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Abstract

Let L be a multiplicative lattice. We define a proper element p of
L to be weakly primary if 0 �= ab ≤ p implies a ≤ p or b ≤ √

p. Our
objective is to investigate the properties of weakly primary elements in
multiplicative lattices.

Mathematics Subject Classification: 06F10, 06F05, 13A15

Keywords: Multiplicative lattice, Primary element, Weakly primary ele-
ment

1 Introduction

A multiplicative lattice is a complete lattice L, with least element 0L and
compact greatest element 1L, on which there is defined a commutative, asso-
ciative, completely join distributive product for which 1L is a multiplicative
identity. An element a ∈ L is said to be proper if a < 1L. An element p < 1L

in L is said to be prime if ab ≤ p implies either a ≤ p or b ≤ p. An element
p < 1L in L is said to be weakly prime if 0L �= ab ≤ p implies a ≤ p or b ≤ p
(See [5]). For a ∈ L, we define

√
a =

∨ {p ∈ L : p is prime and a ≤ p}(See
[2]). For any a ∈ L, L/a = {b ∈ L : a ≤ b} is a multiplicative lattice with
multiplication c ◦ d = cd ∨ a.
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An element p < 1L in L is said to be primary if ab ≤ p implies a ≤ p or
b ≤ √

p (See[1]). If a, b ∈ L, (a : b) is the join of all c ∈ L such that cb ≤ a. An
element a of a multiplicative lattice L is called compact if a ≤ ∨α∈Ibα implies;

a ≤ bα1 ∨ bα2 ∨ ... ∨ bαn

for some finite subset as I={α1, α2, ..., αn} (See [4]). L∗ denotes the set of all
compact elements of a multiplicative lattice L.

A complete multiplicative lattice (not necessarily modular) with the least
element 0L and compact greatest element 1L (a multiplicative identity) which
is generated under joins by a multiplicatively closed subset C of compact ele-
ments is called C−lattice. Like the ideal lattice of a ring, any C−lattice can
be localized at a multiplicatively closed set.
If S is a multiplicatively closed subset of L∗ in a C−lattice L, then for a ∈ L,
a(s) =

∨ {x ∈ L∗ : xs ≤ a for some s ∈ S} and L(s) =
{
x(s) : x ∈ L

}
(See

[2]).
For p ∈ L, we denote V (p) = {p1 : p ≤ p1 such that p1 is prime in L} .
For various characterizations of prime and primary elements of multiplicative
lattices the reader is referred to [1-5].

2 Weakly primary elements in multiplicative

lattices

In this section we study weakly primary elements in multiplicative lattices.
These concepts have been studied in [6] in the case of commutative rings and
we shall begin with the following definition.

Definition 1 An element p < 1L in L is said to be weakly primary if 0L �=
ab ≤ p implies a ≤ √

p or b ≤ p.

A prime element is weakly prime, a weakly prime element is weakly pri-
mary. 0L is weakly primary by the definition but it is not a primary element.
Thus, a weakly primary element is not necessarily a primary element.

Example 1 Let a, p ∈ L such that a ≤ p and p be a weakly primary element
of L. Then, p̄ is a weakly primary element in L/a.

Lemma 1 Let L be a C−lattice a1, a2 ∈ L. Suppose that b ∈ L satisfies the
following property:

• If h ∈ L is compact with h ≤ b and either h ≤ a1 or h ≤ a2
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then b ≤ a1 or b ≤ a2.

Proof See [5, Lemma1].

Proposition 1 Let L be a C−lattice and p be a proper element of L. Then
the following assertions are equivalent:

1. p is a weakly primary element of L.

2. Either (p : y) = p or (p : y) = (0L : y) for every y �≤ √
p.

3. For every x, y ∈ L∗, 0L �= xy ≤ p implies either x ≤ p or y ≤ √
p.

Proof (1) =⇒ (2). Suppose (1) holds. Let h be a compact element of L such
that h ≤ (p : y) and y �≤ √

p. Then hy ≤ p. If 0L = hy ≤ p, then h ≤ (0L : y).
Let 0L �= hy. Since hy ≤ p, y �≤ √

p and p is a weakly primary element, it
follows that h ≤ p. Hence by Lemma 1, either (p : y) ≤ (0L : y) or (p : y) ≤ p.
Consequently, either (p : y) = (0L : y) or (p : y) = p.
(2) =⇒ (3). Suppose (2) holds. Let 0L �= xy ≤ p and y �≤ √

