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Abstract

The detection of human action in videos of busy natural scenes with dynamic back-

ground is of interest for applications such as video surveillance. Taking a conventional

fully supervised approach, the spatio-temporal locations of the action of interest have

to be manually annotated frame by frame in the training videos, which is tedious and

unreliable. In this paper, for the first time, a weakly supervised action detection method

is proposed which only requires binary labels of the videos indicating the presence of

the action of interest. Given a training set of binary labelled videos, the weakly super-

vised learning (WSL) problem is recast as a multiple instance learning (MIL) problem. A

novel MIL algorithm is developed which differs from the existing MIL algorithms in that

it locates the action of interest spatially and temporally by globally optimising both inter-

and intra-class distance. We demonstrate through experiments that our WSL approach

can achieve comparable detection performance to a fully supervised learning approach,

and that the proposed MIL algorithm significantly outperforms the existing ones.

1 Introduction

Detection of human action in videos has many applications such as video surveillance and

content based video retrieval. Action detection [7, 8, 14, 17] is different from the extensively

studied action recognition problem [10, 12, 16]. In action recognition, one assumes that

each video has been pre-segmented to contain only a complete action sequence. The task

is to classify the whole action video into one of the known action categories. In contrast,

action detection aims to both recognise the action and estimate where it occurs spatially and

temporally in a video that may contain multiple background actions. Detection is therefore

a much harder problem than recognition. Detection is needed because real world actions in

a public space typically occur in a crowded and dynamic environment.

Actions can be considered as spatio-temporal objects corresponding to spatio-temporal

volumes in a video [17]. The problem of action detection can thus be solved similar to object

detection in 2D images [5] where typically an object classifier is trained using positive and

negative object examples and the detection is performed via 2D sliding window search. In

our case, the classifier is applied with spatio-temporal subvolume search. The key problem,

however, lies in training the spatio-temporal action volume classifier. Taking a conventional

fully supervised approach, the spatio-temporal locations of the action of interest have to be

manually annotated frame by frame in the training videos. This could be prohibitively ex-

pensive. Importantly, manual annotation is subjective and can thus be biased and suboptimal.
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For instance, different people may have different understandings of what defines a handwav-

ing action. Does it involve only hands, or should it include arms, upper body, or even the

whole body? A data-driven automated annotation approach would be more desirable to deal

with this ambiguity.

We propose to overcome the problem of manual action annotation of the training dataset

by taking a weakly supervised learning (WSL) approach. Given a training dataset, the only

annotation required by our WSL approach is the binary labelling of each video indicating

whether the video contains the action of interest. More specifically, given a positive set of

videos known to contain the action of interest and a negative set of videos without the action

of interest, our WSL approach aims to determine automatically the spatial and temporal

locations of the action in the positive set. We cast this WSL problem as a multiple instance

learning (MIL) problem. Each video is considered as a bag of instances, i.e. candidate spatio-

temporal volumes. A bag is either positive or negative depending on whether it contains

positive instances (i.e. volumes containing an example of the target action). The objective

of MIL is to identify the positive instances from the positive bags. In this paper, we present

a novel MIL algorithm which differs from the existing MIL algorithms in that it locates the

action of interest spatially and temporally by optimising both inter- and intra-class distance

of the globally selected positive instances. Our experiments on a public dataset demonstrate

that a detector learned using our approach can achieve comparable performance to the fully

supervised approach. We also show that our new MIL approach can localize actions of

interest in the training set with a significantly greater accuracy than the existing alternative

MIL techniques.

1.1 Related Work

Due to the prohibitive cost of manual labelling of a training video set, most existing work

action detection avoids a fully supervised approach. Earlier methods fall into two categories:

single example query [8, 17] and cross dataset training [2, 18]. In the single example query

approach [8, 17], one example of the action of interest is manually annotated as a template

or query sample. Using this single example, test videos are queried for the action of interest.

This method cannot handle the intra-class variation of the actions caused by different people

performing the actions at different camera viewpoints. In the cross dataset training approach

[2, 18] the actions are learned using a clean positive training set (e.g. those used for action

recognition) captured in a different environment as the test videos (hence cross dataset). In

this clean training set, the action is pre-segmented and performed in the absence of back-

ground activity, so manual annotation of spatial and temporal location is not needed. While

this approach can handle intra-class variations, obtaining a clean positive training set in the

absence of background activity is not always feasible. Effectively transferring the learned

action detector from one dataset to another is also far from being solved.

Recently, Hu et al. [7] and Siva et al. [14] have attempted weakly supervised learning for

action detection. However, both methods rely on more manual annotation efforts than ours.

