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Abstract

We present an approach for weakly supervised learning

of human actions. Given a set of videos and an ordered list

of the occurring actions, the goal is to infer start and end

frames of the related action classes within the video and

to train the respective action classifiers without any need

for hand labeled frame boundaries. To address this task,

we propose a combination of a discriminative representa-

tion of subactions, modeled by a recurrent neural network,

and a coarse probabilistic model to allow for a temporal

alignment and inference over long sequences. While this

system alone already generates good results, we show that

the performance can be further improved by approximating

the number of subactions to the characteristics of the dif-

ferent action classes. To this end, we adapt the number of

subaction classes by iterating realignment and reestimation

during training. The proposed system is evaluated on two

benchmark datasets, the Breakfast and the Hollywood ex-

tended dataset, showing a competitive performance on var-

ious weak learning tasks such as temporal action segmen-

tation and action alignment.

1. Introduction

Given the large amount of available video data, e.g. on

Youtube, from movies or even in the context of surveillance,

methods to automatically find and classify human actions

within these videos gained an increased interest within the

last years [30, 12, 26, 23, 34].

While there are several successful methods to classify

trimmed video clips [30, 26], temporal localization and

classification of human actions in untrimmed, long video

sequences are still a huge challenge. Most existing ap-

proaches in this field rely on fully annotated video data, i.e.

the exact start and end time of each action in the training set

needs to be provided [24, 23, 34]. For real world applica-

tions, this requires an enormous effort of creating training

data and can be too expensive to realize. Therefore, weakly

supervised methods are of particular interest. Such methods

usually assume that only an ordered list of actions occurring

Figure 1. Overview of the proposed weak learning system. Given

a list of ordered actions for each video, an initial segmentation is

generated by uniform segmentation. Based on this input informa-

tion we iteratively train an RNN-based fine-to-coarse system to

align the frames to the respective action.

in the video is annotated instead of exact framewise start

and end points [7, 3, 9]. This information is much easier

to generate for human annotators, or can even be automati-

cally derived from scripts [17, 20] or subtitles [1]. The idea

that all those approaches share is that - given a set of videos

and a respective list of the actions that occur in the video -

it is possible to learn the characteristics of the related action

classes, to infer their start and end frames within the video,

and to build the corresponding action models without any

need for hand labeled frame boundaries (see Figure 1).

In this work, we address the task of weak learning of

human actions by a fine-to-coarse model. On the fine

grained level, we use a discriminative representation of sub-

actions, modeled by a recurrent neural network as e.g. used

by [6, 35, 27, 33]. In our case, the RNN is used as ba-

sic recognition model as it provides robust classification of

small temporal chunks. This allows to capture local tem-

poral information. The RNN is supplemented by a coarse

probabilistic model to allow for temporal alignment and in-

ference over long sequences.

Further, to bypass the difficulty of modeling long and

complex action classes, we divide all actions into smaller

building blocks. Those subactions are eventually modeled

within the RNN and later combined by the inference pro-

cess. The usage of subactions allows to distribute hetero-
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geneous information of one action class over many sub-

classes and to capture characteristics such as the length of

the overall action class. Additionally, we show that auto-

matically learning the number of subactions for each action

class leads to a notably improved performance.

Our model is trained with an iterative procedure. Given

the weakly supervised training data, an initial segmentation

is generated by uniformly distributing all actions among the

video. For each obtained action segment, all subactions are

then also uniformly distributed among the part of the video

belonging to the corresponding action. This way, an initial

alignment between video frames and subactions is defined.

In an iterative phase, the RNN is then trained on this align-

ment and used in combination with the coarse model to in-

fer new action segment boundaries. From those boundaries,

we recompute the number of subactions needed for each ac-

tion class, distribute them again among the frames aligned

to the respective action, and repeat the training process until

convergence.