p for some
x, y ∈ L∗. We show that x ≤ p. Since xy ≤ p, it follows that x ≤ (p : y).
If (p : y) = p, then x ≤ p. If (p : y) = (0L : y), then xy = 0L. This is a
contradiction. Consequently, x ≤ p and so p is a weakly primary element.
(3) =⇒ (1). Suppose (3) holds. Let 0L �= ab ≤ p, a �≤ p and b �≤ √

p for some
a, b ∈ L. Since L is a C−lattice, L is compactly generated. Choose x, y ∈ L∗
such that x ≤ a, y ≤ b, x �≤ p and y �≤ √

p. Let x́ ≤ a and ý ≤ b be any
two compact elements of L. Then, (x́ ∨ x)(ý ∨ y) ≤ ab ≤ p. Since (x́ ∨ x) �≤ p
and (ý ∨ y) �≤ √

p, it follows that (x́ ∨ x)(ý ∨ y) = 0L and so x́ý = 0L, by (3).
Therefore, ab = 0L. This shows that p is a weakly primary element of L.

Theorem 1 Let L be a multiplicative lattice and p ∈ L. If p is a weakly
primary element that is not primary, then p2 = 0L.

Proof Suppose that p2 �= 0L. We show that p is primary. Let xy ≤ p.
If 0L �= xy ≤ p, then by the definition of a weakly primary element, either
x ≤ p or y ≤ √

p. So assume that 0L = xy. First suppose that 0L �= xp. Then
0L �= xp = x(y ∨ p) ≤ p, so either x ≤ p or y ≤ √

p. So we can assume
that 0L = xp. Likewise, we can assume that 0L = yp. Since 0L �= p2 and
0L �= p2 = (x∨p)(y∨p) ≤ p, it follows that either (x

∨
p) ≤ p or (y

∨
p) ≤ √

p.
Hence either x ≤ p or y ≤ √

p. Thus p is primary.

Theorem 2 Let L be a multiplicative lattice and {pi}i∈I be a family of weakly
primary elements of L that are not primary. Then p =

∧
i∈Ipi is a weakly

primary element of L.
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Proof We show that
√∧

i∈Ipi =
∧

i∈I
√

pi.
It is easy to see that

√∧
i∈I pi ≤ √

pi is hold for each i ∈ I. Thus,

√∧
i∈I pi ≤ ∧

i∈I
√

pi.

Let x ≤ ∧
i∈I

√
pi. Then x ≤ √

pi for each i ∈ I. We know that
√

pi =
√

0L, for
all i ∈ I, by Theorem 1. If x ≤ √

0L, then there is at least one n ∈ Z+ such that
xn = 0L ≤ pi, for all i ∈ I. Thus, xn ≤ ∧

i∈I pi for some n ∈ Z+. Therefore,
x ≤ √∧

i∈I pi. So,
∧

i∈I
√

pi ≤ √∧
i∈I pi. Since p =

∧
i∈Ipi and

√
pi =

√
0L

for each i ∈ I;
√

p =
√∧

pi =
∧√

pi =
√

0L. We show that p is a weakly
primary element of L. Let 0L �= ab ≤ p. Assume that a �≤ p. Since a �≤ p,
a �≤ pi for at least one i ∈ I. Since each pi is a weakly primary element,
b ≤ √

pi =
√

0L =
√

p for i ∈ I. Thus, p is a weakly primary element of L.

Lemma 2 Let L1 and L2 be multiplicative lattices and let L = L1 ×L2. Then
the following hold:

1. If p1 ∈ L1 then
√

(p1, 1L2) = (
√

p1, 1L2)

2. If q2 ∈ L2 then
√

(1L1 , q2) = (1L1 ,
√

q2)

Proof For the proof of the first assertion assume,

√
(p1, 1L2)=

∧ {y = (y1, y2) ∈ L : y is prime such that (p1, 1L2) ≤ (y1, y2)}

By [5, Lemma 2], y = (y1, y2) is a prime element of L = L1 × L2 if and
only if y has one of the following forms:

1. y=(p, 1L2), where p is a prime element of L1

2. y=(1L1 , q), where q is a prime element of L2

Therefore,

√
(p1, 1L2) =

∧ {y = (y1, 1L2) ∈ L : y is prime such that (p1, 1L2) ≤ (y1, 1L2)}
=

∧

y1∈V (p1)

{y = (y1, 1L2) ∈ L : (p1, 1L2) ≤ (y1, 1L2)} .

= (
√

p1, 1L2)

The second assertion is proved similarly.
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Lemma 3 Let L1 and L2 be multiplicative lattices and let L = L1 ×L2. Then
an element of L = L1 ×L2 is primary if it has one of the following two forms.