Similar to our method, Hu et al. [7] also adopt a MIL method based on that of Andrew et al.

[1]. However, in addition to the binary label for each training video, their method requires

the manual annotation of an approximate spatial and temporal location of the head of the

person performing the action. By doing so, all the background actions are eliminated. These

background actions can be potentially confused with the target action thus causing problems

for MIL. The removal of them makes the Hu et al. [7] problem much easier to solve than

our MIL problem. In addition, although the amount of annotation is reduced compared to
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a fully supervised approach, it is still substantial. In the method of Siva et al. [14], in

additional to the binary labels, a single manually annotated action cuboid/volume needs to

be provided. Using this cuboid, a greedy k nearest neighbour (kNN) search is performed on

the positive training set to obtain the spatial and temporal location of the action of interest.

Compared to their method, our approach does not require the manually annotated action

example. Furthermore, their iterative annotation process only finds action examples that are

similar to the manually annotated one. It can thus only handle small intra-class variations.

In contrast, our method uses a global optimization process that is capable of handling larger

intra-class variations.

Multiple Instance Learning (MIL) was first introduced by Dietterich et al. [4] for the

problem of drug activity prediction. For MIL, data is represented as bags and each bag

contains a set of instances. A positive bag contains at least one positive instance and a neg-

ative bag contains no positive instances. For our problem each video clip in the training

set is considered as a bag. Instances are spatio-temporal cuboids of potential action loca-

tions in the video and a positive instance contains the action of interest. The task is to find

the correct positive instances in the positive training bags. There have been many MIL in-

stance classifiers proposed in the past including DD [11], EM-DD [19] and MI-SVM [1],

and their variants. However, these methods either iteratively select positive instances locally

[11, 19] (that is, each positive instance is selected independently of each other), or select

the positive instances globally (by considering only the distances between positive and neg-

ative instances). In this work, we present a global method for MIL that exploits both the

positive instance compactness (intra-class distances) and distances from negative instances

(inter-class distances). Recently Deselaers et al. [3] presented an alternative global instance

selection method based on conditional random field that considers both intra- and inter-class

distance. However, unlike our method, theirs has a complex formulation with many param-

eters that must be tuned on an auxiliary dataset.

To summarize, the main contributions of the paper are: (1) To the best of our knowledge,

this is the first weakly supervised action detection algorithm using only binary annotation of

the training set. (2) We also present a novel global MIL technique that can localize the action

of interest in a video with better results than the standard existing MIL techniques.

2 Proposed Approach

Our goal is to train an action detector with weakly labelled data, i.e. a positive set of videos

known to contain at least one occurrence of the action of interest and a negative set of videos

known to contain no action of interest. From this our algorithm automatically annotates the

action of interest in the positive set of videos. Using the automatic annotation an action de-

tector can be trained. The detector is then used in a sliding window fashion (spatio-temporal

volume search) to detect the occurrence of the action in the test videos.

Before proceeding to the automatic annotation algorithm we first give a brief overview

of how we represent an action. An action is represented as a spatio-temporal cuboid/volume

in a video. We will refer to this as the action cuboid. The action cuboid is described using a

bag of words (BoW) histogram. We use the spatio-temporal interest point (STIP) descriptors

of Laptev et al. [9] as features. To create the BoW representation of the action cuboids,

we cluster 100000 randomly selected STIPs from the training dataset into 2000 code words

using k-means clustering. All action cuboids are then represented as a 2000 bin histogram

of the STIPs inside the action cuboid.
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2.1 Automated Annotation of Training Set

Taking a MIL approach, we consider each video, in both the positive and negative set, as a

bag and in each bag we define a set of instances which are the potential action cuboids in

that video. Once the instances are defined we can select one instance from each positive bag

as the action of interest.

Figure 1: Given a detected person bounding box w by h on frame f the action cuboids of

temporal length t at different temporal location, relative to frame f , are constructed.

2.1.1 Instance Definition

For each video in both the positive and negative training sets we need to define instances as

potential action cuboids. A straightforward way is to define instances as all possible cuboids

of different sizes that can fit within the video. A video sequence of 160x120 lasting one

minute at 25FPS contain over 1 billion valid action cuboids, making any MIL algorithm in-

tractable. Therefore, we have to screen the cuboids to limit the number of feasible instances.

