two

vertices to the length of C ′.

If one of u or v has two neighbors in G − C, say x and y, then we can do the

same procedure with beacons x, y since C is dominating. 2

In order to prove Proposition 3.3, we need to show that G contains a k-bicycle

for some k ≥ K−9 and all cycles between k and K (where K is the circumference

of G).
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If G has connectivity 2 then this is true by Proposition 3.5. So we may assume

that G is 3-connected.

Let t0 be the odd girth of G. Let C be a longest cycle that shares t0 − 1 edges

with an odd cycle T of length t0. By Proposition 7.3 the length k of C is at least

K − t0 + 1. Further, there are all longer cycles up to length K. In particular, the

conclusion holds for t0 = 3, so we may assume that t0 ≥ 5.

Suppose a longest bipath P in G has length `. Consider doing a double sweep

(Lemma 4.2) of the interior of the standard paths of P with ε = 1 and beacons

the endvertices of P (c = 0, r ≤ 2). We obtain either an (` + 1)- or `-bicycle,

or a (` − 1)-bicycle that is not dominating. As t0 ≥ 5, by Proposition 3.6 only

dominating bicycles can be maximal; so there is a bicycle of length at least `.

There are two cases.

• t0 = 5.

Then let aa+ . . . a+4 be the path shared by T and C. The length ` of a longest

bipath is at least k − 2 (for example remove the edge a−a from C). As by the

above reasoning there is a bicycle of length at least `, the proof is complete unless

` = k − 2.

In this case, neither a+2 nor a+3 has a neighbor in G−C. Let C ′ be the cycle of

length k−3 obtained from C by using the chord aa+4. We can apply Lemma 4.6b

to the edge a+2a+3 and (a spanning path of) C ′ and so obtain a (k − 1)-cycle.

• t0 = 7.

Then let aa+ . . . a+6 be the path shared by T and C. The length ` of a longest

bipath is at least k − 3. By the above reasoning there is a bicycle of length at

least `. If ` > k − 3 we obtain the missing (k − 1)-cycle by Lemma 7.4. So, we

may assume that ` = k − 3.

By Lemma 7.4 we obtain a (k−2)-cycle but we still need to find a (k−1)-cycle.

To avoid a (k − 2)-bipath, none of a+2, a+3 or a+4 has a neighbor in G−C. Also

a+ and a+5 have no common neighbor v in G − C, as aa+va+5a+6a would be a

5-cycle. Let C ′ be the cycle of length k − 5 obtained from C by using the chord

aa+6. Then, by Lemma 4.6b, we can reinsert either the pair of edges a+a+2 and

a+3a+4 or the pair of edges a+2a+3 and a+4a+5 into (a spanning path of) C ′,

according to which of a+ or a+5 has less neighbors in G − C. 2
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8 Algorithmic Issues

In this section we discuss the complexity of determining whether a graph is weakly

pancylic or not and of finding cycles of each length.

We note first that the proof of Theorem 1.4 is constructive, provided one is

given a longest cycle. That is, each lemma provides a constructive procedure

for finding the desired structure. Thus there is a polynomial-time procedure to

construct a cycle of each desired length if a graph is weakly pancylic, 2-connected

and has high minimum degree. Of course, it is necessary for the longest cycle

to be given, since determining whether such a graph has a hamiltonian cycle is

intractable [19].

Theorem 1.4 is also the basis of a simple algorithm for determining whether a

graph with sufficiently high minimum degree is weakly pancylic or not. We offer

the following result without proof. A manuscript is available from the authors.

Theorem 8.1 If G is a graph with minimum degree δ ≥ n/4 + 250, then G is

weakly pancyclic if and only if every block of order at least 5 contains a 5-cycle.

Thus the test for weakly pancylic graphs requires determining the blocks and

the presence of a 5-cycle, both of which can be performed in polynomial time. In

general, though, determining whether a graph is weakly pancyclic or not is hard.

The decision problem Pancycle has input a graph and one outputs yes if

the graph is pancyclic. This problem is NP-hard in general, but it is in NP: a

certificate of pancyclicness is simply a listing of a cycle of each length.

The decision problem WeakPan has input a graph and one outputs yes if the

graph is weakly pancyclic. There does not appear to be a simple certificate that a

graph is weakly pancyclic, nor does there appear to be a simple certificate that a

graph is not weakly pancyclic. In fact, the next theorem shows that this problem

is in general both NP-hard and co-NP-hard, and hence unlikely to be in NP.

