Weakly Primary Elements in Multiplicative Lattices

Zeliha Kılıç
Department of Mathematics and Computer Science
Bahcesehir University
Besiktas, Istanbul, 34353, Turkey
zkilic@live.unc.edu

Copyright © 2013 Zeliha Kılç. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Let L be a multiplicative lattice. We define a proper element p of L to be weakly primary if $0 \neq a b \leq p$ implies $a \leq p$ or $b \leq \sqrt{p}$. Our objective is to investigate the properties of weakly primary elements in multiplicative lattices.

Mathematics Subject Classification: 06F10, 06F05, 13 A15
Keywords: Multiplicative lattice, Primary element, Weakly primary element

1 Introduction

A multiplicative lattice is a complete lattice L, with least element 0_{L} and compact greatest element 1_{L}, on which there is defined a commutative, associative, completely join distributive product for which 1_{L} is a multiplicative identity. An element $a \in L$ is said to be proper if $a<1_{L}$. An element $p<1_{L}$ in L is said to be prime if $a b \leq p$ implies either $a \leq p$ or $b \leq p$. An element $p<1_{L}$ in L is said to be weakly prime if $0_{L} \neq a b \leq p$ implies $a \leq p$ or $b \leq p$ (See [5]). For $a \in L$, we define $\sqrt{a}=\bigvee\{p \in L: p$ is prime and $a \leq p\}$ (See [2]). For any $a \in L, L / a=\{b \in L: a \leq b\}$ is a multiplicative lattice with multiplication $c \circ d=c d \vee a$.

An element $p<1_{L}$ in L is said to be primary if $a b \leq p$ implies $a \leq p$ or $b \leq \sqrt{p}$ (See[1]). If $a, b \in L,(a: b)$ is the join of all $c \in L$ such that $c b \leq a$. An element a of a multiplicative lattice L is called compact if $a \leq \vee_{\alpha \in I} b_{\alpha}$ implies;

$$
a \leq b_{\alpha_{1}} \vee b_{\alpha_{2}} \vee \ldots \vee b_{\alpha_{n}}
$$

for some finite subset as $I=\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right\}$ (See [4]). L_{*} denotes the set of all compact elements of a multiplicative lattice L.

A complete multiplicative lattice (not necessarily modular) with the least element 0_{L} and compact greatest element 1_{L} (a multiplicative identity) which is generated under joins by a multiplicatively closed subset C of compact elements is called C-lattice. Like the ideal lattice of a ring, any C-lattice can be localized at a multiplicatively closed set.
If S is a multiplicatively closed subset of L_{*} in a C-lattice L, then for $a \in L$, $a_{(s)}=\bigvee\left\{x \in L_{*}: x s \leq a\right.$ for some $\left.s \in S\right\}$ and $L_{(s)}=\left\{x_{(s)}: x \in L\right\}$ (See [2]).
For $p \in L$, we denote $V(p)=\left\{p_{1}: p \leq p_{1}\right.$ such that p_{1} is prime in $\left.L\right\}$. For various characterizations of prime and primary elements of multiplicative lattices the reader is referred to [1-5].

2 Weakly primary elements in multiplicative lattices

In this section we study weakly primary elements in multiplicative lattices. These concepts have been studied in [6] in the case of commutative rings and we shall begin with the following definition.

Definition 1 An element $p<1_{L}$ in L is said to be weakly primary if $0_{L} \neq$ $a b \leq p$ implies $a \leq \sqrt{p}$ or $b \leq p$.

A prime element is weakly prime, a weakly prime element is weakly primary. 0_{L} is weakly primary by the definition but it is not a primary element. Thus, a weakly primary element is not necessarily a primary element.

Example 1 Let $a, p \in L$ such that $a \leq p$ and p be a weakly primary element of L. Then, \bar{p} is a weakly primary element in L / a.

Lemma 1 Let L be a C-lattice $a_{1}, a_{2} \in L$. Suppose that $b \in L$ satisfies the following property:

- If $h \in L$ is compact with $h \leq b$ and either $h \leq a_{1}$ or $h \leq a_{2}$
then $b \leq a_{1}$ or $b \leq a_{2}$.
Proof See [5, Lemma1].
Proposition 1 Let L be a C-lattice and p be a proper element of L. Then the following assertions are equivalent:

1. p is a weakly primary element of L.
2. Either $(p: y)=p$ or $(p: y)=\left(0_{L}: y\right)$ for every $y \not \leq \sqrt{p}$.
3. For every $x, y \in L_{*}, 0_{L} \neq x y \leq p$ implies either $x \leq p$ or $y \leq \sqrt{p}$.