Since we are only interested in actions being performed by stationary people, we create

an initial set of instances C′ surrounding people detected by a state-of-the-art person detector

[5]. The person detector is run on every F th frame and at each detected person location

a set of action cuboids are created. For a detected person of height h and width w, the

corresponding action cuboid has a spatial size 3w by 1.3h (Fig. 1). The action cuboid is

larger than the detected person size because the person detector is trained to detect people at

a neutral pose without outstretched arms or legs. By including a buffer of w pixels on both

the left and right sides of the detected person and a buffer of 0.3h above the head, we can

account for extension, of the hands and legs during various actions. We consider multiple

temporal sizes, t ∈ {tk} for the action cuboid as we do not know the duration of the action

of interest. Three different temporal locations of the action cuboid are considered relative to

the frame in which the person was detected, as illustrated in Fig. 1. This is to account for

missed person detection on some frames during an action.

The initial set C′ still numbers in the thousands of action cuboids and can be further

pruned to a more compact and reliable cuboid set. We first rank the cuboids in C′ based on

STIP density and temporal spread using Algorithm 1. From the ranked list of cuboids C′′

we select the first M cuboids as the reliable cuboid set C for use as instances. In this way

we can eliminate false positives by the person detector on static background and stationary

people as they will not produce STIPs. Note that background/negative action instances can

also produce dense STIP points (in some case denser than the positive ones). One is thus

in danger of removing the potential positive instance by relying on STIP density alone for

ranking. To overcome this problem, we remove and reintroduce the STIPs during the ranking

process (Algorithm 1, Lines 8 and 11). These steps are important to ensure that the instances

in C contains samples from the entire video. Without these steps, C could contain many
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overlapping samples from a single high STIP density location in the video which may not

contain the action of interest.

input : C′ – Action cuboids surrounding each person detection.

S – List of (x,y, t) location of all STIPs.

T – minimum action cuboid STIP density.

output: C′′ – Ranked list of action cuboids.

1 C′′ = {}, Cr = C′, Sr = S ;

2 while Sr 6= {} do

3 dmax = highest density of cuboid in Cr where density = #ST IP
cuboid volume

;

4 if dmax > T then

5 cmax = cuboid in Cr with highest STIP density ;

6 Smax = all STIP points inside cmax ;

7 Remove cmax from Cr ;

8 Remove Smax from Sr ;

9 Add cmax to C′′ ;

10 else

11 Sr = S ;

12 end

13 end

Algorithm 1: Rank action cuboids

2.1.2 Positive Instance Selection

Having defined instances in a video, we now have a set of instances C+i = {c+i,1,c
+
i,2, . . . ,c

+
i,M}

from the positive videos i = 1 . . .N+ and a set of negative instances C−i = {c−i,1,c
−
i,2, . . . ,c

−
i,M}

from the negative videos i= 1 . . .N−. We want to select a set G∗ = {c1,c2 . . . ,cN+} consisting

of one instance from each of the N+ positive videos such that the selected instance is our

action of interest. We select this set globally using both inter- and intra-class measures.

Specifically G∗ is selected by minimising the following cost function,

G∗ = argmin
G

∑
c j∈G

(

D(c j,G− j,kp)+
[

1−D
(

c j,C
−
i=1...N− ,kn

)])

(1)

where G = {c1,c2, . . . ,c j, . . . ,cN+} is a set composed of one instance from each positive bag,

G− j is the set G excluding element c j and D(c,M,k) defines the distance from a single in-

stance c to a set of instances M with a constant parameter k (for the positive and negative

training sets, it becomes kp and kn respectively). The term D(c j,G− j,kp) aims to minimize

the distance between the instances selected from each positive videos, that is to minimize the

intra-class distance to ensure that the selected instances look similar to each other. The term
[

1−D
(

c j,C
−
i=1...N− ,kn

)]

is designed for maximizing the distance between the instances se-

lected from each positive videos and the instances in all the negative videos. By maximizing

the inter-class distance we can ensure that the selected instances look dissimilar to those in

the negative videos.

Distance Metric – We need to define a distance metric D(c,M,k) between a single instance

and set of instances taking into account that the set M can be multi-modal (e.g. caused by

variations in viewpoint) and noisy. Recall that each instance c is a potential action cuboid
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and as such is represented by a BoW histogram hc. We thus define the distance between two

instances c and m as one minus the histogram intersection (HI) [15].

d(c,m) = 1−
2000

∑
i=1

min(hc(i),hm(i)) (2)

where hc(i) and hm(i) are the ith bin of the normalized BoW histogram representation of

instance c and m. Now the value of d(c,m) ranges from 0 to 1. It assumes the value 0 when

instances c and m are identical to each other and 1 when they look completely different.

