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Weakly Smooth
Nonselfadjoint Spectral
Elliptic Boundary Problems

Mikhail Agranovich, Robert Denk, and Melvin Faierman1

Abstract. The paper is devoted to general elliptic boundary problems

(A− λ)u = f in G, Bju = 0 (j = 1, . . . , m) on Γ = ∂G, (1)

generally nonselfadjoint, where G is a bounded domain in Rn. The main goal is to minimize,
to some extent, the smoothness assumptions under which the known spectral results are
true. The main results concern the asymptotics of the trace of R(λ)q with q > n/2m, where
R(λ) is the resolvent, in an angle of ellipticity with parameter. For example, for the Dirichlet
problem these asymptotics are obtained in the case of bounded and measurable coefficients
in A and continuous coefficients in the principal part of A, while the boundary is assumed
to belong to C2m−1,1. The asymptotics of the moduli of the eigenvalues are investigated.
The last section is devoted to indefinite spectral problems, with a real-valued multiplier ω(x)
before λ changing the sign. The references contain 44 items.

1991 Mathematics Subject Classification. 35Pxx, 35J40, 47F05, 58G03.

1 Introduction

1.1. Let G be a bounded domain in Rn with (n− 1)-dimensional boundary Γ. Con-
sider the boundary problem

A(x,D)u(x)− λu(x) = f(x) in G , (1.1)
Bj(x,D)u(x) = gj(x) (j = 1, . . . ,m) on Γ . (1.2)

1The first author is partially supported by INTAS, Grant No. 94-2187, and RFFI, Grant No.
95-01-00549. The third author is partially supported by a grant from the FRD of South Africa.
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Here
A = A(x,D) =

∑
|α|≤2m

aα(x)Dα (1.3)

is a partial differential operator in G of order 2m, and

Bj = Bj(x,D) =
∑

|β|≤mj

bjβ(x)Dβ (1.4)

are partial differential operators of orders mj < 2m with coefficients defined only on
Γ; in (1.2) the derivatives Dβu(x) are assumed to be restricted to Γ. All the functions
in (1.1)–(1.4) are scalar and, in general, complex-valued. As usual,

Dα = Dα1
1 . . .Dαn

n , Dj = −i ∂
∂xj

, |α| = α1 + . . .+ αn,

and below ξα = ξα1
1 . . . ξαn

n . The main part of this paper is devoted to the spectral
problem obtained from (1.1)–(1.2), roughly speaking, by setting f = 0 in G and gj = 0
on Γ.

This problem is in general far from being selfadjoint. We only assume that it has
an angle, or angles, of ellipticity with parameter. We recall the definition. Denote by
a0(x, ξ) and bj0(x, ξ) the principal symbols of the operators A(x,D) and Bj(x,D):

a0(x, ξ) =
∑

|α|=2m

aα(x)ξα , bj0(x, ξ) =
∑

|β|=mj

bjβ(x)ξβ . (1.5)

Definition 1.1. Let L be a closed angle (sector) in the complex plane with vertex at
the origin. Then the boundary problem (1.1)–(1.2) is called elliptic with parameter
in L if the following two conditions are satisfied.
(1) a0(x, ξ)− λ 6= 0 for (x, ξ) ∈ G× Rn and λ ∈ L if |ξ|+ |λ| 6= 0.
(2) Let x0 be any point on Γ. Assume that the boundary problem (1.1)–(1.2) is
rewritten in the coordinate system associated with x0: it is obtained from the original
one by a rotation after which the positive xn-axis has the direction of the interior
normal to Γ at x0. Then the boundary problem on the half-line

a0(x0, ξ
′,Dn) v(t)− λ v(t) = 0 (t = xn > 0),

bj0(x0, ξ
′,Dn) v(t) = 0 (j = 1, . . . ,m) at t = 0,

v(t) → 0 (t→ +∞)

(1.6)

has only the trivial solution for ξ′ ∈ Rn−1 and λ ∈ L if |ξ′|+ |λ| 6= 0.

Other terms are “Agmon’s condition”(Seeley, see e.g. (Seeley 1969)) and “para-
meter-ellipticity”(Grubb, see e.g. (Grubb 1986)). Conditions (1) and (2) were intro-
duced by Agmon (see (Agmon 1962)). In particular, L can be a ray issuing from the
origin. However, the set of rays of ellipticity with parameter is open.
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In Section 4 we will mention some generalizations of Definition 1.1 to boundary
problems that depend upon λ polynomially and to boundary problems with vector-
valued u(x).

Now let us fix our attention upon smoothness assumptions. Recall that for k ∈ Z+

and 0 < γ ≤ 1 the space Ck,γ consists of all functions which are continuous with their
derivatives of order up to k and whose derivatives of order k are Hölder continuous
with exponent γ. In particular, the derivatives of order k of the functions in Ck,1

satisfy the Lipschitz condition. We will distinguish three possibilities.

Definition 1.2. (a) Minimal smoothness. The boundary problem (1.1)–(1.2) will
be called minimally smooth if 1) Γ is a submanifold in Rn of class C2m−1,1; 2) all
the coefficients aα(x) are measurable and bounded, while the top order coefficients
aα(x) (|α| = 2m) are continuous in G; 3) the coefficients bjβ(x) belong to the space
C2m−mj−1,1(Γ).

(b) Weak smoothness. The boundary problem (1.1)–(1.2) will be called weakly
smooth if the formally adjoint to (1.1)–(1.2) boundary problem

A∗(x,D)v(x)− λv(x) = f̃(x) in G , (1.7)
B̃j(x,D)v(x) = g̃j(x) (j = 1, . . . ,m) on Γ (1.8)

is well-defined and both boundary problems, (1.1)–(1.2) and (1.7)–(1.8), are at least
minimally smooth.

Here A∗(x,D) is the operator formally adjoint to A(x,D):

A∗(x,D)v(x) =
∑

|α|≤2m

Dα
(
aα(x)v(x)

)
. (1.9)

Recall that the boundary problems (1.1)–(1.2) and (1.7)–(1.8) are called formally
adjoint if

(Au, v)G = (u,A∗v)G (1.10)

for any functions u, v ∈ C2m(G) satisfying the boundary conditions Bju = 0 and
B̃jv = 0 on Γ (j = 1, . . . ,m), respectively. Here ( , )G is the standard scalar
product in L2(G). Of course, in a weakly smooth boundary problem (1.1)–(1.2)
the coefficients aα(x) and bjβ(x) have to possess some additional smoothness. The
sufficient conditions will be indicated in Subsection 2.5.

(c) Smooth problems. The boundary problem (1.1)–(1.2) will be called smooth if
Γ is a C∞ submanifold in Rn, aα(x) ∈ C∞(G) for all α, and bjβ(x) ∈ C∞(Γ) for all
j and β.

1.2. In Section 2 we will formulate the Basic Theorem; according to it the boundary
problem (1.1)–(1.2) elliptic with parameter in some angle L has a unique solution in
the corresponding Sobolev Lp-spaces (1 < p < ∞) for λ ∈ L with sufficiently large
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modulus. This theorem completes the corresponding result in (Agmon 1962), see Sub-
section 2.2 for details and other references. For the completeness of our presentation,
we sketch the proof of this theorem in Subsection 2.4.

In particular, this theorem makes it possible to introduce the operator AB = AB,2

in L2(G) acting as A(x,D), with domain

D(AB) = {u ∈W 2m
2 (G) : Bju = 0 (j = 1, . . . ,m) on Γ} . (1.11)

It is closed and densely defined; its resolvent set is nonvoid (contains all λ ∈ L with
large |λ|), and the resolvent

R(λ) = RAB
(λ) = (AB − λ)−1 (1.12)

is compact. Hence the spectrum of AB is discrete. Similar operators AB,p can be
introduced in Lp(G) (1 < p < ∞), but they all are “spectrally equivalent” (see
Section 3). The nontrivial solutions of (1.1)–(1.2) with f = 0 and gj = 0 are the
eigenfunctions that correspond to an eigenvalue λ; in general they form a subset of
the set of all generalized eigenfunctions (or root functions), the nontrivial solutions
of the equations (AB − λ)ku = 0 with k ∈ N.

Some spectral properties of AB were intensively discussed in the literature and are
well known. Our aim in this paper is to minimize, to some extent, the smoothness
assumptions under which AB has these properties.

1.3. In Section 3 we collect the spectral properties of AB that are the direct conse-
quences of the Basic Theorem. The first of them is Agmon’s completeness theorem
(see (Agmon 1962)): the set of all generalized eigenfunctions is complete in L2(G) if
for (1.1)–(1.2) there exist some rays of ellipticity with parameter with angles between
the adjacent rays not greater than 2πm/n. Moreover, in this case the Fourier series
of any f ∈ L2(G) with respect to a minimal complete system of the generalized eigen-
functions admits the summation to f by the so-called Abel–Lidskĭı method. We also
present the statements on “angular distribution of eigenvalues” and the presence of
“the rays of condensation of eigenvalues” from (Agmon 1962). See Section 3 for the
details.

1.4. More deep is the problem of the regular behaviour of the moduli of the eigen-
values λj = λj(AB) as j → ∞. We use the resolvent approach to this problem. Let
q ∈ N be such that 2mq > n (q = 1 if 2m > n). Then R(λ)q is a trace class operator.
If the boundary problem (1.1)–(1.2) is smooth, then the following asymptotic formula
is well-known for the trace of R(λ)q in the angle L of ellipticity with parameter; for
simplicity we assume that L is symmetric with respect to the negative real half-axis
R−:

trR(λ)q = cq (−λ)
n

2m−q + o
(
|λ| n

2m−q
)

(L 3 λ→∞) (1.13)

uniformly in arg λ, where

cq =
∫

G

cq(x) dx and cq(x) =
1

(2π)n

∫
Rn

dξ

[a0(x, ξ) + 1]q
, (1.14)
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see e.g. (Agranovich 1990). Here the holomorphic function (−λ)··· is defined outside
R+ and is equal to |λ|··· when λ ∈ R−.

Our main results in this paper are essentially Theorems 4.1 and 5.1. The first of
them concerns the Dirichlet boundary problem (1.1),

∂j−1
ν u(x) = 0 (j = 1, . . . ,m) on Γ . (1.15)

Here ∂ν = ∂/∂ν is the derivative in the direction of the inner normal to Γ at x. Note
that the Dirichlet problem is absolutely elliptic in the sense of (Hörmander 1958),
i.e. elliptic with respect to any elliptic equation. In particular, Condition (2) in the
Definition 1.1 is satisfied for (1.15) automatically if Condition (1) is satisfied.

Theorem 4.1 states that formula (1.13) is true for the Dirichlet problem if it is
elliptic with parameter in L and satisfies the minimal smoothness assumptions and if
q in the inequality 2mq > n is even.

The proof consists of the following steps. At first we approximate the domain G
by a domain G̃ with C∞ boundary such that we can use a C2m−1,1-diffeomorphism
of G onto G̃. Let us write AD instead of AB to indicate that we are considering
the Dirichlet problem. The diffeomorphism defines a similarity transform AD 7→
ÃD = T−1ADT , where ÃD corresponds again to the Dirichlet problem but in the
new smooth domain. This permits us to assume, without loss of generality, that Γ
is smooth. Now we construct an approximation A(h)(x,D) for A(x,D) with C∞ top
order coefficients a(h)

α (x) (|α| = 2m) tending to aα(x) uniformly as h → 0 and zero
lower order coefficients. We prove that for even q

|trRAD
(λ)q − trR

A
(h)
D

(λ)q| ≤ ε(h) |λ| n
2m−q (1.16)

in L for large |λ|, where ε(h) → 0 as h→ 0. Here it is essential that

D(AD) = D(A(h)
D ) . (1.17)

The Dirichlet problem for a smooth operator A(h)(x,D) in a smooth domain G is
smooth; therefore we have a formula of the form (1.13) for trR

A
(h)
D

(λ)q in (1.16).
Obviously this leads to the desired result.

Of course, the idea to use smooth approximations for nonsmooth boundary prob-
lems is not new, see e.g. (Beals 1967). However, apparently a “jump” from a not very
smooth domain to a smooth one by a similarity transform is a new element of con-
siderations. We also note that to obtain the estimate (1.16) we derive an asymptotic
formula

|R
A

(h)
D

(λ)|qq ∼ c(h, arg λ) |λ| n
2m−q (λ→∞ in L) , (1.18)

where |·|q is the Neumann–Schatten norm of order q. See Section 4 for further details.

1.5. In Section 5 we prove that formula (1.13) is true for general weakly smooth
problems (1.1)–(1.2) elliptic with parameter in L (Theorem 5.1). Again, in this section
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q is assumed to be even, q = 2k, and for the proof we represent R(λ)q in the form

R(λ)q = R1(λ)R2(λ)∗ , where R1(λ) = R(λ)k and R2(λ) = R1(λ)∗ . (1.19)

We prove that for a fixed λ ∈ L with sufficiently large modulus

R1(λ)f(x) =
∫

G

Kλ(x, y)f(y) dy , (1.20)

where the kernel Kλ(x, y) is a continuous function of x ∈ G with values in L2(G) and(∫
G

|Kλ(x, y)|2 dy
) 1

2

≤ Const |λ| n
4m− q

2 . (1.21)

For this we prove that R1(λ) = R(λ)k is a bounded operator from L2(G) to C(G).
Since the same is true for R2(λ) (here we use the formally adjoint to (1.1)–(1.2)
boundary problem), for R(λ) we have

R(λ)qf(x) =
∫

G

K(x, y, λ)f(y) dy , (1.22)

where for λ ∈ L with sufficiently large modulus K(x, y, λ) is a continuous function on
G×G and

|K(x, y, λ)| ≤ Const |λ| n
2m−q (1.23)

uniformly in x and y. Moreover, we obtain a pointwise asymptotic formula

K(x, x, λ) = c(x) (−λ)
n

2m−q + o
(
|λ| n

2m−q
)

(λ→∞ in L) (1.24)

uniformly in x on compact subsets of G. To obtain (1.13) it remains to integrate
(1.24) over G.

This approach is a modification of that in (Agmon 1965a) and (Beals 1970). Ag-
mon at first considered the case 2m > n, and he obtained some results (now well-
known) concerning the kernels in the integral representation of bounded operators
from L2(G) to W l

2(G) with l > n/2 or l > n. We actually generalize these results to
bounded operators from L2(G) to W l

p(G), where p ≥ 2 and lp > n (see Subsection
5.1). Implicitly these generalizations were contained in (Beals 1970).

Beals considered selfadjoint nonsmooth boundary problems. Though for non-
smooth boundary problems the operator Aq

B is in general not defined, Beals defined
the resolvent (Aq

B − λ)−1 as

(Aq
B − λ)−1 = (AB − µq)−1 . . . (AB − µ1)−1 , (1.25)

where µj are the pairwise different roots λ1/q. Using a variant of the Basic Theorem,
he considered (AB−µj)−1 as acting from Lpj (G) to W l

pj
(G) and inserted the Sobolev
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embedding operators Sj : W l
pj

(G) → Lpj+1(G) to the left of (AB−µj)−1. Here pj are
appropriate numbers and 2 = p1 < p2 < . . . . In (Faierman 1995b) this approach was
applied to some nonselfadjoint boundary problems with indefinite weight. Instead of
(1.25), in the present paper we consider R(λ)q and R(λ)q/2 in the same manner; this
permits us to minimize the assumptions about the presence of the rays of ellipticity
with parameter.

Finally we use operators of the form ϕ(A0(x0,D)− λ)ψ · to deduce (1.24), where
the supports of the functions ϕ and ψ lie in a neighbourhood of x0 ∈ G. Here we
again follow (Agmon 1965a). Note, however, that in the case 2m ≤ n the boundary
problems are assumed in that paper to be sufficiently smooth.

1.6. In Section 6 we discuss the spectral consequences of the main Theorems 4.1
and 5.1 following essentially (Agranovich and Markus 1989), where smooth spectral
problems were considered. We use the Hardy–Littlewood Tauberian Theorem and its
rough analogue presented in that paper. Let {λj}∞1 be the sequence of all eigenvalues
of AB enumerated in such a way that

|λ1| ≤ |λ2| ≤ . . . (1.26)

and each eigenvalue is repeated according to its multiplicity. Set

d =
1

(2π)nn

∫
G

dx

∫
|ξ|=1

[a0(x, ξ)]−
n

2m dSξ . (1.27)

Here the values of a0(x, ξ) do not belong to L, and we define a−n/2m
0 using a cut along

the bisectrix R− of L. The number d is of course independent of q, and cq = βqd,
where the coefficient βq does not depend upon a0(x, ξ). Under the assumptions of
Theorem 4.1 or 5.1, we obtain the relation

|λj | � j
2m
n (1.28)

if d 6= 0; this means that the ratio |λj |/j2m/n lies between positive constants for large
j. If, in addition, the boundary problem is elliptic with parameter along each ray
except, say, R+, then λj/j

2m/n has a positive limit which is calculated in terms of
a0(x, ξ) by the same formula as for smooth positive selfadjoint boundary problems.
The last result was obtained in (Agmon 1965b) and (Mizohata 1965) for sufficiently
smooth nonselfadjoint boundary problems.

Moreover, the results are strengthened in the following situation. Assume that the
boundary problem is elliptic with parameter in two closed angles L(1) and L(2) that
have only the point λ = 0 in common, and let Λ1 and Λ2 be two open angles that
constitute the complement of L(1) ∪ L(2). Assume that Λ1 contains all the values of
a0(x, ξ), ξ 6= 0. Then both results mentioned above remain true for the eigenvalues
of AB lying in Λ1. Here we keep in mind the scalar case; more interesting results
are valid in the matrix case, in which both Λ1 and Λ2 can contain the eigenvalues of
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a0(x, ξ), see Remark 6.6, and in the case of indefinite problems, see Theorem 8.13. To
obtain these results, we use the procedure of separating the asymptotics of the part
of trR(λ)q corresponding to the eigenvalues of AB in Λ1, as in (Agranovich 1987); see
also (Agranovich and Markus 1989). However, we carry out this procedure anew since
now we do not have the estimate of the remainder in (1.13) used in those papers. For
this we extend (1.13) to real q > n/2m using integral formulas for noninteger powers
of operators (see Theorem 6.4).

1.7. In Section 7 we extend the results to boundary problems (1.1)–(1.2) with addi-
tional transmission conditions along some closed surfaces Γ1, . . . ,ΓN . These surfaces
lie inside G and have no common points pairwise and with Γ. They divide their
complement in G into subdomains G0, . . . , GN . If Γk separates Gl and Gl′ , then the
transmission conditions on Γk connect the boundary values of the solution and its
derivatives from the side of Gl and those from the side of Gl′ . In the conditions of
minimal smoothness, the top order coefficients in A(x,D) are assumed to be continu-
ous in each Gl up to the boundary, i.e. they have to have continuous extensions from
Gl to Gl. Accordingly, the solution must belong to W 2m

p (Gl) in each Gl separately.
The theory of such problems is very close to that of usual elliptic problems (cf. e.g.
(Schechter 1960)); because of this the extensions of our results to these problems
are straightforward, and in Section 7 we only indicate necessary alterations in the
definitions.