We evaluate our approach on two common benchmark

datasets, the Breakfast dataset [14] and the Hollywood ex-

tended dataset [3], regarding two different tasks. The first

task is temporal action segmentation, which refers to a com-

bined segmentation and classification, where the test video

is given without any further annotation. The second task is

aligning a test video to a given order of actions, as proposed

by Bojanowski et al. [3]. Our approach is able to outper-

form current state-of-the-art methods on both tasks.

2. Related Work

For the case of fully supervised learning of actions, well-

studied deep learning and temporal modeling approaches

exist. While the authors of [34] focus on a purely neu-

ral network based approach, Tang et al. [29] propose to

learn the latent temporal structure of videos with a hid-

den Markov model. Combining deep learning and tempo-

ral modeling, the authors of [18] use a segmental CNN and

a semi-Markov model to represent temporal transitions be-

tween actions. However, these methods are not applicable

in a weakly supervised setting.

Addressing the problem of weakly supervised learning

of actions, a variety of different approaches have been ex-

plored. First works, proposed by Laptev et al. [17] and

Marszalek et al. [20], focus on mining training samples

from movie scripts. They extract class samples based on

the respective text passages and use those snippets for train-

ing without applying a dedicated temporal alignment of the

action within the extracted clips. First attempts for learn-

ing action classes including temporal alignment on weakly

annotated data are made by Duchenne et al. [7]. Here, it

is assumed that all snippets contain only one class and the

task is to temporally segment frames containing the relevant

action from the background activities. The temporal align-

ment is thus interpreted as a binary clustering problem, sep-

arating temporal snippets containing the action class from

the background segments. The clustering problem is for-

mulated as a minimization of a discriminative cost func-

tion. This problem formulation is extended by Bojanowski

et al. [3] also introducing the Hollywood extended dataset.

Here, the weak learning is formulated as a temporal assign-

ment problem. Given a set of videos and the action order of

each video, the task is to assign the respective class to each

frame, thus to infer the respective action boundaries. The

authors propose a discriminative clustering model using the

temporal ordering constraints to combine classification of

each action and their temporal localization in each video

clip. They propose the usage of the Frank-Wolfe algorithm

to solve the convex minimization problem. This method has

been adopted by Alayrac et al. [1] for unsupervised learn-

ing of task and story lines from instructional video. An-

other approach for weakly supervised learning from tempo-

rally ordered action lists is introduced by Huang et al. [9].

They feature extended connectionist temporal classification

and propose the induction of visual similarity measures to

prevent the CTC framework from degeneration and to en-

force visually consistent paths. On the other hand, Kuehne

et al. [16] borrow on the concept of flat models in speech

recognition. They model actions by hidden Markov models

(HMMs) and aim to maximize the probability of training

sequences being generated by the HMMs by iteratively in-

ferring the segmentation boundaries for each video and us-

ing the new segmentation to reestimate the model. The last

two approaches were both evaluated on the Hollywood ex-

tended as well as on the Breakfast dataset, thus, these two

datasets are also used for the evaluation of the here proposed

framework.

Beside the approaches focusing on weak learning of hu-

man actions based on temporally ordered labels, also other

weak learning scenarios have been explored. A closely re-

lated approach comes from the field of sign language recog-

nition. Here, Koller et al. [13] integrate CNNs with hidden

Markov models to learn sign language hand shapes based

on a single frame CNN model from weakly annotated data.

They evaluate their approach on various large scale sign

language corpora, e.g. for Danish and New Zealand sign

language. Gan et al. [8] show an approach to learn action

classes from web images and videos retrieved by specific

search queries. They feature a pairwise match of images

and video frames and combine this with a regularization

over the selected video frames to balance the matching pro-

cedure. The approach is evaluated on standard action classi-

fication datasets such a UCF101 and Trecvid. Also learning

from web videos and images is the approach of [28]. Weak

video labels and noisy image labels are taken as input, and

localized action frames are generated as output. The lo-

calized action frames are used to train action recognition
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models with long short-term memory networks. Results are