To compute D(c,M,k) we first sort all instances in M according to their distances to c

in ascending order. Let each instance in this sorted set be ml , then

D(c,M,k) =
1

k

k

∑
l=1

d(c,ml). (3)

We are taking the average distance from instance c to the closest k instances in set M.

Optimization Method – To solve Eq. (1), we use the genetic algorithm (GA) [6] implemen-

tation in MATLAB. A GA is an evolutionary algorithm that selects the optimal solution using

techniques inspired by evolution. A population of random candidate solutions (G1, . . . ,Gn)

evolves through reproduction and random mutation towards the optimal solution (G∗). In our

reproduction step a child Gchild is created from parents GP1 and GP2 as follows:

GP1 = {cP1
1 , . . . ,cP1

m ,cP1
m+1, . . . ,c

P1
N+} GP2 = {cP2

1 , . . . ,cP2
m ,cP2

m+1, . . . ,c
P2
N+}

Gchild = {cP1
1 , . . . ,cP1

m ,cP2
m+1, . . . ,c

P2
N+}

where m is randomly selected. Mutation occurs by randomly switching instances from a bag.

2.2 Detector

Given a set of selected positive action cuboids G∗ and a set of videos without the action of

interest we train a support vector machine (SVM) as our action cuboid classifier. Since the

number of positive action cuboids, N+, is much smaller than the potential set of negative

cuboids, we employ the positive mining technique of Felzenszwalb et al. [5]. We use the

histogram intersection kernel [15] for the support vector machine.

For both the negative instance mining and detection in test videos we fix the aspect ratio

of the search window based on the aspect ratio of the cuboids in G∗. These fixed aspect

ratios are related to the aspect ratios of each of the component in the person detector [5]. The

temporal duration of the search window is fixed to the same values t ∈ {tk} used in defining

the action cuboids in Section 2.1.1.

3 Experiments

Datasets – Experiments were carried out using the MSR2 dataset [2] which is the biggest

action detection dataset publicly available. The MSR2 dataset contains 54 videos with three

action categories: boxing, clapping and handwaving (see Fig. 2). Each video contains at

least three action separated temporally. We split each of the 54 videos to contain only one

action; the split occurs at the midpoint between the end of the last action and the start of the
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Proposed Approach *Siva et al. [14] MI-SVM [1] DD [11] EMDD [19]

Boxing 40.7 57.4 20.4 9.3 24.1

Clapping 79.4 70.6 61.8 21.3 23.5

Handwaving 93.6 87.2 85.1 44.1 31.9

* Uses a single manual annotation.

Table 1: Average annotation results (%).

next action. If multiple actions overlap temporally they are all included in one clip. Note this

split is different from temporal segmenting the actions because the action can still start and

finish at variable temporal locations in each split video. After splitting the videos there are

181 videos of which 16 contains multiple actions. A two-to-one random division of the 181

videos is used as the training and testing set. During the division, the 16 videos containing

multiple actions are always included in the testing set. Localization of actions in the training

set is necessary because, among the detected STIPs, on average only 19% belong to the

action of interest while the rest come from the background actions. The spatio-temporal

location of each action in each video is provided together with the data. They are not used

for training, but as ground truth for performance evaluation.

Competitors – For the automated annotation of the training data, we compare our global

optimization solution to the widely used MI-SVM approach of Andrew et al. [1] which ex-

ploits inter-class distance globally. We also compare with local intra-class distance based

MIL algorithms DD [11] and EM-DD [19]. In addition, we compare our automated anno-

tation to the approach of Siva et al. [14] where a single video clip from the training set is

randomly selected and manually annotated. For a fair comparison, we re-implement Siva et

al.’s method using the same action representation based on STIPs, instead of the track fea-

tures, and histogram intersection distance, rather than the chi-squared distance. For detection

result on the testing set we compare a detector trained with our weakly supervised annotation

to a detector trained with manual annotation, i.e. a fully supervised learning approach.

Settings – For instance definition (Section 2.1.1), we run the pre-trained person detector

provided by Felzenszwalb et al. [5] at a frame rate of 5FPS and consider action cuboid

temporal durations of tk ∈ {75,100} frames. During the pruning stage (Algorithm 1), a

minimum action cuboid STIP density threshold of T = 0.0002 was used. In practice, any

value very close to zero will make little difference here. For instance definition, the cuboids

in each video are screened to M = 200 instances per bag. For instance selection (Section

2.1.2), we need to set the two parameters kp and kn (see Eq. (1)). kp and kn are based on the

number of positive bags (N+) and the number of negative instances respectively. We found

that the result is stable when kp is in the range of 20% to 70% of N+ and kn is in the range

of 5% to 25% of M (number of instances per bag). In our experiments, we used kp = 25 and

kn = 10 for all classes. Finally, for the genetic algorithm a population size of 2000 and a

mutate chance of 10% was used.