Especially important are the transmission conditions

∂j−1
ν u(l)(x) = ∂j−1

ν u(l′)(x) (j = 1, . . . , 2m) on Γk , (1.29)

which will be used in Section 8. Here ∂ν is the derivative along the normal to Γk,
and by u(l) and u(l′) we denote the solution in Gl and Gl′ , respectively. The following
fact is well known: if u(l) ∈ W 2m

p (Gl) and u(l′) ∈ W 2m
p (Gl′), then these conditions

are equivalent to the inclusion u ∈ W 2m
p (Gl ∪ Γk ∪Gl′). They are absolutely elliptic

and smooth if Γk is smooth. These properties of (1.29) are similar to those of the
Dirichlet conditions on Γ.

1.8. Section 8 is devoted to elliptic boundary problems with indefinite weight. The
equation (1.1) is replaced by

A(x,D)u(x)− λω(x)u(x) = f(x) in G . (1.30)

We preserve the notation introduced in Section 1.7. The weight function ω(x) is real-
valued (actually we could consider the case of a complex-valued ω(x)) and continuous
in each Gl up to the boundary but can have a jump and change sign when we cross
any Γk. There is an extensive literature devoted to such problems; see (Faierman
1988, 1990a,b, 1995a,b) and the references therein. We assume that ω(x) is separated
from zero:

|ω(x)| ≥ c > 0 , (1.31)
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which is, of course, a restrictive condition. Under this assumption, we generalize
the results obtained in the previous sections. In the case of minimal smoothness, it
suffices to divide (1.30) by ω(x) and to impose conditions (1.29) on each Γk, which
leads to a transmission problem. In the case of weak smoothness, this reduction is
only formal (if ω(x) is not smooth), but we can generalize the proof of Theorem 5.1.

1.9. Note that some of our results, beginning with the Basic Theorem, can be some-
what strengthened. Namely, we can assume that in (1.1)–(1.2) the boundary Γ and
the coefficients of A(x,D) satisfy the minimal smoothness assumptions while the
coefficients of Bj(x,D) belong to the Hölder class C2m−mj−1,γ(Γ) with a fixed γ,
0 < γ ≤ 1. If γ < 1, then the Basic Theorem remains true for any fixed p with
1 < p < (1 − γ)−1. If 1/2 < γ < 1, then we can extend the results in Section 3 and
Theorem 4.1 for the corresponding p, as well as the consequences of Theorem 4.1. We
will indicate these and some other generalizations in Section 9.

Our results were reported at the International Conference “Partial Differential
Equations” held in Potsdam, July 29 – August 3, 1996. We would like to thank
Professor Schulze for his kind attention to our work.

2 Basic Theorem and Smoothness Assumptions

2.1. Recall that for an arbitrary domain G in Rn the Sobolev space W s
p (G) (s ∈

Z+, 1 < p < ∞) can be defined as the space of distributions f ∈ D′(G) such that f
and the distributional derivatives Dαf (|α| ≤ s) are functions from Lp(G). The norm
in W s

p (G) is defined by the formula

‖u‖s,p,G =
( ∫

G

∑
|α|≤s

|Dαu(x)|p dx
) 1

p

, (2.1)

and W s
p (G) is a Banach space with this norm. Under very general assumptions

concerning the boundary (in particular, if the boundary is of class C0,1, i.e. Lipschitz),
this definition is equivalent to the following one: W s

p (G) is the completion of the space
of the restrictions of functions from C∞(Rn) to G with respect to the norm (2.1). The
space W 0

p (G) coincides with Lp(G). The space W s
2 (G) is usually denoted by Hs(G).

Here and below in this subsection we refer the reader to (Adams 1975), (Grisvard
1985), (Maz’ya 1985) and (Triebel 1978).

Since Dα is (for an arbitrary domain G) a bounded operator from W s
p (G) to

W
s−|α|
p (G) if s ≥ |α| and since the multiplication by a bounded measurable function is

a bounded operator in Lp(G), the operator A(x,D) in (1.1) with bounded measurable
coefficients is a bounded operator from W 2m

p (G) to Lp(G).
In the following we will use Sobolev Embedding Theorems. More precisely, we

will need the Gagliardo–Nirenberg inequalities, see e.g. (Maz’ya 1985, Section 1.4)
and also (Gagliardo 1959) and (Nirenberg 1959).
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I. Let ps > n. Then W s
p (G) ↪→ C(G), i.e. W s

p (G) is continuously embedded into
C(G). More precisely, any function u(x) ∈ W s

p (G) can be changed on a set of zero
Lebesgue measure in such a way that it becomes a continuous function inG. Moreover,
we then have

max |u(x)| ≤ C ‖u‖
n
ps

s,p,G ‖u‖1−
n
ps

0,p,G , (2.2)

and there exists a constant γ ∈ (0, 1) such that u(x) satisfies the Hölder condition

|u(x)− u(x̃)| ≤ C ′ ‖u‖s,p,G |x− x̃|γ , (2.3)

which means a continuous embedding of W s
p (G) into C0,γ(G). Here the constants

C = C(n, p, s,G) and C ′ = C ′(n, p, s, γ,G) do not depend upon u.

II. Let

0 < τ =
n

s

(
1
p
− 1
p1

)
< 1 . (2.4)

Then W s
p (G) ↪→ Lp1(G), and

‖u‖0,p1,G ≤ C1 ‖u‖τ
s,p,G ‖u‖1−τ

0,p,G , (2.5)

where the constant C1 = C1(n, p, p1, s, G) does not depend upon u.

We will also use the following interpolation inequality.

III. Let k be an integer with 0 < k < s, τ = k/s, and put

|u|k,p,G =
( ∫

G

∑
|α|=k

|Dαu(x)|p dx
) 1

p

for u ∈W s
p (G). Then

|u|k,p,G ≤ C2 ‖u‖τ
s,p,G ‖u‖1−τ

0,p,G,

where C2 = C2(n, p, s, k,G) does not depend upon u.

IV. The results I, II, and III hold in full force if G is replaced by Rn.

Moreover, Theorems I–III for functions in G are obtained from the corresponding
results for Rn using an extension operator that preserves Sobolev spaces. Such an
operator for Lipschitz domains, i.e. for domains with C0,1 boundary, was constructed
by Calderón, see its version in (Stein 1970, Chapter VI, Section 3). Cf. the second
definition of Sobolev spaces at the beginning of this subsection.

Now we need a short discussion of the boundary values of functions u ∈ W s
p (G).

We assume that the boundary Γ of the domain is of class C2m−1,1.
Let s be an integer with 1 ≤ s ≤ 2m. Then the functions u ∈ W s

p (G) have

boundary values v = u|Γ; the space of these boundary values is denoted by B
s− 1

p
p,p (Γ)
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or W
s− 1

p
p (Γ). The norm ‖v‖s− 1

p ,p,Γ in this space can be defined by the formula

‖v‖s− 1
p ,p,Γ = inf

u|Γ=v
u∈W s

p (G)

‖u‖s,p,G . (2.6)

An equivalent norm can be defined using a sufficiently fine partition of unity and the

following norm in the space W
s− 1

p
p (Rn−1):

‖v(x′)‖s− 1
p ,p,Rn−1 =

{ ∑
|α′|≤s−1

∫
Rn−1

|Dα′v(x′)|p dx′

+
∑

|α′|=s−1

∫
Rn−1

∫
Rn−1

|Dα′v(x′)−Dα′v(y′)|p

|x′ − y′|n−2+p
dx′ dy′

} 1
p

.

(2.7)

See e.g. (Grisvard 1985, Sections 1.3 and 1.5).
The following result is stated, e.g., in (Grisvard 1985, Theorem 1.4.1.1). For the

convenience of the reader, we include a proof of it in the Appendix.

V. The operator of multiplication by a function from Cs−1,1(Γ) is continuous in the

space W
s− 1

p
p (Γ).

It follows that the operators Bj in (1.2) with coefficients bjα ∈ C2m−mj−1,1(Γ) are

bounded operators from W 2m
p (G) to W

2m−mj− 1
p

p (Γ).

2.2. In this subsection we formulate the Basic Theorem following essentially (Agmon
1962) and (Agranovich and Vishik 1964, Chapter I) and comment on some slight
contributions contained in our formulation.

We will use the norms depending on a parameter:

|||u|||s,p,G = ‖u‖s,p,G + |λ| s
2m ‖u‖0,p,G (2.8)

and

|||v|||s− 1
p ,p,Γ = ‖v‖s− 1

p ,p,Γ + |λ|
s− 1

p
2m ‖v‖0,p,Γ . (2.9)

The norms |||u|||s,p,Rn , |||u|||s,p,Rn
+

and |||v|||s− 1
p ,p,Rn−1 are defined analogously. For p = 2

these norms were introduced in (Agranovich and Vishik 1964). For a fixed λ, these
norms are equivalent to ‖u‖s,p,G and ‖v‖s− 1

p ,p,Γ, respectively.

Theorem 2.1 (The Basic Theorem). Assume that the boundary problem (1.1)–
(1.2) is elliptic with parameter in an angle L and satisfies the minimal smoothness
assumptions. Let 1 < p < ∞. Then there exists a λ0 = λ0(p) > 0 such that for
λ ∈ L, |λ| ≥ λ0 the boundary problem has a unique solution u ∈ W 2m

p (G) for any
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f ∈ Lp(G) and gj ∈W
2m−mj− 1

p
p (Γ), and the a priori estimate

|||u|||2m,p,G ≤ C
(
‖f‖0,p,G +

m∑
j=1

|||gj |||2m−mj− 1
p ,p,Γ

)
(2.10)

holds, where the constant C does not depend upon f , gj and λ.

This theorem was stated in (Agmon 1962) for the case gj = 0 under slightly
stronger smoothness assumptions. Namely, Agmon assumed that the boundary is of
class C2m and the coefficients of Bj(x,D) belong to C2m−mj (Γ). Let us call these
smoothness assumptions almost minimal. Agmon obtained the a priori estimate in
the following way: he introduced an additional variable t and applied the a priori
estimate for elliptic boundary problems without parameter in the cylindrical domain
G× R to functions of the form w(x, t) = ϕ(t)eiλtu(x), where ϕ(t) has finite support.
Of course, the a priori estimate implies the uniqueness.

Agmon mentioned that he wanted to publish a paper devoted to existence the-
orems. However, as far as we know, this paper has not appeared. Agmon also
mentioned that the existence can be proved using the formally adjoint problem and
assuming additional smoothness.

Concerning the further evolution of this approach by means of dual estimates, we
refer to (Geymonat and Grisvard 1967), where the smoothness assumptions are almost
minimal for homogeneous boundary conditions and are stronger for nonhomogeneous
boundary conditions.

In (Agranovich and Vishik 1964) another approach to these problems was pro-
posed. It is a direct method similar to that used for elliptic boundary problems
without parameter and is based on a localization and the consideration, at the be-
ginning, of a boundary problem in Rn

+ with constant coefficients and without lower
order terms. For elliptic boundary problems without parameter this method leads to
the Fredholm property (see e.g. (Agranovich 1965)). For boundary problems elliptic
with parameter this method leads to the existence theorem (as well as to the a priori
estimate). Agranovich and Vishik assumed that p = 2 and the boundary problem is
smooth; however, as we show, this direct approach works for any p > 1 under the
minimal smoothness assumptions (and for nonhomogeneous boundary conditions).
Note that the direct approach was also used in (Rŏıtberg and Sheftel’ 1967), where
the smoothness were not specified, and in (Rŏıtberg 1991), where the smoothness
assumptions were somewhat stronger than the almost minimal smoothness.

In Subsection 2.4 we sketch the complete direct proof of the Basic Theorem. There
we use some technical results which are formulated in Subsection 2.3, including the
variants of the Basic Theorem for operators in Rn and Rn

+, respectively, with constant
coefficients and without lower order terms. For the convenience of the reader, we prove
these results in the Appendix.

2.3. Here we at first summarize some trace and interpolation results.
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Throughout this subsection, we will use the notation ρ = |λ|1/2m and for s ∈ N
denote the trace of u ∈W s

p (G) or u ∈W s
p (Rn

+) on Γ or Rn−1, respectively, by γu.

Proposition 2.2. Let Γ be of class C2m−1,1, s an integer with 1 ≤ s ≤ 2m, and
1 < p <∞. Let ρ ≥ 1.
a) For all u ∈W 1

p (G) we have

ρ1− 1
p ‖γu‖0,p,Γ ≤ C1

(
‖u‖1,p,G + ρ‖u‖0,p,G

)
, (2.11)

where the constant C1 does not depend upon u and ρ. The same is true if G is replaced
by Rn

+ and Γ is replaced by Rn−1.
b) For all u ∈W s

p (G) and all integers k with 1 ≤ k ≤ s− 1 we have

ρs−k‖u‖k,p,G ≤ C2

(
‖u‖s,p,G + ρs‖u‖0,p,G

)
(2.12)

with a constant C2 not depending upon u and ρ. The same is true if G is replaced by
Rn or Rn

+.
c) For all u ∈W s

p (G) we have

|||γu|||s− 1
p ,p,Γ ≤ C3|||u|||s,p,G , (2.13)

where the constant C3 does not depend upon u and ρ. The same is true if G is replaced
by Rn

+ and Γ is replaced by Rn−1.

Denote by F ′ the Fourier transform with respect to the first n− 1 variables.

Proposition 2.3. Let s be an integer with s ≥ 1 and 1 < p < ∞. Then for

every v ∈ W
s− 1

p
p (Rn−1) and for every ρ ≥ ρ0 > 0 the function u = F ′

−1ΩF ′v with
Ω(ξ′, xn, ρ) = exp(−(|ξ′| + ρ)xn) is an element of W s

p (Rn
+) with γu = v, and there

exists a constant C4, not depending upon v and ρ, such that

|||u|||s,p,Rn
+
≤ C4 |||v|||s− 1

p ,p,Rn−1 . (2.14)

Proposition 2.4. Assume that the boundary problem (1.1)–(1.2) satisfies the min-
imal smoothness assumptions. Let 1 < p < ∞. Then for any u ∈ W 2m

p (G) we
have

‖A(x,D)u‖0,p,G +
m∑

j=1

|||Bj(x,D)u|||2m−mj− 1
p ,p,Γ ≤ C5 |||u|||2m,p,G (2.15)

for ρ > 0, where the constant C5 is independent of u and λ.

Now we formulate the analogues of the Basic Theorem for operators in Rn and
Rn

+ with constant coefficients and without lower-order terms. For a proof of these
analogues one can use Michlin’s multiplier theorem as in (Volevich 1965) instead of
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using Plancherel’s theorem which is possible for p = 2; see the Appendix for details.
We do not formulate the obvious definitions of ellipticity with parameter for these
situations.

Proposition 2.5. Let A(D) =
∑

|α|=2m aαDα be elliptic with parameter in L. Let
λ0 > 0 and 1 < p <∞. Then for any f ∈ Lp(Rn) and any λ ∈ L, λ 6= 0, there exists
a unique solution u ∈ W 2m

p (Rn) of (A(D)− λ)u = f , and for λ ∈ L, |λ| ≥ λ0, the a
priori estimate

|||u|||2m,p,Rn ≤ C6 ‖f‖0,p,Rn (2.16)

holds, where C6 does not depend upon f and λ.

Proposition 2.6. Consider the operators A(D) =
∑

|α|=2m aαDα and Bj(D) =∑
|β|=mj

bjβDβ (j = 1, . . . ,m). Let the boundary problem

(A(D)− λ)u = f in Rn
+ ,

Bj(D)u = gj (j = 1, . . . ,m) on Rn−1 (2.17)

be elliptic with parameter in L. Let λ0 > 0 and 1 < p <∞. Then for any f ∈ Lp(Rn
+),

any gj ∈W
2m−mj− 1

p
p (Rn−1), and any λ ∈ L, λ 6= 0, the boundary problem (2.17) has

a unique solution u ∈W 2m
p (Rn

+), and for λ ∈ L, |λ| ≥ λ0, the a priori estimate

|||u|||2m,p,Rn
+
≤ C7

[
‖f‖0,p,Rn

+
+

m∑
j=1

|||gj |||2m−mj− 1
p ,p,Rn−1

]
(2.18)

holds, where the constant C7 does not depend upon f , gj and λ.

For the proofs, see the Appendix.

2.4. Now we are going to sketch the proof of the Basic Theorem (Theorem 2.1).
a) First we show that for every x0 ∈ G there is a neighbourhood U of x0 and a

λ0 > 0 such that (2.10) holds if suppu ⊂ U ∩G and λ ∈ L, |λ| ≥ λ0. We separately
consider the cases x0 ∈ G and x0 ∈ Γ.

If x0 ∈ G, then, by freezing the coefficients of the operator A(x,D) and taking
only the principal part, we can apply the a priori estimate for homogeneous operators
in Rn with constant coefficients, see Proposition 2.5. We do not dwell on details.

Now let x0 ∈ Γ. We assume U to lie inside a coordinate neighbourhood and
write the boundary problem (1.1)–(1.2) in local coordinates. Again we take only
the principal parts A0(x,D) and Bj0(x,D) of the operators A(x,D) and Bj(x,D),
respectively, and freeze the coefficients at x = x0. From the a priori estimate for
operators in the half-space (Proposition 2.6) we obtain

|||u|||2m,p,Rn
+

≤ C7

[
‖(A0(x0,D)− λ)u‖0,p,Rn

+

+
m∑

j=1

|||Bj0(x0,D)u|||2m−mj− 1
p ,p,Rn−1

]
(2.19)
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with a constant C7 independent of u and λ. Using the continuity of the coefficients
aα(x) for |α| = 2m and (2.12), it is easily seen that in the estimation

‖(A(x,D)−A0(x0,D))u‖0,p,Rn
+
≤ C8|||u|||2m,p,Rn

+
(2.20)

the constant C8 can be made arbitrarily small if U is chosen small enough and |λ| is
large enough. From the proof of Theorem V of Subsection 2.1 (see the Appendix for
details) we see that the same is true for

|||(Bj0(x,D)−Bj0(x0,D))u|||2m−mj− 1
p ,p,Rn−1 .