1. (p, 1L2), where p is a primary element of L1

2. (1L1 , q), where q is a primary element of L2

Proof We proved the first assertion here. The proof for the second assertion
is similar and therefore it is omitted.

Let (a, b)(c, d) ≤ (p, 1L2) where (a, b), (c, d) ∈ L, so either a ≤ p or c ≤ √
p

since p is primary. It follows that either (a, b) ≤ (p, 1L2) or (c, d) ≤ (
√

p, 1L2) =√
(p, 1L2) by Lemma 2. Thus (p, 1L2) is primary.

Theorem 3 Let L1 and L2 be multiplicative lattices and let L = L1 ×L2. If p
is a weakly primary element of L, then either p = (0L1, 0L2) or p is a primary
element of L.

Proof Let p �= 0L be a weakly primary element. Then there is an element
such that (0L1 , 0L2) �= (a, b) = (a, 1L2)(1L1 , b) ≤ p, where a ∈ L1 and b ∈ L2.
Therefore, (a, 1L2) ≤ p(Case 1) or (1L1 , b) ≤ √

p(Case 2).

• Case 1. If (a, 1L2) ≤ p, then p = (p1, 1L2) where p1 is an element of
L1. We show that p1 is primary. Let cd ≤ p1, where c, d ∈ L1. Then
(0L1 , 0L2) �= (cd, 1L2) = (c, 1L2)(d, 1L2) ≤ (p1, 1L2) = p, either (c, 1L2) ≤
(p1, 1L2) or (d, 1L2) ≤

√
(p1, 1L2) = (

√
p1, 1L2) by Lemma 2. Hence either

c ≤ p1 or d ≤ √
p1. Therefore, p1 is a primary element of L1. Thus, p is

a primary element of L by Lemma 3.

• Case 2. If (1L1 , b) ≤ √
p, then (1L1 , b

n) ≤ p for some n ∈ Z+. There-
fore, p = (1L2, p2) where p2 is an element of L2. We show that p2 is
primary. Let cd ≤ p2, where c, d ∈ L2. Then (0L1 , 0L2) �= (1L1 , cd) =
(1L1 , c)(1L1, d) ≤ (1L1, p2) = p, either (1L1 , c) ≤ (1L1 , p2) or (1L1 , d) ≤√

(1L1 , p2) = (1L1, (
√

p2)) by Lemma 2. Hence either c ≤ p2 or d ≤ √
p2.

Therefore, p2 is a primary element of L2. Thus, p is a primary element
of L by Lemma 3.

Corollary 1 Let L1 and L2 be multiplicative lattices and let L = L1 × L2.
Then an element of L is weakly primary if it has one of the following three
forms.

1. p = (0L1 , 0L2).

2. (p, 1L2), where p is a primary element of L1.



894 Z. Kılıç

3. (1L1 , p), where p is a primary element of L2.

Proposition 2 Let L be a C−lattice and p be an element of L. Suppose m is
a maximal element of L. If p is weakly primary, then p(m) is a weakly element
of L(m).

Proof Suppose p is a weakly primary element of L. Let 0(m) �= a(m)b(m) ≤
p(m) for some a, b ∈ L∗. Then ab ≤ p(m), so abu ≤ p for some compact element
u �≤ m. Since 0(m) �= a(m)b(m), it follows that abu �= 0L. As p is a weakly
primary, we have either a ≤ p or bu ≤ √

p so either a(m) ≤ p(m) or b(m) ≤√
p

(m)
=

√
p(m), since u(m) = 1(m). Therefore p(m) is a weakly primary element

of L(m).
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ematical Journal, 52 (3) (2002) , 585 − 593.
[2] C.Jayaram and E.W.Johnson, s-prime elements in multiplicative lat-
tices, Periodica Mathematica Hungarica, 31(1995) , 201 − 208.
[3] D. Scott Culhan, Associated Primes and Primal Decomposition in
modules and Lattice modules,and their duals, Thesis, University of Cali-
fornia Riverside (2005) .
[4] F.Alarcon, D.D. Anderson and C. Jayaram, Some results on Abstract
commutative Ideal Theory, Periodica Mathematica Hungarica, 30(1995),
1 − 26.
[5] F. Callialp,C.Jayaram,and U.Tekir, Weakly prime elements in multi-
plicative lattices, Communications in Algebra, 40 (8) (2012), 2825−2840.
[6] S. Ebrahimi Atani and F. Ferzalipour, On weakly primary ideals,
Georgian Mathematical Journal, 12 (3) (2005), 423 − 429.

Received: October 10, 2013