3.1 Automated Annotation Results

To evaluate the effectiveness of the proposed MIL algorithm for automated action annotation,

we calculate the percentage of correctly detected actions in the training data. In accordance

with [18] and [2] we define detection as correct if at least 1/8 of the volume size overlaps

with the ground truth. The detection results are summarized in Table 1 and some examples

of the automated annotation result can be seen in Fig. 2.

The results show that the proposed MIL algorithm based on global inter- and intra-class

distance optimization achieves a higher correct annotation rate for all action categories than
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Figure 2: Examples of automated annotation of training data using different MIL algorithms.

Figure 3: Test data detection precision recall curve. Cross dataset results as published in [2].

the standard MI-SVM algorithm. In particular for the boxing class the annotation accuracy is

2 times better. The MI-SVM considers only the separability of the positive instances from the

negative instances (inter-class distance). The results show that in the absence of ground truth,

considering the compactness of the positive instances as well as the separability of positive

and negative instance is more effective in selecting the correct positive instances. Similarly,

our algorithm significantly outperforms the local intra-class distance based algorithms: DD

and EM-DD. For action detection, due to the large number of negative background activities,

a global intra-class measure of the selected positive instances is crucial. It can also be seen

that our algorithm achieves better performance on two of the three action categories, com-

pared with the method of Siva et al. [14] even though it uses only a single manual annotation.

The advantage of our algorithm is particularly clear for clapping. This is because people in

the dataset performed clapping in quite different ways (see Fig. 2(c)) - some at shoulder

height, others at waist height - resulting in large intra-class variation which the method of

Siva et al. cannot cope with.

3.2 Detection Results

We compare the detection performance of the weakly supervised detector with a fully su-

pervised detector using the precision recall curve (PRC) as defined in [18]. The PRCs are
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Figure 4: Detection examples of fully supervised (FS) and weakly supervised (WS) detectors

on the testing data. In the images TP - true positive, FP - false positive and GT - ground truth.

presented in Fig. 3. Example detection on testing data is presented in Fig. 4.

It can be seen that the weakly supervised detector achieves a higher average precision

(AP) than the fully supervised detector on detecting handwaving (AP of 0.799 vs 0.700).

This can be attributed to a bias in the manual annotations. In some videos the manual an-

notation cuboid provided with the dataset does not encompass the entire extent of the hand

motion (Fig. 2(a)) and as such does not include all the useful STIPs that occur during the

action. Our automatically annotated cuboids include the entire hand motion range and thus

include more relevant information for the detector to learn.

The weakly supervised detector is able to achieve similar performance as the fully su-

pervised detector on boxing. The weakly supervised clapping detector has the worst per-

formance. However, it is still able to obtain an average precision that is about 50% of the

fully supervised detector. There are two possible reasons for the poor performance of the

weakly supervised clapping detector: 1) the clapping class has fewer training samples than

boxing and handwaving (33 videos contain clapping as opposed to 47 and 53 for boxing and

handwaving). MIL algorithms in general struggle with few training samples. 2) Clapping

is a highly symmetric action. For a MIL algorithm, the movements of either left or right

hand are equally plausible as the two hand movements for defining clapping because all of

them always appear in each positive video. As a result, the automated annotation of clapping

cuboids often contain only one hand movements, resulting in low detection accuracy. This

is an intrinsic problem for a WSL approach that uses only binary labels. Unless one hand

‘clapping’ is part of the negative videos, this problem cannot be addressed.

In Fig. 3 we also plot the cross dataset detection results as reported in [2]. The clean

KTH dataset [13] is used for training a detector which is then adapted to the MSR2 dataset

for detection. While this is not directly comparable with our method, as part of the cross

dataset detection test set was used as our training set, it does indicate the weak performance

in using a different training set. This is despite the fact that the clean KTH dataset contains

no background action and videos are pre-segmented.
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4 Conclusion

We have presented a weakly supervised approach to action detection that, unlike existing

methods, requires no manual annotation other than a binary label indicating the presence of

the target action in a video. The key component of the approach is a novel multiple instance

learning (MIL) algorithm that exploits both inter- and intra-class distances globally. Our

experiments demonstrate the superior performance of the proposed MIL algorithm compared

with a number of existing MIL algorithms. Most encouraging of all, we show that in some

cases, the weakly supervised detector can even outperform a fully supervised detector by

avoiding the inaccuracy and bias in human manual annotation.
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