The operator Bj(x,D)−Bj0(x,D) contains no terms of the highest order, and there-
fore (cf. Proposition 2.4) the inequality

|||(Bj(x,D)−Bj0(x,D))u|||2m−mj− 1
p ,p,Rn−1 ≤ C9|||u|||2m−1,p,Rn

+
(2.21)

holds for some C9 independent of u and λ. As the right-hand side of (2.21) can be
estimated by a constant times |λ|−1/2m |||u|||2m,p,Rn

+
(Proposition 2.2 b), we see that

for every ε > 0 there exists a neighbourhood U of x0 such that for all solutions
u ∈W 2m

p (G) with suppu ⊂ U and for |λ| large enough we have

‖(A(x,D)−A0(x0,D))u‖0,p,Rn
+

+
m∑

j=1

|||(Bj(x,D)−Bj0(x0,D))u|||2m−mj− 1
p ,p,Rn−1

≤ ε|||u|||2m,p,Rn
+
. (2.22)

From (2.19) and (2.22) the a priori estimate follows for u with suppu ⊂ U .
b) To obtain (2.10) for general u, we use a C∞ partition of unity. We only note that

for a function ϕ ∈ C∞(G) the trace of ϕ on Γ belongs to C2m−1,1(Γ) and therefore

the multiplication by the trace of ϕ is continuous in W
2m−mj− 1

p
p (Γ) by Theorem V of

Subsection 2.1.
c) As from the a priori estimate (2.10) the uniqueness follows, it remains to prove

the existence of the solution.
We fix ε > 0 and choose a finite covering G ⊂

⋃N
k=1 Uk of G and xk ∈ Uk such that

for every x ∈ Uk the estimate (2.22) holds with x0 replaced by xk. Consider a C∞

partition of unity
∑N

k=1 ϕk(x) ≡ 1 subordinated to this covering and C∞ functions
ψk with ψk(x) ≡ 1 in a neighbourhood of suppϕk and suppψk ⊂ Uk.

Let

A = A(x) : W 2m
p (G) → Lp(G)×

m∏
j=1

W
2m−mj− 1

p
p (Γ)

be defined by

Au =
(
(A(x,D)− λ)u,B1(x,D)u, . . . , Bm(x,D)u

)
. (2.23)
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We write

Au =
N∑

k=1

ϕkA(ψku) =
N∑

k=1

ϕkAk(ψku) , (2.24)

where Ak is the corresponding operator written in local coordinates and acting in Rn

or Rn
+.

Freezing the coefficients of Ak(x) at xk and taking only the principal parts, we
obtain the operator Ak0(xk) whose inverse Rk exists by the results on operators in
Rn or Rn

+, respectively. Now we set

R(f, g1, . . . , gm) =
N∑

k=1

ψkRk(ϕkf, ϕkg1, . . . , ϕkgm) . (2.25)

Making use of the a priori estimate for Rk and (2.22), it can be seen that

AR(f, g1, . . . , gm) = (f, g1, . . . , gm) + T (f, g1, . . . , gm) , (2.26)

where for |λ| large enough the norm of T as an operator in Lp(G)×
∏
W

2m−mj− 1
p

p (Γ),
where we use norms of the form (2.9) on the boundary, is not greater than a constant
times ε. With ε small enough we see that A is invertible and therefore the boundary
problem (1.1)–(1.2) has a solution. �

2.5. In (Faierman 1990b) it was proved that the following conditions are sufficient
for the existence of the boundary problem (1.7)–(1.8) formally adjoint to (1.1)–(1.2)
also satisfying the minimal smoothness assumptions:

Γ ∈ C2m,1, aα ∈ C |α|−1,1(G), bjα ∈ C2m−1−mj ,1(Γ) ∩ C |α|,1(Γ) . (2.27)

Here the notation aα ∈ C |α|−1,1(G) means in the case |α| = 0 that the function aα is
measurable and essentially bounded in G.

2.6. One can find in the literature many works devoted to elliptic boundary problems
in nonsmooth domains and/or with nonsmooth coefficients. However, they are either
concerned with problems in a variational form or with non-variational problems of a
very special kind.

3 Simplest Spectral Consequences

3.1. Here we assume that the assumptions of the Basic Theorem are satisfied. Con-
sider the operator AB,p in Lp(G), 1 < p < ∞, that acts as A(x,D) and has the
domain

D(AB,p) = {u ∈W 2m
p (G) : Bj(x,D)u(x) = 0 (j = 1, . . . ,m) on Γ} . (3.1)
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Obviously D(AB,p) is dense in Lp(G). From the a priori estimate (2.10) it follows
that AB,p is closed. Its resolvent set is nonvoid, and the resolvent is compact since
W 2m

p (G) is compactly embedded in Lp(G). Thus, AB,p has a discrete spectrum: it
consists of isolated eigenvalues of finite multiplicity, with possible accumulation only
at infinity. From the Sobolev Embedding Theorem II it follows that the generalized
eigenfunctions belong to

⋂
1<p<∞

W 2m
p (G) and that the spectrum σ(AB,p) does not

depend upon p (see (Agmon 1962)). Because of this we will mainly consider AB =
AB,2 in L2(G).

In the following we will summarize some spectral properties of the operator AB

which are consequences of the Basic Theorem. We will refer to these properties in
Sections 7 and 8, where more general situations are considered.

Recall that the subset X1 in a Banach space X is called complete in X if the set
of all finite linear combinations of elements of X1 is dense in X.

Theorem 3.1 (Agmon 1962). Assume that the boundary problem (1.1)–(1.2) is
elliptic with parameter along some rays L(k) (k = 1, . . . , N) and the angles between
any two adjacent rays are not greater than 2mπ/n. Then AB has an infinite number
of eigenvalues and the set of all generalized eigenfunctions of AB is complete in L2(G)
(and in Lp(G)).

In the proof of this theorem and Theorem 3.2 below an extension operator of
functions in G to functions on a torus containing G is used that preserves Sobolev
spaces (see (Agmon 1962, Appendix I) or (Beals 1967)). As we mentioned above,
such an operator exists for Lipschitz domains.

Let {uj}j≥1 be the system of generalized eigenfunctions ofAB composed of bases in
each generalized eigenspace in such a way that uj belongs to the generalized eigenspace
that corresponds to the eigenvalue λj . Under the assumptions of Theorem 3.1, the
uj ’s form an infinite complete system. Besides, this system is minimal, and hence
there exists a system {wk}∞1 biorthogonal to {uj}∞1 :

(uj , wk)G = δjk . (3.2)

The system {wk}∞1 consists of the generalized eigenfunctions of the operator (AB)∗

adjoint to AB . To each function f ∈ L2(G) we can associate its formal Fourier series
with respect to {uj}∞1 :

f ∼
∞∑

j=1

cjuj , where cj = (f, wj)G . (3.3)

Theorem 3.2. Under the assumptions of Theorem 3.1, the series in (3.3) admits the
summability to f by the Abel–Lidskĭı method of order

n

2m
+ ε if ε > 0 is sufficiently

small.

This method was defined in (Lidskĭı 1962) and was called there Abel’s method. In
the simplest case, when all the generalized eigenfunctions are actually eigenfunctions
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and all the eigenvalues lie, say, in the angle {λ : | arg λ| ≤ θ} with some θ ∈ (0, π),
the definition of this method of order γ (0 < γθ < π/2) is as follows: there exists an
increasing sequence {νk}∞1 of nonnegative integers (independent of f) with ν1 = 0
such that the series

∞∑
k=1

νk+1∑
j=νk+1

e−λγ
j tcjuj (3.4)

converges in L2(G) for t > 0 and its sum f(t) tends to f in L2(G) as t ↘ 0. Here
λγ

j = |λj |γeiγ arg λj . The definition for the general case can be found in (Lidskĭı 1962)
or in the survey (Agranovich 1990). Theorem 3.2 follows from a variant of Lidskĭı’s
theorem indicated in (Agranovich 1977).

We now set
L(θ) = {λ : arg λ = θ} . (3.5)

Theorem 3.3 (Agmon 1962). Let the boundary problem (1.1)–(1.2) be elliptic with
parameter along the rays L(θ1) and L(θ2), where 0 < θ2 − θ1 < min{2mπ/n, 2π},
and not elliptic with parameter along some ray L(θ0), θ1 < θ0 < θ2. Then the angle
{λ : θ1 < arg λ < θ2} contains infinitely many eigenvalues of AB.

This result was called in (Agmon 1962) the statement on the angular distribution
of eigenvalues.

Theorem 3.4 (Agmon 1962). In particular, let the boundary problem (1.1)–(1.2) be
elliptic with parameter along all the rays L(θ) with θ0−ε < θ < θ0 and θ0 < θ < θ0+ε
for some ε > 0 and not elliptic with parameter along L(θ0). Then any angular
neighbourhood of L(θ0) contains infinitely many eigenvalues of AB.

Such a ray L(θ0) is called the ray of condensation of eigenvalues in (Agmon 1962).

3.2. Remark 3.5. From the Basic Theorem it can be easily seen that under the
condition of weak smoothness the Banach space adjoint (AB,p)∗ of the operator AB,p

corresponds to the formally adjoint boundary problem.
Indeed, let v be in the domain of (AB,p)∗. Then, by definition, v and h = (AB,p)∗v

are elements of Lp′(G) and

(Au, v)G = (u, h)G for all u ∈ D(AB,p) ,

where
1
p
+

1
p′

= 1. Assume for simplicity that the boundary problem (1.1)–(1.2) and its

formally adjoint (1.7)–(1.8) are both uniquely solvable for λ = 0. Let w ∈W 2m
p′ (G) be

the solution of the formally adjoint problem with homogeneous boundary conditions
and f̃ in (1.7) replaced by h. Then we have, by the definition of the formally adjoint
problem,

(Au, v − w)G = 0

for all u ∈ C2m(G) satisfying the boundary conditions Bju = 0 (j = 1, . . . ,m), and
therefore for all u ∈ D(AB,p). But the range of AB,p is the whole space Lp(G), and
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we obtain v = w in Lp′(G) which shows that v lies in the domain of the operator
corresponding to the formally adjoint problem. On the other hand, it is clear that
every function in this domain lies in D((AB,p)∗) and that the two operators coincide
for these functions.

We will use this result only for p = 2. Note that under the conditions indicated
in Subsection 2.5, this result was proved for p = 2 in (Faierman 1990b).

4 Trace Asymptotics of Powers of the Resolvent

4.1. Let T be a compact operator in a Hilbert space H. Recall that the s-numbers
sj(T ) (j = 1, 2, . . .) are the nonzero eigenvalues of the nonnegative operator (TT ∗)1/2

(or, which is the same, of (T ∗T )1/2) arranged so that

s1(T ) ≥ s2(T ) ≥ . . . (4.1)

and each eigenvalue is repeated according to its multiplicity. As usual, we set

|T |q =
( ∞∑

j=1

[sj(T )]q
) 1

q

(4.2)

for 0 < q < ∞. All operators T with |T |q < ∞ form the Neumann–Schatten space
Sq; for q ≥ 1 it is a Banach space with the norm | · |q. Obviously Sq1 ⊂ Sq2 if q1 < q2.
The operators from S2 are the Hilbert–Schmidt operators. If H = L2(G), where G is
a domain in Rn, then S2 coincides with the class of integral operators

Tf(x) =
∫

G

K(x, y)f(y) dy (4.3)

with kernelsK(x, y) ∈ L2(G×G). The operators from S1 are the trace class operators;
they have the trace

trT =
∞∑

j=1

λj(T ) , (4.4)

where the series is absolutely convergent; here each eigenvalue of T is repeated ac-
cording to its multiplicity, and

|trT | ≤ |T |1 . (4.5)

If H = L2(G) and T is a trace class operator with kernel K(x, y) in (4.3) continuous
in G×G, then

trT =
∫

G

K(x, x) dx . (4.6)

We also note that if B is a bounded operator in H, then

sj(TB) ≤ ‖B‖ sj(T ) , (4.7)
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so that
|TB|q ≤ ‖B‖ |T |q . (4.8)

Finally, we note that if T = T1 . . . Ts, where Tj ∈ Sq and s ≤ q, then

|T | q
s
≤ |T1|q · . . . · |Ts|q . (4.9)

See (Gohberg and Krĕın 1965, Chapters II and III) and also the survey (Agranovich
1990) and references therein.

4.2. Assume that the assumptions of the Basic Theorem 2.1 are satisfied. Then for
λ ∈ L with large |λ| the resolvent R(λ) is a bounded operator from L2(G) to W 2m

2 (G).
It follows that

sj(R(λ)) ≤ C(λ) j−
2m
n . (4.10)

This estimate and the estimate (5.4) below are valid for Lipschitz domains and follow
from similar estimates on a torus, cf. (Agmon 1962), (Beals 1967) or (Triebel 1978,
Section 4.10.1).

Let q be a natural number such that 2mq > n. Then R(λ) ∈ Sq in L2(G), and
hence R(λ)q ∈ S1. If the boundary problem is smooth, then we have the asymptotic
formula (1.13) (even with the remainder O(|λ|n−1

2m −q)).
The facts mentioned in these two subsections will also be used in Section 5.

4.3. Now we intend to prove Theorem 4.1, the main theorem of this section.

Theorem 4.1. Assume that | arg a0(x, ξ)| ≤ θ1 < θ ≤ π and that the minimal
smoothness assumptions are satisfied for G and A(x,D). Let 2mq > n, and let q be
even. Then for the Dirichlet boundary problem (1.1), (1.15) the formula (1.13) is true
in

Lθ = {λ : | arg λ| ≥ θ} ∪ {0} (4.11)

with cq indicated in (1.14).

Proof. At first we need

Lemma 4.2. There exists a bounded domain G̃ with C∞ boundary Γ̃ such that G
and G̃ are connected by a diffeomorphism of class C2m−1,1.

This is almost obvious. Nevertheless, we give a complete proof.

Proof of the Lemma. We first consider a small part of the boundary. Using a rotation
and a shift of the coordinate system in Rn, we assume that this part is the graph of
a function

xn = ϕ(x′) ∈ C2m−1,1(O′
r) , (4.12)

where O′
r is the ball {x′ ∈ Rn−1 : |x′| < r}. Moreover, we assume that for some s > 0

the sets
{x ∈ Rn : x′ ∈ O′

r, ϕ(x′) < xn < ϕ(x′) + s} (4.13)
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and
{x ∈ Rn : x′ ∈ O′

r, ϕ(x′)− s < xn < ϕ(x′)} (4.14)

lie in G and outside G, respectively. Let θ(x′) be a C∞0 function, i.e. a C∞ function
with compact support, such that ∫

θ(x′) dx′ = 1 . (4.15)

We set θh(x′) = h1−nθ(x′/h) for small h and choose a function α(x′) ∈ C∞(O′
r) such

that
α(x′) ≥ 0, α(x′) = 1 in O′

r/3, and α(x′) = 0 outside O′
2r/3 . (4.16)

Now we set

ϕh(x′) = α(x′)
∫
θh(x′ − y′)ϕ(y′) dy′ + [1− α(x′)]ϕ(x′) . (4.17)

Obviously ϕh(x′) is a C∞ function in O′
r/3, it uniformly tends to ϕ(x′) as h→ 0, and

ϕh(x′) = ϕ(x′) for |x′| ∈
(2r

3
, r

)
. (4.18)

We fix an ε ∈ (0, s/3) (it will be chosen later) and assume h to be so small that

|ϕh(x′)− ϕ(x′)| ≤ ε for x′ ∈ O′
r . (4.19)

Now we fix h = h(ε). The local repairing of the boundary consists in the replace-
ment of ϕ(x′) by ϕh(x′). The new domain is obtained from the original one by the
replacement of the set (4.13) by the set

{x ∈ Rn : x′ ∈ O′
r, ϕh(x′) < xn < ϕ(x′) + s} . (4.20)

To define a C2m−1,1-diffeomorphism of the original domain onto the new one, it
suffices to define a C2m−1,1-diffeomorphism x 7→ x̃ of the set (4.13) onto the set
(4.20) with x̃ instead of x in (4.20) in such a way that the points x near those with
|x′| = r and/or xn = ϕ(x′)+ s do not move. For this we fix a non-increasing function
β(t) ∈ C∞([0, s]) such that

β(0) = 1 and β(t) = 0 near s

and set
x̃′ = x′ ,
x̃n = xn + [ϕh(x′)− ϕ(x′)]β(xn − ϕ(x′)) .

}
(4.21)

Obviously x̃n = xn for |x′| > 2r/3 (see (4.18)) and near xn = ϕ(x′) + s, and we only
need to make the function x̃n(xn) strongly monotonic. Since

∂x̃n

∂xn
= 1 + [ϕh(x′)− ϕ(x′)]β′(xn − ϕ(x′)) ,
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it suffices to choose ε in (4.19) so that

εmax |β′(t)| < 1 .

Thus, we constructed the desired diffeomorphism. Repeating this procedure suffi-
ciently many times, we repair Γ completely and obtain the desired domain G̃. �

Now we will use the notation x 7→ x̃ for the diffeomorphism of G onto G̃. For a
function v(x̃) on G̃, we set

u(x) = v(x̃(x)) = (Tv)(x) .

Our diffeomorphism transforms the equation (1.1) into the equation

T−1A(x,D)Tv − λv = T−1f . (4.22)

Here Ã(x̃,Dx̃) = T−1A(x,Dx)T is a partial differential operator of order 2m with the
principal symbol

ã0(x̃, ξ̃) = a0

(
x(x̃),

(∂x
∂x̃

)′−1

ξ̃
)
, (4.23)

where ∂x
∂x̃ is the Jacobian matrix and the dash denotes the transposed matrix (see e.g.

(Agranovich 1990, Section 1.4)). Obviously the set of values of the principal symbol
remains the same. The minimal smoothness conditions for Ã follow from those for A.
Finally, our transform preserves the Dirichlet boundary conditions. Indeed, they can
be interpreted as the inclusion

u ∈W 2m
2 (G) ∩

◦
Wm

2 (G) , (4.24)

where
◦
Wm

2 (G) is the closure of C∞0 (G) in Wm
2 (G), and our transform preserves these

Sobolev spaces. Thus, our diffeomorphism defines the similarity transform

AD 7→ ÃD = T−1AD T (4.25)

that preserves all the assumptions of the theorem. Since the spectrum is preserved
under a similarity transform, we now assume, without loss of generality, that G is
smooth, i.e. Γ ∈ C∞.

4.4. The next step is to construct an operator A(h)(x,D) with C∞ top order co-
efficients a(h)

α (x) (|α| = 2m) that uniformly converge to aα(x) as h → 0. The pro-
cedure is routine: we prolongate aα(x) (|α| = 2m) to continuous functions in Rn,
take a C∞0 function θ(x) with property similar to (4.15),

∫
θ(x) dx = 1, and set

θh(x) = h−nθ(x/h) (h > 0). Finally, we set

a(h)
α (x) =

∫
θh(x− y)aα(y) dy (|α| = 2m, x ∈ G) . (4.26)
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Obviously a(h)
α (x) ∈ C∞(G) and a(h)

α (x) → aα(x) (h→ 0) uniformly in G.
For |α| < 2m we take a(h)

α (x) ≡ 0. Thus we set

A(h)(x,D) =
∑

|α|=2m

a(h)
α (x)Dα (4.27)

and consider the Dirichlet problem for this operator. It is elliptic with parameter in L
if h is sufficiently small, 0 < h < h0, and smooth. We can assume that the resolvents

R(λ) = RAD
(λ) and R(h)(λ) = R

A
(h)
D

(λ) (4.28)

with any h < h0 exist for λ ∈ L with |λ| > r0, where r0 is independent of h, and we
now consider the difference of the powers of these resolvents.

