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Weakly Smooth
Nonselfadjoint Spectral
Elliptic Boundary Problems

Mikhail Agranovich, Robert Denk, and Melvin Faierman'

Abstract. The paper is devoted to general elliptic boundary problems
(A=XNu=f in G, Bju=0 (j=1,...,m) on I'=09G, (1)

generally nonselfadjoint, where G is a bounded domain in R™. The main goal is to minimize,
to some extent, the smoothness assumptions under which the known spectral results are
true. The main results concern the asymptotics of the trace of R(A\)? with ¢ > n/2m, where
R(X) is the resolvent, in an angle of ellipticity with parameter. For example, for the Dirichlet
problem these asymptotics are obtained in the case of bounded and measurable coefficients
in A and continuous coefficients in the principal part of A, while the boundary is assumed
to belong to C?™~ 11 The asymptotics of the moduli of the eigenvalues are investigated.
The last section is devoted to indefinite spectral problems, with a real-valued multiplier w(z)
before A\ changing the sign. The references contain 44 items.

1991 Mathematics Subject Classification. 35Pxx, 35J40, 47F05, 58G03.

1 Introduction

1.1. Let G be a bounded domain in R™ with (n — 1)-dimensional boundary I". Con-
sider the boundary problem

A(z, D) u(z) — Au(z) f(z) inG@G, (1.1)

Bj(z,D) u(x) gi(z) (j=1,...,m) onT. (1.2)

1The first author is partially supported by INTAS, Grant No. 94-2187, and RFFI, Grant No.
95-01-00549. The third author is partially supported by a grant from the FRD of South Africa.




Here
A=A, D)= Y an(x)D" (1.3)

jal<2m

is a partial differential operator in G of order 2m, and

B; =Bj(z,D)= > bjs(z)D’ (1.4)

[B]|<m;

are partial differential operators of orders m; < 2m with coefficients defined only on
I'; in (1.2) the derivatives D?u(x) are assumed to be restricted to I. All the functions
in (1.1)—(1.4) are scalar and, in general, complex-valued. As usual,
DY — Pat Don D. = —ii ‘Oz| =q + + «
... Dy, y az;’ "

and below £* = &7 ... &Y. The main part of this paper is devoted to the spectral
problem obtained from (1.1)—(1.2), roughly speaking, by setting f = 0in G and g; =0
on I

This problem is in general far from being selfadjoint. We only assume that it has
an angle, or angles, of ellipticity with parameter. We recall the definition. Denote by
ap(z,§) and bjo(x, &) the principal symbols of the operators A(z, D) and B;(x, D):

ap(@,£) = Y aa(@)e”, bjo(z.&) = Y bis(a)”. (1.5)

la|=2m |8|=m;

Definition 1.1. Let £ be a closed angle (sector) in the complex plane with vertex at
the origin. Then the boundary problem (1.1)—(1.2) is called elliptic with parameter
in L if the following two conditions are satisfied.

(1) ap(z,&) = A #£0 for (z,£) € G x R™ and X € L if || + |\ # 0.

(2) Let zp be any point on I". Assume that the boundary problem (1.1)—(1.2) is
rewritten in the coordinate system associated with zq: it is obtained from the original
one by a rotation after which the positive x,-axis has the direction of the interior
normal to I at zy. Then the boundary problem on the half-line

ao(x0, &', D) v(t) — Av(t) =0 (t ==z, > 0),
bjO(‘xva/aDn)U(t) =0 (j=1,...,m) att=0, (1.6)
v(t) =0 (t — +o0)

has only the trivial solution for & € R*~! and A € L if |¢'| + |A| # 0.

Other terms are “Agmon’s condition” (Seeley, see e.g. (Seeley 1969)) and “para-
meter-ellipticity” (Grubb, see e.g. (Grubb 1986)). Conditions (1) and (2) were intro-
duced by Agmon (see (Agmon 1962)). In particular, £ can be a ray issuing from the
origin. However, the set of rays of ellipticity with parameter is open.



In Section 4 we will mention some generalizations of Definition 1.1 to boundary
problems that depend upon A polynomially and to boundary problems with vector-
valued u(x).

Now let us fix our attention upon smoothness assumptions. Recall that for k € Z
and 0 < 7 < 1 the space C* consists of all functions which are continuous with their
derivatives of order up to k and whose derivatives of order k are Holder continuous
with exponent ~. In particular, the derivatives of order k of the functions in C*!
satisfy the Lipschitz condition. We will distinguish three possibilities.

Definition 1.2. (a) Minimal smoothness. The boundary problem (1.1)—(1.2) will
be called minimally smooth if 1) T' is a submanifold in R™ of class C?™~11: 2) all
the coefficients a,(z) are measurable and bounded, while the top order coefficients

aa(z) (Ja| = 2m) are continuous in G; 3) the coefficients b;z(z) belong to the space
CQm—mj—l,l(l—\).

(b) Weak smoothness. The boundary problem (1.1)—(1.2) will be called weakly
smooth if the formally adjoint to (1.1)—(1.2) boundary problem

A*(x,D)q(w) —\(z) = f(z) inG, (1.7)

Bj(z,D)v(z) = g;(z) (j=1,...,m)onT (1.8)

is well-defined and both boundary problems, (1.1)—(1.2) and (1.7)—(1.8), are at least
minimally smooth.
Here A*(z, D) is the operator formally adjoint to A(z, D):

A%z, Dp(x) = > D(aa(x)v(x)). (1.9)

la|<2m

Recall that the boundary problems (1.1)—(1.2) and (1.7)—(1.8) are called formally
adjoint if
(Au,v)g = (u, A"™)¢g (1.10)

for any functions u,v € C?*™(G) satisfying the boundary conditions Bju = 0 and
ij =0onTl (j =1,...,m), respectively. Here ( , )¢ is the standard scalar
product in Ly(G). Of course, in a weakly smooth boundary problem (1.1)-(1.2)
the coefficients aq(2) and bjs(x) have to possess some additional smoothness. The
sufficient conditions will be indicated in Subsection 2.5.

(c) Smooth problems. The boundary problem (1.1)-(1.2) will be called smooth if

I is a C*° submanifold in R™, a,(x) € C*(G) for all «, and b;z(x) € C(T) for all
j and 3.

1.2. In Section 2 we will formulate the Basic Theorem; according to it the boundary
problem (1.1)—(1.2) elliptic with parameter in some angle £ has a unique solution in
the corresponding Sobolev L,-spaces (1 < p < oo) for A € £ with sufficiently large



modulus. This theorem completes the corresponding result in (Agmon 1962), see Sub-
section 2.2 for details and other references. For the completeness of our presentation,
we sketch the proof of this theorem in Subsection 2.4.

In particular, this theorem makes it possible to introduce the operator Ag = Ap o
in Ly(G) acting as A(z, D), with domain

D(Ap) ={ue Wi™(G): Bju=0 (j=1,...,m) onT}. (1.11)

It is closed and densely defined; its resolvent set is nonvoid (contains all A € £ with
large |A|), and the resolvent

R\ =Ra,(\) = (Ag —\)* (1.12)

is compact. Hence the spectrum of Ap is discrete. Similar operators Ap, can be
introduced in L,(G) (1 < p < o0), but they all are “spectrally equivalent” (see
Section 3). The nontrivial solutions of (1.1)-(1.2) with f = 0 and g; = 0 are the
eigenfunctions that correspond to an eigenvalue \; in general they form a subset of
the set of all generalized eigenfunctions (or root functions), the nontrivial solutions
of the equations (Ap — A\)*u = 0 with k € N.

Some spectral properties of Ag were intensively discussed in the literature and are
well known. Our aim in this paper is to minimize, to some extent, the smoothness
assumptions under which Ap has these properties.

1.3. In Section 3 we collect the spectral properties of Ap that are the direct conse-
quences of the Basic Theorem. The first of them is Agmon’s completeness theorem
(see (Agmon 1962)): the set of all generalized eigenfunctions is complete in Lo (G) if
for (1.1)—(1.2) there exist some rays of ellipticity with parameter with angles between
the adjacent rays not greater than 27wm/n. Moreover, in this case the Fourier series
of any f € Lo(G) with respect to a minimal complete system of the generalized eigen-
functions admits the summation to f by the so-called Abel-Lidskii method. We also
present the statements on “angular distribution of eigenvalues” and the presence of
“the rays of condensation of eigenvalues” from (Agmon 1962). See Section 3 for the
details.

1.4. More deep is the problem of the regular behaviour of the moduli of the eigen-
values \j = \j(Ap) as j — oco. We use the resolvent approach to this problem. Let
g € N be such that 2mg > n (¢ = 1 if 2m > n). Then R(\)? is a trace class operator.
If the boundary problem (1.1)—(1.2) is smooth, then the following asymptotic formula
is well-known for the trace of R(\)? in the angle £ of ellipticity with parameter; for
simplicity we assume that £ is symmetric with respect to the negative real half-axis
R_:

tr R(A)? = cq (—A)2n "9+ o(|A[2779) (L3 X — o) (1.13)

uniformly in arg A\, where

= Cqal i an Col) = 1 dé‘
cq—/qud d cola) (277)”/]1%”,[@0(%@““, (1.14)




see e.g. (Agranovich 1990). Here the holomorphic function (—\) " is defined outside
R, and is equal to |A|" when A € R_.

Our main results in this paper are essentially Theorems 4.1 and 5.1. The first of
them concerns the Dirichlet boundary problem (1.1),

 tu(z)=0 (j=1,...,m) onT. (1.15)

Here 0, = 0/0v is the derivative in the direction of the inner normal to I" at z. Note
that the Dirichlet problem is absolutely elliptic in the sense of (Hérmander 1958),
i.e. elliptic with respect to any elliptic equation. In particular, Condition (2) in the
Definition 1.1 is satisfied for (1.15) automatically if Condition (1) is satisfied.

Theorem 4.1 states that formula (1.13) is true for the Dirichlet problem if it is
elliptic with parameter in £ and satisfies the minimal smoothness assumptions and if
q in the inequality 2mgq > n is even.

The proof consists of the following steps. At first we approximate the domain G
by a domain G with €' boundary such that we can use a C2™~ 11 diffeomorphism
of G onto G. Let us write Ap instead of Ap to indicate that we are considering
the Dirichlet problem. The diffeomorphism defines a similarity transform Ap —
Ap = T"YApT, where Ap corresponds again to the Dirichlet problem but in the
new smooth domain. This permits us to assume, without loss of generality, that T"
is smooth. Now we construct an approximation A" (z, D) for A(z, D) with C* top
order coefficients al” (z) (Ja| = 2m) tending to an(z) uniformly as h — 0 and zero
lower order coefficients. We prove that for even ¢

|tr Rapy (AT = tr Ry (A)7] < e(h) | A7 1 (1.16)
D
in £ for large |\|, where e(h) — 0 as h — 0. Here it is essential that
D(Ap) = D(AW). (1.17)

The Dirichlet problem for a smooth operator A (z, D) in a smooth domain G is
smooth; therefore we have a formula of the form (1.13) for tr R, (A)? in (1.16).
D

Obviously this leads to the desired result.

Of course, the idea to use smooth approximations for nonsmooth boundary prob-
lems is not new, see e.g. (Beals 1967). However, apparently a “jump” from a not very
smooth domain to a smooth one by a similarity transform is a new element of con-
siderations. We also note that to obtain the estimate (1.16) we derive an asymptotic
formula
2% (A —ooin L), (1.18)

[B g0 (N)[G ~ e(h,arg A) [A
where ||, is the Neumann—Schatten norm of order ¢. See Section 4 for further details.

1.5. In Section 5 we prove that formula (1.13) is true for general weakly smooth
problems (1.1)—(1.2) elliptic with parameter in £ (Theorem 5.1). Again, in this section



q is assumed to be even, ¢ = 2k, and for the proof we represent R(A)? in the form
R(\)? = Ri(MN)Ry(\)*, where Ri(A\) = R(\)* and Ry(\) = Ri(\)*. (1.19)

We prove that for a fixed A € £ with sufficiently large modulus
RN @) = [ Ko ) dy. (1.20)

where the kernel K (z,y) is a continuous function of x € G with values in Ly(G) and

1
g

(/ | K (z,y)|? dy) < Const [\|77 2. (1.21)
G

For this we prove that R;(\) = R(A)* is a bounded operator from Lqo(G) to C(G).
Since the same is true for Ry(\) (here we use the formally adjoint to (1.1)—(1.2)
boundary problem), for R(\) we have

RO f(x) = /G K (2, y, N () dy., (1.22)

where for A\ € £ with sufficiently large modulus K (x,y, \) is a continuous function on
G x G and
|K (x,y,\)| < Const |\|2m ¢ (1.23)

uniformly in z and y. Moreover, we obtain a pointwise asymptotic formula
K(z,2,)) = c(z) (—A) 5~ + o(wﬁ*q) (A — 00 in £) (1.24)

uniformly in = on compact subsets of G. To obtain (1.13) it remains to integrate
(1.24) over G.

This approach is a modification of that in (Agmon 1965a) and (Beals 1970). Ag-
mon at first considered the case 2m > n, and he obtained some results (now well-
known) concerning the kernels in the integral representation of bounded operators
from Ly(G) to W(G) with | > n/2 or | > n. We actually generalize these results to
bounded operators from Ly (G) to WZZ)(G), where p > 2 and Ip > n (see Subsection
5.1). Implicitly these generalizations were contained in (Beals 1970).

Beals considered selfadjoint nonsmooth boundary problems. Though for non-
smooth boundary problems the operator A% is in general not defined, Beals defined
the resolvent (AL — \)~! as

(A% =N = (Ap — ) "o (A — )™ (1.25)

where p; are the pairwise different roots /4. Using a variant of the Basic Theorem,
he considered (Ap —p;)~" as acting from L, (G) to Wzij (G) and inserted the Sobolev



embedding operators S; : WA_ (G) = Ly,.,(G) to the left of (Ag — ;) ~*. Here p; are
appropriate numbers and 2 = p; < py < .... In (Faierman 1995b) this approach was
applied to some nonselfadjoint boundary problems with indefinite weight. Instead of
(1.25), in the present paper we consider R(\)? and R(\)%/? in the same manner; this
permits us to minimize the assumptions about the presence of the rays of ellipticity
with parameter.

Finally we use operators of the form p(Ag(xg, D) — M)t - to deduce (1.24), where
the supports of the functions ¢ and 1 lie in a neighbourhood of zy € G. Here we
again follow (Agmon 1965a). Note, however, that in the case 2m < n the boundary
problems are assumed in that paper to be sufficiently smooth.

1.6. In Section 6 we discuss the spectral consequences of the main Theorems 4.1
and 5.1 following essentially (Agranovich and Markus 1989), where smooth spectral
problems were considered. We use the Hardy—Littlewood Tauberian Theorem and its
rough analogue presented in that paper. Let {\;}7° be the sequence of all eigenvalues
of Ap enumerated in such a way that

Al < Ao <. (1.26)

and each eigenvalue is repeated according to its multiplicity. Set

1 _
d= G | s /lfl_l[ao(x,f)] " dS. (1.27)

Here the values of ag(z, &) do not belong to L, and we define aan/zm using a cut along
the bisectrix R_ of £. The number d is of course independent of ¢, and cq = PBqd,
where the coefficient 3, does not depend upon ag(z,§). Under the assumptions of
Theorem 4.1 or 5.1, we obtain the relation

.2m

Al = 5% (1.28)

if d # 0; this means that the ratio |\;|/j2™/™ lies between positive constants for large
j. If, in addition, the boundary problem is elliptic with parameter along each ray
except, say, Ry, then A/ j2m/m has a positive limit which is calculated in terms of
ap(x,€) by the same formula as for smooth positive selfadjoint boundary problems.
The last result was obtained in (Agmon 1965b) and (Mizohata 1965) for sufficiently
smooth nonselfadjoint boundary problems.