reported, among others, for temporal detection on the THU-

MOS 2014 dataset. Another idea is proposed by Misra et

al. [21], aiming to learn a temporal order verification for hu-

man actions in an unsupervised way by training a CNN with

correct vs. shuffled video snippets and thus capturing tem-

poral information. The system can be used for pre-training

feature extractors on small datasets as well as in combina-

tion with other supervised methods. A more speech related

task is also proposed by Malmaud et al. [19], trying to align

recipe steps to automatically generated speech transcripts

from cooking videos. They use an hybrid HMM model

in combination with a CNN based visual food detector to

align a sequence of instructions, e.g. from textual recipes,

to a video of someone carrying out a task. Finally, [32]

propose an unsupervised technique to derive action classes

from RGB-D videos, respectively human skeleton represen-

tations, also considering an activity as a sequence of short-

term action clips. They propose Gibbs sampling for learn-

ing and inference of long activities from basic action words

and evaluate their approach on an RGB-D activity video

dataset.

3. Technical Details

In the following, we describe the proposed framework in

detail, starting with a short definition of the weak learning

task and the related training data. We then define our model

and describe the overall training procedure as well as how

it can be used for inference.

3.1. Weakly Supervised Learning from Action Se
quences

In contrast to fully supervised action detection or seg-

mentation approaches, where frame based ground truth data

is available, in weakly supervised learning only an ordered

list of the actions occurring in the video is provided for

training. A video of making tea, for instance, might con-

sist of taking a cup, putting the teabag in it, and pouring

water into the cup. While fully supervised tasks would pro-

vide a temporal annotation of each action start and end time,

in our weakly supervised setup, all given information is the

ordered action sequence

take cup, add teabag, pour water.

More formally, we assume the training data is a set of tu-

pels (xT
1 ,a

N
1 ), where xT

1 are framewise features of a video

with T frames and aN1 is an ordered sequence (a1, . . . , aN )
of actions occurring in the video. The segmentation of the

video is defined by the mapping

n(t) : {1, . . . , T} 7→ {1, . . . , N} (1)

that assigns an action segment index to each frame. Since

our model iteratively optimizes the action segmentation, ini-

tially, this can simply be a linear segmentation of the pro-

vided actions, see Figure 4a. The likelihood of the video

frames xT
1 given the action transcripts aN1 is then defined as

p(xT
1 |a

N
1 ) :=

T
∏

t=1

p
(

xt|an(t)
)

, (2)

where p(xt|an(t)) is the probability of frame xt being gen-

erated by the action an(t).
The action classes given for training usually describe

longer, task-oriented procedures that naturally consist of

more than one significant motion, e.g. take cup can involve

moving a hand towards a cupboard, opening the cupboard,

grabbing the cup and placing it on the countertop. This

makes it difficult to train long, heterogeneous actions as a

whole. To efficiently capture those characteristics, we pro-

pose to model each action as a sequential combination of

subactions. Therefore, for each action class a, a set of sub-

actions s
(a)
1 , . . . , s

(a)
Ka

is defined. The number Ka is initially

estimated by a heuristic and refined during the optimization

process. Practically, this means that we subdivide the orig-

inal long action classes into a set of smaller subactions. As

subactions are obviously not defined by the given ordered

action sequences, we treat them as latent variables that need

to be learned by the model. In the following system de-

scription, we assume that the subaction frame boundaries

are known, e.g. from previous iterations or from an initial

uniform segmentation (see Figure 4b), and discuss the in-

ference of more accurate boundaries in Section 3.4.

3.2. Coarse Action Model

In order to combine the fine grained subactions to action

sequences, a hidden Markov model Ha for each action a is

defined. The HMM ensures that subactions only occur in

the correct ordering, i.e. that s
(a)
i ≺ s

(a)
j for i ≤ j. More

precisely, let

s(t) : {1, . . . , T} 7→ {s
(a1)
1 , . . . , s

(aN )
KaN

} (3)

be the known mapping from video frames to the subactions

of the ordered action sequence aN1 . This is basically the

same mapping as the one in Equation (1) but on subac-

tion level rather than on action level. When going from

one frame to the next, we only allow to assign either the

same subaction or the next subaction, so if at frame t, the

assigned subaction is s(t) = s
(a)
i , then at frame t+1, either

s(t + 1) = s
(a)
i or s(t + 1) = s

(a)
i+1. The likelihood of the

video frames xT
1 given the action transcripts aN1 is then

p(xT
1 |a

N
1 ) :=

T
∏

t=1

p
(

xt|s(t)
)