4.5. We have

R(λ)q −R(h)(λ)q =
∑

q1+q2=q−1
q1, q2∈Z+

R(λ)q1 [R(λ)−R(h)(λ)]R(h)(λ)q2 (4.29)

for any positive integer q. Here

R(λ)−R(h)(λ) = R(h)(λ)[A(h)
D −AD]R(λ) . (4.30)

This formula is correct since

D(AD) = D(A(h)
D ) . (4.31)

Proposition 4.3. For any ε > 0 there exist positive h1 = h1(ε) and r1 = r1(ε) such
that

‖ [AD −A
(h)
D ]R(λ)‖ < ε (4.32)

for any h ∈ (0, h1) and λ ∈ L with |λ| ≥ r1.

Proof. For f ∈ L2(G) set

u = R(λ)f and w = [AD −A
(h)
D ]u .

According to the Basic Theorem,

‖u‖2m,2,G + |λ| ‖u‖0,2,G ≤ C ‖f‖0,2,G ,

where C does not depend upon f and λ. Further, w = w1 + w2, where

w1(x) =
∑

|α|=2m

[aα(x)− a(h)
α (x)]Dαu(x) and w2(x) =

∑
|α|<2m

aα(x)Dαu(x) .
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Here
‖w1‖0,2,G ≤ η(h) ‖u‖2m,2,G ,

where η(h) → 0 as h→ 0, and

‖w2‖0,2,G ≤ C ′ ‖u‖2m−1,2,G .

In view of the interpolation inequality (see (2.12)),

|λ| 1
2m ‖u‖2m−1,2,G ≤ C ′′

(
‖u‖2m,2,G + |λ| ‖u‖0,2,G

)
,

where C ′′ does not depend upon λ and u. Thus

‖ [AD −A
(h)
D ]R(λ)‖ ≤ C η(h) + C C ′ C ′′ |λ|− 1

2m , (4.33)

and from here we obtain the desired result. �

Combining Proposition 4.3 with (4.8) and (4.30), we obtain

Corollary 4.4. For any ε > 0 there exist positive h1 = h1(ε) and r1 = r1(ε) such
that

|R(λ)−R(h)(λ)|q < ε |R(h)(λ)|q (4.34)

and
|R(λ)|q ≤ (1 + ε) |R(h)(λ)|q (4.35)

for h ∈ (0, h1) and λ ∈ L with |λ| ≥ r1.

4.6. Now, assuming that 2mq > n, we deduce from (4.5), (4.9), (4.29), (4.34) and
(4.35) that

|trR(λ)q − trR(h)(λ)q| ≤ C1ε |R(h)(λ)|qq (4.36)

for the same h and λ, where C1 does not depend upon h and λ. We repeat that
since A(h)

D corresponds to a smooth boundary problem, we have a formula of the form
(1.13) for trR(h)(λ)q with c(h)

q instead of cq, where

c(h)
q =

1
(2π)n

∫
G

dx

∫
Rn

dξ

[a(h)
0 (x, ξ) + 1]q

and a
(h)
0 is the (principal) symbol of A(h); obviously c(h)

q → cq as h → 0. It remains
to prove that

|R(h)(λ)|qq ≤ C |λ| n
2m−q . (4.37)

Up to now q was any natural number such that 2mq > n. Now we assume that q is
even and set

q = 2k . (4.38)
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Instead of (4.37) we will indicate an asymptotic formula for the left-hand side of
(4.37). We have

|R(h)(λ)|qq =
∞∑

j=1

sq
j(R

(h)(λ)) =
∞∑

j=1

λk
j [R(h)(λ)R(h)(λ)∗] . (4.39)

Here the operator R(h)(λ)∗ corresponds to the Dirichlet problem for the equation

A(h)(x,D)∗v(x)− λv(x) = f̃(x) in G . (4.40)

Since the operator R(h)(λ)R(h)(λ)∗ is selfadjoint, from (4.39) it follows that

|R(h)(λ)|qq =
∞∑

j=1

λj [(R(h)(λ)R(h)(λ)∗)k] . (4.41)

The operator in the square brackets in (4.41) corresponds to a composition of q
Dirichlet boundary problems. This composition is the boundary problem

(A(h)∗ − λ)(A(h) − λ) . . . (A(h)∗ − λ)(A(h) − λ)u = f in G (4.42)

(q factors) with the boundary conditions

∂j−1
ν u = 0 ,

∂j−1
ν (A(h) − λ)u = 0 ,

∂j−1
ν (A(h)∗ − λ)(A(h) − λ)u = 0 ,

...

∂j−1
ν (A(h) − λ) . . . (A(h)∗ − λ)(A(h) − λ)u = 0

(4.43)

on Γ (j = 1, . . . ,m; q rows). To simplify the notation, we temporarily assume that
L = R− and hence λ = λ. Then this boundary problem is a particular case of
boundary problems polynomially depending on a parameter and having the form

A(x,D, λ)u ≡
∑

|α|+γl≤2µ

λlaαl(x)Dαu = f in G , (4.44)

Bj(x,D, λ)u ≡
∑

|β|+γl≤µj

λlbjβl(x)Dβu = 0 (j = 1, . . . , µ) on Γ . (4.45)

In (4.44) the operator has even order 2µ; in (4.45) we assume for simplicity that
µj < 2µ. The parameter λ has the weight γ with respect to the differentiation. In
(4.42)–(4.43) γ = 2m and µ = mq.

The definition of ellipticity with parameter of the boundary problem (4.44)–(4.45)
is a natural generalization of Definition 1.1. Let L be a closed angle in the complex
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plane with vertex at the origin. Denote by a0(x, ξ, λ) and bj0(x, ξ, λ) the principal
symbols of A(x,D, λ) and Bj(x,D, λ):

a0(x, ξ, λ) =
∑

|α|+γl=2µ

λlaαl(x)ξα, bj0(x, ξ, λ) =
∑

|β|+γl=µj

λlbjβl(x)ξβ . (4.46)

The boundary problem (4.44)–(4.45) is called elliptic with parameter in L if

(1) a0(x, ξ, λ) 6= 0 for x ∈ G, 0 6= (ξ, λ) ∈ Rn × L;

(2) for any x0 ∈ Γ in the coordinate system associated with this point the boundary
problem

a0(x0, ξ
′,Dn, λ)v(t) = 0 (t = xn > 0) ,

bj0(x0, ξ
′,Dn, λ)v(t) = 0 (j = 1, . . . , µ) at t = 0 ,

v(t) → 0 as t→∞
(4.47)

has only the trivial solution.
For such boundary problems a corresponding variant of the Basic Theorem is true;

cf. (Agmon and Nirenberg 1963), (Agranovich and Vishik 1964) and further papers
indicated in Section 2. In particular, for λ ∈ L with large modulus the boundary
problem (4.44)–(4.45) with any f ∈ L2(G) has a unique solution u ∈ W 2µ

2 (G), and
the a priori estimate

‖u‖2µ,2,G + |λ|
2µ
γ ‖u‖0,2,G ≤ C ‖f‖0,2,G (4.48)

is true. Let R(λ)f = u and 2µ > n; then R(λ) is a trace class operator. Assume that
the boundary problem is smooth; then an asymptotic formula for trR(λ) is known,
see e.g. (Grubb 1986, Section 3.4) and (Bŏımatov and Kostjuchenko 1991). For us it
is convenient to write it in the form

trR(λ) = c̃ (−λ)
n
γ −

2µ
γ + o

(
|λ|

n
γ −

2µ
γ

)
(λ→∞ in L) , (4.49)

where
c̃ =

1
(2π)n

∫
G

dx

∫
Rn

a−1
0 (x, η,−1) dη , (4.50)

so that the main term in (4.49) is defined by the principal symbol, as in (1.13).2

In our case,
a0(x, ξ, λ) = |a(h)

0 (x, ξ)− λ|q

2In (Grubb 1986) the main term is written in the form

1

(2π)n

∫
G

dx

∫
Rn

a−1
0 (x, ξ, λ) dξ .

If L = R−, we make the substitution ξ = |λ|1/γη. If L is larger, we can additionally use the analytic
continuation. Cf. (Agranovich 1990, Section 5.7).
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and Condition (1) is obviously satisfied. To check Condition (2), it is convenient to
linearize the corresponding boundary problem (4.47). We set

v1(t) = v(t) ,

v2(t) =
(
a
(h)
0 (x0, ξ

′,Dn)− λ
)
v1(t) ,

v3(t) =
(
a
(h)
0 (x0, ξ

′,Dn)− λ
)
v2(t) ,

...

vq(t) =
(
a
(h)
0 (x0, ξ

′,Dn)− λ
)
vq−1(t) .

Then we successively obtain that vq(t) ≡ 0, . . . , v1(t) ≡ 0 as solutions of the boundary
problem (

a
(h)
0 (x0, ξ

′,Dn)− λ
)
w(t) = 0 (t > 0) ,

Dj−1
n w(t) = 0 (j = 1, . . . ,m) at t = 0 ,

w(t) → 0 (t→ +∞)

or of the similar problem with a(h)
0 instead of a(h)

0 . Our problem is smooth, and using
the result (4.49), we obtain

|R(h)(λ)|qq = c̃ |λ| n
2m−q + o

(
|λ| n

2m−q
)

(4.51)

as λ→ −∞ along R−, where

c̃ =
1

(2π)n

∫
G

dx

∫
Rn

|a(h)
0 (x, ξ) + 1|−q dξ . (4.52)

To obtain a similar result if L 6= R−, we consider the boundary problem (4.42)–
(4.43) as depending polynomially on |λ| with coefficients continuously depending upon
arg λ. The final result is the formula (4.51) with

c̃ = c̃(h, arg λ) =
1

(2π)n

∫
G

dx

∫
Rn

∣∣∣a(h)
0 (x, ξ)− λ

|λ|

∣∣∣−q

dξ . (4.53)

This coefficient is a continuous and hence a bounded function. As to the remainder
estimate in (4.51), it is at least uniform in arg λ for a fixed h. This result together
with (4.36) is sufficient to finish the proof of the theorem. �

Remark 4.5. In the proof of (4.51) it is actually unessential that the boundary
conditions are those of the Dirichlet problem. We see that the following proposition
is true:

Proposition 4.6. Let the boundary problem (1.1)–(1.2) be smooth and elliptic with
parameter in L. Let q be an even number such that 2mq > n. Then

|RAB
(λ)|qq = c̃(arg λ) |λ| n

2m−q + o
(
|λ| n

2m−q
)

(λ→∞ in L) (4.54)
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uniformly in arg λ, where

c̃(arg λ) =
1

(2π)n

∫
G

dx

∫
Rn

∣∣∣a0(x, ξ)−
λ

|λ|

∣∣∣−q

dξ . (4.55)

Actually it is possible to improve the remainder estimate; moreover, it is possible
to indicate an asymptotic expansion for the left-hand side. We do not dwell on this.

Remark 4.7. There is another way to obtain results of the form (4.54). Namely, we
can linearize the boundary problem with respect to λ. In particular, in (4.42)–(4.43)
we can set

u1 = u, u2 = (A(h) − λ)u, . . . , uq = (A(h) − λ) . . . (A(h)∗ − λ)(A(h) − λ)u ,

and then we obtain a matrix Dirichlet problem

AU − I(λ)U = F in G ,
∂j−1

ν U = 0 (j = 1, . . . ,m) on Γ ,

where U = (u1, . . . , uq)′, F = (0, . . . , 0, f)′,

A =


A(h) −1 0 0 . . . 0 0

0 A(h)∗ −1 0 . . . 0 0
... · · ·

...
0 0 0 0 . . . A(h) −1
0 0 0 0 . . . 0 A(h)∗

 ,

and I(λ) = diag (λ, λ, . . . , λ, λ). The matrix A = (Ajk) has a Douglis–Nirenberg
structure: ord Ajk ≤ sj + tk, where tk = 2m(q − k + 1) and sj = −2m(q − j). Note
that tj + sj = 2m is independent of j. This matrix boundary problem is elliptic with
parameter |λ| if λ ∈ L, in the sense of the corresponding generalization of Definition
1.1. In the case of a usual elliptic system (with sk and tk independent of k) the
structure of the resolvent R(λ) = (Rjk(λ)) was investigated in (Seeley 1969). As
was pointed out in (Agranovich 1992), this analysis can be carried over to Douglis–
Nirenberg systems. In particular, we can find the structure of R1q(λ), it again is
defined by the principal symbol of the system, and this again yields (4.54).

The linearization with respect to the parameter can be convenient in more com-
plicated situations, including matrix boundary problems that depend upon λ polyno-
mially.

5 Trace Asymptotics of Powers of the Resolvent for
Weakly Smooth Problems

Our main goal in this section is to prove Theorem 5.1:
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Theorem 5.1. Let the boundary problem (1.1)–(1.2) be weakly smooth and elliptic
with parameter in Lθ (see (4.11)). Let 2mq > n and q be even. Then formula (1.13)
holds with cq defined in (1.14).

As was indicated in the Introduction, we will obtain stronger results, the uniform
estimate and the pointwise asymptotics of the kernel uniform on compact subsets in
G (see (5.12) and (5.17)).

5.1. We begin with some preparations. Let T be a bounded operator in L2(G). If
X and Y are normed linear submanifolds in L2(G) and if the restriction of T to X is
a continuous operator from X to Y , then we denote its norm by ‖T‖X→Y .

Lemma 5.2. Let T be a bounded operator in L2(G). Assume that its range is
contained in W l

p(G), where l ∈ N, p ≥ 2, and lp > n. Then T is an integral operator
(4.3), where the kernel K(x, y) has the following properties: K(x0, y) ∈ L2(G) for any
fixed x0 ∈ G; K(x, ·) is a continuous function of x with values in L2(G), and(∫

G

|K(x, y)|2 dy
) 1

2

≤ c ‖T‖τ
L2→W l

p
‖T‖1−τ

L2→Lp
, (5.1)

where τ = n/lp and the constant c depends only upon l, n, p and G. In particular, T
is a Hilbert–Schmidt operator.

This lemma and its proof are the direct generalizations of those for p = 2 in
(Agmon 1965a). The boundedness T : L2(G) → W l

p(G) follows from the continuity
of the embedding W l

p(G) ↪→ L2(G) and the closed graph theorem. Since lp > n, the
space W l

p(G) is continuously embedded in C(G), and moreover, the Hölder inequality
(2.3) holds for u = Tf , f ∈ L2(G). The mapping L2(G) 3 f 7→ (Tf)(x) is a bounded
linear functional; this yields the representation (4.3) with K(x, y) ∈ L2(G) for any
fixed x. Taking fx = fx(y) = K(x, y) with a fixed x, we obtain (5.1) from (2.2).
Taking f = fxx̃ = fx − fx̃ and using (2.3), we justify the continuity of K(x, y) as a
function of x with values in L2(G). �

Here for simplicity we restrict ourselves to bounded G and l ∈ N. Note that the
assumption that Γ ∈ C0,1 is sufficient for the validity of the Lemma.

Lemma 5.3. Let T = T1T
∗
2 , where the operators T1 and T2 in L2(G) satisfy the

assumptions of Lemma 5.2. Then T is a trace class operator, and in its integral
representation (4.3) the kernel K(x, y) is continuous in G×G. In addition,

|K(x, y)| ≤ c̃ ‖T1‖τ
L2→W l

p
‖T1‖1−τ

L2→Lp
‖T2‖τ

L2→W l
p
‖T2‖1−τ

L2→Lp
, (5.2)

where τ = n/lp and the constant c̃ depends only upon l, n, p, and G.

Proof. The operator T belongs to the trace class as the product of two Hilbert–
Schmidt operators. LetK1(x, y) andK2(x, y) be the kernels of T1 and T2, respectively.
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Then T is the integral operator with the kernel

K(x, y) =
∫

G

K1(x, z)K2(y, z) dz . (5.3)

Using the Schwartz inequality, it is easy to check that K(x, y) is continuous in x in
G uniformly with respect to y and continuous in y in G uniformly with respect to x.
Thus K(x, y) is continuous in G × G. The estimate (5.2) is also obtained by means
of the Schwartz inequality and (5.1). �

Now we consider an operator T in L2(G) with the following property: for any p,
2 ≤ p <∞, its restriction to Lp(G) is a bounded operator from this space to W l

p(G)
with some fixed l ∈ N. Obviously T is a compact operator in L2(G), and

sj(T ) ≤ C j−
l
n . (5.4)

Let k ∈ N be such that
kl >

n

2
. (5.5)

From (4.9) it follows that T k is a Hilbert–Schmidt operator. Let us check that T k

satisfies the assumptions of Lemma 5.2. For this we choose the numbers p1, . . . , pk

such that

2 = p1 < . . . < pk, τi =
n

l

(
1
pi
− 1
pi+1

)
< 1 (i = 1, . . . , k − 1) (5.6)

and pk > n/l. It is easy to check that this is possible (noting that the sum of the

differences
1
pi
− 1
pi+1

is equal to
1
2
− 1
pk

). Now we consider T k as the product of

the operators T = Ti : Lpi
(G) → W l

pi
(G) and the Sobolev embedding operators

Si : W l
pi

(G) ↪→ Lpi+1(G):

L2(G) T1−→W l
2(G) S1−→ Lp2(G) T2−→W l

p2
(G) S2−→ Lp3(G) → . . .

Tk−→W l
pk

(G) .

We see that T k is a bounded operator from L2(G) to W l
p(G) with p = pk. Moreover,

using the estimate (2.5) and an easy induction with respect to k, we obtain

‖T k‖L2→W l
pk
≤ ck ‖T‖Lpk

→W l
pk

k−1∏
i=1

(
‖T‖τi

Lpi
→W l

pi

‖T‖1−τi

Lpi
→Lpi

)
(5.7)

and

‖T k‖L2→Lpk
≤ ck ‖T‖Lpk

→Lpk

k−1∏
i=1

(
‖T‖τi

Lpi
→W l

pi

‖T‖1−τi

Lpi
→Lpi

)
, (5.8)

where ck is a constant depending only upon l, n, pi, and G.
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Now we apply Lemma 5.2 to T k and obtain the following result.

Proposition 5.4. Let T be a bounded operator in L2(G), and let its restriction to
Lp(G) with any p ∈ [2,∞) be a bounded operator from this space to W l

p(G) with some
fixed l ∈ N. Let k ∈ N be such that condition (5.5) holds, and let p1, . . . , pk be chosen
so that conditions (5.6) and pk > n/l hold. Then T k is a Hilbert–Schmidt operator,
and in its integral representation of the form (4.3) the kernel K(x, y) belongs to L2(G)
for any fixed x = x0, K(x, · ) is a continuous function on G with values in L2(G),
and (∫

G

|K(x, y)|2 dy
)1/2

≤ c′
k∏

i=1

(
‖T‖τi

Lpi
→W l

pi

‖T‖1−τi

Lpi
→Lpi

)
, (5.9)

where the constant c′ depends only upon l, n, pi, and G, and τk = n/lpk.