Moreover, the results are strengthened in the following situation. Assume that the
boundary problem is elliptic with parameter in two closed angles £V and £(?) that
have only the point A = 0 in common, and let A; and As be two open angles that
constitute the complement of £ U £(?). Assume that A; contains all the values of
ap(xz,€), € # 0. Then both results mentioned above remain true for the eigenvalues
of Ap lying in A;. Here we keep in mind the scalar case; more interesting results
are valid in the matrix case, in which both A; and As can contain the eigenvalues of



ap(z, §), see Remark 6.6, and in the case of indefinite problems, see Theorem 8.13. To
obtain these results, we use the procedure of separating the asymptotics of the part
of tr R(A)? corresponding to the eigenvalues of Ap in A1, as in (Agranovich 1987); see
also (Agranovich and Markus 1989). However, we carry out this procedure anew since
now we do not have the estimate of the remainder in (1.13) used in those papers. For
this we extend (1.13) to real ¢ > n/2m using integral formulas for noninteger powers
of operators (see Theorem 6.4).

1.7. In Section 7 we extend the results to boundary problems (1.1)—(1.2) with addi-

tional transmission conditions along some closed surfaces I'y,...,I'y. These surfaces
lie inside G and have no common points pairwise and with I'. They divide their
complement in G into subdomains G, ...,Gy. If 'y separates G; and G/, then the

transmission conditions on I'y connect the boundary values of the solution and its
derivatives from the side of G; and those from the side of Gi». In the conditions of
minimal smoothness, the top order coefficients in A(z, D) are assumed to be continu-
ous in each G up to the boundary, i.e. they have to have continuous extensions from
G; to G;. Accordingly, the solution must belong to szm(Gl) in each G| separately.
The theory of such problems is very close to that of usual elliptic problems (cf. e.g.
(Schechter 1960)); because of this the extensions of our results to these problems
are straightforward, and in Section 7 we only indicate necessary alterations in the
definitions.
Especially important are the transmission conditions

0 D (2) = () (j=1,....2m) on Ty, (1.29)

which will be used in Section 8. Here 0, is the derivative along the normal to 'y,
and by u() and u"") we denote the solution in G and Gy, respectively. The following
fact is well known: if u® € W2™(G;) and u) € W2™(Gy), then these conditions
are equivalent to the inclusion u € ng(Gl UT, UGy ). They are absolutely elliptic
and smooth if Ty is smooth. These properties of (1.29) are similar to those of the
Dirichlet conditions on I'.

1.8. Section 8 is devoted to elliptic boundary problems with indefinite weight. The
equation (1.1) is replaced by

Az, D)u(z) — Aw(z)u(z) = f(z) in G. (1.30)

We preserve the notation introduced in Section 1.7. The weight function w(zx) is real-
valued (actually we could consider the case of a complex-valued w(x)) and continuous
in each G; up to the boundary but can have a jump and change sign when we cross
any I'y. There is an extensive literature devoted to such problems; see (Faierman
1988, 1990a,b, 1995a,b) and the references therein. We assume that w(z) is separated
from zero:

w(z)] > ¢ >0, (1.31)



which is, of course, a restrictive condition. Under this assumption, we generalize
the results obtained in the previous sections. In the case of minimal smoothness, it
suffices to divide (1.30) by w(x) and to impose conditions (1.29) on each I'y, which
leads to a transmission problem. In the case of weak smoothness, this reduction is
only formal (if w(z) is not smooth), but we can generalize the proof of Theorem 5.1.

1.9. Note that some of our results, beginning with the Basic Theorem, can be some-
what strengthened. Namely, we can assume that in (1.1)—(1.2) the boundary I' and
the coefficients of A(x, D) satisfy the minimal smoothness assumptions while the
coefficients of Bj(z,D) belong to the Hélder class C?™~™i=17(T) with a fixed 7,
0 < v <1 If v <1, then the Basic Theorem remains true for any fixed p with
1<p<(l—79)"t If1/2 < v < 1, then we can extend the results in Section 3 and
Theorem 4.1 for the corresponding p, as well as the consequences of Theorem 4.1. We
will indicate these and some other generalizations in Section 9.

Our results were reported at the International Conference “Partial Differential
Equations” held in Potsdam, July 29 — August 3, 1996. We would like to thank
Professor Schulze for his kind attention to our work.

2 Basic Theorem and Smoothness Assumptions

2.1. Recall that for an arbitrary domain G' in R™ the Sobolev space W, (G) (s €
Zy, 1 <p < o0) can be defined as the space of distributions f € D’(G) such that f
and the distributional derivatives D f (|o| < s) are functions from L,(G). The norm
in W;(G) is defined by the formula

ol = ([ 3 Dratoraz)’ .1)

laf<s

and W (G) is a Banach space with this norm. Under very general assumptions
concerning the boundary (in particular, if the boundary is of class C%!, i.e. Lipschitz),
this definition is equivalent to the following one: W (@) is the completion of the space
of the restrictions of functions from C'*°(R™) to G with respect to the norm (2.1). The
space W3 (G) coincides with L, (G). The space W5 (G) is usually denoted by H*(G).

Here and below in this subsection we refer the reader to (Adams 1975), (Grisvard
1985), (Maz’ya 1985) and (Triebel 1978).

Since D is (for an arbitrary domain G) a bounded operator from Wj(G) to

W, ~led (G) if s > || and since the multiplication by a bounded measurable function is
a bounded operator in L,(G), the operator A(z, D) in (1.1) with bounded measurable
coefficients is a bounded operator from W2 (G) to L,(G).

In the following we will use Sobolev Embedding Theorems. More precisely, we
will need the Gagliardo-Nirenberg inequalities, see e.g. (Maz'ya 1985, Section 1.4)
and also (Gagliardo 1959) and (Nirenberg 1959).
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L Let ps > n. Then W3 (G) — C(G), i.e. W;3(G) is continuously embedded into
C(G). More precisely, any function u(z) € W;3(G) can be changed on a set of zero
Lebesgue measure in such a way that it becomes a continuous function in G. Moreover,

we then have " _
max [u(z)| < Clul|F, o llullp,/c (2.2)

and there exists a constant v € (0,1) such that u(z) satisfies the Holder condition

u(@) — u(@)] < Clulls p. |z — |7, (2.3)
which means a continuous embedding of W;(G) into C°7(G). Here the constants
C=0C(n,p,s,G) and C' = C'(n,p, s,v,G) do not depend upon wu.

IT. Let

11
0<T="<—)<1. (2.4)
S\P D1

Then W3 (G) — Ly, (G), and

ullop.c < CrllulZ 6 llullgpre (2.5)

where the constant Cy = Ci(n,p, p1, s, G) does not depend upon u.
We will also use the following interpolation inequality.

ITI. Let k be an integer with 0 < k < s, 7 = k/s, and put

ulie . = (/G 3 1D%u(a) P do)

lel=k

for u € W;(G). Then

[ulkp.c < C2 [[ullf .6 lullo, e

where Cy = Cy(n,p, s, k, G) does not depend upon u.
IV. The results I, II, and IIT hold in full force if G is replaced by R™.

Moreover, Theorems I-III for functions in G are obtained from the corresponding
results for R™ using an extension operator that preserves Sobolev spaces. Such an
operator for Lipschitz domains, i.e. for domains with C%! boundary, was constructed
by Calderén, see its version in (Stein 1970, Chapter VI, Section 3). Cf. the second
definition of Sobolev spaces at the beginning of this subsection.

Now we need a short discussion of the boundary values of functions u € W7 (G).
We assume that the boundary I' of the domain is of class C?™~ 11,

Let s be an integer with 1 < s < 2m. Then the functions u € W;(G) have

_1
boundary values v = u|r; the space of these boundary values is denoted by B;ypp (I
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s—1
or Wp *(T'). The norm |[[v[[;_1 ,  in this space can be defined by the formula

inf  Ju
ulpr=v
ueW,(G)

o]l

ls.p.G - (2.6)

s—=p =

An equivalent norm can be defined using a sufficiently fine partition of unity and the

1
following norm in the space W, ?(R"1):

’
lo@ )51 prn-1 = { /R ) DY v(a')[P da’
lar|<s—1 78"

1
3 DY v(2') — DY), "
dx' d .
* /Rn—l /Rn—l |z’ — y|n—2tp €roay

la/|=s—1

See e.g. (Grisvard 1985, Sections 1.3 and 1.5).
The following result is stated, e.g., in (Grisvard 1985, Theorem 1.4.1.1). For the
convenience of the reader, we include a proof of it in the Appendix.

V. The operator of multiplication by a function from C*~%(T") is continuous in the
s 1
space W, ?(T).
It follows that the operators B; in (1.2) with coefficients b;, € C*™~™i~L1(T) are
bounded operators from W2 (G) to Wsm_mj_E (T).
2.2. In this subsection we formulate the Basic Theorem following essentially (Agmon
1962) and (Agranovich and Vishik 1964, Chapter I) and comment on some slight

contributions contained in our formulation.
We will use the norms depending on a parameter:

[l

s
2m

5.6 = [[Ullsp.c + A |ullo.p.c (2.8)

and
1

.t
p
s—ipr = s—ipT "
Iolls- 2 [0lls—1 1 + (A2 [|0]

0,p,T" - (2.9)

The norms [|ulls,p,rn, [[ulls,p,rn and [|vfl;_1 , gn—1 are defined analogously. For p = 2
1.p,

these norms were introduced in (Agranovich and Vishik 1964). For a fixed A, these
norms are equivalent to [|ul|s ¢ and |lv||,_1 , 1, respectively.
5P

Theorem 2.1 (The Basic Theorem). Assume that the boundary problem (1.1)—
(1.2) is elliptic with parameter in an angle L and satisfies the minimal smoothness
assumptions. Let 1 < p < oo. Then there exists a A\g = Ao(p) > 0 such that for
A€ L, [N > Xo the boundary problem has a unique solution uw € W2™(G) for any
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2m—'mj—l

feLy(G) and g; € Wy P(T"), and the a priori estimate

m
lullzmpc < C (I loc + D N9sllzm—m,—2 o) (2.10)

j=1
holds, where the constant C' does not depend upon f, g; and .

This theorem was stated in (Agmon 1962) for the case g; = 0 under slightly
stronger smoothness assumptions. Namely, Agmon assumed that the boundary is of
class C?™ and the coefficients of Bj(x, D) belong to C?™~™i(T'). Let us call these
smoothness assumptions almost minimal. Agmon obtained the a priori estimate in
the following way: he introduced an additional variable ¢ and applied the a priori
estimate for elliptic boundary problems without parameter in the cylindrical domain
G x R to functions of the form w(z,t) = ¢(t)e"*u(x), where ¢(t) has finite support.
Of course, the a priori estimate implies the uniqueness.

Agmon mentioned that he wanted to publish a paper devoted to existence the-
orems. However, as far as we know, this paper has not appeared. Agmon also
mentioned that the existence can be proved using the formally adjoint problem and
assuming additional smoothness.

Concerning the further evolution of this approach by means of dual estimates, we
refer to (Geymonat and Grisvard 1967), where the smoothness assumptions are almost
minimal for homogeneous boundary conditions and are stronger for nonhomogeneous
boundary conditions.

In (Agranovich and Vishik 1964) another approach to these problems was pro-
posed. It is a direct method similar to that used for elliptic boundary problems
without parameter and is based on a localization and the consideration, at the be-
ginning, of a boundary problem in R’} with constant coefficients and without lower
order terms. For elliptic boundary problems without parameter this method leads to
the Fredholm property (see e.g. (Agranovich 1965)). For boundary problems elliptic
with parameter this method leads to the existence theorem (as well as to the a priori
estimate). Agranovich and Vishik assumed that p = 2 and the boundary problem is
smooth; however, as we show, this direct approach works for any p > 1 under the
minimal smoothness assumptions (and for nonhomogeneous boundary conditions).
Note that the direct approach was also used in (Roitberg and Sheftel’ 1967), where
the smoothness were not specified, and in (Roitberg 1991), where the smoothness
assumptions were somewhat stronger than the almost minimal smoothness.

In Subsection 2.4 we sketch the complete direct proof of the Basic Theorem. There
we use some technical results which are formulated in Subsection 2.3, including the
variants of the Basic Theorem for operators in R™ and R’} , respectively, with constant
coeflicients and without lower order terms. For the convenience of the reader, we prove
these results in the Appendix.

2.3. Here we at first summarize some trace and interpolation results.
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Throughout this subsection, we will use the notation p = |A\|'/?" and for s € N
denote the trace of u € W3 (G) or u € W3(R) on T or R*™!, respectively, by ~yu.

Proposition 2.2. Let T’ be of class C*™~ L1, s an integer with 1 < s < 2m, and
l<p<oo. Let p>1.
a) For all u € W) (G) we have

1—1
P F o < Cr(Jlu

1p.G T pllullo,p,c) ; (2.11)

where the constant Cy does not depend upon u and p. The same is true if G is replaced
by R} and I' is replaced by R™ 1,
b) For all uw € W3 (G) and all integers k with 1 <k < s —1 we have

o ulkpe < Ca(lullsma + o lullosc ) (2.12)

with a constant Cy not depending upon u and p. The same is true if G is replaced by
R™ or RY.
c) For all u € W (G) we have

Ivulls-1 50 < Csllullsp.c (2.13)

where the constant C3 does not depend upon uw and p. The same is true if G is replaced
by R} and I' is replaced by R 1,

Denote by F’ the Fourier transform with respect to the first n — 1 variables.

Proposition 2.3. Let s be an integer with s > 1 and 1 < p < oo. Then for

_1
every v € W; P(R"1) and for every p > po > 0 the function u = F''QF"v with
Q& zn, p) = exp(—(|¢'| + p)xn) is an element of W3 (R} ) with yu = v, and there
ezists a constant Cy, not depending upon v and p, such that

llls.prr < Callvlls—1 pn-1 - (2.14)
Proposition 2.4. Assume that the boundary problem (1.1)—(1.2) satisfies the min-

imal smoothness assumptions. Let 1 < p < oo. Then for any u € ng(G) we
have

m
006+ D IBj(@, DYullam—m,— 1 pr < Cs ullzmpc (2.15)
j=1

| A(z, D)u

for p > 0, where the constant C5 is independent of u and .

Now we formulate the analogues of the Basic Theorem for operators in R™ and
R’ with constant coefficients and without lower-order terms. For a proof of these
analogues one can use Michlin’s multiplier theorem as in (Volevich 1965) instead of
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using Plancherel’s theorem which is possible for p = 2; see the Appendix for details.
We do not formulate the obvious definitions of ellipticity with parameter for these
situations.

Proposition 2.5. Let A(D) = }_, s, aaD® be elliptic with parameter in L. Let
Xo >0 and 1l <p<oo. Then for any f € Ly(R™) and any X € L, X\ # 0, there exists
a unique solution u € W2™(R") of (A(D) — Nu = f, and for X € L, |[X| > Ao, the a
priori estimate

lull2m prn < Co [l Fllo.p (2.16)

holds, where Cg does not depend upon f and .

Proposition 2.6.  Consider the operators A(D) = 32, /_om, @aDP* and B;(D) =
Z\ﬁ\:mj b;sDP (j =1,...,m). Let the boundary problem

(AD)-MNu = f R},

BiD)u = g; (j=1,...,m) on R"! (2.17)

be elliptic with parameter in L. Let \g > 0 and 1 < p < co. Then for any f € L,(R"),
2m—m; —

1
any g; € Wy P(R" 1), and any X\ € L, A # 0, the boundary problem (2.17) has
a unique solution u € szm(Ri), and for X € L, |\| > Xo, the a priori estimate

m
o py < C7 [ lopmy + D Wgsllom-m,—3 et | (2.18)
j=1

holds, where the constant C; does not depend upon f, g; and .
For the proofs, see the Appendix.