Proof (1) $\Longrightarrow(2)$. Suppose (1) holds. Let h be a compact element of L such that $h \leq(p: y)$ and $y \not \leq \sqrt{p}$. Then $h y \leq p$. If $0_{L}=h y \leq p$, then $h \leq\left(0_{L}: y\right)$. Let $0_{L} \neq h y$. Since $h y \leq p, y \not \leq \sqrt{p}$ and p is a weakly primary element, it follows that $h \leq p$. Hence by Lemma 1, either $(p: y) \leq\left(0_{L}: y\right)$ or $(p: y) \leq p$. Consequently, either $(p: y)=\left(0_{L}: y\right)$ or $(p: y)=p$.
$(2) \Longrightarrow(3)$. Suppose (2) holds. Let $0_{L} \neq x y \leq p$ and $y \not \leq \sqrt{p}$ for some $x, y \in L_{*}$. We show that $x \leq p$. Since $x y \leq p$, it follows that $x \leq(p: y)$. If $(p: y)=p$, then $x \leq p$. If $(p: y)=\left(0_{L}: y\right)$, then $x y=0_{L}$. This is a contradiction. Consequently, $x \leq p$ and so p is a weakly primary element.
(3) \Longrightarrow (1). Suppose (3) holds. Let $0_{L} \neq a b \leq p, a \not \leq p$ and $b \not \leq \sqrt{p}$ for some $a, b \in L$. Since L is a C-lattice, L is compactly generated. Choose $x, y \in L_{*}$ such that $x \leq a, y \leq b, x \not \leq p$ and $y \not \leq \sqrt{p}$. Let $\dot{x} \leq a$ and $\dot{y} \leq b$ be any two compact elements of L. Then, $(\dot{x} \vee x)(\dot{y} \vee y) \leq a b \leq p$. Since $(\dot{x} \vee x) \not 又 p$ and $(\dot{y} \vee y) \not \leq \sqrt{p}$, it follows that $(\dot{x} \vee x)(\dot{y} \vee y)=0_{L}$ and so $x ́ y=0_{L}$, by (3). Therefore, $a b=0_{L}$. This shows that p is a weakly primary element of L.

Theorem 1 Let L be a multiplicative lattice and $p \in L$. If p is a weakly primary element that is not primary, then $p^{2}=0_{L}$.

Proof Suppose that $p^{2} \neq 0_{L}$. We show that p is primary. Let $x y \leq p$. If $0_{L} \neq x y \leq p$, then by the definition of a weakly primary element, either $x \leq p$ or $y \leq \sqrt{p}$. So assume that $0_{L}=x y$. First suppose that $0_{L} \neq x p$. Then $0_{L} \neq x p=x(y \vee p) \leq p$, so either $x \leq p$ or $y \leq \sqrt{p}$. So we can assume that $0_{L}=x p$. Likewise, we can assume that $0_{L}=y p$. Since $0_{L} \neq p^{2}$ and $0_{L} \neq p^{2}=(x \vee p)(y \vee p) \leq p$, it follows that either $(x \vee p) \leq p$ or $(y \bigvee p) \leq \sqrt{p}$. Hence either $x \leq p$ or $y \leq \sqrt{p}$. Thus p is primary.

Theorem 2 Let L be a multiplicative lattice and $\left\{p_{i}\right\}_{i \in I}$ be a family of weakly primary elements of L that are not primary. Then $p=\Lambda_{i \in I} p_{i}$ is a weakly primary element of L.

Proof We show that $\sqrt{\bigwedge_{i \in I} p_{i}}=\bigwedge_{i \in I} \sqrt{p_{i}}$. It is easy to see that $\sqrt{\bigwedge_{i \in I} p_{i}} \leq \sqrt{p_{i}}$ is hold for each $i \in I$. Thus,

$$
\sqrt{\bigwedge_{i \in I} p_{i}} \leq \bigwedge_{i \in I} \sqrt{p_{i}} .
$$

Let $x \leq \bigwedge_{i \in I} \sqrt{p_{i}}$. Then $x \leq \sqrt{p_{i}}$ for each $i \in I$. We know that $\sqrt{p_{i}}=\sqrt{0_{L}}$, for all $i \in I$, by Theorem 1. If $x \leq \sqrt{0_{L}}$, then there is at least one $n \in Z^{+}$such that $x^{n}=0_{L} \leq p_{i}$, for all $i \in I$. Thus, $x^{n} \leq \bigwedge_{i \in I} p_{i}$ for some $n \in Z^{+}$. Therefore, $x \leq \sqrt{\bigwedge_{i \in I} p_{i}}$. So, $\bigwedge_{i \in I} \sqrt{p_{i}} \leq \sqrt{\bigwedge_{i \in I} p_{i}}$. Since $p=\bigwedge_{i \in I} p_{i}$ and $\sqrt{p_{i}}=\sqrt{0_{L}}$ for each $i \in I ; \sqrt{p}=\sqrt{\wedge p_{i}}=\Lambda \sqrt{p_{i}}=\sqrt{0_{L}}$. We show that p is a weakly primary element of L. Let $0_{L} \neq a b \leq p$. Assume that $a \not \leq p$. Since $a \not \leq p$, $a \not \leq p_{i}$ for at least one $i \in I$. Since each p_{i} is a weakly primary element, $b \leq \sqrt{p_{i}}=\sqrt{0_{L}}=\sqrt{p}$ for $i \in I$. Thus, p is a weakly primary element of L.