Next we apply Lemma 5.3 to T 2k = T k[(T ∗)k]∗ and obtain

Proposition 5.5. Assume that not only T but also T ∗ satisfies the assumptions of
Proposition 5.4. Then T 2k is a trace class operator, and in its integral representation
(4.3) the kernel K(x, y) is continuous on G×G and satisfies the estimate

|K(x, y)| ≤ c′′
k∏

i=1

(
‖T‖τi

Lpi
→W l

pi

‖T‖1−τi

Lpi
→Lpi

‖T ∗‖τi

Lpi
→W l

pi

‖T ∗‖1−τj

Lpi
→Lpi

)
(5.10)

in the notation of Proposition 5.4, where the constant c′′ depends only upon l, n, pi,
and G.

Remark 5.6. Note that the conclusions of Proposition 5.4 remain true also for oper-
ators of the form T kV , where V is a bounded operator in L2(G), and the conclusions
of Proposition 5.5 remain true for operators of the form [T k

1 V ]T k
2 if the operators T1

and T ∗2 satisfy the assumptions of Proposition 5.4.

This remark will be used in Section 8.

5.2. Now we can return to the consideration of R(λ)q. We apply Proposition 5.5 to
T = R(λ) with l = 2m and k = q/2. Since ‖R(λ)‖Lp→Lp

≤ Cp|λ|−1 and the same is
true for R(λ)∗, and since

−
k∑

i=1

(1− τi) =
n

4m
− q

2
,

we obtain

Proposition 5.7. Let the assumptions of Theorem 5.1 be satisfied. Then

R(λ)qf(x) =
∫

G

K(x, y, λ)f(y) dy , (5.11)
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where for λ ∈ Lθ with sufficiently large modulus the kernel K(x, y, λ) is a function
continuous in G×G for any fixed λ, and uniformly

|K(x, y, λ)| ≤ C |λ| n
2m−q , (5.12)

where C does not depend upon x, y and λ.

5.3. We are now going to use these results to obtain pointwise asymptotics for
K(x, x, λ), see the relation (5.17) below. As was indicated in the Introduction, these
pointwise asymptotics, together with (5.12), lead directly to the proof of Theorem 5.1.
However, before proceeding with this endeavour, let us briefly indicate the problems
involved by comparing our work with that of Agmon (Agmon 1965a). In his work
Agmon considers at first the case where 2m > n, q = 1, and Lθ is just a ray; and
using methods different from ours, he is able to establish Proposition 5.7. In order to
determine the asymptotic behaviour of K(x, x, λ) at a point x0 ∈ G, Agmon consid-
ers the resolvent S(λ) of the operator induced in L2(Rn) by the constant coefficient
differential operator

A0(x0,D) =
∑

|α|=2m

aα(x0)Dα, (5.13)

and shows that S(λ) is an integral operator; denote its kernel by F (x, y, λ). Then
employing the arguments he used in establishing Proposition 5.7, he proves that for
any ε, 0 < ε < dist{x0,Γ}, there is a neighbourhood Uε of x0 such that for λ ∈ Lθ

with |λ| sufficiently large and for ζ(x) ∈ C∞ with compact support lying in Uε and
ζ(x0) = 1, the operator ζ

(
R(λ)−S(λ)

)
ζ is an integral operator in L2(G) whose kernel

ζ(x)
(
K(x, y, λ)−F (x, y, λ)

)
ζ(y) is continuous in G×G for any fixed λ and is bounded

in modulus by Cε
n

2m |λ| n
2m−1, where the constant C does not depend upon x, y, λ,

and ε, and where we have also used ζ to denote the operator of multiplication by ζ.
The desired asymptotic formula for K(x0, x0, λ) follows immediately from this last
result.

Returning again to the problem under our consideration, we could try, like Agmon,
to determine the asymptotic behaviour of K(x0, x0, λ) by a consideration of the kernel
of the operator ζ

(
R(λ)q−S(λ)q

)
ζ. Unfortunately, since we are dealing with products

of operators, the arguments of Agmon cannot be used directly to obtain an estimate
for the modulus of this kernel. However we shall show that by introducing a sequence
of C∞0 functions {ζj(x)}k

0 , where ζ0(x) = ζ(x) and ζj+1(x)ζj(x) = ζj(x), and by
considering products of operators involving terms of the form ζj−1R(λ)ζj , ζj−1S(λ)ζj ,
ζj−1R

∗(λ)ζj , and ζj−1S
∗(λ)ζj , the arguments we used in proving Proposition 5.7

apply in full force in allowing us to establish the required estimate. As in the problem
treated by Agmon, this estimate gives the desired asymptotic formula forK(x0, x0, λ).

Let A0(x0,D) be defined as above (see (5.13)), let x0 ∈ F , where F is a compact
subset of G, and for 1 < p < ∞ let Ap denote the realization of A0(x0,D) as an
operator in Lp(Rn), with D(Ap) = W 2m

p (Rn). Then it follows from Proposition 2.5
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that if λ ∈ Lθ and |λ| ≥ a > 0, then λ belongs to the resolvent set of Ap and

|||Sp(λ)f |||2m,p,Rn ≤ cp‖f‖0,p,Rn (5.14)

for f ∈ Lp(Rn), where
Sp(λ) = (Ap − λI)−1 (5.15)

and the constant cp does not depend upon x0, f , and λ. We shall suppose from now
on that λ ∈ Lθ with |λ| ≥ a and henceforth write S(λ) for S2(λ); note for later use
that Sp(λ)f = S(λ)f for f ∈ Lp(Rn) ∩ L2(Rn). Note also that S(λ)q is an integral
operator in L2(Rn) with the kernel

F (q)(x, y, λ) =
1

(2π)n

∫
Rn

ei(x−y)·ξ

[a0(x0, ξ)− λ]q
dξ , (5.16)

which is continuous in Rn × Rn for any fixed λ and is bounded in modulus by the
expression on the right side of (5.12), where now the constant C does not depend
upon x, y, x0, and λ.

Let ϕ(x), ψ(x), χ(x), and {ϕj(x)}k
1 be functions in C∞(Rn) such that for 0 ≤

j ≤ k + 2, 0 ≤ ϕj(x) ≤ 1, ϕj(x) = 1 in a neighbourhood of x = 0, suppϕj

is contained in the ball |x| < 1, and ϕj(x)ϕj+1(x) = ϕj(x) for j = 0, . . . , k + 1,
where we have written ϕ0(x) for ϕ(x), ϕk+1(x) for ψ(x), and ϕk+2(x) for χ(x). For
0 < δ < dist {x0,Γ} let ϕδ(x) = ϕ

(
δ−1(x−x0)

)
, define ψδ(x), χδ(x), and ϕδ

j(x), j =
1, . . . , k, analogously, and put Rjδ(λ) = ϕδ

j−1R(λ)ϕδ
j , R

†
jδ(λ) = ϕδ

j−1R
∗(λ)ϕδ

j for
j = 1, . . . , k, where ϕδ

0 = ϕδ and where we also use the ϕδ
j to denote the operators of

multiplication by the ϕδ
j . Now let us observe that if we write T for R(λ) or R∗(λ), then

ϕδ
j−1T = ϕδ

j−1ϕ
δ
jT = ϕδ

j−1Tϕ
δ
j − ϕδ

j−1[T, ϕ
δ
j ], where [T, ϕδ

j ] denotes the commutator
Tϕδ

j − ϕδ
jT for 1 ≤ j ≤ k. Hence if we apply this observation to the expression

ϕδR(λ)qϕδ =
(
ϕδR(λ)k

)(
ϕδR∗(λ)k

)∗
and pass through every term, except the last, in each of the products R(λ)k and
R∗(λ)k twice by a ϕδ

j with corresponding j, proceeding from left to right in a successive
manner, then it is not difficult to verify that

Pδ(λ) = ϕδR(λ)qϕδ −

 k∏
j=1

Rjδ(λ)

  k∏
j=1

R†jδ(λ)

∗

is a finite sum of operators of the form

−

r−1∏
j=1

Rjδ(λ)

 (
ϕδ

r−1[R(λ), ϕδ
r]η

δ
r

)
R(λ)k−r

(
ϕδR∗(λ)k

)∗
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and

−

 k∏
j=1

Rjδ(λ)

 r−1∏
j=1

R†jδ(λ)

(
ϕδ

r−1[R
∗(λ), ϕδ

r]η
δ
r

)
R∗(λ)k−r

∗

,

where 1 ≤ r ≤ k, ηδ
r = I or ϕδ

r, and
∏r−1

j=1 · · · = 1 if r = 1. Bearing in mind that[
R(λ), ϕδ

r

]
= R(λ)

[
ϕδ

r, A(x,D)
]
R(λ), let us note that (for brevity we omit showing

the Sobolev embedding operator Sk+1−r of Subsection 5.1)

‖ϕδ
r−1[R(λ), ϕδ

r]η
δ
r‖Lpk+1−r

→Lpk+2−r

≤ ‖R(λ)‖Lpk+1−r
→Lpk+2−r

‖ [ϕδ
r, A(x,D)]R(λ) ‖Lpk+1−r

→Lpk+1−r
,

and that (see Subsection 2.1 and Theorem 2.1)

‖ [ϕδ
r, A(x,D)]R(λ) ‖Lpk+1−r

→Lpk+1−r
≤ c1

2m−1∑
j=0

δj−2m|λ|
j

2m−1 ≤ c2δ
−1|λ|− 1

2m

for |λ| ≥ max{δ−2m, λ0}, where pk+1 = ∞ and the constants cj do not depend upon
x0, λ, and δ. Hence since an analogous result also holds for ϕδ

r−1[R
∗(λ), ϕδ

r]η
δ
r , we

can now argue as we did above in establishing Proposition 5.7 to show that for |λ|
sufficiently large (and in particular we require that |λ| ≥ δ−2m), Pδ(λ) is an integral
operator in L2(G) with a kernel which is continuous in G × G for any fixed λ and
which is bounded in modulus by Cδ−1|λ| n

2m−q− 1
2m , where the constant C does not

depend upon x, y, λ, x0, and δ.
Next let

Qδ(λ) = ϕδS(λ)qϕδ −

 k∏
j=1

Sjδ(λ)

  k∏
j=1

S†jδ(λ)

∗

,

where Sjδ(λ) = ϕδ
j−1S(λ)ϕδ

j , S
†
jδ(λ) = ϕδ

j−1S
∗(λ)ϕδ

j , S
∗(λ) denotes the resolvent of

the operator induced in L2(Rn) by the formal adjoint of A0(x0,D), and here ϕδ
j−1

and ϕδ
j are to be interpreted as rG ◦ ϕδ

j−1 and iG ◦ ϕδ
j , respectively, where ϕδ

j−1 is
used as a multiplication operator over Rn and rG denotes the natural restriction:
Rn → G, while ϕδ

j is used as a multiplication operator over G and iG denotes the
natural extension: G → Rn (i.e., the extension by 0 outside G). Then by appealing
to the results of Subsection 2.1 and to (5.14), we can argue with Qδ(λ) as we argued
with Pδ(λ) to show that all the assertions made above concerning Pδ(λ) are also valid
for Qδ(λ). Furthermore, observe that

Rjδ(λ) = Sjδ(λ) + ϕδ
j−1R(λ)ψδ

(
A0(x0,D)−A(x,D)

)
χδS(λ)ϕδ

j

+ϕδ
j−1R(λ)χδ

[
ψδ, A(x,D)

]
χδS(λ)ϕδ

j ,
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and that an analogous result holds for R∗j,δ(λ). Now we can argue as we did with
Pδ(λ) above to show that for |λ| sufficiently large (and in particular, we require that
|λ| ≥ δ−2m), ϕδR(λ)qϕδ − ϕδS(λ)qϕδ is an integral operator in L2(G) with a kernel
which is continuous in G × G for any fixed λ and which is bounded in modulus by
C

(
Φ(δ)+δ−1|λ|− 1

2m

)
|λ| n

2m−q, where the constant C does not depend upon x, y, λ, x0,
and δ, and Φ(δ) → 0 as δ → 0.

Finally, if we observe from (5.16) that F (q)(x0, x0, λ) = cq(x0)(−λ)
n

2m−q (see
(1.14)), then as a consequence of the foregoing results we see that for |λ| sufficiently
large, the estimate

|K(x0, x0, λ)− cq(x0)(−λ)
n

2m−q| ≤ C
(
Φ(δ) + δ−1|λ|− 1

2m

)
|λ| n

2m−q

holds, where the constant C does not depend upon λ, x0, and δ. Hence, since x0 was
an arbitrary point of F , we conclude from this last result that

K(x, x, λ) = cq(x)(−λ)
n

2m−q + o
(
|λ| n

2m−q
)

as |λ| → ∞ (5.17)

uniformly in λ and x for λ ∈ Lθ and x belonging to any compact subset of G. It is a
simple matter to deduce from (5.12) and (5.17) that∫

G

K(x, x, λ)dx = cq(−λ)
n

2m−q + o
(
|λ| n

2m−q
)

as |λ| → ∞

uniformly in Lθ, and thus the proof of Theorem 5.1 is complete. �

6 Rough and Precise Asymptotics of Eigenvalues

6.1. In this section we assume that we have a formula of the form (1.13) for trR(λ)q

with an even q such that 2mq > n in an angle L, or angles, of ellipticity with param-
eter. Because of this the conclusions will hold under the assumptions of Theorem 4.1
or Theorem 5.1.

Besides d (see formula (1.27)), we define the number

∆ =
1

(2π)nn

∫
G

dx

∫
|ξ|=1

|a0(x, ξ)|−
n

2m dSξ . (6.1)

We also introduce the counting function

Nλ(t) = max{j : |λj | ≤ t} (6.2)

for the moduli of the eigenvalues λj(AB) and the counting function

Ns(t) = max{j : s−1
j ≤ t} . (6.3)

Here we assume for simplicity, and without loss of generality, that the operator AB

is invertible, and define sj as the s-numbers of A−1
B .
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It is well known that if the boundary problem is elliptic, normal and smooth, then

Ns(t) = ∆ · t n
2m + o

(
t

n
2m

)
as t→∞ . (6.4)

This follows from the fact that if AB is the operator corresponding to a smooth elliptic
normal boundary problem, then AB(AB)∗ corresponds to a smooth selfadjoint elliptic
normal boundary problem.

Proposition 6.1. Let the boundary problem be elliptic with parameter in some
angle L, and assume that it satisfies the minimal smoothness assumptions. Then the
formula (6.4) is true.

This statement is close to some results in (Beals 1967), see Theorems 5.2 (about
an inequality) and 5.3 (in the case 2m > n) in that paper. See also the paper (Beals
1970) devoted to selfadjoint boundary problems.

We give a complete proof of Proposition 6.1 at the end of the Appendix.
It follows (see (Agranovich and Markus 1989)) that

lim
t→∞

Nλ(t) t−
n

2m ≤ ∆e (6.5)

and
lim

t→∞
Nλ(t) t−

n
2m ≤ ∆ . (6.6)

Moreover,
lim

t→∞
Nλ(t) t−

n
2m > 0 (6.7)

if d 6= 0, so that the following theorem is true:

Theorem 6.2. Let d 6= 0. Then

Nλ(t) � t
n

2m (t→∞) . (6.8)

This means that the ratio Nλ(t)/tn/2m lies between positive constants for large t.
The relations (6.8) and (1.28) are equivalent. Recall that d 6= 0 if

| arg a0(x, ξ)| ≤
πm

n
(6.9)

(see (Agranovich and Markus 1989)), and that the condition of ellipticity with pa-
rameter along all the rays outside the angle {λ : | arg λ| < πm/n} is sufficient for the
completeness of the generalized eigenfunctions (see Section 3).

Theorem 6.3. Let the boundary problem (1.1)–(1.2) be elliptic with parameter along
any ray except R+. Then

Nλ(t) = d · t n
2m + o

(
t

n
2m

)
as t→∞ , (6.10)
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where
d = ∆ =

1
(2π)n

∫
G

dx

∫
a0(x,ξ)<1

dξ (6.11)

(since a0(x, ξ) > 0).

We sketch one of the possible proofs (it was used e.g. in (Agranovich 1987)). Set
λj = λ′j + iλ′′j , where λ′j and λ′′j are real. From our assumptions it follows that

λ′j → +∞ and
λ′′j
λ′j

→ 0 (j →∞) . (6.12)

Moreover, from (6.4) it follows that sj = O(j−2m/n), and hence |λj |−1 = O(j−2m/n)
(see (Gohberg and Krĕın 1965, Chapter II, §3)). Therefore

λ′j ≥ C1 j
2m
n (6.13)

with positive C1 for sufficiently large j. Let us prove that Nλ′(t) = max{j : λ′j ≤ t}
has the asymptotics (6.10). For this, in turn, it suffices to check that

∞∑
j=1

(λj + µ)−q −
∞∑

j=1

(λ′j + µ)−q = o
(
µ

n
2m−q

)
(µ→ +∞) (6.14)

and then to combine (1.13) with the Hardy–Littlewood Tauberian theorem.3

In the left-hand side of (6.14) we may drop any finite number of terms. Let us fix
an ε > 0; assume that we have (6.13) and |λ′′j |/λ′j < ε for j ≥ j1(ε). Then for these j
and µ > 0

|(λj + µ)−q − (λ′j + µ)−q| ≤
∑

q1+q2=q+1
q1,q2∈N

|λj + µ|−q1 |λ′′j | |λ′j + µ|−q2

≤ C2 ε |λ′j + µ|−q ≤ C2 ε |C1 j
2m
n + µ|−q

since |λj + µ|−1 ≤ |λ′j + µ|−1, |λ′′j |
|λ′j+µ| < ε, and we have (6.13). Now (6.14) follows

from this fact and the inequality

∞∑
j=1

(
C1 j

2m
n + µ

)−q

≤ C3 µ
n

2m−q ,

which is a consequence of an Abelian theorem. See the formulations of the Taube-
rian and Abelian theorems e.g. in (Agranovich and Markus 1989). Since under our
assumptions the moduli of the eigenvalues have the same asymptotics as their real
parts, the theorem is proved. �

3Note that cq = bn/2m,qd, where bt,q = tB(t, q − t) and B(t, s) is the Euler Beta function.
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6.2. To go further, we need to generalize the asymptotic formula (1.13) to real
q > n/2m.