2.4. Now we are going to sketch the proof of the Basic Theorem (Theorem 2.1).

a) First we show that for every xo € G there is a neighbourhood U of x and a
Ao > 0 such that (2.10) holds if suppu C U NG and X € L, |A| > \g. We separately
consider the cases o € G and xg € I

If g € G, then, by freezing the coefficients of the operator A(x,D) and taking
only the principal part, we can apply the a priori estimate for homogeneous operators
in R™ with constant coefficients, see Proposition 2.5. We do not dwell on details.

Now let zg € I'. We assume U to lie inside a coordinate neighbourhood and
write the boundary problem (1.1)—(1.2) in local coordinates. Again we take only
the principal parts A¢(z,D) and Bjo(z, D) of the operators A(x,D) and B,(z, D),
respectively, and freeze the coefficients at © = xy. From the a priori estimate for
operators in the half-space (Proposition 2.6) we obtain

lullampzy < Cr[ll(Ao(@o, D) = Mullopzy

+ Z |||Bj0($0’D)u”|2m,—mj—%,p,R"*1 (219)
j=1
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with a constant C7 independent of v and A. Using the continuity of the coefficients
aq(z) for |a] = 2m and (2.12), it is easily seen that in the estimation

I(A(z, D) = Ao (20, P))u

lop.rr < Csllull2m.pre (2:20)

the constant Cg can be made arbitrarily small if U is chosen small enough and |}| is
large enough. From the proof of Theorem V of Subsection 2.1 (see the Appendix for
details) we see that the same is true for

I(Bjo(z, D) = Bjo(wo, D)) ullaym—m; -1 prn-1 -

The operator Bj(x, D) — Bjo(x, D) contains no terms of the highest order, and there-
fore (cf. Proposition 2.4) the inequality

I(B;j (2, D) = Bjo(x, D)) ullzm—m;—1 pro-1 < Collullam—1,p.r (2.21)

holds for some Cy independent of w and A. As the right-hand side of (2.21) can be
estimated by a constant times |\|~1/2" llull2m.pry (Proposition 2.2 b), we see that
for every € > 0 there exists a neighbourhood U of xg such that for all solutions
u € W2™(G) with suppu C U and for |A| large enough we have

[(A(z, D) = Ao (20, D))u

lo.prr + Y I(Bj(x, D) — Bjo(xo, D))ttllz—rm;— 3 prn—1
j=1

< ellullzm.pry - (2.22)

From (2.19) and (2.22) the a priori estimate follows for « with suppu C U.
b) To obtain (2.10) for general u, we use a C'>° partition of unity. We only note that
for a function ¢ € C*°(G) the trace of ¢ on I' belongs to C?™~11(T') and therefore
1

the multiplication by the trace of ¢ is continuous in Wj Ty (T") by Theorem V of
Subsection 2.1.

¢) As from the a priori estimate (2.10) the uniqueness follows, it remains to prove
the existence of the solution.

We fix € > 0 and choose a finite covering G C Uszl Uy, of G and ), € Uy, such that
for every x € Uy the estimate (2.22) holds with z replaced by xj. Consider a C*°
partition of unity ijzl vr(z) = 1 subordinated to this covering and C*° functions
Y with ¢ (z) = 1 in a neighbourhood of supp ¢y and supp ¢y C Uy.

Let

2m—mj;—=

A= A(@) s W2™(G) = L(G) x [[ W™ ™ * (1)
j=1
be defined by

Au = ((A(x, D) — Nu, By (2, D)u, . .., Bz, D)u) . (2.23)



16

We write

N N
Au =" orA(ru) = orAi(tru), (2.24)
k=1

k=1 =

where Ay, is the corresponding operator written in local coordinates and acting in R"™
or R%.

Freezing the coeflicients of Ag(x) at xp and taking only the principal parts, we
obtain the operator Ao (z) whose inverse Ry exists by the results on operators in
R™ or R?}, respectively. Now we set

N
R(f101,- 2 9m) = > bkRi(@rf 0r1s - - Prgim) - (2:25)
k=1

Making use of the a priori estimate for Ry and (2.22), it can be seen that

AR(fvglv"‘agm) = (f?gla"'agm)+T(faglv'"agm)a (226)

2m—m —

1
where for |A| large enough the norm of 7 as an operator in L,(G) x [[ W, »(I),
where we use norms of the form (2.9) on the boundary, is not greater than a constant
times €. With ¢ small enough we see that A is invertible and therefore the boundary
problem (1.1)—(1.2) has a solution. |

2.5. In (Faierman 1990b) it was proved that the following conditions are sufficient
for the existence of the boundary problem (1.7)—(1.8) formally adjoint to (1.1)—(1.2)
also satisfying the minimal smoothness assumptions:

I'e ™, ay € ClPI7NG), bjo € CPm1m (D) 0 Clob (T (2.27)

Here the notation a, € C1*I=11(G) means in the case |a| = 0 that the function a, is
measurable and essentially bounded in G.

2.6. One can find in the literature many works devoted to elliptic boundary problems
in nonsmooth domains and/or with nonsmooth coefficients. However, they are either
concerned with problems in a variational form or with non-variational problems of a
very special kind.

3 Simplest Spectral Consequences
3.1. Here we assume that the assumptions of the Basic Theorem are satisfied. Con-
sider the operator Ap, in L,(G), 1 < p < oo, that acts as A(xz,D) and has the

domain

D(Ap,p) ={ue szm(G) :Bj(z,D)u(z)=0 (j=1,...,m)onT}. (3.1)
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Obviously D(Ap ;) is dense in L,(G). From the a priori estimate (2.10) it follows
that Ap, is closed. Its resolvent set is nonvoid, and the resolvent is compact since
W2™(G) is compactly embedded in L,(G). Thus, Ap,, has a discrete spectrum: it
consists of isolated eigenvalues of finite multiplicity, with possible accumulation only
at infinity. From the Sobolev Embedding Theorem II it follows that the generalized
eigenfunctions belong to (| W2™(G) and that the spectrum o(Apj) does not
1<p<oo

depend upon p (see (Agmon 1962)). Because of this we will mainly consider Ap =
AB,2 in LQ(G)

In the following we will summarize some spectral properties of the operator Apg
which are consequences of the Basic Theorem. We will refer to these properties in
Sections 7 and 8, where more general situations are considered.

Recall that the subset X7 in a Banach space X is called complete in X if the set
of all finite linear combinations of elements of X is dense in X.

Theorem 3.1 (Agmon 1962). Assume that the boundary problem (1.1)—(1.2) is
elliptic with parameter along some rays £*) (k=1,...,N) and the angles between
any two adjacent rays are not greater than 2mm/n. Then Ap has an infinite number

of eigenvalues and the set of all generalized eigenfunctions of Ap is complete in La(G)
(and in L,(G)).

In the proof of this theorem and Theorem 3.2 below an extension operator of
functions in G to functions on a torus containing G is used that preserves Sobolev
spaces (see (Agmon 1962, Appendix I) or (Beals 1967)). As we mentioned above,
such an operator exists for Lipschitz domains.

Let {u;};>1 be the system of generalized eigenfunctions of Ap composed of bases in
each generalized eigenspace in such a way that u; belongs to the generalized eigenspace
that corresponds to the eigenvalue A\;. Under the assumptions of Theorem 3.1, the
u;’s form an infinite complete system. Besides, this system is minimal, and hence
there exists a system {wy}7° biorthogonal to {u;}7°:

(uj, wr)a = k- (3.2)

The system {wy}$° consists of the generalized eigenfunctions of the operator (Ap)*
adjoint to Ap. To each function f € Ly(G) we can associate its formal Fourier series
with respect to {u;}$°:

f~ chuj , where ¢; = (f,w;)q . (3.3)
j=1
Theorem 3.2. Under the assumptions of Theorem 3.1, the series in (3.3) admits the
summoability to f by the Abel-Lidskit method of order QL + ¢ if € > 0 is sufficiently
m
small.

This method was defined in (Lidskii 1962) and was called there Abel’s method. In
the simplest case, when all the generalized eigenfunctions are actually eigenfunctions
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and all the eigenvalues lie, say, in the angle {\ : |arg A\| < 0} with some 6§ € (0,7),
the definition of this method of order v (0 < v < 7/2) is as follows: there exists an
increasing sequence {vy}{° of nonnegative integers (independent of f) with v4 = 0
such that the series

oo Vi+1

ATt
E E e " fejuy (3.4)
k=1 j=vip+1

converges in Ly(G) for ¢ > 0 and its sum f(¢) tends to f in Ly(G) as ¢ \, 0. Here
A =1 |Yeivars X The definition for the general case can be found in (Lidskii 1962)
or in the survey (Agranovich 1990). Theorem 3.2 follows from a variant of Lidskii’s
theorem indicated in (Agranovich 1977).
We now set
L(0)={A:arg)=06}. (3.5)

Theorem 3.3 (Agmon 1962). Let the boundary problem (1.1)—(1.2) be elliptic with
parameter along the rays L£(61) and L(02), where 0 < 0 — 61 < min{2mmn/n, 27},
and not elliptic with parameter along some ray L(6p), 01 < 6y < 0. Then the angle
{A: 01 <argA < 6y} contains infinitely many eigenvalues of Ap.

This result was called in (Agmon 1962) the statement on the angular distribution
of eigenvalues.

Theorem 3.4 (Agmon 1962). In particular, let the boundary problem (1.1)—(1.2) be
elliptic with parameter along all the rays L£(0) with 6g—e < 6 < 0y and Oy < 0 < O+
for some ¢ > 0 and not elliptic with parameter along L(0p). Then any angular
neighbourhood of L(6p) contains infinitely many eigenvalues of Ap.

Such a ray L(p) is called the ray of condensation of eigenvalues in (Agmon 1962).

3.2. Remark 3.5. From the Basic Theorem it can be easily seen that under the
condition of weak smoothness the Banach space adjoint (Ap p,)* of the operator Ag ,
corresponds to the formally adjoint boundary problem.

Indeed, let v be in the domain of (Ap ;,)*. Then, by definition, v and h = (Ap ,)*v
are elements of L,/ (G) and

(Au,v)g = (u,h)q for all u € D(Ap,),

1 1
where —+— = 1. Assume for simplicity that the boundary problem (1.1)—(1.2) and its
b p

formally adjoint (1.7)-(1.8) are both uniquely solvable for A = 0. Let w € W2™(G) be
the solution of the formally adjoint problem with homogeneous boundary conditions
and f in (1.7) replaced by h. Then we have, by the definition of the formally adjoint
problem,

(Au,v —w)g =0

for all u € C?™(G) satisfying the boundary conditions Bju = 0 (j = 1,...,m), and
therefore for all w € D(Ap ). But the range of Ap ), is the whole space L,(G), and
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we obtain v = w in L, (G) which shows that v lies in the domain of the operator
corresponding to the formally adjoint problem. On the other hand, it is clear that
every function in this domain lies in D((Ag ,)*) and that the two operators coincide
for these functions.

We will use this result only for p = 2. Note that under the conditions indicated
in Subsection 2.5, this result was proved for p = 2 in (Faierman 1990b).

4 Trace Asymptotics of Powers of the Resolvent

4.1. Let T be a compact operator in a Hilbert space H. Recall that the s-numbers
s;(T) (j =1,2,...) are the nonzero eigenvalues of the nonnegative operator (77*)%/2
(or, which is the same, of (T*T)'/?) arranged so that

and each eigenvalue is repeated according to its multiplicity. As usual, we set

o0 1

71, = (Yl ())” (42)

Jj=1

for 0 < ¢ < co. All operators T' with |T'|, < oo form the Neumann—Schatten space
Sy; for ¢ > 1 it is a Banach space with the norm |- |;. Obviously S;, C Sy, if ¢1 < ga.
The operators from Sy are the Hilbert—Schmidt operators. If H = Lo(G), where G is
a domain in R™, then Sy coincides with the class of integral operators

H@=Lmemwy (4.3)

with kernels K (x,y) € La(GxG). The operators from S; are the trace class operators;
they have the trace

trT = i A (T), (4.4)
j=1

where the series is absolutely convergent; here each eigenvalue of T is repeated ac-
cording to its multiplicity, and
[t T] < [T (4.5)

If H= Ly(G) and T is a trace class operator with kernel K (z,y) in (4.3) continuous
in G x G, then

trT = / K(z,x)dz. (4.6)
G
We also note that if B is a bounded operator in H, then
s;(T'B) < ||B| s;(T), (4.7)
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so that
|TBl, < |B|[T]g- (4.8)

Finally, we note that if ' =Ty ... T, where T; € §; and s < g, then
Tla < [Tilg- ... [Ty (4.9)

See (Gohberg and Krein 1965, Chapters IT and IIT) and also the survey (Agranovich
1990) and references therein.

4.2. Assume that the assumptions of the Basic Theorem 2.1 are satisfied. Then for
A € L with large |A| the resolvent R()) is a bounded operator from La(G) to W™ (G).
It follows that

2m

53 (ROV) < CO) 7%

(4.10)

This estimate and the estimate (5.4) below are valid for Lipschitz domains and follow
from similar estimates on a torus, cf. (Agmon 1962), (Beals 1967) or (Triebel 1978,
Section 4.10.1).

Let g be a natural number such that 2mg > n. Then R()\) € S, in Ly(G), and
hence R(A\)? € &;. If the boundary problem is smooth, then we have the asymptotic
formula (1.13) (even with the remainder O(|/\\%*Q)).

The facts mentioned in these two subsections will also be used in Section 5.

4.3. Now we intend to prove Theorem 4.1, the main theorem of this section.

Theorem 4.1. Assume that |argao(z,§)] < 61 < 0 < 7 and that the minimal
smoothness assumptions are satisfied for G and A(x, D). Let 2mq > n, and let q be
even. Then for the Dirichlet boundary problem (1.1), (1.15) the formula (1.13) is true
m

Lo={X:]|arg)| >0} U {0} (4.11)

with cq indicated in (1.14).

Proof. At first we need
Lemma 4.2. There exists a bounded domain G with C* boundary T' such that G
and G are connected by a diffeomorphism of class C?™~ 11,

This is almost obvious. Nevertheless, we give a complete proof.

Proof of the Lemma. We first consider a small part of the boundary. Using a rotation
and a shift of the coordinate system in R™, we assume that this part is the graph of
a function

z, = p(z') € C*~ 11O, (4.12)

where O/ is the ball {2/ € R"~! : |2| < r}. Moreover, we assume that for some s > 0
the sets
[r R4 € OL, pl&) < a < pla') + 5} (4.13)
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and
{zeR": 2" €O, p(x')—s <z, <)} (4.14)

lie in G and outside G, respectively. Let 6(z') be a C§° function, i.e. a C* function
with compact support, such that

/9(96’) dr’ =1. (4.15)

We set 0 (z') = h'~"0(2’ /h) for small h and choose a function a(z’) € C*(O.) such
that
a(z') >0, a(z') =1in O] 3, and a(z’) = 0 outside O, 5 . (4.16)

Now we set
on(a') = a(a’) / O’ — o )oW) dy’ + [1 — a(e)]p(a) . (417)

Obviously g (2') is a C*° function in (9;,/3, it uniformly tends to ¢(z’) as h — 0, and

2
on(z') = ¢(z') for |2'| € (l,r) . (4.18)
3
We fix an € € (0, s/3) (it will be chosen later) and assume h to be so small that
lon(z') —@(2')| < e for ' € O). (4.19)

Now we fix h = h(e). The local repairing of the boundary consists in the replace-
ment of p(z’) by ¢p(z’). The new domain is obtained from the original one by the
replacement of the set (4.13) by the set

{x eR": 2" € O, op(z') < zp < @(z') + s}. (4.20)

To define a C?™~ 1l diffeomorphism of the original domain onto the new one, it
suffices to define a C?™~ 11 diffeomorphism z +— 7 of the set (4.13) onto the set
(4.20) with Z instead of z in (4.20) in such a way that the points « near those with
|#’| = r and/or x,, = ¢(2’) + s do not move. For this we fix a non-increasing function
B(t) € C*([0, s]) such that

B(0) =1 and §(t) = 0 near s

and set
~/ !