We say that a problem is NP-hard for graphs with minimum degree approach-

ing αn if for all ε > 0 the problem is NP-hard for graphs with minimum degree

at least (α − ε)n. The results of this section show that WeakPan is polynomial-

time computable for graphs with minimum degree more than n/4 + 250, NP-hard

for graphs with minimum degree approaching n/4, and probably outside NP for

graphs with minimum degree approaching n/8.

Theorem 8.2 WeakPan is NP-hard and co-NP-hard. In fact it is NP-hard even
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for graphs with minimum degree approaching n/4, and co-NP-hard even for graphs

with minimum degree approaching n/8.

Proof: (1) The decision problem HamPath has input a graph and one outputs

yes if the graph has a hamiltonian path. HamPath is NP-complete even for graphs

of even order n with minimum degree approaching n/2. (This can be established

using techniques similar to those employed in [21].)

A reduction from HamPath to WeakPan is:

G 7→ G′ = (G + K1) ∪ K(n/2 + 1, n/2 + 1),

where + denotes join and ∪ disjoint union. If G has a hamiltonian path, then it

follows easily that G + K1 is pancyclic and hence that G′ is weakly pancyclic. If

G′ is weakly pancylic, then G + K1 is hamiltonian so that G has a hamiltonian

path.

(2) The decision problem HamBip has input a bipartite graph and one outputs

yes if the graph has a hamiltonian cycle. This problem is NP-hard even for graphs

with minimum degree approaching n/4 [42].

A reduction from HamBip to the complement of WeakPan is:

G 7→ G′ = G ∪ Kn−2.

The resultant graph G′ is weakly pancyclic if and only if (the bipartite graph) G

on n vertices does not have a hamiltonian cycle. 2

On the positive side we can say the following. The decision problem WeakPan

is of the form: there exists a cycle of length c for c running from the girth to some

value K, and for all ordered subsets of cardinality K + d the resulting ordering is

not a cycle for d running from 1 up to n−K. (Note that the girth is polynomial-

time computable.) Thus there are boolean functions C and D such that:

G ∈ WeakPan iff ∃yC(y) ∧ ∀xD(x)

In particular, the problem WeakPan is in the intersection of the complexity

classes ΣP
2 and ΠP

2 . (For definition of these, see [19].)

9 Future Work

It would be interesting to see if the minimum-degree bound could be lowered even

further for graphs of higher connectivity. The examples given in the introduction
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to show that Theorem 1.4 and Corollary 1.6 are best possible are only 2-connected.

Perhaps one can prove a similar theorem for 3-connected graphs and minimum

degree n/6 + O(1). This is a sort of limit because there are highly connected

hamiltonian graphs with minimum degree (n + 3)/6 which contain a triangle but

no 5-cycle.

Another approach is to prove the equivalent of weakly pancyclic results for

bipartite graphs. A bipartite version of the pancyclic results of Theorem 1.3 and

Corollary 1.6 has been established.

Theorem 9.1 (Tian & Zang [40]) If G is a hamiltonian bipartite graph on n

vertices with minimum degree δ(G) > n/5+2 then G contains cycles of every even

length.

However, Mitchem and Schmeichel [31] suggested that minimum degree larger

than (1 +
√

2n − 3)/2 might suffice for a hamiltonian bipartite graph of order n

to contain cycles of all even lengths. This was refuted by Shi [37]. But it remains

possible that minimum degree more than
√

n + 1 − 1 might suffice.

The maximum number of edges in a nonbipartite graph of order n which is not

weakly pancyclic has not been determined yet (see Conjecture 2.13). Also, instead

of asking for many consecutive cycle lengths one might ask for a cycle of specific

length. The question of how many edges a hamiltonian graph of order n can

have, if it contains no k-cycle, has been investigated by Hendry and Brandt [24].

This question is solved for a few values of n and k, but for many cases there are

interesting conjectures due to Hendry [24].

Finally, does every nonbipartite hamiltonian graph with δ ≥ n/4+250 contain

a spanning bicycle? We have only shown above that it contains a bicycle of order

at least n − 7.
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Figure 1: A 9-bicycle in a graph with odd girth 5

vu

Figure 2: Double sweep of a cycle with ε = 1
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Figure 3: A comb sweep yields a (k + 2)-path
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Figure 4: None of the four dashed edges is present
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Figure 5: A (k + 2)-path results anyway
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Figure 6: Any two of the edges yield a contradiction
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Figure 7: Double sweep yields cycle C ′
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Figure 8: P (j) → P (j + 1) & P (i, j) → P (i, j + 1)
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Figure 9: C(j) → C(j + 1) & C(j) → P (j, j + 1)

e
0

e
3

e
2

e
1

Figure 10: Cyclic replacement (dashed edges provide bicycle)
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