Lemma 2 Let L_{1} and L_{2} be multiplicative lattices and let $L=L_{1} \times L_{2}$. Then the following hold:

1. If $p_{1} \in L_{1}$ then $\sqrt{\left(p_{1}, 1_{L_{2}}\right)}=\left(\sqrt{p_{1}}, 1_{L_{2}}\right)$
2. If $q_{2} \in L_{2}$ then $\sqrt{\left(1_{L_{1}}, q_{2}\right)}=\left(1_{L_{1}}, \sqrt{q_{2}}\right)$

Proof For the proof of the first assertion assume,

$$
\sqrt{\left(p_{1}, 1_{L_{2}}\right)}=\Lambda\left\{y=\left(y_{1}, y_{2}\right) \in L \quad: y \quad \text { is prime such that }\left(p_{1}, 1_{L_{2}}\right) \leq\left(y_{1}, y_{2}\right)\right\}
$$

By [5, Lemma 2], $y=\left(y_{1}, y_{2}\right)$ is a prime element of $L=L_{1} \times L_{2}$ if and only if y has one of the following forms:

1. $y=\left(p, 1_{L_{2}}\right)$, where p is a prime element of L_{1}
2. $y=\left(1_{L_{1}}, q\right)$, where q is a prime element of L_{2}

Therefore,

$$
\begin{aligned}
\sqrt{\left(p_{1}, 1_{L_{2}}\right)} & =\bigwedge\left\{y=\left(y_{1}, 1_{L_{2}}\right) \in L: y \quad \text { is prime such that }\left(p_{1}, 1_{L_{2}}\right) \leq\left(y_{1}, 1_{L_{2}}\right)\right\} \\
& =\bigwedge_{y_{1} \in V\left(p_{1}\right)}\left\{y=\left(y_{1}, 1_{L_{2}}\right) \in L:\left(p_{1}, 1_{L_{2}}\right) \leq\left(y_{1}, 1_{L_{2}}\right)\right\} \\
& =\left(\sqrt{p_{1}}, 1_{L_{2}}\right)
\end{aligned}
$$

The second assertion is proved similarly.

Lemma 3 Let L_{1} and L_{2} be multiplicative lattices and let $L=L_{1} \times L_{2}$. Then an element of $L=L_{1} \times L_{2}$ is primary if it has one of the following two forms.

1. $\left(p, 1_{L_{2}}\right)$, where p is a primary element of L_{1}
2. $\left(1_{L_{1}}, q\right)$, where q is a primary element of L_{2}

Proof We proved the first assertion here. The proof for the second assertion is similar and therefore it is omitted.

Let $(a, b)(c, d) \leq\left(p, 1_{L_{2}}\right)$ where $(a, b),(c, d) \in L$, so either $a \leq p$ or $c \leq \sqrt{p}$ since p is primary. It follows that either $(a, b) \leq\left(p, 1_{L_{2}}\right)$ or $(c, d) \leq\left(\sqrt{p}, 1_{L_{2}}\right)=$ $\sqrt{\left(p, 1_{L_{2}}\right)}$ by Lemma 2. Thus $\left(p, 1_{L_{2}}\right)$ is primary.

Theorem 3 Let L_{1} and L_{2} be multiplicative lattices and let $L=L_{1} \times L_{2}$. If p is a weakly primary element of L, then either $p=\left(0_{L_{1}}, 0_{L_{2}}\right)$ or p is a primary element of L.

Proof Let $p \neq 0_{L}$ be a weakly primary element. Then there is an element such that $\left(0_{L_{1}}, 0_{L_{2}}\right) \neq(a, b)=\left(a, 1_{L_{2}}\right)\left(1_{L_{1}}, b\right) \leq p$, where $a \in L_{1}$ and $b \in L_{2}$. Therefore, $\left(a, 1_{L_{2}}\right) \leq p$ (Case 1) or $\left(1_{L_{1}}, b\right) \leq \sqrt{p}$ (Case 2).