Fo = 2w+ lon(e) — o(e)] Bln — o)) } (4.21)

Obviously &, = x,, for |2'| > 2r/3 (see (4.18)) and near z,, = p(z') + s, and we only
need to make the function Z,(z,) strongly monotonic. Since

g% =1+ [en(z') — p(a")] B'(zn — 9(a")),
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it suffices to choose € in (4.19) so that
emax |3 (t)] < 1.

Thus, we constructed the desired diffeomorphism. Repeating this procedure suffi-
ciently many times, we repair I' completely and obtain the desired domain G. O

Now we will use the notation x + Z for the diffeomorphism of G' onto G. For a
function v(Z) on G, we set

u(z) = v(E(z)) = (Tv)(x).
Our diffeomorphism transforms the equation (1.1) into the equation
T A(x,D)Tv - v =T""f. (4.22)

Here A(Z,Dz) = T~ 'A(z, D,) T is a partial differential operator of order 2m with the
principal symbol

LA . (0z\ 1

a0($7§) = ap (m(m), (%) g) ) (423)
where % is the Jacobian matrix and the dash denotes the transposed matrix (see e.g.
(Agranovich 1990, Section 1.4)). Obviously the set of values of the principal symbol
remains the same. The minimal smoothness conditions for A follow from those for A.
Finally, our transform preserves the Dirichlet boundary conditions. Indeed, they can
be interpreted as the inclusion

w e W2m™(G) N W (@), (4.24)

[e]
where W3*(G) is the closure of C§°(G) in W3 (G), and our transform preserves these
Sobolev spaces. Thus, our diffeomorphism defines the similarity transform

Ap— Ap =T 'ApT (4.25)

that preserves all the assumptions of the theorem. Since the spectrum is preserved
under a similarity transform, we now assume, without loss of generality, that G is
smooth, i.e. I' € C°.

4.4. The next step is to construct an operator A(h)(x,D) with C'*° top order co-
efficients al") (x) (|| = 2m) that uniformly converge to an(z) as h — 0. The pro-
cedure is routine: we prolongate a,(z) (|a] = 2m) to continuous functions in R™,
take a C§° function 0(z) with property similar to (4.15), [6(z)dz = 1, and set

On(x) = h~"0(x/h) (h > 0). Finally, we set

o) (z) = / 0n(x — v)aaly)dy (ja] =2m, z € ). (4.26)
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Obviously a((lh)(a:) € (@) and all () — aq(z) (h — 0) uniformly in G.
For |a| < 2m we take all (x) = 0. Thus we set

AW (2, D)= > aP(x)D" (4.27)

|a]=2m

and consider the Dirichlet problem for this operator. It is elliptic with parameter in £
if h is sufficiently small, 0 < h < hg, and smooth. We can assume that the resolvents

R(\) = Ra,(\) and RM()\) = R, (\) (4.28)

with any h < hg exist for A € £ with |\| > ro, where 7 is independent of h, and we
now consider the difference of the powers of these resolvents.

4.5. We have
RN —=RMN = Y RMN®[RA) - RMN)RM(\)® (4.29)
q1+g2=q—1
q1,92€Z+

for any positive integer q. Here
R(\) — RM(\) = RM(\[AY — Ap|R(N). (4.30)
This formula is correct since
D(Ap) = D(AW). (4.31)
Proposition 4.3. For any € > 0 there exist positive hy = hy(¢) and 1 = r1(g) such

that
I1Ap — AD IRV < e (4.32)

for any h € (0,h1) and A € L with |\| > ry.
Proof. For f € Ly(G) set
w=R(\)f and w=[Ap — AW ]u.
According to the Basic Theorem,
lullzm,2.c + Al ullo.z.c < Cllflloz.c

where C' does not depend upon f and A. Further, w = w; + wy, where

wy(z) = Z (a0 (2) — W (2)]D%u(z) and wy(x) = Z ao () D%u(x) .

|a|=2m la|<2m
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Here

willo2.c < n(h) [[ullzm2.c,

where n(h) — 0 as h — 0, and
wallo2.c < C" |lullam-1,2.c-
In view of the interpolation inequality (see (2.12)),
1
N ullam 1,26 < O (Jullamz.c + A lullozc)

where C” does not depend upon A and u. Thus

1Ap — ADPIRO)| < C (k) + CC"C" A" 27 | (4.33)
and from here we obtain the desired result. O

Combining Proposition 4.3 with (4.8) and (4.30), we obtain

Corollary 4.4. For any € > 0 there exist positive hy = hy(g) and 1 = r1(g) such
that
[R(A) = RM V)], < e |[RP (), (4.34)

and
IRVl < (1+2) [RM (V)] (4.35)

for h € (0,h1) and X € L with |A] > rq.

4.6. Now, assuming that 2mq > n, we deduce from (4.5), (4.9), (4.29), (4.34) and
(4.35) that
ltr RO\ — tr R (\)9] < Cje |R(h)()\)\g (4.36)

for the same h and A, where C; does not depend upon h and A\. We repeat that
since A(Dh) corresponds to a smooth boundary problem, we have a formula of the form
(1.13) for tr R (\)? with cgh) instead of ¢4, where

w_ L g 4
‘T Qe /G m/ [l (z,€) + 1]

and aéh) is the (principal) symbol of A(); obviously cgh) — ¢q as h — 0. It remains

to prove that

IRM(\)|2 < C|N[==1. (4.37)

Up to now ¢ was any natural number such that 2mq > n. Now we assume that ¢ is
even and set
q="2k. (4.38)
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Instead of (4.37) we will indicate an asymptotic formula for the left-hand side of
(4.37). We have

Here the operator R(h)()\)* corresponds to the Dirichlet problem for the equation
AWM (2, DY v(x) — Mo(z) = f(z) in G. (4.40)

Since the operator R (\)R™ (\)* is selfadjoint, from (4.39) it follows that

IRM (NG =" N[(RP (A)RM (N)*)H. (4.41)
Jj=1

The operator in the square brackets in (4.41) corresponds to a composition of ¢
Dirichlet boundary problems. This composition is the boundary problem

(A(h)* _X)(A(h) —A)... (A(h)* —X)(A(h) —Nu=finG (4.42)

(q factors) with the boundary conditions

N tu=0,
D11 AM — Nu =0,

5371(14(}1)* _ X)(A(h) - Nu=0, (4.43)

O (AW = 2) L (AW = X)(A™) = Nu =0

onI' (j =1,...,m; q rows). To simplify the notation, we temporarily assume that
L = R_ and hence A = A. Then this boundary problem is a particular case of
boundary problems polynomially depending on a parameter and having the form

A(z,D,\)u = Z Mag(z)D%u = f in G, (4.44)
la|4+~1<20

B(z,D,\u = Z Mg (2)DPu=0 (j=1,...,u) on T. (4.45)
1Bl4+7I<p;

In (4.44) the operator has even order 2u; in (4.45) we assume for simplicity that
tj < 2p. The parameter A has the weight v with respect to the differentiation. In
(4.42)—(4.43) v = 2m and p = mgq.

The definition of ellipticity with parameter of the boundary problem (4.44)—(4.45)
is a natural generalization of Definition 1.1. Let £ be a closed angle in the complex
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plane with vertex at the origin. Denote by ag(z,&, A) and bjo(z, &, A) the principal
symbols of A(z, D, ) and B;(z, D, \):

a(z, &) = Y NMaa(@)E®, bjo@ &N = > Mba(x)e?.  (4.46)
la|+yl=2pn |Bl+yi=p;
The boundary problem (4.44)—(4.45) is called elliptic with parameter in L if
(1) ag(z,&,\) #0 for z € G, 0# () € R" x L;

(2) for any z¢ € T in the coordinate system associated with this point the boundary
problem

ag(x0,&, Dy, Nv(t) =0 (t =2, >0),
bjo(l‘o,fl,pn, /\)’U(If) =0 (] = 17 . ,/J) at t = 0, (447)
v(t) >0 ast — oo
has only the trivial solution.
For such boundary problems a corresponding variant of the Basic Theorem is true;
cf. (Agmon and Nirenberg 1963), (Agranovich and Vishik 1964) and further papers
indicated in Section 2. In particular, for A\ € £ with large modulus the boundary

problem (4.44)(4.45) with any f € Ly(G) has a unique solution v € Wi"(G), and
the a priori estimate

21
lullzu2.c + A7 ulloze < Cllfloza (4.48)

is true. Let R(A)f = w and 2u > n; then R(\) is a trace class operator. Assume that
the boundary problem is smooth; then an asymptotic formula for tr R(\) is known,
see e.g. (Grubb 1986, Section 3.4) and (Boimatov and Kostjuchenko 1991). For us it
is convenient to write it in the form

trR(,\):5(_,\)%—27“+o<|A|%—27“) (A — oo in £), (4.49)

where

[N

= (2i>” /G dx/n aal(:rﬂ%—l) dr]7 (45())

so that the main term in (4.49) is defined by the principal symbol, as in (1.13).2
In our case,

ag(w, &, \) = |af (x,€) — AJ?

2In (Grubb 1986) the main term is written in the form

1
W/G daz/n ag t(x, & N\) de.

If £ =R_, we make the substitution £ = |)\|1/'Y77, If £ is larger, we can additionally use the analytic
continuation. Cf. (Agranovich 1990, Section 5.7).
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and Condition (1) is obviously satisfied. To check Condition (2), it is convenient to
linearize the corresponding boundary problem (4.47). We set

Then we successively obtain that v,(t) = 0,...,v1(t) = 0 as solutions of the boundary
problem

(" (0.6 D) =N w(t) =0 (t>0),
Di7tw(t)=0 (j=1,...,m)att=0,
w(t) =0 (t— 4o00)
or of the similar problem with aéh)
the result (4.49), we obtain

instead of Eéh). Our problem is smooth, and using

[RM )[4 =& [A77 1 + o |A[#7 ) (4.51)
as A — —oo along R_, where
= 27r / dx/n |a (x, &)+ 1]79d¢. (4.52)

To obtain a similar result if £ # R_, we consider the boundary problem (4.42)—
(4.43) as depending polynomially on |A| with coefficients continuously depending upon
arg A. The final result is the formula (4.51) with

o ( A
Al
This coefficient is a continuous and hence a bounded function. As to the remainder

estimate in (4.51), it is at least uniform in arg A for a fixed h. This result together
with (4.36) is sufficient to finish the proof of the theorem. O

¢ = ¢(h,arg \) = d:v dg . (4.53)

n

Remark 4.5. In the proof of (4.51) it is actually unessential that the boundary
conditions are those of the Dirichlet problem. We see that the following proposition
is true:

Proposition 4.6. Let the boundary problem (1.1)—(1.2) be smooth and elliptic with
parameter in L. Let q be an even number such that 2mq > n. Then

Ran (VI = arg ) NF 79+ o(]N#71) (A= oo in L)  (454)
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uniformly in arg A, where

clarg\) = (271r)" /G dx/n

Actually it is possible to improve the remainder estimate; moreover, it is possible
to indicate an asymptotic expansion for the left-hand side. We do not dwell on this.

A4
ao(%f)*m dg . (4.55)

Remark 4.7. There is another way to obtain results of the form (4.54). Namely, we
can linearize the boundary problem with respect to A. In particular, in (4.42)—(4.43)
we can set

uy = u, ug = (A® = N, .. ug = (AD =X)L (AP —X) (AW — N,
and then we obtain a matrix Dirichlet problem
AU-TINU = F inG,
U =0 (j=1,...,m)onT,

where U = (u17"-7uq)/a F= (O7"'707f)/7

AN 10 0 ... 0 0
0 AW= _1 0 0 0
A= : - : )
0 0 0 0 ... AW 1
0 0 0 0 ... 0 AW

and Z(A\) = diag (A, A,...,A\,A). The matrix A = (A;)) has a Douglis—Nirenberg
structure: ord A < s; + tj, where ¢, = 2m(¢ —k+ 1) and s; = —2m(g — j). Note
that ¢; + s; = 2m is independent of j. This matrix boundary problem is elliptic with
parameter |A| if A € £, in the sense of the corresponding generalization of Definition
1.1. In the case of a usual elliptic system (with s and t; independent of k) the
structure of the resolvent R(\) = (R;x()\)) was investigated in (Seeley 1969). As
was pointed out in (Agranovich 1992), this analysis can be carried over to Douglis—
Nirenberg systems. In particular, we can find the structure of R14()), it again is
defined by the principal symbol of the system, and this again yields (4.54).

The linearization with respect to the parameter can be convenient in more com-
plicated situations, including matrix boundary problems that depend upon A polyno-
mially.

5 Trace Asymptotics of Powers of the Resolvent for
Weakly Smooth Problems

Our main goal in this section is to prove Theorem 5.1:
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Theorem 5.1. Let the boundary problem (1.1)—(1.2) be weakly smooth and elliptic
with parameter in Ly (see (4.11)). Let 2mq > n and q be even. Then formula (1.13)
holds with cq defined in (1.14).

As was indicated in the Introduction, we will obtain stronger results, the uniform
estimate and the pointwise asymptotics of the kernel uniform on compact subsets in
G (see (5.12) and (5.17)).

5.1. We begin with some preparations. Let T be a bounded operator in Lo(G). If
X and Y are normed linear submanifolds in Lo(G) and if the restriction of T' to X is
a continuous operator from X to Y, then we denote its norm by ||T||x—v-

Lemma 5.2. Let T be a bounded operator in La(G). Assume that its range is
contained in W;,(G), where l € N, p > 2, and Ilp > n. Then T s an integral operator
(4.3), where the kernel K (x,y) has the following properties: K(xq,y) € La(G) for any
fized xo € G; K(x,-) is a continuous function of x with values in La(G), and

1
2
([1K@nPay) < eIl 1715, 5.1)

where T = n/lp and the constant ¢ depends only upon I, n, p and G. In particular, T
is a Hilbert—Schmidt operator.

This lemma and its proof are the direct generalizations of those for p = 2 in
(Agmon 1965a). The boundedness T : Ly(G) — W)(G) follows from the continuity
of the embedding WIZ)(G) — L3(G) and the closed graph theorem. Since Ip > n, the
space Wé(G) is continuously embedded in C(G), and moreover, the Holder inequality
(2.3) holds for u = T'f, f € La(G). The mapping La(G) 3 f — (Tf)(x) is a bounded
linear functional; this yields the representation (4.3) with K(x,y) € Lo(G) for any
fixed x. Taking f, = f(y) = K(z,y) with a fixed z, we obtain (5.1) from (2.2).
Taking f = f.z = fo — fz and using (2.3), we justify the continuity of K(z,y) as a
function of z with values in Ly(G). O

Here for simplicity we restrict ourselves to bounded G and [ € N. Note that the
assumption that I' € C%! is sufficient for the validity of the Lemma.

Lemma 5.3. Let T = T\Ty, where the operators Ty and Ty in La(G) satisfy the
assumptions of Lemma 5.2. Then T is a trace class operator, and in its integral
representation (4.3) the kernel K (z,y) is continuous in G x G. In addition,

K (2,9)] < ElT1 Dy 1 T3l p, 120wy 17202, (5:2)

where T = n/lp and the constant é depends only upon I, n, p, and G.