Let T be a closed densely defined operator in a Hilbert space H. Assume that the
resolvent set of T contains the angle Lθ (see (4.11)), where 0 < θ < π, and that

(1 + |λ|) ‖(T − λ)−1‖ ≤ Const (6.15)

in this angle. (In Agmon’s terminology, all the rays {λ : arg λ = const} in Lθ are
the rays of minimal growth for the norm of the resolvent RT (λ).) Let Φ(µ) be a
function holomorphic in the angle C\Lθ (it contains the spectrum of T ) and such
that |Φ(µ)| ≤ C|µ|−δ for large |µ|, where δ > 0. Then the operator Φ(T ) is defined
by the formula

Φ(T ) =
1

2πi

∫
S

Φ(µ)(T − µ)−1 dµ , (6.16)

where S is the boundary of Lθ oriented from below to above (see e.g. (Pattisier 1977)
or the survey (Agranovich 1990) and references therein). In particular, if q > 0 and
λ is an interior point of Lθ, then

(T − λ)−q =
1

2πi

∫
S

(µ− λ)−q(T − µ)−1 dµ . (6.17)

Here (µ− λ)−q is defined as |µ− λ|−qe−iq arg(µ−λ), | arg z| < π, i.e. using a cut of the
complex plane along the ray

R
(λ)
− = {µ = σ + λ, σ ∈ R−} . (6.18)

Integrating by parts s times (s ∈ N), we transform this formula into the following one

(T − λ)−q =
1

2πi
(−1)ss!

(1− q) . . . (s− q)

∫
S

(µ− λ)s−q(T − µ)−s−1 dµ . (6.19)

Now we replace S by the new contour Sλ consisting of both sides of our cut along
R

(λ)
− , with the direction from −∞ to λ at the lower side:

(T − λ)−q = cs,q

∫ 0

−∞
|σ|s−q(T − λ− σ)−s−1 dσ

= cs,q

∫ ∞

0

ts−q(T − λ+ t)−s−1 dt , (6.20)

where

cs,q =
(−1)s−1s! sinπ(s− q)
π(1− q) . . . (s− q)

. (6.21)

Here we will need to assume that |s − q| < 1; if q = s, then we have to replace ts−q

in (6.20) and sinπ(s− q)/π(s− q) in (6.21) by 1. Cf. (Krasnosel’skĭı et al. 1966,
Chapter IV).
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We apply formula (6.20) to T = AB assuming, without loss of generality, that this
operator has no eigenvalues in Lθ:

R(λ)q = cs,q

∫ ∞

0

ts−qR(λ− t)s+1 dt . (6.22)

Theorem 6.4. The asymptotic formula (1.13) holds in Lθ for all real q > n/2m
with cq indicated in (1.14).

Proof. Assume that q is greater than n/2m and that q is not an even integer. Denote
by s the odd integer such that |s − q| < 1. Then clearly s + 1 > n/2m, and, by our
assumption,

trR(µ)s+1 = cs+1 (−µ)
n

2m−(s+1) + ρ(µ) , (6.23)

where
ρ(µ) = o

(
|µ| n

2m−(s+1)
)

as µ→∞ in Lθ . (6.24)

Using the linearity of the trace, we obtain from (6.22)

trR(λ)q = cs,q

∫ ∞

0

ts−q trR(λ− t)s+1 dt , (6.25)

this integral being absolutely convergent. Inserting (6.23) into (6.25), we see that

trR(λ)q = cs,q cs+1

∫ ∞

0

ts−q(t− λ)
n

2m−(s+1) dt

+ const
∫ ∞

0

ts−qρ(t− λ) dt . (6.26)

The first integral is a holomorphic function of λ inside Lθ. Let at first λ be real (and
negative); setting t = |λ|τ , we see that this integral is equal to

|λ| n
2m−q

∫ ∞

0

τ s−q(τ + 1)
n

2m−(s+1) dτ .

Using the holomorphic continuation, we can replace |λ| n
2m−q by (−λ)

n
2m−q. In the

second integral in (6.26), for any ε > 0 we have4

|ρ(t− λ)| ≤ ε (t+ |λ|) n
2m−(s+1)

for λ ∈ Lθ with sufficiently large |λ|. Using again the substitution t = |λ|τ , we obtain

trR(λ)q = ĉq (−λ)
n

2m−q + o
(
|λ| n

2m−q
)

(λ→∞ in Lθ) ,

4|t− λ| ≥ c (t + |λ|) for t ≥ 0 and λ ∈ Lθ, where c = const > 0.
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where

ĉq = cs,q cs+1

∫ ∞

0

τ s−q(τ + 1)
n

2m−(s+1) dτ . (6.27)

It can be proved that ĉq = cq. We omit the corresponding elementary calculations.
�

6.3. Now we assume that the boundary problem (1.1)–(1.2) is elliptic with parameter
in two closed angles L(1) and L(2) with only one common point, λ = 0. Let Λ1 and
Λ2 be two open angles forming the complement to L(1) ∪ L(2). Without loss of
generality we assume that Λ1 contains R+ and is symmetric with respect to R+. All
the eigenvalues of AB , except possibly a finite number of them, lie in Λ1 and Λ2.

The set of values of the principal symbol a0(x, ξ) (ξ 6= 0) is also contained in Λ1

and Λ2, but in the scalar case, which we consider, it is connected; let us assume that
it is contained in Λ1. Denote by tr (k)R(λ)q the two parts of the trace of R(λ)q that
correspond to the eigenvalues of AB lying in Λk (k = 1, 2).

Theorem 6.5. Let n/2m < q < 1 + n/2m. Then formula (1.13) remains true for
tr (1)R(λ)q with the same cq. The estimate of the remainder is uniform in any closed
angle that has no common point with Λ1 except 0.

Proof. Without loss of generality we assume that all the eigenvalues of AB lie in Λ1

and Λ2. Then

tr (1)R(λ)q + tr (2)R(λ)q = cq (−λ)
n

2m−q + o
(
|λ| n

2m−q
)
, (6.28)

uniformly in L(1) ∪ L(2). Denote here the remainder by ρ(λ). Denote by T the
boundary of Λ1 with the negative orientation with respect to Λ1. We replace λ by µ
in (6.28), divide all the terms by 2πi(µ− λ) and integrate them along T:

1
2πi

∫
T

tr (1)R(µ)q

µ− λ
dµ+

1
2πi

∫
T

tr (2)R(µ)q

µ− λ
dµ

=
cq
2πi

∫
T

(−µ)
n

2m−q

µ− λ
dµ+

1
2πi

∫
T

ρ(µ)
µ− λ

dµ . (6.29)

Take a point λ to the left of T. In the first and the third terms we can replace T by a
closed contour surrounding λ and lying to the left of T. We see that these terms are
equal to tr (1)R(λ)q and cq(−λ)

n
2m−q, respectively. In the second term we can replace

T by a closed contour lying in Λ1. We see that this term is equal to zero. Thus we
obtain

tr (1)R(λ)q = cq (−λ)
n

2m−q + ρ1(λ) ,

where

ρ1(λ) =
1

2πi

∫
T

ρ(µ)
µ− λ

dµ ,
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and if C\Λ1 = Lθ and θ′ > θ, we only have to verify that

ρ1(λ) = o
(
|λ| n

2m−q
)

(6.30)

uniformly in arg λ, λ ∈ Lθ′ . Let ε > 0 be fixed; find R > 0 such that

|ρ(µ)| ≤ ε |µ| n
2m−q for |µ| ≥ R on T .

On the remaining part TR of T we have

|ρ(µ)| ≤ C |µ| n
2m−q

with some constant C; in addition

|µ− λ|−1 ≤ C ′ (|µ|+ |λ|)−1

on the whole of T. Thus

|ρ1(λ)| ≤ 2C ′ ε
2π

∫ ∞

R

t
n

2m−q

t+ |λ|
dt+

2C C ′

2π

∫ R

0

t
n

2m−q

t+ |λ|
dt .

Using the substitution t = |λ|τ , we easily obtain (6.30). �

Remark 6.6. In the matrix case the eigenvalues λj(x, ξ) of the principal symbol
a0(x, ξ) can lie in Λ1 and Λ2. In this case we can obtain the formula

tr (1)R(λ)q = c(1)q (−λ)
n

2m−q + o
(
|λ| n

2m−q
)
, (6.31)

where
c(1)q =

1
(2π)n

∫
G

dx

∫
Rn

∑
λj(x,ξ)∈Λ1

(λj(x, ξ) + 1)−q dξ . (6.32)

Cf. (Agranovich and Markus 1989).

6.4. Let us indicate the spectral corollaries of Theorem 6.5. The assumptions are
exactly those as above, see the beginnings of Subsections 6.1 and 6.3. Denote by
N

(1)
λ (t) the counting function for the moduli of the eigenvalues of AB lying in Λ1.

Theorem 6.7. Let d 6= 0. Then N
(1)
λ (t) � t

n
2m .

Theorem 6.8. Assume that a0(x, ξ) > 0 and Λ1 = R+ is an isolated ray without
ellipticity with parameter. Then

N
(1)
λ (t) = d · t n

2m + o(t
n

2m ) as t→∞ . (6.33)

Cf. Theorem 3.4. In the matrix case Theorems 6.7 and 6.8 remain valid with
d(1) instead of d, where c(1)q = βqd

(1). Cf. (Agranovich and Markus 1989). Note
that if n/2m 6∈ N, then we can use q ∈ N, and in this case we can directly apply the
Tauberian and Abelian theorems indicated in that paper. If n/2m ∈ N, we have to
use q 6∈ N; in this case we apply the analogues of those theorems for noninteger q;
they are well known or can be checked without difficulties.
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7 Boundary Problems with Transmission Conditions

7.1. Here we will use the notation introduced in Section 1.7. Let Γk be the common
part of the boundaries of the subdomains Gl and Gl′ . We consider the transmission
conditions on Γk of the form

Blkj(x,D)u(l)(x) +Bl′kj(x,D)u(l′)(x) = hj(x) (j = 1, . . . , 2m) on Γk . (7.1)

Here Blkj(x,D) and Bl′kj(x,D) are boundary operators of orders mkj < 2m. By
u(l)(x) and u(l′)(x) we denote the solution in Gl and Gl′ . The boundary problem
consists of the equation (1.1) in each Gl, boundary conditions (1.2) on the outer
boundary Γ, and the transmission conditions (7.1) on each Γk. Actually this is a
problem with N + 1 unknowns u(l), each of which is defined in its own domain Gl.
As we mentioned in Section 1.7, in the minimal smoothness assumptions the top
order coefficients of A(x,D) are continuous in each Gl up to the boundary; in general
they undergo a jump when we cross any Γk. As to Γk and Blkj , in the minimal
smoothness assumptions Γk ∈ C2m−1,1, and the coefficients in Blkj(x,D) belong to
C2m−mkj−1,1(Γk).

In the definition of the ellipticity with parameter we have to add a condition at
any point x0 ∈ Γk for each k. Let the operators A, Blkj , and Bl′kj be written in a
coordinate system associated with the point x0 ∈ Γk on the boundary of, say, Gl′ .
Denote by al0(x0, ξ) and al′0(x0, ξ) the limit values of the principal symbol of A(x,D)
at x0 from Gl and Gl′ , respectively, and by blkj0(x0, ξ) and bl′kj0(x0, ξ) the principal
symbols of Blkj and Bl′kj at x0. Now we formulate the additional condition at x0.
(3) The problem on the line

[al0(x0, ξ
′,Dn)− λ] v(l)(t) = 0 (t = xn < 0) ,

[al′0(x0, ξ
′,Dn)− λ] v(l′)(t) = 0 (t = xn > 0) ,

blkj0(x0, ξ
′,Dn)v(l)(0) + bl′kj0(x0, ξ

′,Dn)v(l′)(0) = 0 (j = 1, . . . , 2m) ,

v(l)(t) → 0 (t→ −∞), v(l′)(t) → 0 (t→ +∞)

(7.2)

has only the trivial solution if 0 6= (ξ′, λ) ∈ Rn−1 × L.
The analogue of the Basic Theorem is obtained under the minimal smoothness

conditions using the same tools. We only indicate the a priori estimate for the case
gj ≡ 0 and hj ≡ 0:

N∑
l=1

|||u(l)|||2m,p,Gl
≤ C ‖f‖0,p,G . (7.3)

In the conditions of weak smoothness we assume the existence of the formally
adjoint problem. We do not consider the question when the adjoint problem exists.

In the case of transmission conditions (1.29) we can check Condition (3) (and the
absolute ellipticity of these transmission conditions) using the following remark. Let
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vj(t) (j = 1, . . . ,m) be linearly independent solutions of an equation a1(Dn)v(t) = 0
with constant coefficients, and let vj(t) → 0 (t → −∞). Further, let wj(t) (j =
1, . . . ,m) be linearly independent solutions of another equation a2(Dn)w(t) = 0 with
constant coefficients, and let wj(t) → 0 (t→ +∞). Then {v1(t), . . . , vm(t), w1(t), . . . ,
wm(t)} is a fundamental system of solutions of an equation a3(Dn)v(t) = 0 with
constant coefficients (namely, a3 = a1a2). Because of this their Wronskian is nonzero.

The results of Sections 2–6 remain true almost without alterations in the state-
ments and the proofs.

8 Boundary Problems with Indefinite Weight

8.1. Recalling again the assumptions, definitions, and notation introduced in Sub-
sections 1.7 and 1.8, we shall be concerned in this section with the spectral properties
of the boundary problem (1.30), (1.2). We shall call the boundary problem (1.30),
(1.2) minimally or weakly smooth according to whether (1.1)–(1.2) is minimally or
weakly smooth. In both cases, ω(x) is assumed to be continuous in each Gk up to
the boundary. Furthermore, it will always be supposed here that the Γk are of class
C2m−1,1, and, unless otherwise stated, that the problem (1.30), (1.2) is minimally
smooth. Note that in the case of weak smoothness we require Γ to be more smooth
than Γk. The analogue of Definition 1.1 for the problem (1.30), (1.2) is as follows.

Definition 8.1. Let L be a closed angle in the complex plane with vertex at the
origin. The boundary problem (1.30), (1.2) is called elliptic with parameter in L if
the following two conditions are satisfied:

(1) For k = 0, . . . , N, a0(x, ξ) − λω(x) 6= 0 for (x, ξ) ∈ Gk × Rn and λ ∈ L if
|ξ|+ |λ| 6= 0, where ω(x) is defined by continuity on ∂Gk.

(2) Let x0 be a point of Γ and let ω(x0) be defined by continuity. Assume that the
boundary problem (1.30), (1.2) is rewritten in a coordinate system associated with
x0. Then for ξ′ ∈ Rn−1 and λ ∈ L the boundary problem on the half-line

a0(x0, ξ
′,Dn)v(t)− λω(x0)v(t) = 0 (t = xn > 0) ,

bj0(x0, ξ
′,Dn)v(t) = 0 (j = 1, . . . ,m) at t = 0 ,

v(t) → 0 (t→∞)

(8.1)

has only the trivial solution if |ξ′|+ |λ| 6= 0.

Then as a consequence of the results mentioned in Section 7 for the transmission
conditions (1.29) we have

Theorem 8.2. Suppose that the boundary problem (1.30), (1.2) is elliptic with
parameter in an angle L. Let 1 < p < ∞. Then there exists a λ0 = λ0(p) > 0 such
that for λ ∈ L with |λ| ≥ λ0 the boundary problem has a unique solution u ∈W 2m

p (G)
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for any f ∈ Lp(G) and gj ∈ W
2m−mj− 1

p
p (Γ), and the a priori estimate (2.10) holds,

where the constant C does not depend upon f, gj, and λ.

8.2. In this subsection we shall always suppose that the hypotheses of Theorem 8.2
are satisfied. Let Vp denote the operator of multiplication by ω in Lp(G). Then
recalling the definition of the operator AB,p introduced in Section 3 it follows from
Theorem 8.2 that the set of regular values of the pencil Sp(λ) = AB,p − λVp is not
empty. Here, as usually, λ is called a regular value of Sp(λ) if Sp(λ) is invertible. We
refer to (Markus 1986) for the relevant terminology concerning pencils. Furthermore,
it is easy to show that the set of all regular values of Sp(λ) is precisely the resolvent
set of V −1

p AB,p, and we conclude from the Rellich–Kondrashov theorem that the spec-
trum of Sp(λ) consists of isolated eigenvalues only. Direct calculations also show that
at an eigenvalue of Sp(λ) (and hence of V −1

p AB,p), the corresponding eigenvectors are
precisely the eigenfunctions of V −1

p AB,p and the eigenvectors and associated vectors
of Sp(λ) are precisely the generalized eigenfunctions of V −1

p AB,p. Thus we conclude
that the eigenvalues of Sp(λ) are all of finite multiplicity.

Because Sp(λ) and V −1
p AB,p are spectrally equivalent in the sense just described,

we will henceforth fix our attention upon V −1
p AB,p. We observe from Theorem 8.2

that if λ ∈ L and |λ| ≥ λ0, then

||| (V −1
p AB,p − λI)−1f |||2m,p,G ≤ Cp‖f‖0,p,G (8.2)

for f ∈ Lp(G), where the constant Cp does not depend upon f and λ. As in Section
3, the eigenvalues and generalized eigenfunctions of V −1

p AB,p do not depend upon p,
and because of this we shall mainly be concerned with the operator V −1AB acting in
L2(G), where we have written V for V2 and AB for AB,2. As in Section 3, we have
the following four theorems.

Theorem 8.3. Assume that the boundary problem (1.30), (1.2) is elliptic with pa-
rameter along some rays L(j) (j = 1, . . . , N) and that the angles between any two
adjacent rays are not greater than 2mπ/n. Then V −1AB has an infinite number of
eigenvalues and the set of all generalized eigenfunctions of V −1AB is complete in
L2(G).

We note that under the hypotheses of Theorem 8.3, the set of all generalized
eigenfunctions of V −1AB is also complete in L2

(
G; |ω(x)|dx

)
. This follows from the

fact that L2(G) and L2

(
G; |ω(x)|dx

)
coincide algebraically and have equivalent norms.

Assuming that the spectrum of V −1AB is not empty, let {λj}j≥1 be the set of all
eigenvalues of V −1AB arranged so that

|λ1| ≤ |λ2| ≤ . . .

and each eigenvalue is repeated according to its multiplicity. Let {uj}j≥1 be the sys-
tem of generalized eigenfunctions of V −1AB composed of bases in each generalized
eigenspace in such a way that uj belongs to the generalized eigenspace corresponding
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to the eigenvalue λj . Then under the assumptions of Theorem 8.3 the uj ’s form an in-
finite complete minimal system and there exists a system {wj}∞1 which is biorthogonal
to {uj}∞1 .

Theorem 8.4. Let f ∈ L2(G). Then under the assumptions of Theorem 8.3 the
series in (3.3) admits the summability to f in both L2(G) and L2

(
G; |ω(x)| dx

)
by

the Abel–Lidskĭı method of order
n

2m
+ ε if ε > 0 is sufficiently small.

Theorem 8.5. Let the boundary problem (1.30), (1.2) be elliptic with parameter
along the rays L(θ1) and L(θ2), where 0 < θ2 − θ1 < min{2mπ/n, 2π}, and not
elliptic with parameter along some ray L(θ0), θ1 < θ0 < θ2. Then the angle {λ : θ1 <
arg λ < θ2} contains infinitely many eigenvalues of V −1AB.