- Case 1. If $\left(a, 1_{L_{2}}\right) \leq p$, then $p=\left(p_{1}, 1_{L_{2}}\right)$ where p_{1} is an element of L_{1}. We show that p_{1} is primary. Let $c d \leq p_{1}$, where $c, d \in L_{1}$. Then $\left(0_{L_{1}}, 0_{L_{2}}\right) \neq\left(c d, 1_{L_{2}}\right)=\left(c, 1_{L_{2}}\right)\left(d, 1_{L_{2}}\right) \leq\left(p_{1}, 1_{L_{2}}\right)=p$, either $\left(c, 1_{L_{2}}\right) \leq$ $\left(p_{1}, 1_{L_{2}}\right)$ or $\left(d, 1_{L_{2}}\right) \leq \sqrt{\left(p_{1}, 1_{L_{2}}\right)}=\left(\sqrt{p_{1}}, 1_{L_{2}}\right)$ by Lemma 2. Hence either $c \leq p_{1}$ or $d \leq \sqrt{p_{1}}$. Therefore, p_{1} is a primary element of L_{1}. Thus, p is a primary element of L by Lemma 3.
- Case 2. If $\left(1_{L_{1}}, b\right) \leq \sqrt{p}$, then $\left(1_{L_{1}}, b^{n}\right) \leq p$ for some $n \in Z^{+}$. Therefore, $p=\left(1_{L_{2}}, p_{2}\right)$ where p_{2} is an element of L_{2}. We show that p_{2} is primary. Let $c d \leq p_{2}$, where $c, d \in L_{2}$. Then $\left(0_{L_{1}}, 0_{L_{2}}\right) \neq\left(1_{L_{1}}, c d\right)=$ $\left(1_{L_{1}}, c\right)\left(1_{L_{1}}, d\right) \leq\left(1_{L_{1}}, p_{2}\right)=p$, either $\left(1_{L_{1}}, c\right) \leq\left(1_{L_{1}}, p_{2}\right)$ or $\left(1_{L_{1}}, d\right) \leq$ $\sqrt{\left(1_{L_{1}}, p_{2}\right)}=\left(1_{L_{1}},\left(\sqrt{p_{2}}\right)\right)$ by Lemma 2. Hence either $c \leq p_{2}$ or $d \leq \sqrt{p_{2}}$. Therefore, p_{2} is a primary element of L_{2}. Thus, p is a primary element of L by Lemma 3.

Corollary 1 Let L_{1} and L_{2} be multiplicative lattices and let $L=L_{1} \times L_{2}$. Then an element of L is weakly primary if it has one of the following three forms.

1. $p=\left(0_{L_{1}}, 0_{L_{2}}\right)$.
2. $\left(p, 1_{L_{2}}\right)$, where p is a primary element of L_{1}.
3. $\left(1_{L_{1}}, p\right)$, where p is a primary element of L_{2}.

Proposition 2 Let L be a C-lattice and p be an element of L. Suppose m is a maximal element of L. If p is weakly primary, then $p_{(m)}$ is a weakly element of $L_{(m)}$.

Proof Suppose p is a weakly primary element of L. Let $0_{(m)} \neq a_{(m)} b_{(m)} \leq$ $p_{(m)}$ for some $a, b \in L_{*}$. Then $a b \leq p_{(m)}$, so $a b u \leq p$ for some compact element $u \not \leq m$. Since $0_{(m)} \neq a_{(m)} b_{(m)}$, it follows that abu $\neq 0_{L}$. As p is a weakly primary, we have either $a \leq p$ or bu $\leq \sqrt{p}$ so either $a_{(m)} \leq p_{(m)}$ or $b_{(m)} \leq$ $\sqrt{p}_{(m)}=\sqrt{p_{(m)}}$, since $u_{(m)}=1_{(m)}$. Therefore $p_{(m)}$ is a weakly primary element of $L_{(m)}$.

References

[1] C.Jayaram, Primary elements in Prüfer lattices, Czechoslovak Mathematical Journal, 52 (3) (2002), $585-593$.
[2] C.Jayaram and E.W.Johnson, s-prime elements in multiplicative lattices, Periodica Mathematica Hungarica, 31(1995), 201 - 208.
[3] D. Scott Culhan, Associated Primes and Primal Decomposition in modules and Lattice modules,and their duals, Thesis, University of California Riverside (2005).
[4] F.Alarcon, D.D. Anderson and C. Jayaram, Some results on Abstract commutative Ideal Theory, Periodica Mathematica Hungarica, 30(1995), $1-26$.
[5] F. Callialp,C.Jayaram,and U.Tekir, Weakly prime elements in multiplicative lattices, Communications in Algebra, 40 (8) (2012), 2825-2840.
[6] S. Ebrahimi Atani and F. Ferzalipour, On weakly primary ideals, Georgian Mathematical Journal, 12 (3) (2005), 423 - 429.

Received: October 10, 2013