Proof. The operator T belongs to the trace class as the product of two Hilbert—
Schmidt operators. Let K (z,y) and Ks(z,y) be the kernels of T} and T3, respectively.
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Then T is the integral operator with the kernel

K(z,y) = /G Ky (o, ) Koy, 2) dz (5.3)

Using the Schwartz inequality, it is easy to check that K(z,y) is continuous in x in
G uniformly with respect to y and continuous in y in G uniformly with respect to .
Thus K (z,y) is continuous in G x G. The estimate (5.2) is also obtained by means
of the Schwartz inequality and (5.1). O

Now we consider an operator T' in Lo (G) with the following property: for any p,
2 < p < o0, its restriction to L,(G) is a bounded operator from this space to Wll)(G)
with some fixed [ € N. Obviously T is a compact operator in Ls(G), and

s;(T) < Cj . (5.4)

Let £ € N be such that n
kl > —. 5.5
> 5 (5.5)
From (4.9) it follows that T* is a Hilbert-Schmidt operator. Let us check that T*
satisfies the assumptions of Lemma 5.2. For this we choose the numbers py, ..., pg

such that

1 1
2=p1 <...<pg, Tizn(— )<1 (t=1,...,k=1) (5.6)
I'\pi D1

and pr > n/l. It is easy to check that this is possible (noting that the sum of the

1

differences — — is equal to ~ — —). Now we consider T* as the product of
Pi Dit1 2 e

the operators T' = T; : Ly, (G) — W} (G) and the Sobolev embedding operators

Si: W;l;l (G) - Lp11+1 (G)

T S1 Ts So T
Ly(G) = Wy(G) =5 Ly, (G) =5 Wy, (G) =5 Ly (G) — ... == W, (G).

We see that T* is a bounded operator from Ly(G) to W)(G) with p = pi. Moreover,
using the estimate (2.5) and an easy induction with respect to k, we obtain

k—1

17wy, < ex Ty, s, TT (T, oy 1T, ) (527)
1=1
and
k—1
1Ty < 61Ty~ TT (ITIE, e ITIE0, ) (5)
i=1 ‘

where ¢, is a constant depending only upon [, n, p;, and G.
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Now we apply Lemma 5.2 to 7% and obtain the following result.

Proposition 5.4. Let T be a bounded operator in L2(G), and let its restriction to
Ly (G) with any p € [2,00) be a bounded operator from this space to W}(G) with some
fized 1 € N. Let k € N be such that condition (5.5) holds, and let py,...,px be chosen
so that conditions (5.6) and py > n/l hold. Then T* is a Hilbert-Schmidt operator,
and in its integral representation of the form (4.3) the kernel K(x,y) belongs to Lo(G)
for any fived x = x¢, K(x,-) is a continuous function on G with values in Lo(G),

and
1/2 k
([ ix@ara) < TI(1r
=1

where the constant ¢’ depends only upon I, n, p;, and G, and T, = n/lpg.

P ITIL) s (59)

Lpi_)WIl’i Lpi—>Lpi

Next we apply Lemma 5.3 to T2* = T*[(T*)*]* and obtain

Proposition 5.5. Assume that not only T but also T satisfies the assumptions of
Proposition 5.4. Then T?* is a trace class operator, and in ils integral representation
(4.3) the kernel K(x,y) is continuous on G X G and satisfies the estimate

P TG, T

k
T; x| 1—75
K@yl < [T (I I ) (5.10)
i=1

Lpi_)Wllli qui_’LPi

in the notation of Proposition 5.4, where the constant ¢’ depends only upon I, n, p;,
and G.

Remark 5.6. Note that the conclusions of Proposition 5.4 remain true also for oper-
ators of the form TV, where V is a bounded operator in Lo(G), and the conclusions
of Proposition 5.5 remain true for operators of the form [TFV]T¥ if the operators T}
and T3 satisfy the assumptions of Proposition 5.4.

This remark will be used in Section 8.

5.2. Now we can return to the consideration of R(A)?. We apply Proposition 5.5 to
T = R(X) with [ = 2m and k = ¢/2. Since [|[R(N)||z, -1, < Cp|A|™! and the same is
true for R(A)*, and since

n q
~S-m)=—-1,
Z( i) 4m 2

we obtain

Proposition 5.7. Let the assumptions of Theorem 5.1 be satisfied. Then

RO (x) = /G K(z,y, M) f(y) dy, (5.11)
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where for A € Lg with sufficiently large modulus the kernel K (x,y,\) is a function
continuous in G X G for any fized X, and uniformly

K (2,9, )] < C A3, (5.12)
where C' does not depend upon x, y and .

5.3. We are now going to use these results to obtain pointwise asymptotics for
K(z,z,\), see the relation (5.17) below. As was indicated in the Introduction, these
pointwise asymptotics, together with (5.12), lead directly to the proof of Theorem 5.1.
However, before proceeding with this endeavour, let us briefly indicate the problems
involved by comparing our work with that of Agmon (Agmon 1965a). In his work
Agmon considers at first the case where 2m > n, ¢ = 1, and Ly is just a ray; and
using methods different from ours, he is able to establish Proposition 5.7. In order to
determine the asymptotic behaviour of K(x,z,\) at a point z¢ € G, Agmon consid-
ers the resolvent S(A) of the operator induced in Ly(R™) by the constant coefficient
differential operator

Ao(0,D) = > aalwo)D?, (5.13)

|a|=2m

and shows that S()\) is an integral operator; denote its kernel by F(x,y,\). Then
employing the arguments he used in establishing Proposition 5.7, he proves that for
any €, 0 < e < dist{xg, '}, there is a neighbourhood U, of z( such that for A € Ly
with |A| sufficiently large and for {(z) € C*° with compact support lying in U, and
¢(z0) = 1, the operator ¢ (R(X)—S(\))( is an integral operator in Ly (G) whose kernel
¢(x) (K(x, Yy, A)—F(x,y, /\))Q(y) is continuous in G x G for any fixed A and is bounded
in modulus by Ce2w|\|2% !, where the constant C' does not depend upon z, y, A,
and ¢, and where we have also used ( to denote the operator of multiplication by (.
The desired asymptotic formula for K(zg,xo, A) follows immediately from this last
result.

Returning again to the problem under our consideration, we could try, like Agmon,
to determine the asymptotic behaviour of K (xg, zg, A) by a consideration of the kernel
of the operator ¢ (R()\)q -5 ()\)q)C . Unfortunately, since we are dealing with products
of operators, the arguments of Agmon cannot be used directly to obtain an estimate
for the modulus of this kernel. However we shall show that by introducing a sequence
of C§° functions {Cj(x)}g, where (o(z) = ¢(z) and (j41(2)¢(x) = (;(x), and by
considering products of operators involving terms of the form (;_1 R(X){j, ¢j—15(N)¢j,
¢j—1R*(N)¢j, and ¢j—15*(N)(j, the arguments we used in proving Proposition 5.7
apply in full force in allowing us to establish the required estimate. As in the problem
treated by Agmon, this estimate gives the desired asymptotic formula for K (zq, 29, A).

Let Ag(zg, D) be defined as above (see (5.13)), let 29 € F, where F is a compact
subset of G, and for 1 < p < oo let A, denote the realization of Ay(xg,D) as an
operator in L,(R™), with D(A,) = W2™(R"). Then it follows from Proposition 2.5
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that if A € Ly and |A| > a > 0, then X belongs to the resolvent set of A, and

1155 (M) fllzm,p e < pll fllo,prn (5.14)

for f € L,(R™), where
S,(\) = (A, =A™t (5.15)

and the constant ¢, does not depend upon zg, f, and A. We shall suppose from now
on that A € Ly with |A| > @ and henceforth write S(A) for S2(A); note for later use
that S,(A)f = S(\)f for f € L,(R™) N Ly(R™). Note also that S(A\)? is an integral
operator in Lo(R"™) with the kernel

@ 1 et@—y)-€
F'9(x,y,\) = @) / fao(@o.&) — A7 ¢, (5.16)

which is continuous in R™ x R™ for any fixed A and is bounded in modulus by the
expression on the right side of (5.12), where now the constant C' does not depend
upon x, y, g, and .

Let o(z), ¥(z), x(v), and {p,(z)}} be functions in C°°(R") such that for 0 <
J<k+2 0<gjx) <1, ¢j(r) =1 in a neighbourhood of z = 0, supp;
is contained in the ball |z| < 1, and ¢;(x)¢;t1(z) = ¢;(z) for j = 0,...,k+ 1,
where we have written ¢q(z) for ¢(x), vr11(z) for ¥(z), and ri2(z) for x(x). For
0 <6 < dist {zo,T'} let °(x) = o6~ (z—m0)), define ¢ (z), x°(x), and ©}(z), j =
1,...,k, analogously, and put R;s5(\) = @?_1R()\)<p‘;-, R}(;(X) = @?_1R*(X)<p§ for
j=1,...,k, where gog = ¢° and where we also use the gof- to denote the operators of

multiplication by the cp‘;. Now let us observe that if we write T for R()\) or R*()\), then

@} T = Lpg_lgo?T =@} TS — @3 [T, 5], where [T, 5] denotes the commutator

Tgp?— — @?T for 1 < j < k. Hence if we apply this observation to the expression

906R()\)Q<P6 _ (QD&R(A)k) (QﬁéR* (X)k)*

and pass through every term, except the last, in each of the products R(M\)F and
R*(M\)* twice by a <p§ with corresponding j, proceeding from left to right in a successive
manner, then it is not difficult to verify that

*

k k
Ps(\) = "RV’ — [ T] Ris) | [ T[T BEO)
j=1 j=1
is a finite sum of operators of the form

(TR0 ) (o0 1RO) 8108 RO (R )
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and
*

k r—1
—{ TT 2 | [ [ TT RO ) (e0-sl )ofmd ) B ()" |
j=1 j=1

where 1 < r < k, n = I or ¢, and H;;i = 1 if r = 1. Bearing in mind that
[R(A), 92] = R(\)[¢2, A(z,D)| R()\), let us note that (for brevity we omit showing
the Sobolev embedding operator Ski1—, of Subsection 5.1)

162 AR, 0

<IRONay sty N5 A@DIRON st
and that (see Subsection 2.1 and Theorem 2.1)
2m—1 )
D 1y -2l
1%, A DR sy, ot S 30 82PN < A5
=0

for |A| > max{§=2™, Ao}, where py11 = 0o and the constants ¢; do not depend upon
To, A, and 6. Hence since an analogous result also holds for ¢2_;[R*()\), ¢2]nd, we
can now argue as we did above in establishing Proposition 5.7 to show that for ||
sufficiently large (and in particular we require that [A| > §=2™), Ps()\) is an integral
operator in Lo(G) with a kernel which is continuous in G x G for any fixed A and
which is bounded in modulus by 06_1|)\\2LM_‘1_2%L, where the constant C' does not
depend upon x, y, A\, g, and 9.
Next let

*

k k
Qs(N) =" SN — [ [T SN | [ TT S|
j=1 j=1

where Sjs(\) = @?_15()\)4,0‘;, Sjé(X) = @?_15*@)@2, S*(A) denotes the resolvent of
the operator induced in Lo (R™) by the formal adjoint of Ag(zg, D), and here <p‘;_1
and gp?- are to be interpreted as rg o @?71 and ig o <p§-, respectively, where <p§71 is
used as a multiplication operator over R™ and ro denotes the natural restriction:
R™ — G, while go? is used as a multiplication operator over G and ig denotes the
natural extension: G — R” (i.e., the extension by 0 outside G). Then by appealing
to the results of Subsection 2.1 and to (5.14), we can argue with Qs(\) as we argued
with Ps()) to show that all the assertions made above concerning P5(\) are also valid
for @Qs(\). Furthermore, observe that

Ris(A) = Sjs(\) + 90?—1R(/\)¢5 (Ao(zo,D) — A(%D))XJS(A)SO?
+¢5 LR [1°, A(z, D) x° S(A\)¢),
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and that an analogous result holds for R ; (A). Now we can argue as we did with
Ps(\) above to show that for || bufﬁ(:lently large (and in particular, we require that
IA| > 672™), @Y R(\)%¢° — p°S(A\)9¢? is an integral operator in Lo(G) with a kernel
which is contlnuous in G x G for any fixed A\ and which is bounded in modulus by
C(®(0)+6 A~ Zm )|A|27 =%, where the constant C' does not depend upon z, y, A, g,
and ¢, and ®(§) — 0 as & — 0.

Finally, if we observe from (5.16) that F(9(zq,20,\) = cq(20)(—A)2= 7 (see
(1.14)), then as a consequence of the foregoing results we see that for || sufficiently
large, the estimate

[ (0,0, A) = g (20)(~A)F5 77| < € (@(8) + 51 A 75

holds, where the constant C' does not depend upon A, zg, and §. Hence, since zg was
an arbitrary point of F', we conclude from this last result that

K(z,2,0) = cq(z)(=A\)2n T+ 0 (|]A|2m79) as |A| — oo (5.17)

uniformly in A and x for A € £y and x belonging to any compact subset of G. It is a
simple matter to deduce from (5.12) and (5.17) that

/ K(z,2,\)dz = cq(=N\)2n 7+ o0 (|]A|2779) as [\ — o0
G

uniformly in Ly, and thus the proof of Theorem 5.1 is complete. (]

6 Rough and Precise Asymptotics of Eigenvalues

6.1. In this section we assume that we have a formula of the form (1.13) for tr R(A)?
with an even q such that 2mq > n in an angle L, or angles, of ellipticity with param-
eter. Because of this the conclusions will hold under the assumptions of Theorem 4.1
or Theorem 5.1.

Besides d (see formula (1.27)), we define the number

”n/ /§| ) lag(z,€)| 2w dSe . (6.1)

We also introduce the counting function

Na(t) = max{j : [A] < 1} (6.2)
for the moduli of the eigenvalues \;(Ap) and the counting function

Ny(t) = max{j : sj_l <t}. (6.3)

Here we assume for simplicity, and without loss of generality, that the operator Ag
is invertible, and define s; as the s-numbers of Agl.
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It is well known that if the boundary problem is elliptic, normal and smooth, then
Ns(t)=A -tz 40 (t27) as t — 0. (6.4)

This follows from the fact that if Ap is the operator corresponding to a smooth elliptic
normal boundary problem, then Ag(Ap)* corresponds to a smooth selfadjoint elliptic
normal boundary problem.

Proposition 6.1. Let the boundary problem be elliptic with parameter in some
angle L, and assume that it satisfies the minimal smoothness assumptions. Then the
formula (6.4) is true.

This statement is close to some results in (Beals 1967), see Theorems 5.2 (about
an inequality) and 5.3 (in the case 2m > n) in that paper. See also the paper (Beals
1970) devoted to selfadjoint boundary problems.

We give a complete proof of Proposition 6.1 at the end of the Appendix.

It follows (see (Agranovich and Markus 1989)) that

Jim N(1) t7zm < Ae (6.5)
and
lim Ny(t) 3w <A, (6.6)
t—o0
Moreover,
lim Ny(t)t"2m >0 (6.7)
t—o0

if d # 0, so that the following theorem is true:
Theorem 6.2. Letd #0. Then

Ny(t) <t?w  (t — 00). (6.8)

This means that the ratio Ny (t)/t"/?™ lies between positive constants for large .
The relations (6.8) and (1.28) are equivalent. Recall that d # 0 if

™m

| arg ao(z, &) < (6.9)

n

(see (Agranovich and Markus 1989)), and that the condition of ellipticity with pa-
rameter along all the rays outside the angle {\ : |arg A\| < mm/n} is sufficient for the
completeness of the generalized eigenfunctions (see Section 3).

Theorem 6.3. Let the boundary problem (1.1)—(1.2) be elliptic with parameter along
any ray except Ry. Then

Ny(t) =d-tzw Jro(t#) as t — oo, (6.10)
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1
d:Azi/ dx/ dé (6.11)
(27T)n G ao(z,£)<1

We sketch one of the possible proofs (it was used e.g. in (Agranovich 1987)). Set
Aj = Aj + i)}, where \; and A} are real. From our assumptions it follows that

where

(since ap(x, &) > 0).

"

A; — +oo  and )\—f—>0 (j — 00). (6.12)

Moreover, from (6.4) it follows that s; = O(j~2"™/"), and hence |\;|~ = O(j~2™/")
(see (Gohberg and Krein 1965, Chapter 11, §3)). Therefore

N, >0y (6.13)

with positive Cy for sufficiently large j. Let us prove that Ny (t) = max{j : \j <t}
has the asymptotics (6.10). For this, in turn, it suffices to check that

Z i) Z N;+u) =0 (pzn %)  (p— +o0) (6.14)
Jj=1

J=1

and then to combine (1.13) with the Hardy-Littlewood Tauberian theorem.?