Theorem 8.6. Let the boundary problem (1.30), (1.2) be elliptic with parameter
along all the rays L(θ) with θ0 − ε < θ < θ0 and θ0 < θ < θ0 + ε for some ε > 0, and
not elliptic with parameter along L(θ0). Then any angular neighbourhood of L(θ0)
contains infinitely many eigenvalues of V −1AB.

8.3. Here we indicate the analogues of Theorems 4.1 and 5.1 for the boundary prob-
lem (1.30), (1.2). Accordingly, suppose that the problem (1.30), (1.2) is elliptic with
parameter in an angle L. Then we know from above that the resolvent set of V −1AB

is not empty. We henceforth let Rω(λ) denote the resolvent of V −1AB .

Theorem 8.7. Assume that Condition (1) of Definition 8.1 holds for the angle Lθ

(see (4.11)) and that the minimal smoothness assumptions are satisfied for G and
A(x,D). Let 2mq > n and let q be even. Then for the Dirichlet problem (1.30), (1.15)
we have

trRω(λ)q = cqω(−λ)
n

2m−q + o
(
|λ| n

2m−q
)

as |λ| → ∞, λ ∈ Lθ , (8.3)

uniformly in λ, where

cqω =
∫

G

cqω(x) dx and cqω(x) =
1

(2π)n

∫
Rn

dξ[
ω(x)−1a0(x, ξ) + 1

]q . (8.4)

Recall that the definition of (−λ)... was indicated in Subsection 1.4. Theorem 8.7
follows from the corresponding variant of Theorem 4.1 for transmission problems.

Theorem 8.8. Let the boundary problem (1.30), (1.2) be weakly smooth and elliptic
with parameter in Lθ. Let 2mq > n and let q be even. Then the formula (8.3) is true,
uniformly in λ, where cqω is indicated in (8.4).

Proof. It is clear that for λ ∈ Lθ with |λ| sufficiently large, Rω(λ)q is a trace class
operator in L2(G). Let us set R1(λ) = Rω(λ)kV −1 and R2(λ) =

(
V −1(AB)∗−λI

)−k,
where k = q/2. Then, using the formulas (V −1AB − λI)−1 = (AB − λV )−1V and
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(
V −1(AB)∗ − λI

)−1 =
(
(AB)∗ − λV

)−1
V , we see that Rω(λ)q admits the decom-

position Rω(λ)q = R1(λ)R2(λ)∗V . Now we argue as we did in Subsection 5.2 but
use Remark 5.6. We see that R1(λ) is an integral operator in L2(G) (it is in fact
a Hilbert–Schmidt operator) with a kernel K1(x, y, λ) having the same properties as
those asserted for K(x, y) in the statements preceding (5.1) and satisfying(∫

G

∣∣K1(x, y, λ)
∣∣2 dy)1/2

≤ c |λ| n
4m−k

for x ∈ G and λ ∈ Lθ with |λ| ≥ λ0, where the constant c does not depend upon
x and λ. Since analogous results also hold for the operator R2(λ), we can now
appeal to Remark 5.6 and argue as we did in Subsection 5.2 to show that for λ ∈
Lθ with |λ| sufficiently large, Rω(λ)q is an integral operator with kernel Kω(x, y, λ)
= K(x, y, λ)ω(y), where K(x, y, λ) is continuous in G×G and∣∣K(x, y, λ)

∣∣ ≤ C |λ| n
2m−q ; (8.5)

here the constant C does not depend upon x, y, and λ.
Next for 0 ≤ j ≤ N , let x0 ∈ F , where F is a compact subset of Gj , and

let 0 < δ < dist {x0, ∂Gj}. Then it follows from an obvious modification of the
arguments of Subsection 5.3 that for λ ∈ Lθ with |λ| sufficiently large, Kω(x0, x0, λ)
−cqω(x0)(−λ)

n
2m−q is bounded in modulus by C

(
Φ(δ) + δ−1|λ|− 1

2m

)
|λ| n

2m−q, where
the constant C does not depend upon λ, x0, δ, and j, and Φ(δ) → 0 as δ → 0. Hence

Kω(x, x, λ) = cqω(x)(−λ)
n

2m−q + o
(
|λ| n

2m−q
)

as |λ| → ∞ (8.6)

uniformly in λ and x for λ ∈ Lθ and x belonging to any compact subset of Gj . It is
a simple matter to deduce from (8.5) and (8.6) that∫

G

Kω(x, x, λ)dx = cqω(−λ)
n

2m−q + o
(
|λ| n

2m−q
)

as |λ| → ∞

uniformly in Lθ, and thus the proof of the theorem is complete. �

Note that
cqω = b n

2m ,qdω , (8.7)

where
dω =

1
(2π)nn

∫
G

dx

∫
|ξ|=1

[
ω(x)−1a0(x, ξ)

]− n
2m dSξ , (8.8)

bt,q is defined in the footnote in Section 6, and the power is defined by using a cut
along R−.

8.4. In this subsection we are going to derive rough and precise asymptotics for the
eigenvalues of V −1AB . Accordingly, we shall henceforth suppose that the boundary



Weakly smooth nonselfadjoint spectral elliptic boundary problems 47

problem (1.30), (1.2) is elliptic with parameter in an angle or angles, and that we
have there a formula of the form (8.3). Note that the results established below hold
under the assumptions similar to those in Theorem 8.7 or Theorem 8.8. Furthermore,
in deriving our estimates, we shall suppose from now on that 0 is in the resolvent set
of V −1AB (clearly this involves no loss of generality).

Let Nλ(t) and Ns(t) be defined as in (6.2) and (6.3), respectively, where now λj

are the eigenvalues of V −1AB and sj are the s–numbers of (V −1AB)−1. Let

∆ω =
1

(2π)nn

∫
G

dx

∫
|ξ|=1

∣∣ω(x)−1a0(x, ξ)
∣∣− n

2m dSξ . (8.9)

Then we have the analogue of (6.4), namely

Ns(t) = ∆ωt
n

2m + o
(
t

n
2m

)
as t→∞ . (8.10)

The proof is similar to that of Proposition 6.1, see Subsection A.7.
Hence it follows from (8.10) and (Agranovich and Markus 1989) that (6.5) and

(6.6) hold with ∆ replaced by ∆ω. Furthermore, (6.7) holds if dω 6= 0. Thus we
obtain

Theorem 8.9. If dω 6= 0, then Nλ(t) � t
n

2m .

By arguing precisely as in the proof of Theorem 6.4, we can also show that

Theorem 8.10. The asymptotic formula (8.3) holds for all real q > n/2m with cqω

indicated in (8.4).

Suppose next that the boundary problem (1.30), (1.2) is elliptic with parameter
in two closed angles L(1) and L(2) which intersect only at the origin. Let Λ1 and Λ2

denote the two open angles complementary to L(1)∪L(2), and let us suppose that R+ is
the bisectrix of Λ1. Let G(1) denote the union of the Gk for which ω(x)−1a0(x, ξ) ∈ Λ1

for x ∈ Gk and ξ ∈ Rn\{0}, and let tr (1)Rω(λ)q denote the part of the trace of Rω(λ)q

that corresponds to the eigenvalues of V −1AB lying in Λ1. Finally, let

d(1)
ω =

1
(2π)nn

∫
G(1)

dx

∫
|ξ|=1

[
ω(x)−1a0(x, ξ)

]− n
2m dSξ , (8.11)

where the power is defined by using a cut along R−. Following arguments similar to
those used in the proof of Theorem 6.5, we obtain

Theorem 8.11. Let n/2m < q < 1 + n/2m. Then

tr (1)Rω(λ)q = b n
2m ,qd

(1)
ω (−λ)

n
2m−q + o

(
|λ| n

2m−q
)

as |λ| → ∞ , (8.12)

uniformly in any closed angle that has no common points with Λ1 except 0.

Let us indicate a corollary of Theorem 8.11. Accordingly, let N (1)
λ (t) = max

{j : |λj | ≤ t, λj ∈ Λ1}.
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Theorem 8.12. If d(1)
ω 6= 0, then N

(1)
λ (t) � t

n
2m .

Proof. The proof follows from the same kind of arguments that were used in estab-
lishing Theorem 8.9, but now we make use of (8.12) instead of (8.3). �

Assuming that ω(x) changes its sign in G, we are now going to use Theorem 8.11
to obtain an analogue of Theorem 6.8. Accordingly, suppose that a0(x, ξ) > 0 for
x ∈ G and ξ ∈ Rn\{0} and that the boundary problem (1.30), (1.2) is elliptic with
parameter along every ray emanating from the origin with the exception of the rays
R±. Then it follows from Theorem 8.6 that for any ε satisfying 0 < ε < π/2, there
are infinitely many eigenvalues of V −1AB lying in each of the angles | arg λ| < ε and
|π−arg λ| < ε, while there are at most a finite number of eigenvalues lying in each of
the angles ε ≤ arg λ ≤ π−ε and −π+ε ≤ arg λ ≤ −ε. Let N+

λ (t) = max{j : |λj | ≤ t,
Reλj ≥ 0}, N−

λ (t) = max{j : |λj | ≤ t, Reλj < 0}, so that Nλ(t) = N+
λ (t) +N−

λ (t).
Lastly, let ω+(x) = max{ω(x), 0}, ω−(x) = max{−ω(x), 0}.

Theorem 8.13. Let a0(x, ξ) > 0 for x ∈ G and ξ ∈ Rn\{0}. Let the boundary
problem (1.30), (1.2) be elliptic with parameter along every ray emanating from the
origin with the exception of the rays R±. Then

N±
λ (t) = κ±t

n
2m + o

(
t

n
2m

)
as t→∞ , (8.13)

Nλ(t) = κt
n

2m + o
(
t

n
2m

)
as t→∞ , (8.14)

where

κ± =
1

(2π)n

∫
G

(ω±)
n

2m dx

∫
a0(x,ξ)<1

dξ (8.15)

and

κ = ∆ω =
1

(2π)n

∫
G

|ω| n
2m dx

∫
a0(x,ξ)<1

dξ . (8.16)

Proof. It follows from Theorem 8.11 that∑
Re λj≥0

1
(λj + t)q

= b n
2m ,qκ

+t
n

2m−q + o
(
t

n
2m−q

)
as t→∞ ,

and hence by arguing as in the proof of Theorem 6.3 we obtain∑
Re λj≥0

1(
|λj |+ t

)q = b n
2m ,qκ

+t
n

2m−q + o
(
t

n
2m−q

)
as t→∞ .

The assertion for N+
λ (t) now follows from the Hardy–Littlewood Tauberian theorem.

The assertion for N−
λ (t) can be obtained in the same way if we replace ω in (1.30) by

−ω. The assertion for Nλ(t) then follows from these results. �
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9 Some Generalizations

9.1. In this section we again consider the boundary problem (1.1)–(1.2), where we
now make the following smoothness assumptions: 1) Γ is of class C2m−1,1; 2) the
coefficients aα(x) are measurable and bounded and the top order coefficients aα(x)
for |α| = 2m are continuous in G; 3) the coefficients bjβ(x) belong to the Hölder space
C2m−mj−1,γ(Γ) with a fixed γ, 0 < γ < 1. Thus we have minimal smoothness for Γ
and A(x,D) and a weaker smoothness for Bj(x,D).

From the proof of the Basic Theorem (Theorem 2.1) it can be seen that under
these smoothness assumptions the Basic Theorem holds for any fixed p with 1 < p <
(1− γ)−1. For this we only note that the continuity of Bj(x,D) as an operator from

W 2m
p (G) to W

2m−mj− 1
p

p (Γ) follows from the remarks at the end of Subsection A.1 of
the Appendix.

Now assume that these smoothness assumptions are fulfilled with γ > 1/2. Then
the generalized eigenfunctions of the operator AB,p belong to the intersection of all
spaces W 2m

p (G) with 1 < p < (1 − γ)−1 and the spectrum of AB,p does not depend
upon p for these values of p. Moreover, the results of Section 3 can be extended,
where now in Theorem 3.1 the generalized eigenfunctions are complete in Lp(G) for
1 < p < (1 − γ)−1. We can also extend Theorem 4.1 and its consequences stated in
Section 6, the proofs remaining literally the same. The smoothness assumptions in
Section 7 and Section 8 can also be somewhat weakened.

9.2. An essential property of the coefficients of Bj(x,D) is that they must be mul-

tipliers in the space W
2m−mj− 1

p
p (Γ). Here a function is called a multiplier if the

operator of multiplication by it is a continuous operator in the corresponding Sobolev
space. The space of all multipliers in a given Sobolev space is described in (Maz’ya
and Shaposhnikova 1986). With the tools and results from this book, our minimal
smoothness assumptions can be somewhat further weakened. In the present paper we
preferred to avoid the corresponding complicated notions and used simpler conditions.

Appendix

In this Appendix we prove Theorem V (see Subsection 2.1), the results stated in
Subsection 2.3 and Proposition 6.1. In the following, c1, c2, . . . denote constants not
depending upon parameters and functions entering in the corresponding inequalities.

A.1. We begin with the proof of Theorem V. Let b ∈ Cs−1,1(Γ) with 1 ≤ s ≤ 2m.
As Γ is of class C2m−1,1, there exists an open covering Γ ⊂

⋃N
j=1 Uj of Γ and local

coordinates
η(j) : Uj → Ũj ⊂ {y ∈ Rn : |yi| < 1 (i = 1, . . . , n)}

of class C2m−1,1(Uj) with η(j)(Uj ∩ Γ) = Ũj ∩ Rn−1, cf. (Grisvard 1985, Section
1.2.1). Using a C∞ partition of unity subordinated to this covering, we see that it



50 Mikhail Agranovich, Robert Denk, and Melvin Faierman

is sufficient to consider functions on Rn−1 with support contained in {y′ ∈ Rn−1 :
|yi| < 1 (i = 1, . . . , n− 1)}. Note that in local coordinates b ∈ Cs−1,1(Rn−1); assume
that the derivatives of b of order s−1 are Lipschitz continous with Lipschitz constant
L.

We fix a δ > 0 and use the equivalence of the norm in W
s− 1

p
p (Rn−1) to the norm

‖v‖(1)
s− 1

p ,p,Rn−1 = ‖v‖0,p,Rn−1 +
n−1∑
j=1

[ ∫ δ

0

t−p

∫
Rn−1

|∆t,jDs−1
j v(y′)|p dy′ dt

] 1
p

, (A.1)

where
∆t,jv(y′) = v(y1, . . . , yj + t, . . . , yn−1)− v(y′)

(see (Triebel 1978, Theorem 2.5.1)). We have to estimate ‖bv‖(1)
s− 1

p ,p,Rn−1 . Set

S = sup{|Dα′b(x′)| : |α′| ≤ s− 1, x′ ∈ Rn−1} . (A.2)

Then obviously
‖bv‖0,p,Rn−1 ≤ S ‖v‖0,p,Rn−1 . (A.3)

To estimate the sum in (A.1), we use the Leibniz rule and see that each term of this
sum can be estimated by a linear combination of terms of the form[ ∫ δ

0

t−p

∫
Rn−1

|Dk
j b(y1, . . . , yj + t, . . . , yn−1) ∆t,jDs−1−k

j v(y′)|p dy′ dt
] 1

p

(A.4)

and [ ∫ δ

0

t−p

∫
Rn−1

|∆t,jDk
j b(y

′) · Ds−1−k
j v(y′)|p dy′ dt

] 1
p

, (A.5)

where k is an integer between 0 and s−1. The expression in (A.4) is not greater than

S
[ ∫ δ

0

t−p

∫
Rn−1

|∆t,jDs−1−k
j v(y′)|p dy′ dt

] 1
p ≤ S ‖v‖(1)

s− 1
p ,p,Rn−1 . (A.6)

For 0 ≤ k < s − 1 we apply the Lagrange formula to the real and imaginary part of
Dk

j b and obtain the inequality

|∆t,jDk
j b(y

′)| ≤ 2t S , (A.7)

and hence the expression in (A.5) is not greater than

c1 S‖v‖s−1,p,Rn−1 . (A.8)
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For k = s − 1 we use the fact that Ds−1
j b is Lipschitz continuous. We have the

inequality |∆t,jDs−1
j b(y′)| ≤ Lt, and therefore the expression in (A.5) is not greater

than a constant times L‖v‖0,p,Rn−1 . This completes the proof. �

We remark that from the proof above it is easily seen that the norm of this
multiplication operator tends to zero if S → 0, where S is defined as in (A.2) using
local coordinates. Indeed, for 0 < µ < 1/p we get from the Lipschitz continuity the
inequality

|∆t,jDs−1
j b(y′)| ≤ (Lt)1−µ (2S)µ , (A.9)

and therefore for k = s− 1 the expression in (A.5) is not greater than

(2S)µL1−µ
( ∫ δ

0

t−µp dt
) 1

p ‖v‖0,p,Rn−1 . (A.10)

It follows that the norm of the operator of multiplication by b is not greater than
c2(S + L1−µSµ) with c2 = c2(µ).

These considerations also show that the assumptions on the function b can be

weakened: it is sufficient for b to belong to the Hölder class Cs−1,γ(Γ) with γ > 1− 1
p
.

Indeed, in this case we have the inequality |∆t,jDs−1
j b(y′)| ≤ L̃tγ for some constant

L̃. Therefore, (A.9) holds with the right-hand side replaced by (L̃tγ)1−µ(2S)µ, and

the corresponding integral in (A.10) converges for µ < 1 − γ−1
(
1 − 1

p

)
. Cf. also

(Grisvard 1985, Theorem 1.4.1.1).

A.2. In the following we will use the notations ρ and γu defined at the beginning of
Subsection 2.3.

Proof of Proposition 2.2. First we want to remark that parts a) and b) of this
proposition hold even in the case when Γ is of class C0,1. Part a) is an immediate
consequence of (Grisvard 1985, Theorem 1.5.1.10), part b) is formulated in (Grisvard

1985, Theorem 1.4.3.3). To prove c), we first note that γu ∈W s− 1
p

p (Γ) and

‖γu‖s− 1
p ,p,Γ ≤ c3‖u‖s,p,G , (A.11)

see for instance (Grisvard 1985, Theorem 1.5.1.2). From a) we see that

ρs− 1
p ‖γu‖0,p,Γ ≤ C1

(
ρs−1‖u‖1,p,G + ρs‖u‖0,p,G

)
, (A.12)

and from part b) with k = 1 the desired result follows. �

A.3. Let us formulate a variant of Michlin’s multiplier theorem, cf. (Triebel 1978,
Section 2.2.4).
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Let p > 1 and let w(ξ) be a function on Rn\{0} for which the derivatives of order
not greater than

[n
2

]
+ 1 exist (where

[n
2

]
denotes the largest integer not greater

than
n

2
). Assume that the estimate

|ξ||β| |Dβ
ξw(ξ)| ≤ c4 <∞ (A.13)

holds for all ξ ∈ Rn\{0} and for all β with |β| ≤
[n
2

]
+ 1, where the constant c4 does

not depend upon ξ and β. Then the function w is a Fourier multiplier in Lp(Rn), i.e.
the operator u 7→ F−1wFu is a continuous operator in Lp(Rn). Moreover, the norm
of this operator is not greater than c(p)c4 with a constant c(p) depending only on n
and p.