In the left-hand side of (6.14) we may drop any finite number of terms. Let us fix
an € > 0; assume that we have (6.13) and [\][|/X} < e for j > ji(¢). Then for these j
and p >0

Iy +p)™ = (N + )7 < Do G alT T N
q1+q2=q+1
q1,92€N
< CQE |)\; + ,u|—q < CQE ‘Clj%n + ,Uz|_q

since |\ + p| 7! < [N 4 pl 7, Ii’)\if#\ < ¢, and we have (6.13). Now (6.14) follows
J

from this fact and the inequality

o0
m -4 n
S (Cr® +u) < Gy,

which is a consequence of an Abelian theorem. See the formulations of the Taube-
rian and Abelian theorems e.g. in (Agranovich and Markus 1989). Since under our
assumptions the moduli of the eigenvalues have the same asymptotics as their real
parts, the theorem is proved. (Il

8Note that c¢g = by, /o qd, where by g = tB(t,q —t) and B(t, s) is the Euler Beta function.
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6.2. To go further, we need to generalize the asymptotic formula (1.13) to real
q>n/2m.

Let T be a closed densely defined operator in a Hilbert space H. Assume that the
resolvent set of T' contains the angle £y (see (4.11)), where 0 < § < 7, and that

I+ [AD (T =X < Const (6.15)

in this angle. (In Agmon’s terminology, all the rays {\ : arg A = const} in Ly are
the rays of minimal growth for the norm of the resolvent Rr(A).) Let ®(u) be a
function holomorphic in the angle C\Ly (it contains the spectrum of T') and such
that |®(u)| < C|u|=° for large |u|, where 6 > 0. Then the operator ®(7') is defined
by the formula

®(T) = 5 [ BG0T =) do (6.16)

where & is the boundary of £y oriented from below to above (see e.g. (Pattisier 1977)
or the survey (Agranovich 1990) and references therein). In particular, if ¢ > 0 and
A is an interior point of Ly, then

(T N1 = = (=27 =) d (6.17)

T 2w

Here (1 — A\)~7 is defined as | — \|~%e~% 8= | arg 2| < 7, i.e. using a cut of the
complex plane along the ray

RY ={u=0+\oecR_}. (6.18)

Integrating by parts s times (s € N), we transform this formula into the following one

g 1 (—1)%s!
T=N" =55 1-¢q)...(s—q)

Now we replace G by the new contour &) consisting of both sides of our cut along

/6 (= NUT — ) V. (6.19)

R(j\), with the direction from —oo to A at the lower side:

0
(T— A1 = cs,q/ 0]=U(T = A— 0)=*1 do

= csyq/ YT — N +t) " tat, (6.20)
0

where
(—1)5~ sl sinm(s — q)

Cs,q =

or(l—gq).. (s —q)

Here we will need to assume that |s — ¢| < 1; if ¢ = s, then we have to replace t*~¢

in (6.20) and sinw(s — q)/7(s —¢q) in (6.21) by 1. Cf. (Krasnosel’skii et al. 1966,
Chapter IV).

(6.21)
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We apply formula (6.20) to T' = Ap assuming, without loss of generality, that this
operator has no eigenvalues in Ly:

R\ = cs,q/ tSTIR(N — )"t at . (6.22)
0
Theorem 6.4. The asymptotic formula (1.13) holds in Ly for all real ¢ > n/2m

with cq indicated in (1.14).

Proof. Assume that ¢ is greater than n/2m and that ¢ is not an even integer. Denote
by s the odd integer such that |s — ¢| < 1. Then clearly s + 1 > n/2m, and, by our
assumption,

tr R(p)* ™ = copr (=) 2D 4 p(u) (6.23)

where
plu)=o (|u|ﬁ_(s+1)> as u— oo in Lg. (6.24)

Using the linearity of the trace, we obtain from (6.22)
tr R(\)? = cs,q/ t579tr RO\ —t)* dt, (6.25)
0

this integral being absolutely convergent. Inserting (6.23) into (6.25), we see that

n

trR(\)? = cs,qcsﬂ/ 579t — N)zm D gy
0
+Const/ t*7p(t — N)dt. (6.26)
0

The first integral is a holomorphic function of X inside Ly. Let at first A be real (and
negative); setting ¢ = |\|7, we see that this integral is equal to

A [ el e ar,
0

Using the holomorphic continuation, we can replace |A\|zm= ~% by (—A)3= ~%. In the
second integral in (6.26), for any ¢ > 0 we have*

[p(t =N <e(t+ )=ty
for A € Ly with sufficiently large |A|. Using again the substitution ¢ = |A|7, we obtain

tr R(A)T = &g (—A\)F7 7 + o(wﬁﬂ) (A — oo in Lo),

4t — A > c(t+|A]) for t > 0 and X € Ly, where ¢ = const > 0.
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where -
éq = Coq cs+1/ 7577 4 1)z ~HD gr (6.27)
0

It can be proved that ¢, = ¢,. We omit the corresponding elementary calculations.
O

6.3. Now we assume that the boundary problem (1.1)—(1.2) is elliptic with parameter
in two closed angles £V and £® with only one common point, A = 0. Let A; and
Ay be two open angles forming the complement to £ U £®). Without loss of
generality we assume that A; contains R} and is symmetric with respect to Ry. All
the eigenvalues of Apg, except possibly a finite number of them, lie in A; and As.

The set of values of the principal symbol ag(x, &) (£ # 0) is also contained in Aq
and Ag, but in the scalar case, which we consider, it is connected; let us assume that
it is contained in A;. Denote by tr (¥) R(\)? the two parts of the trace of R(\)? that
correspond to the eigenvalues of Ap lying in Ag (k =1,2).

Theorem 6.5. Let n/2m < q <1+ n/2m. Then formula (1.13) remains true for
tr(l)R()\)q with the same cq. The estimate of the remainder is uniform in any closed
angle that has no common point with Ay except 0.

Proof. Without loss of generality we assume that all the eigenvalues of Ap lie in A
and Ay. Then

tr MR + tr DR = ¢y (—\) T~ 4 o(|A|ﬁ*q) : (6.28)

uniformly in £ U £®). Denote here the remainder by p(A). Denote by ¥ the
boundary of A; with the negative orientation with respect to A;. We replace A by p
in (6.28), divide all the terms by 27i(x — A) and integrate them along %:
1 tr (M q 1 tr (@ q
L R(ﬂ)dJri_/ r'R(p) d
2mi J o p—A 2ri J o o p—A

cg [ (=p)n 1 1 / p(1)
= Lo [ R gy — [ 2B g 2
27ri/5 PSR L el B (6.:29)

Take a point A to the left of T. In the first and the third terms we can replace ¥ by a
closed contour surrounding A and lying to the left of €. We see that these terms are
equal to tr M R(\)? and c,(—\) =% 9, respectively. In the second term we can replace
T by a closed contour lying in A;. We see that this term is equal to zero. Thus we
obtain

tr RO = ¢, (N0 4+ py (V)

N T (D)
PI(A)*Zﬂ_i/I’u_)\dﬂa

where
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and if C\A; = Ly and €’ > 6, we only have to verify that

() = oA 1) (6.30)
uniformly in arg A\, A € Ly.. Let € > 0 be fixed; find R > 0 such that
zm =9 for |u| > Ron ¥.

o) < elp
On the remaining part Tr of T we have
lp(p)] < C [p| 2=
with some constant C; in addition

=A< O (lul + A)

on the whole of . Thus
2C"e [ tzn 1 20C" [Ftzn—a
A)| < dt.
1V < 27 /R t+ Al 27 /0 t+ |A|
Using the substitution ¢ = |\|7, we easily obtain (6.30). O

Remark 6.6. In the matrix case the eigenvalues \;(x,&) of the principal symbol
agp(x,€) can lie in Ay and As. In this case we can obtain the formula

ﬁ,q) , (6.31)

tr MR = ) (=N 71 4 o(|)\

where

) = ! T (1 —a ¢ . .
‘ (27T)"/Gd/R Y. M@ +1)rde (6.32)

RYCIEE
Cf. (Agranovich and Markus 1989).

6.4. Let us indicate the spectral corollaries of Theorem 6.5. The assumptions are
exactly those as above, see the beginnings of Subsections 6.1 and 6.3. Denote by

N il)(t) the counting function for the moduli of the eigenvalues of Ag lying in A;.

Theorem 6.7. Let d #0. Then Nil)(t) = 7.

Theorem 6.8. Assume that ag(x,&) > 0 and Ay = Ry is an isolated ray without
ellipticity with parameter. Then

N/gl)(t) =d-t +o(tT) as t — oco. (6.33)

Cf. Theorem 3.4. In the matrix case Theorems 6.7 and 6.8 remain valid with
d) instead of d, where c,gl) = 3,dV. Cf. (Agranovich and Markus 1989). Note
that if n/2m ¢ N, then we can use ¢ € N, and in this case we can directly apply the
Tauberian and Abelian theorems indicated in that paper. If n/2m € N, we have to
use ¢ € N; in this case we apply the analogues of those theorems for noninteger ¢;
they are well known or can be checked without difficulties.
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7 Boundary Problems with Transmission Conditions

7.1. Here we will use the notation introduced in Section 1.7. Let I';, be the common
part of the boundaries of the subdomains GG; and G;». We consider the transmission
conditions on I'y of the form

Big; (z, D)u (z) + By (z, D)u)(z) = hj(x) (j=1,....2m)onTy.  (7.1)

Here Bjij(z,D) and Byyj(z, D) are boundary operators of orders my; < 2m. By
u® () and u)(x) we denote the solution in G; and Gy. The boundary problem
consists of the equation (1.1) in each G;, boundary conditions (1.2) on the outer
boundary T, and the transmission conditions (7.1) on each T'y. Actually this is a
problem with N + 1 unknowns u(®), each of which is defined in its own domain Gj.
As we mentioned in Section 1.7, in the minimal smoothness assumptions the top
order coefficients of A(x, D) are continuous in each G; up to the boundary; in general
they undergo a jump when we cross any I'y. As to I'y, and By, in the minimal
smoothness assumptions I';, € C?™~ L1 and the coefficients in Bij(z, D) belong to
CQm_mk‘j_Ll(Fk).

In the definition of the ellipticity with parameter we have to add a condition at
any point xg € I'y, for each k. Let the operators A, Byy;, and Byy; be written in a
coordinate system associated with the point zy € 'y on the boundary of, say, Gy .
Denote by ajq(xo, &) and apo(xo, ) the limit values of the principal symbol of A(z, D)
at o from G; and Gy, respectively, and by byjo(z0,&) and bygjo(xo, &) the principal
symbols of By; and Byy; at 9. Now we formulate the additional condition at zg.

(3) The problem on the line

[aio(z0,&",Dn) = N vW(#) =0 (t =20 <0),
[avo(z0,&, D) — N o) =0 (t =z, >0),
bikjo(zo, &', D)oV (0) + bl/kjo(aro,f’,Dn)v(l/)(O) =0 (j=1,...,2m),
v () -0 (t— —o00), vE)(t) =0 (t— +00)

(7.2)

has only the trivial solution if 0 # (¢/,A) € R*~! x L.

The analogue of the Basic Theorem is obtained under the minimal smoothness
conditions using the same tools. We only indicate the a priori estimate for the case
g; =0 and h; = 0:

N
S 1@ empci < Cllflopc- (7.3)
1=1
In the conditions of weak smoothness we assume the existence of the formally
adjoint problem. We do not consider the question when the adjoint problem exists.
In the case of transmission conditions (1.29) we can check Condition (3) (and the
absolute ellipticity of these transmission conditions) using the following remark. Let



43

vj(t) (j =1,...,m) be linearly independent solutions of an equation a;(Dy)v(t) =0
with constant coefficients, and let v;(t) — 0 (t — —o0). Further, let w;(t) (j =
1,...,m) be linearly independent solutions of another equation as(D,,)w(t) = 0 with
constant coefficients, and let w;(t) — 0 (t — +00). Then {vi(t), ..., vm(t), wi(t),...,
wm(t)} is a fundamental system of solutions of an equation as(D,)v(t) = 0 with
constant coefficients (namely, a3 = ajas). Because of this their Wronskian is nonzero.

The results of Sections 2-6 remain true almost without alterations in the state-
ments and the proofs.

8 Boundary Problems with Indefinite Weight

8.1. Recalling again the assumptions, definitions, and notation introduced in Sub-
sections 1.7 and 1.8, we shall be concerned in this section with the spectral properties
of the boundary problem (1.30), (1.2). We shall call the boundary problem (1.30),
(1.2) minimally or weakly smooth according to whether (1.1)—(1.2) is minimally or
weakly smooth. In both cases, w(x) is assumed to be continuous in each Gy up to
the boundary. Furthermore, it will always be supposed here that the I';, are of class
C?m=L1 5 and, unless otherwise stated, that the problem (1.30), (1.2) is minimally
smooth. Note that in the case of weak smoothness we require I' to be more smooth
than T'y. The analogue of Definition 1.1 for the problem (1.30), (1.2) is as follows.

Definition 8.1. Let £ be a closed angle in the complex plane with vertex at the
origin. The boundary problem (1.30), (1.2) is called elliptic with parameter in L if
the following two conditions are satisfied:

(1) For k = 0,...,N, ag(z,&) — dw(z) # 0 for (z,€) € G x R"® and X\ € L if
|€] + || # 0, where w(z) is defined by continuity on dGj,.

(2) Let x¢ be a point of T and let w(xg) be defined by continuity. Assume that the
boundary problem (1.30), (1.2) is rewritten in a coordinate system associated with
2g. Then for ¢’ € R*~! and X € £ the boundary problem on the half-line

ag(zo, &, Dp)v(t) — Aw(zo)v(t) =0 (t =z, >0),
bjO(anglaDn)v(t) =0 (] = 17""m) at tZOa (81)
v(t) =0 (t— o0)

has only the trivial solution if |£'| + |A] # 0.

Then as a consequence of the results mentioned in Section 7 for the transmission
conditions (1.29) we have

Theorem 8.2.  Suppose that the boundary problem (1.30), (1.2) is elliptic with
parameter in an angle L. Let 1 < p < oo. Then there exists a \g = Ao(p) > 0 such
that for A € L with |\| > Ao the boundary problem has a unique solution u € ng(G)
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1
m—m;

for any f € L,(G) and g; € W; P(T'), and the a priori estimate (2.10) holds,
where the constant C' does not depend upon f, g;, and A.

8.2. In this subsection we shall always suppose that the hypotheses of Theorem 8.2
are satisfied. Let V), denote the operator of multiplication by w in L,(G). Then
recalling the definition of the operator Ap ), introduced in Section 3 it follows from
Theorem 8.2 that the set of regular values of the pencil S,(\) = Ag, — AV, is not
empty. Here, as usually, A is called a regular value of S,(X) if S,(A) is invertible. We
refer to (Markus 1986) for the relevant terminology concerning pencils. Furthermore,
it is easy to show that the set of all regular values of S,()) is precisely the resolvent
set of Vp’lA B,p, and we conclude from the Rellich-Kondrashov theorem that the spec-
trum of S, (\) consists of isolated eigenvalues only. Direct calculations also show that
at an eigenvalue of S,(A) (and hence of V' Ap ), the corresponding eigenvectors are
precisely the eigenfunctions of Vp_lA B,p and the eigenvectors and associated vectors
of S,(\) are precisely the generalized eigenfunctions of Vp’lA B,p- Thus we conclude
that the eigenvalues of S,(A) are all of finite multiplicity.

Because S,(\) and Vp_lABJ, are spectrally equivalent in the sense just described,
we will henceforth fix our attention upon Vp_lA B,p- We observe from Theorem 8.2
that if A € £ and |A| > Ao, then

IV Ay = AD) 7 f l2mp.c < Collfllog.c (8.2)

for f € L,(G), where the constant C,, does not depend upon f and A. As in Section
3, the eigenvalues and generalized eigenfunctions of Vp_lA B,p do not depend upon p,
and because of this we shall mainly be concerned with the operator V~!Ap acting in
Ly(G), where we have written V for V, and Ap for Ap 2. As in Section 3, we have
the following four theorems.

Theorem 8.3. Assume that the boundary problem (1.30), (1.2) is elliptic with pa-
rameter along some rays L£U) (j = 1,...,N) and that the angles between any two
adjacent rays are not greater than 2mm/n. Then V~1Ap has an infinite number of

eigenvalues and the set of all generalized eigenfunctions of V" 1Ap is complete in
Ly (G).

We note that under the hypotheses of Theorem 8.3, the set of all generalized
eigenfunctions of V"' Ap is also complete in Ly (G; |w(x)|dz). This follows from the
fact that L(G) and Ly (G; |w(x)|dz) coincide algebraically and have equivalent norms.

Assuming that the spectrum of V! Ap is not empty, let {\;};>1 be the set of all
eigenvalues of V1 Ap arranged so that

IA] < Ao <.

and each eigenvalue is repeated according to its multiplicity. Let {u;};>1 be the sys-
tem of generalized eigenfunctions of V~'Ap composed of bases in each generalized
eigenspace in such a way that u; belongs to the generalized eigenspace corresponding
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to the eigenvalue A;. Then under the assumptions of Theorem 8.3 the u;’s form an in-
finite complete minimal system and there exists a system {w, }7° which is biorthogonal
to {u;}5°.
Theorem 8.4. Let f € Lo(G). Then under the assumptions of Theorem 8.3 the
series in (3.3) admits the summability to f in both Ly(G) and Ly (G; |w(z)|dz) by
the Abel-Lidskii method of order 2i + ¢ if € > 0 is sufficiently small.

m

Theorem 8.5. Let the boundary problem (1.30), (1.2) be elliptic with parameter
along the rays L£(01) and L(02), where 0 < 03 — 01 < min{2mmn/n,27}, and not
elliptic with parameter along some ray L(0y), 61 < 0y < 0. Then the angle {\: 0; <
arg A\ < 6y} contains infinitely many eigenvalues of V~"1Ap.

Theorem 8.6. Let the boundary problem (1.30), (1.2) be elliptic with parameter
along all the rays L(0) with 6y —e < 0 < by and 6y < 0 < Oy + ¢ for some e > 0, and
not elliptic with parameter along L(0y). Then any angular neighbourhood of L(6y)
contains infinitely many eigenvalues of V" 1Ap.

8.3. Here we indicate the analogues of Theorems 4.1 and 5.1 for the boundary prob-
lem (1.30), (1.2). Accordingly, suppose that the problem (1.30), (1.2) is elliptic with
parameter in an angle £. Then we know from above that the resolvent set of V1 Ap
is not empty. We henceforth let R, ()\) denote the resolvent of V~1Ap.

Theorem 8.7. Assume that Condition (1) of Definition 8.1 holds for the angle Ly
(see (4.11)) and that the minimal smoothness assumptions are satisfied for G and
A(x,D). Let 2mq > n and let q be even. Then for the Dirichlet problem (1.30), (1.15)
we have

tr Ry(A\)? = cgu(=A) 27 7+ 0 (JA|2777) as [N — o0, A€ Ly, (8.3)

uniformly in X, where

= C, T X an C, ) = 1 dg
*/G wolw)deand () (W/ @ weg e Y

Recall that the definition of (=) was indicated in Subsection 1.4. Theorem 8.7
follows from the corresponding variant of Theorem 4.1 for transmission problems.

Theorem 8.8. Let the boundary problem (1.30), (1.2) be weakly smooth and elliptic
with parameter in Lg. Let 2mq > n and let q be even. Then the formula (8.3) is true,
uniformly in A, where cq,, is indicated in (8.4).

Proof. Tt is clear that for A € Ly with |\| sufficiently large, R, (\)? is a trace class
operator in Ly(G). Let us set R1(A) = Ry,(A)*V 1 and Ry(A) = (V1 (Ap)* — A) _k,
where k = ¢q/2. Then, using the formulas (V"1Ap — AXI)™! = (Ap — AV)71V and
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(V=X (Ap)* — XI)_l = ((Ap)* — Xv)‘lv, we see that R, (A)? admits the decom-

position R, (A\)? = R;(A\)Ra(\)*V. Now we argue as we did in Subsection 5.2 but
use Remark 5.6. We see that R;()) is an integral operator in Lo(G) (it is in fact
a Hilbert—Schmidt operator) with a kernel K (z,y, A\) having the same properties as

those asserted for K(z,y) in the statements preceding (5.1) and satisfying

, 1/2
(/ | K1(z,y, )| dy) <c|A
e

for ¥ € G and A\ € Ly with |\| > Ao, where the constant ¢ does not depend upon
x and \. Since analogous results also hold for the operator Ry()), we can now
appeal to Remark 5.6 and argue as we did in Subsection 5.2 to show that for A €
Ly with || sufficiently large, R, (A\)9 is an integral operator with kernel K, (x,y, \)

= K(z,y, \)w(y), where K (z,y, \) is continuous in G x G and

n o _
am

|K (2, y,A)| < C|A[zw 715 (8.5)

here the constant C' does not depend upon x, y, and A.

Next for 0 < j < N, let zp € F, where F' is a compact subset of G, and
let 0 < ¢ < dist {xg,0G;}. Then it follows from an obvious modification of the
arguments of Subsection 5.3 that for A € £y with |A| sufficiently large, K, (zo,x0, \)
—Cqu(@0)(—A)#% % is bounded in modulus by C(®(8) + §~*[A|~z% )|\|#= ~9, where
the constant C' does not depend upon A, z, 4, and j, and ®(6) — 0 as 6 — 0. Hence

Ko(z,2,)) = cqu()(=A) 27 9 + 0 (J]A[27 ) as [\ — oo (8.6)

uniformly in A and x for A € L4 and z belonging to any compact subset of G;. It is
a simple matter to deduce from (8.5) and (8.6) that

/ Koo(z,2,\)dz = cgoo(—=A) 27 940 (|A[2777) as [A] — oo
G

uniformly in Ly, and thus the proof of the theorem is complete. O
Note that
Cqw = b qdu, (8.7)
where

1 _n
dy = —— / do / (@) ao(z, €)% dSe (8.8)
(2m)"n Jq lel=1 [ ] :
bt,q is defined in the footnote in Section 6, and the power is defined by using a cut
along R_.

8.4. In this subsection we are going to derive rough and precise asymptotics for the
eigenvalues of V~1Ap. Accordingly, we shall henceforth suppose that the boundary
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problem (1.30), (1.2) is elliptic with parameter in an angle or angles, and that we
have there a formula of the form (8.3). Note that the results established below hold
under the assumptions similar to those in Theorem 8.7 or Theorem 8.8. Furthermore,
in deriving our estimates, we shall suppose from now on that 0 is in the resolvent set
of V-1Ap (clearly this involves no loss of generality).

Let Ny (t) and N4(t) be defined as in (6.2) and (6.3), respectively, where now A;
are the eigenvalues of V1 Ap and s; are the s—numbers of (V_lAB)_l. Let

1 . _a
B = W/G du /m_1 |w(z) ™ ao(z, )] > dSg . (8.9)

Then we have the analogue of (6.4), namely
Ny(t) = Atz 40 (t#) as t — o00. (8.10)

The proof is similar to that of Proposition 6.1, see Subsection A.7.

Hence it follows from (8.10) and (Agranovich and Markus 1989) that (6.5) and
(6.6) hold with A replaced by A,. Furthermore, (6.7) holds if d,, # 0. Thus we
obtain

Theorem 8.9. Ifd, #0, then Ny(t) < t2m.
By arguing precisely as in the proof of Theorem 6.4, we can also show that

Theorem 8.10. The asymptotic formula (8.3) holds for all real g > n/2m with cq,
indicated in (8.4).

Suppose next that the boundary problem (1.30), (1.2) is elliptic with parameter
in two closed angles £(1) and £(®) which intersect only at the origin. Let A; and A,
denote the two open angles complementary to LM UL®) | and let us suppose that R is
the bisectrix of A;. Let G(*) denote the union of the G}, for which w(x) tag(z, &) € Ay
for x € G, and ¢ € R™\{0}, and let tr (Y R, ()7 denote the part of the trace of R, (\)?
that corresponds to the eigenvalues of V=t Ap lying in A;. Finally, let

(1 _ 1 . o
dg, @) /G(l) da:/§=1 [w(@) " ao(x, )] > dSe (8.11)

where the power is defined by using a cut along R_. Following arguments similar to
those used in the proof of Theorem 6.5, we obtain

Theorem 8.11. Letn/2m < q<1+mn/2m. Then
tr MR, () = bﬁwng)(—)\)ﬁ*q +o(JA|Z"79) as [N — o0, (8.12)
uniformly in any closed angle that has no common points with A, except 0.

Let us indicate a corollary of Theorem 8.11. Accordingly, let N il)(t) = max
{7 NIt A € M)
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Theorem 8.12. If av #0, then N)(\l)(t) = t7m.

Proof. The proof follows from the same kind of arguments that were used in estab-
lishing Theorem 8.9, but now we make use of (8.12) instead of (8.3). O

Assuming that w(z) changes its sign in G, we are now going to use Theorem 8.11
to obtain an analogue of Theorem 6.8. Accordingly, suppose that ag(z,£) > 0 for
r € G and £ € R"\{0} and that the boundary problem (1.30), (1.2) is elliptic with
parameter along every ray emanating from the origin with the exception of the rays
R.. Then it follows from Theorem 8.6 that for any e satisfying 0 < e < 7/2, there
are infinitely many eigenvalues of V~1Ap lying in each of the angles | arg \| < ¢ and
|m —arg A| < e, while there are at most a finite number of eigenvalues lying in each of
the angles e < arg A < m—e and —7+¢ < arg A < —e. Let N;'(t) =max{j: |\ <t,
Re\; > 0}, Ny (1) = max{j : |\;| <t, Re\; <0}, so that Ny(t) = N () + N, (¢).
Lastly, let w™(z) = max{w(z),0}, w™ (z) = max{—w(z),0}.

Theorem 8.13. Let ag(z,&) > 0 for z € G and £ € R"\{0}. Let the boundary
problem (1.30), (1.2) be elliptic with parameter along every ray emanating from the
origin with the exception of the rays R.. Then

NiE@t) = wEton +o (tz=) as t— o0, (8.13)
NA(t) = kKt¥ +o(t?) as t— oo, (8.14)
where )
+ 4y
KT = (w*)2m das/ d¢ (8.15)
(27T)n /G ag(z,£)<1
and

]. n
k=A, = / |w]|2m dx/ dg . (8.16)
@m)" Jo ao(2,€)<1

Proof. It follows from Theorem 8.11 that

1 ke3 n
Y G = b o (1) s oo,
Re A; >0

and hence by arguing as in the proof of Theorem 6.3 we obtain

S [ b o s e
Re)\jzo J

The assertion for Ny () now follows from the Hardy-Littlewood Tauberian theorem.
The assertion for N, (t) can be obtained in the same way if we replace w in (1.30) by
—w. The assertion for N (¢) then follows from these results. O
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9 Some Generalizations

9.1. In this section we again consider the boundary problem (1.1)—(1.2), where we
now make the following smoothness assumptions: 1) ' is of class C?™~ 11 2) the
coefficients a,(x) are measurable and bounded and the top order coefficients a, ()
for || = 2m are continuous in G; 3) the coefficients b;3(z) belong to the Holder space
C?m=m;=LY(T') with a fixed 7, 0 <~ < 1. Thus we have minimal smoothness for I'
and A(x,D) and a weaker smoothness for B;(z, D).

From the proof of the Basic Theorem (Theorem 2.1) it can be seen that under
these smoothness assumptions the Basic Theorem holds for any fized p with 1 < p <
(1 —~)~!. For this we only note that the continuity of Bj(x, D) as an operator from

2m—m;—1

W2™(G) to Wy ?(T) follows from the remarks at the end of Subsection A.1 of
the Appendix.

Now assume that these smoothness assumptions are fulfilled with v > 1/2. Then
the generalized eigenfunctions of the operator Ap , belong to the intersection of all
spaces ng(G) with 1 < p < (1 —+)~! and the spectrum of Ap, does not depend
upon p for these values of p. Moreover, the results of Section 3 can be extended,
where now in Theorem 3.1 the generalized eigenfunctions are complete in L,(G) for
1 <p<(1—+9)"t We can also extend Theorem 4.1 and its consequences stated in
Section 6, the proofs remaining literally the same. The smoothness assumptions in
Section 7 and Section 8 can also be somewhat weakened.

9.2. An essential property of the coefficients of B;(x,D) is that they must be mul-

2m—m.— L
tipliers in the space me " ?(I"). Here a function is called a multiplier if the

operator of multiplication by it is a continuous operator in the corresponding Sobolev
space. The space of all multipliers in a given Sobolev space is described in (Maz’ya
and Shaposhnikova 1986). With the tools and results from this book, our minimal
smoothness assumptions can be somewhat further weakened. In the present paper we
preferred to avoid the corresponding complicated notions and used simpler conditions.

Appendix

In this Appendix we prove Theorem V (see Subsection 2.1), the results stated in
Subsection 2.3 and Proposition 6.1. In the following, ¢, ca,... denote constants not
depending upon parameters and functions entering in the corresponding inequalities.

A.1. We begin with the proof of Theorem V. Let b € Cs_l’l(l“) with 1 < s < 2m.
As T is of class C?™~ 11 there exists an open covering I' C U;vzl U; of I and local

coordinates ‘ }
N U; »U;jc{yeR |yl <1 (i=1,...,n)}

of class C?"~LN(U;) with n)(U; NT) = U; NR™ 1, cf. (Grisvard 1985, Section
1.2.1). Using a C'* partition of unity subordinated to this covering, we see that it
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is sufficient to consider functions on R"~! with support contained in {y’ € R"~! :
lyil <1 (i=1,...,n—1)}. Note that in local coordinates b € C*~11(R"~1); assume
that the derivatives of b of order s — 1 are Lipschitz continous with Lipschitz constant
L.

_1
We fix a 6 > 0 and use the equivalence of the norm in W, ”(R™"!) to the norm

n—1

§ 1
1 _ o
||1,||if>l,2mR%1 = [|v]loprr-1 + E [/ t p/R 1 A D3 ()P dy' dt| 7, (A1)
p j*l 0 n—

where
At,jv(y/) = U(yla ey Yy + ta ce 7yn—1> - v(y’)

(see (Triebel 1978, Theorem 2.5.1)). We have to estimate ||bv||(v1)1 n1e Set
‘S_E’p’R
S = sup{|D¥b(z’)| : |o/| < s — 1,2’ € R*'}. (A.2)
Then obviously
1bvlo.p,rn-1 < S [[v]l0,p,mn-1 - (A-3)

To estimate the sum in (A.1), we use the Leibniz rule and see that each term of this
sum can be estimated by a linear combination of terms of the form

4 1
[/ P / |D§b(y1,...,yj+t,...,yn,l)At,jpjflfkv(y’)wdy’dt}p (A.4)
0
R"’_l

and

5 1
[ / - / A DEB) - D3 o(y|P dy ] (A5)
0
Rn—1

where k is an integer between 0 and s — 1. The expression in (A.4) is not greater than
s 1
S| [er [ 1aups e dy al] T <1l P, e (10
o D,
Rn—1

For 0 < k < s — 1 we apply the Lagrange formula to the real and imaginary part of
D%b and obtain the inequality

A DYy <2t S, (A7)
and hence the expression in (A.5) is not greater than

e1 SVt pma—r - (A.8)
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For k = s — 1 we use the fact that D;f*lb is Lipschitz continuous. We have the
inequality |At7jD;_1b(y’)| < Lt, and therefore the expression in (A.5) is not greater
than a constant times L||v|g p rn-1. This completes the proof. O

We remark that from the proof above it is easily seen that the norm of this
multiplication operator tends to zero if S — 0, where S is defined as in (A.2) using
local coordinates. Indeed, for 0 < p < 1/p we get from the Lipschitz continuity the
inequality

A D570y < (L)' (25)", (A.9)

and therefore for k£ = s — 1 the expression in (A.5) is not greater than

§ 1
(28)1 L1 —H ( /O ¢hp dt) T r— (A.10)

It follows that the norm of the operator of multiplication by b is not greater than
c2(S + L1718k with cg = ca(p).
These considerations also show that the assumptions on the function b can be

weakened: it is sufficient for b to belong to the Holder class C*~17(T') with v > 1— %
Indeed, in this case we have the inequality |At7ﬂ)js-71b(y’ )] < Lt" for some constant
L. Therefore, (A.9) holds with the right-hand side replaced by (Lt)'~#(25)*, and
the corresponding integral in (A.10) converges for u < 1 —* (1 — ;) Cf. also
(Grisvard 1985, Theorem 1.4.1.1).