We will use this theorem replacing n by n− 1.
Proof of Proposition 2.3. a) First we derive some estimates for the operator cor-
responding to the Fourier multiplier Ω(ξ′, xn, ρ). Setting r = |ξ′| and Ω(ξ′, xn, ρ)
= Ω̃(r, xn, ρ), we see that for all multi-indices β′ = (β1, . . . , βn−1) the expression
|ξ′||β′| Dβ′

ξ′ Ω(ξ′, xn, ρ) is a finite sum of terms of the form

wk(ξ′)rk
( ∂

∂r

)k

Ω̃(r, xn, ρ) , (A.14)

where 0 ≤ k ≤ |β′| and wk(ξ′) is a bounded function in Rn−1\{0}. As

rk
∣∣∣( ∂

∂r

)k

Ω̃(r, xn, ρ)
∣∣∣ = (rxn)k exp(−(r + ρ)xn) ≤ k! exp(−ρxn) , (A.15)

we see that the condition of the multiplier theorem is fulfilled with the constant
c4 in (A.13) replaced by a constant times exp(−ρxn). Due to this theorem, for
u = F ′

−1ΩF ′v the inequality

‖u(·, xn)‖0,p,Rn−1 ≤ c5 exp(−ρxn) ‖v‖0,p,Rn−1 (A.16)

holds with c5 independent (also) of xn.
Similarly, the function

|ξ′||β
′|Dβ′

ξ′

(
|ξ′|Ω(ξ′, xn, ρ)

)
is a finite sum of terms of the form (A.14) with rk replaced by rk+1. Therefore, we
obtain the inequality∥∥∥(

F ′
−1|ξ′|Ω(ξ′, xn, ρ)F ′v

)
(·, xn)

∥∥∥
0,p,Rn−1

≤ c6
exp(−ρxn)

xn
‖v‖0,p,Rn−1 (A.17)

with c6 independent (also) of xn.
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b) Using the integration with respect to xn, we obtain from (A.16) that

ρs‖u‖0,p,Rn
+
≤ c7 ρ

s− 1
p ‖v‖0,p,Rn−1 . (A.18)

Now fix α′ = (α1, . . . , αn−1) and l ≥ 0 with |α′| + l ≤ s. We want to estimate
‖F ′−1

ξ′
α′Dl

nΩF ′v‖0,p,Rn
+

and write

ξ′
α′Dl

nΩ = (−1)l ξ
′α′(|ξ′|+ ρ)l

|ξ′|s + ρs
(|ξ′|sΩ + ρsΩ) . (A.19)

For ρ ≥ ρ0 > 0 the quotient on the right-hand side of (A.19) is a Fourier multiplier
whose norm can be estimated by a constant not depending upon xn and ρ. As the
term ρsΩ was already considered above, it remains to estimate∥∥∥F ′−1|ξ′|sΩF ′v

∥∥∥
0,p,Rn

+

. (A.20)

For this we fix an extension w ∈W s
p (Rn

+) of v. From the explicit construction of such
an extension in (Adams 1975, p. 201) we see that we may assume

‖w‖s,p,Rn
+
≤ c8 ‖v‖s− 1

p ,p,Rn−1 and ‖w(·, xn)‖0,p,Rn−1 ≤ c8 ‖v‖0,p,Rn−1 (A.21)

with a constant c8 independent of v and xn. Following (Volevich 1965), we write

F ′
−1|ξ′|sΩF ′v = −

∫ ∞

0

∂

∂τ

(
F ′

−1|ξ′|sΩ(ξ′, xn + τ, ρ)(F ′w)(ξ′, τ)
)
dτ = −u1 − u2

(A.22)
with

u1(x) =
∫ ∞

0

F ′
−1|ξ′|sDnΩ(ξ′, xn + τ, ρ)(F ′w)(ξ′, τ) dτ ,

u2(x) =
∫ ∞

0

F ′
−1|ξ′|sΩ(ξ′, xn + τ, ρ)(F ′Dnw)(ξ′, τ) dτ .

c) To estimate ‖u1‖0,p,Rn
+
, we write |ξ′|sDnΩ(ξ′, xn + τ, ρ) in the form

− |ξ′|s−1(|ξ′|+ ρ)
(1 + |ξ′|2) s

2 + ρs
|ξ′| Ω(ξ′, xn + τ, ρ)

[
(1 + |ξ′|2) s

2 + ρs
]
. (A.23)

Again the norm of the quotient in (A.23) as a Fourier multiplier can be estimated by
a constant independent of xn and ρ. If we set

a(x′, τ) = F ′
−1

[
(1 + |ξ′|) s

2 + ρs
]
(F ′w)(ξ′, τ) , (A.24)
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we can apply (A.17) with v replaced by a(·, xn) and get

‖u1‖0,p,Rn
+

=
( ∫ ∞

0

‖u1(·, xn)‖p
0,p,Rn−1 dxn

) 1
p

≤ c9

( ∫ ∞

0

[ ∫ ∞

0

exp(−ρτ)
xn + τ

‖a(·, τ)‖0,p,Rn−1 dτ
]p

dxn

) 1
p

. (A.25)

The inner integral in (A.25) is the Hilbert transform Φ̃(xn) of the function

Φ(τ) =
{

exp(−ρτ)‖a(·, τ)‖0,p,Rn−1 , τ ≥ 0 ,
0 , τ < 0 . (A.26)

As the Hilbert transform is continuous in Lp(R) (see, e.g., (Titchmarsh 1948, Chapter
V)), we get

‖u1‖0,p,Rn
+
≤ c9‖Φ̃‖0,p,R ≤ c10‖Φ‖0,p,R . (A.27)

It remains to estimate

‖Φ‖0,p,R =
( ∞∫

0

[
exp(−ρτ)‖a(·, τ)‖0,p,Rn−1

]p

dτ
) 1

p

≤
( ∞∫

0

[
exp(−ρτ)‖F ′−1(1 + |ξ′|2) s

2F ′w(·, τ)‖0,p,Rn−1

]p

dτ
) 1

p

+
( ∞∫

0

[
exp(−ρτ) ρs ‖w(·, τ)‖0,p,Rn−1

]p

dτ
) 1

p

. (A.28)

Using the inequality exp(−ρτ) ≤ 1 and the first inequality in (A.21), the first integral
on the right-hand side of (A.28) can be estimated by

‖w‖s,p,Rn
+
≤ c8 ‖v‖s− 1

p ,p,Rn−1 . (A.29)

Noting that ∫ ∞

0

ρ exp(−pρτ) dτ =
1
p

and using the second inequality in (A.21), we see that the last integral in (A.28) is
not greater than

c11 ρ
s− 1

p ‖v‖0,p,Rn−1 . (A.30)

From (A.27)–(A.30) we obtain that

‖u1‖0,p,Rn
+
≤ c12 |||v|||s− 1

p ,p,Rn−1 . (A.31)



Weakly smooth nonselfadjoint spectral elliptic boundary problems 55

d) To estimate ‖u2‖0,p,Rn
+
, we write |ξ′|sΩ(ξ′, xn + τ, ρ) in the form

|ξ′|s−1

(1 + |ξ′|2) s−1
2

|ξ′| Ω(ξ′, xn + τ, ρ)
[
(1 + |ξ′|2)

s−1
2

]
(A.32)

and use the same steps as in c). Setting

b(x′, τ) = F ′
−1(1 + |ξ′|2)

s−1
2 F ′Dnw(ξ′, τ) , (A.33)

we see that

‖u2‖0,p,Rn
+

≤ c13

( ∫ ∞

0

[ ∫ ∞

0

1
xn + τ

‖b(·, τ)‖0,p,Rn−1 dτ
]p

dxn

) 1
p

≤ c14 ‖v‖s− 1
p ,p,Rn−1 . (A.34)

e) From (A.18), (A.31) and (A.34) we see that |||u|||s,p,Rn
+

is not greater than a
constant times |||v|||s− 1

p ,p,Rn−1 , which finishes the proof of Proposition 2.3. �

A.4. Proof of Proposition 2.4. We obviously have

‖A(x,D)u‖0,p,G +
m∑

j=1

‖Bj(x,D)u‖2m−mj− 1
p ,p,Γ ≤ c15‖u‖2m,p,G (A.35)

and

ρ2m−mj− 1
p ‖Bj(x,D)u‖0,p,Γ ≤ c16 ρ

2m−mj− 1
p

∑
|β|≤mj

‖(Dβu)|Γ‖0,p,Γ

≤ c16
∑

|β|≤mj

|||(Dβu)|Γ|||2m−mj− 1
p ,p,Γ . (A.36)

From Proposition 2.2 c) and 2.2 b) we see that

|||(Dβu)|Γ|||2m−mj− 1
p ,p,Γ ≤ c17 |||Dβu|||2m−mj ,p,G ≤ c18 |||u|||2m,p,G , (A.37)

which proves the inequality (2.15). �

A.5. Proof of Proposition 2.5. Let a(ξ) be the symbol of A(D), and fix an α with
|α| ≤ 2m. It is easily checked that the estimate

|Dβ
ξ [ξα(a(ξ)− λ)−1]| ≤ c19 (|ξ|+ ρ)|α|−|β|−2m ≤ c19 ρ

−2m+|α| |ξ|−|β| (A.38)

holds, where c19 is independent of ξ. If u is a solution of (A(D) − λ)u = f , we
have Fu = (a(ξ) − λ)−1Ff . From (A.38) and the multiplier theorem, we obtain for
|α| ≤ 2m

‖Dαu‖0,p,Rn ≤ c20 ρ
−2m+|α| ‖f‖0,p,Rn . (A.39)
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Therefore, the a priori estimate (2.16) holds, which also shows the uniqueness of the
solution. On the other hand, from (A.39) we see that u = F−1(a(ξ)− λ)−1Ff is an
element of W 2m

p (Rn) and a solution. �

A.6. Proof of Proposition 2.6. a) First we prove the a priori estimate for the case f =
0. Let u ∈W 2m

p (Rn
+) be a solution of (2.17) with f = 0. Then u = F ′

−1(
∑m

j=1 ΩjF
′gj),

where {Ω1, . . . ,Ωm} is the canonical basis of solutions of the equation on the half-line(
a(ξ′,Dn)− λ

)
v(xn) = 0 (xn ≥ 0) , (A.40)

i.e. the basis of the space of all stable solutions of (A.40) which is determined by the
boundary conditions

Bj(ξ′,Dn)Ωk(ξ′, xn, λ) = δjk at xn = 0 .

The function Ωj can be written in the form

Ωj(ξ′, xn, λ) =
∫

S

eiτxnΩ̃j(ξ′, τ, λ) dτ . (A.41)

Here S = S(ξ′, λ) is a smooth contour in the half plane Im τ > 0 enclosing all
zeros of the function τ 7→ a(ξ′, τ)−λ with positive imaginary part, and the functions
Ω̃j(ξ′, τ, λ) are homogeneous in (ξ′, τ, λ1/2m) of degree −mj − 1 in all arguments. Cf.
(Agranovich and Vishik 1964, Proposition 3.2) and (Agmon et al. 1959, Section 1).

For α′ = (α1, . . . , αn−1) and l ≥ 0 with |α′|+ l = 2m, we can estimate

‖F ′−1
ξ′

α′Dl
nΩjF

′gj‖0,p,Rn
+

+ ρ2m‖F ′−1ΩjF
′gj‖0,p,Rn

+
(A.42)

analogously to (Volevich 1965) and along the same steps as in the proof of Proposition
2.3. We differentiate in (A.41) under the integral sign and substitute τ = τ̃(|ξ′|2 +
ρ2)1/2. Using spherical coordinates (r, η′) ∈ Rn with respect to (ξ′, ρ), i.e. with
r = (|ξ′|2 + ρ2)1/2, we obtain in exactly the same way as in (Volevich 1965)∣∣∣Dβ′

ξ′ (|ξ
′|2 + ρ2)−

2m−mj
2 ξ′

α′Dl+1
n Ωj(ξ′, xn, λ)

∣∣∣ ≤ c21
xn

|ξ′|−|β
′| (A.43)

and ∣∣∣Dβ′

ξ′ (|ξ
′|2 + ρ2)−

2m−mj−1
2 ξ′

α′Dl
nΩj(ξ′, xn, λ)

∣∣∣ ≤ c22
xn

|ξ′|−|β
′| , (A.44)

where the constants c21 and c22 are independent of ξ′ and xn. Now we fix an extension
hj ∈W

2m−mj
p (Rn

+) of gj with

|||hj |||2m−mj ,p,Rn
+
≤ C4 |||gj |||2m−mj− 1

p ,p,Rn−1 , (A.45)
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cf. Proposition 2.3. Writing F ′−1
ξ′

α′Dl
nΩjF

′gj = −uj1 − uj2 with

uj1(x) =
∫ ∞

0

F ′
−1
ξ′

α′Dl+1
n Ωj(ξ′, xn + τ, λ)(F ′hj)(ξ′, τ) dτ ,

uj2(x) =
∫ ∞

0

F ′
−1
ξ′

α′Dl
nΩj(ξ′, xn + τ, λ)(F ′Dnhj)(ξ′, τ) dτ ,

we get in the same way as in the proof of Proposition 2.3, using (A.43) and (A.44),
the estimate

|||F ′−1ΩjF
′gj |||2m,p,Rn

+
≤ c23

(
‖a‖0,p,Rn

+
+ ‖b‖0,p,Rn

+

)
(A.46)

where
a(x′, xn) = F ′

−1(|ξ′|2 + ρ2)
2m−mj

2 (F ′hj)(ξ′, xn)

and
b(x′, xn) = F ′

−1(|ξ′|2 + ρ2)
2m−mj−1

2 (F ′Dnhj)(ξ′, xn) .

Therefore

|||u|||2m,p,Rn
+

≤ c24

m∑
j=1

(
|||hj |||2m−mj ,p,Rn

+
+ |||Dnhj |||2m−mj−1,p,Rn

+

)
≤ c25

m∑
j=1

|||gj |||2m−mj− 1
p ,p,Rn−1 , (A.47)

where we have used Proposition 2.2 b) and (A.45).
b) To prove the a priori estimate in the general case, we extend f to Rn by zero

outside Rn
+ and set

ũ0 = F−1(a(ξ)− λ)−1Ff ∈W 2m
p (Rn) . (A.48)

Then we can apply part a) to u1 = u− u0, where u0 denotes the restriction of ũ0 on
Rn

+. The function u1 is a solution of (2.17) with f ≡ 0 and gj replaced by gj−Bj(D)u0.
Due to a), we have

|||u1|||2m,p,Rn
+
≤ c26

( m∑
j=1

|||Bj(D)u0|||2m−mj− 1
p ,p,Rn−1 +

m∑
j=1

|||gj |||2m−mj− 1
p ,p,Rn−1

)
.

(A.49)
From Proposition 2.4 and Proposition 2.5 we see that the first sum in (A.49) is not
greater than

c27|||u0|||2m,p,Rn
+
≤ c28‖f‖0,p,Rn

+
. (A.50)

From (A.49) and (A.50) we obtain the a priori estimate (2.18).
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c) Clearly the a priori estimate implies the uniqueness. On the other hand, if we
define ũ0 by (A.48), u0 as the restriction of ũ0, and u1 by

u1 =
m∑

j=1

F ′
−1ΩjF

′
(
gj −Bj(D)u0

)
, (A.51)

then the calculations above show that u = u0 +u1 ∈W 2m
p (Rn

+) is a solution of (2.17).
�

A.7. Proof of Proposition 6.1. Arguing as in Subsection 4.3, we can assume without
loss of generality that Γ ∈ C∞. We also can assume that the operator A(x,D)
coincides with its principal part. We construct a smooth approximation to A(x,D)
as in Subsection 4.4. We also construct approximations B(h)

j (x,D) for Bj(x,D) with
C∞ coefficients on Γ in local representations, such that these coefficients converge
uniformly to the corresponding coefficients in Bj(x,D) as h→ 0. The operators A(h)

and B
(h)
j define a smooth boundary problem, and we can assume that it is elliptic

with parameter in L for all h, 0 < h ≤ h0. Thus, a formula of the form (6.4) is true
for these smooth boundary problems, and obviously the corresponding quantity ∆(h)

tends to ∆ as h→ 0.
Now we will use the following result from (Beals 1967, p. 1059). Denote by L(0,2m)

the space of bounded operators from L2(G) to W 2m
2 (G). Then for T ∈ L(0,2m) the

quantities

α(T ) = lim
j→∞

sj(T ) jn/2m and β(T ) = lim
j→∞

sj(T ) jn/2m (A.52)

are bounded and uniformly continuous on each bounded set in L(0,2m). We apply this
result to T = R(λ) and T = R(h)(λ), where R(h)(λ) is the resolvent of A(h)

B(h) . Note
that the quantities α(R(λ)), α(R(h)(λ)), β(R(λ)), and β(R(h)(λ)) do not depend on
λ (see (Beals 1967, Theorem 3.2)). It remains to check that for any ε > 0 we have

‖R(λ)−R(h)(λ)‖ < ε

for sufficiently small h and λ ∈ L with sufficiently large modulus. Here and below
‖ · ‖ is the norm in L(0,2m).

For this we set

A(λ) = (A− λ,B1, . . . , Bm), A(h)(λ) = (A(h) − λ,B
(h)
1 , . . . , B(h)

m ) (A.53)

and denote by R(λ) and R(h)(λ) the corresponding inverse operators. Setting f0 =
(f, 0, . . . , 0)′, we have

[R(h)(λ)−R(λ)]f = [R(h)(λ)−R(λ)]f0 = R(h)(λ)[A(λ)−A(h)(λ)]R(λ)f0. (A.54)
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For u = R(λ)f0 we have
|||u|||2m,2,G ≤ C1‖f‖0,2,G (A.55)

with a constant C1 not depending upon λ and f for λ ∈ L with sufficiently large
modulus, according to the Basic Theorem. For

F = (f̃ , g̃1, . . . , g̃m) = [A(λ)−A(h)(λ)]u

and any δ > 0 we have

|||F ||| = ‖f̃‖0,2,G +
∑

|||g̃j |||2m−mj− 1
2 ,2,Γ ≤ (δ + C2(δ)|λ|−

1
2m )|||u|||2m,2,G (A.56)

if h is sufficiently small; again here C2(δ) does not depend upon λ and u. Finally,

‖R(h)(λ)F‖2m,2,G ≤ C3|||F ||| , (A.57)

where C3 does not depend upon F , h and λ ∈ L with sufficiently large modulus.
Inequalities (A.55)–(A.57) imply the desired estimate for ‖R(λ)−R(h)(λ)‖. �
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