A.2. In the following we will use the notations p and yu defined at the beginning of
Subsection 2.3.

Proof of Proposition 2.2. First we want to remark that parts a) and b) of this
proposition hold even in the case when T is of class C%!. Part a) is an immediate
consequence of (Grisvard 1985, Theorem 1.5.1.10), part b) is formulated in (Grisvard

s_ 1
1985, Theorem 1.4.3.3). To prove c¢), we first note that yu € W, 7(T") and
Il s pr < calullpc (A1)

see for instance (Grisvard 1985, Theorem 1.5.1.2). From a) we see that

s— 1 S— s
o ullor < C1 (0 il pe + 0 lulloc ) (A.12)
and from part b) with k£ = 1 the desired result follows. ]

A.3. Let us formulate a variant of Michlin’s multiplier theorem, cf. (Triebel 1978,
Section 2.2.4).
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Let p > 1 and let w(§) be a function on R™\{0} for which the derivatives of order

not greater than 5} + 1 exist (where 5 denotes the largest integer not greater

than %) Assume that the estimate
€1 [Dw(e)] < es < 00 (A.13)

holds for all £ € R™\{0} and for all 8 with |g]| < [g] + 1, where the constant ¢4 does

not depend upon £ and . Then the function w is a Fourier multiplier in L,(R"), i.e.
the operator u — F~'wFu is a continuous operator in L,(R™). Moreover, the norm
of this operator is not greater than ¢(p)cs with a constant ¢(p) depending only on n
and p.
We will use this theorem replacing n by n — 1.

Proof of Proposition 2.3. a) First we derive some estimates for the operator cor-
responding to the Fourier multiplier Q(¢', z,,p). Setting r = [&| and Q(&', z,, p)
= Q(r,x,, p), we see that for all multi-indices 3/ = (f1,...,8n_1) the expression

|&7|18°1 D?:Q(g’, Zn, p) is a finite sum of terms of the form
k.

w(&)r* (%) Q(r, 2n,p) | (A.14)

where 0 < k < || and wy(¢') is a bounded function in R*~1\{0}. As

ko

a (%) Oy, p)| = (ren)* exp(—(r + p)n) < Mexp(—pan). (A.15)
we see that the condition of the multiplier theorem is fulfilled with the constant
¢q in (A.13) replaced by a constant times exp(—pzy). Due to this theorem, for

uw = F'"'QF'v the inequality

(-, 20) |0 prn—1 < c5 exp(—pxy) ||[v]l0,prn-1 (A.16)

holds with ¢5 independent (also) of x,.
Similarly, the function

€171 D (1€19¢' 20, )

is a finite sum of terms of the form (A.14) with 7% replaced by 7**1. Therefore, we
obtain the inequality

< cq exp(—pan) [vllopzn— (A7)

0,p,R?»—1 Tn

| (i1 20 )P0 ()

with ¢g independent (also) of x,.
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b) Using the integration with respect to x,, we obtain from (A.16) that

1
P llullopry < e7p” 7 [[vlloprn-r- (A.18)

Now fix o' = (a1,...,a,-1) and | > 0 with |o/| +1 < s. We want to estimate
F e DLQF v||g ,re and write
n PRy

&Y€ + p)!

Dl = (<1
: =1 §']* + p?

n (€172 + p*Q2) . (A.19)
For p > pg > 0 the quotient on the right-hand side of (A.19) is a Fourier multiplier
whose norm can be estimated by a constant not depending upon z,, and p. As the
term p®() was already considered above, it remains to estimate

HF’*1|5/\SQF“U (A.20)

’0,1},]1{1

For this we fix an extension w € W (R}) of v. From the explicit construction of such
an extension in (Adams 1975, p. 201) we see that we may assume

[wlls pry < cgllvlls—zpre-s and [w(,zn)lloprer < csllvfoprn-r  (A21)

with a constant ¢g independent of v and x,,. Following (Volevich 1965), we write

Frerare = - (U 4 7 ) (F0) (€ 7)) dr = o —
0 T
(A.22)
with
@) = [PPSR a4 ) (F0)E ) dr
0
w(z) = / FNE QU n + 7 p) (F' D) (€, 7) dr
0
c) To estimate |[u1([o,p,r , we write [§'[*Dp (¢, z, + 7, p) in the form
‘glls_l(‘gl +l0) / / 112\ 2
- €Uz + T 1+ 2 +p%. A.23
e €1zt ) [0 +1ER) 4 (A.23)

Again the norm of the quotient in (A.23) as a Fourier multiplier can be estimated by
a constant independent of x,, and p. If we set

a@’,r) = F' 7 [+ |E)E + 07| (Fu)(€,7), (A.24)



54

we can apply (A.17) with v replaced by a(-, z,,) and get

1

o =
P
(] Tl s )

Cg(/ooo [/O‘X’ M”a("T)HO,p,Rn—l dT}pdwn)% . (A.25)

Ty + T

l[ullo,p,rn

IN

The inner integral in (A.25) is the Hilbert transform ®(z,) of the function

exp(—p7)|la(-, T n—1, 720,

As the Hilbert transform is continuous in L, (R) (see, e.g., (Titchmarsh 1948, Chapter
V)), we get

[ulloprr < col|@llopr < crol|®llopm- (A.27)

It remains to estimate

o0

®llopr = (/[GXP(pT)”a('vT)”O,p,Rn1}pd'r);

0

S =

IN

([ [exooml s €5 P, e o)
0

=

(oo}
P
+ (/ [exp(=p) p* (e, )l pes ] )" (A.28)
0
Using the inequality exp(—p7) < 1 and the first inequality in (A.21), the first integral
on the right-hand side of (A.28) can be estimated by
[wlls prr < csllvlls—1 prn-1 - (A.29)
Noting that
0 1
/ pexp(—ppT)dr = —
0 p

and using the second inequality in (A.21), we see that the last integral in (A.28) is
not greater than

s 1
11”77 [|v]o,p,rn1 - (A.30)
From (A.27)—(A.30) we obtain that

lualloprr < crzflolls—1 ppn-2- (A.31)
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d) To estimate |[uz([o,p,r , we write [§'[*Q(§’, zn + 7, p) in the form

‘f/ls_l / / 12y S5t
WK\ Q20+ 7,p) [(1+|§| )7 (A.32)
and use the same steps as in ¢). Setting

s—

bz, 1) = F '+ €)= F'Dw(E, 1), (A.33)

we see that

IN

C13</0 [/o xn+T||b(-,T>||07p,]Rnfl dT:| dgcn>

> Cis4 ||’U||s—%,p,R"*1 . (A34)

[uzllo,pry

A

e) From (A.18), (A.31) and (A.34) we see that [Jullspr» is not greater than a
constant times Jvfl;_1 , gn-1, which finishes the proof of Proposition 2.3. O

A.4. Proof of Proposition 2.4. We obviously have

| A(z, D)ul

opc+ Y IBj(, D)ttllam—rm;—1 pr < C1sllullam.p.c (A.35)

j=1
and

s — L s — L
P ||By(z, D)ullopr < 160 TE Y 1D u)rllopr

1B<m;
< as Y IO WIrllzm—m, -1 pr- (A.36)
1B1<m;
From Proposition 2.2 c¢) and 2.2 b) we see that
IP W) e lam -, 1 pr < €17 1D ull2m—m, p.c < c1s lullmpc (A.37)
which proves the inequality (2.15). O

A.5. Proof of Proposition 2.5. Let a(§) be the symbol of A(D), and fix an a with
|a] < 2m. Tt is easily checked that the estimate

IDZE(@(€) = N) | < eag (J€] + )11 < g pm2mtlel g 71 (A.38)

holds, where c19 is independent of . If w is a solution of (A(D) — Mu = f, we
have Fu = (a(§) — N\)"'Ff. From (A.38) and the multiplier theorem, we obtain for
la| < 2m

1D ullo,pin < c20 p~ 2™ 1| fllop,em (A.39)



56

Therefore, the a priori estimate (2.16) holds, which also shows the uniqueness of the
solution. On the other hand, from (A.39) we see that u = F~1(a(¢) — A\)"LFf is an
element of W2™(R") and a solution. O

A.6. Proof of Proposition 2.6. a) First we prove the a priori estimate for the case f =
0. Let u € W2™(R") be a solution of (2.17) with f = 0. Thenu = F’fl(zgn:l Q;F'g;),
where {Q1,...,Q,,} is the canonical basis of solutions of the equation on the half-line

(a(f/,Dn) - )\)v(:vn) =0 (z,>0), (A.40)

i.e. the basis of the space of all stable solutions of (A.40) which is determined by the
boundary conditions

Bj(flaan)Qk@/axm)\) = 6jk; at z, =0.

The function §2; can be written in the form
Q€ xn, N) = / eim"Qj(f/,T, A)dr. (A.41)
&

Here & = &(¢/, ) is a smooth contour in the half plane Im7 > 0 enclosing all

zeros of the function 7 — a(§’,7) — A with positive imaginary part, and the functions

Q; (€', 7, \) are homogeneous in (¢, 7, A\1/?™) of degree —m; — 1 in all arguments. Cf.

(Agranovich and Vishik 1964, Proposition 3.2) and (Agmon et al. 1959, Section 1).
For o/ = (a1,...,an-1) and [ > 0 with |o/| + 1 = 2m, we can estimate

—1 0’ m -1
1F ¢ DL F gjlloprs + 22" 1F ™ QF gjlloprr (A.42)

analogously to (Volevich 1965) and along the same steps as in the proof of Proposition
2.3. We differentiate in (A.41) under the integral sign and substitute 7 = 7(|¢'|? +
p*)1/2. Using spherical coordinates (r,n') € R™ with respect to (¢/,p), i.e. with
r = (|¢|> + p*)'/2, we obtain in exactly the same way as in (Volevich 1965)

2m—m;

4 _ o’ C 1A
DL R +03) 7 DL an M| < 21T (A4

and

7 72m mg—1 O(’ 022 a
DLEP+ )T e Dzﬂj(f’,xn,x>lﬁgls’| o1, (A.44)

where the constants co; and cos are independent of ¢’ and x,,. Now we fix an extension
h; € W™ ™ (R™) of g; with

I15ll2m—m; prr < Callgsllzm—m,; -1 pro-1s (A.45)
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cf. Proposition 2.3. Writing F’flf/a/DﬁleF’gj = —u;1 — ujp with

uj(z) = /0 F e DL (€ w4+ 7 ) (Fhy)(€, 7) dr
ujo(r) = /0 Fhlf'a,D%Qj(é',l’n+T7>\)(F'Dnhj)(§'77)d7,

we get in the same way as in the proof of Proposition 2.3, using (A.43) and (A.44),
the estimate

1"~ 0 F gjllom p e < cas(llalloprn + [Bllopen ) (A.46)
where
ala x) = F P+ ) "7 (F ) (€ )
and
b/ an) = F' (€2 4 p2) " (F'Duhy) (€ ).
Therefore

m
et Y (Wshom-m iy + 1Pahsllzm-m, 1.5 )

lwllzmpry <
j=1
m
< e Z mgj |”2m—mj—%,p,]R"—1 ) (A47)
=1

where we have used Proposition 2.2 b) and (A.45).
b) To prove the a priori estimate in the general case, we extend f to R™ by zero
outside R”} and set

g =F " (a(§) —N)'Ff e W)M(R"). (A.48)

Then we can apply part a) to u; = u — ug, where uy denotes the restriction of @y on
R . The function u; is a solution of (2.17) with f = 0 and g; replaced by g;—B;(D)uo.
Due to a), we have

m m
Pl < 26 (3 U0yt s + DNy 2 pns ) -
j=1

j=1

(A.49)
From Proposition 2.4 and Proposition 2.5 we see that the first sum in (A.49) is not
greater than

corlluollzm pry < casllflloprr - (A.50)

From (A.49) and (A.50) we obtain the a priori estimate (2.18).
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¢) Clearly the a priori estimate implies the uniqueness. On the other hand, if we
define @y by (A.48), ug as the restriction of g, and u; by

Uy = iFl_leF/ (gj - BJ(D)Uo) y <A51)
Jj=1

then the calculations above show that u = ug+uy € W2™ (R’ ) is a solution of (2.17).
O

A.7. Proof of Proposition 6.1. Arguing as in Subsection 4.3, we can assume without
loss of generality that ' € C*°. We also can assume that the operator A(z,D)
coincides with its principal part. We construct a smooth approximation to A(z, D)
as in Subsection 4.4. We also construct approximations Bj(h) (z,D) for B;(x, D) with
C* coeflicients on I' in local representations, such that these coefficients converge
uniformly to the corresponding coefficients in B;(x, D) as h — 0. The operators A
and BJ(»h) define a smooth boundary problem, and we can assume that it is elliptic
with parameter in £ for all h, 0 < h < hg. Thus, a formula of the form (6.4) is true
for these smooth boundary problems, and obviously the corresponding quantity A
tends to A as h — 0.

Now we will use the following result from (Beals 1967, p. 1059). Denote by L(©:2™)
the space of bounded operators from Ly (G) to W™ (G). Then for T € L(0:2™) the
quantities

a(T) = lim s;(T)5V*™ and B(T)= Iim s;(T)j"*™ (A.52)
J‘}OO

Jj—00

are bounded and uniformly continuous on each bounded set in L(%2™) We apply this

result to T = R(A\) and T = R ()), where R () is the resolvent of ASBh()h). Note

that the quantities a(R()\)), a(R™ (X)), B(R())), and B(R"™ (X)) do not depend on
A (see (Beals 1967, Theorem 3.2)). It remains to check that for any € > 0 we have

IR = RPN <&
for sufficiently small h and A € £ with sufficiently large modulus. Here and below

| - | is the norm in L(®:2™),
For this we set

AN = (A= X\ Bi,...,Bn), AW =A™ X BM, .. BWM) (A.53)

and denote by R(\) and R ()) the corresponding inverse operators. Setting fo =
(f,0,...,0)", we have

[RM () = ROVIf = [RP(N) = RN fo = RPNAN) — AP )R fo. (A.54)
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For u = R(\) fo we have
lull2m.2.c < Cillfllo2.c (A.55)

with a constant C; not depending upon A\ and f for A € £ with sufficiently large
modulus, according to the Basic Theorem. For

F=(f.g1,-9m) = [AQ) = AP (N)]u

and any d > 0 we have

IE0 = 17llo.2.c+ Y Wdillam—m,— g 21 < 0+ C2@)A =) ullzmac  (A.56)

if h is sufficiently small; again here Cy(d) does not depend upon A and u. Finally,

IR (N)Fllam.2.c < Csl|F|l, (A.57)
where C3 does not depend upon F, h and A\ € £ with sufficiently large modulus.
Inequalities (A.55)—(A.57) imply the desired estimate for [|[R(\) — R ()] O
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