· p
(

s(t)|s(t− 1)
)

, (4)
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input: video xT
1

x1 x2 . . . xT

GRU GRU . . . GRU

p(s|x1) p(s|x2
1) . . . p(s|xT

1 )

targets: subaction labels

Figure 2. RNN using gated recurrent units with framewise video

features as input. At each frame, the network outputs a probability

for each possible subaction while considering the context of the

video.

where p(xt|s) are probabilities computed by the fine-

grained model, see Section 3.3. The transition probabili-

ties p(s|s′) from subaction s′ to subaction s are relative fre-

quencies of how often the transition s′ → s occurs in the

s(t)-mappings of all training videos.

3.3. Finegrained Subaction Model

For the classification of fine-grained subactions, we use

an RNN with a single hidden layer of gated recurrent units

(GRUs) [4]. It is a simplified version of LSTMs that shows

comparable performance [11, 5] also in case of video clas-

sification [2]. The network is shown in Figure 2.

For each frame, it predicts a probability distribution over

all subactions, while the recurrent structure of the net-

work allows to incorporate local temporal context. Since

the RNN generates a posterior distribution p(s|xt) but our

coarse model deals with subaction-conditional probabili-

ties, we use Bayes’ rule to transform the network output

to

p(xt|s) = const ·
p(s|xt)

p(s)
. (5)

Solving Efficiency Issues. Recurrent neural networks are

usually trained using backpropagation through time (BPTT)

[31], which requires to process the whole sequence in a for-

ward and backward pass. As videos can be very long and

may easily exceed 10, 000 frames, the computation time per

minibatch can be extremely high. Even worse, long videos

may not fit the memory of high-end GPUs, since during

training the output of all network layers needs to be stored

for each frame of the video in order to compute the gradient.

We tackle this problem by using small chunks around

each video frame that can be processed efficiently and with

a reasonably large minibatch size in order to enable effi-

cient RNN training on long videos. For each frame t, we

s(t)

A
(

s(t)
)

s
(a1)
1 s

(a1)
2

action 1

s
(a2)
1 s

(a2)
2 s

(a2)
3 s

(a2)
4 s

(a2)
5

action 2

s
(a3)
1 s

(a3)
2

action 3

Figure 3. The extractor function A computes the unique action

sequence induced by the frame-to-subaction alignment s(t).

create a chunk over x[t − 20, t] and forward it through the

RNN. While this practically increases the amount of data

that needs to be processed by a factor of 20, only short se-

quences need to be forwarded at once and we benefit from a

high parallelization degree and comparable large minibatch

size.

Additionally, one has to note that even LSTMs and

GRUs can only capture a limited amount of temporal con-

text. For instance, studies from machine translation suggest

that 20 frames is a range that can be well captured by these

architectures [4]. This finding is confirmed for video data

in [27]. Also, humans usually do not need much more con-

text to accurately classify a part of an action. Hence, storing

the information of e.g. frame 10 while computing the output

of frame 500 is not necessary. Thus, it can be appropriate to

limit the temporal scope in favor of a faster, more feasible

training.

3.4. Inference

Based on the observation probabilities of the fine-

grained subaction model and the coarse model for overall

actions, we will now discuss the combined inference of both

models on video level.

Given a video xT
1 , the most likely action sequence

âN1 = argmax
a
N

1

{p(xT
1 |a

N
1 ) · p(aN1 )} (6)

and the corresponding frame alignment is to be found. In

order to limit the amount of action sequences to optimize

over, a context-free grammar G is created from the training

set as in [16]. We set p(aN1 ) = 1 if aN1 is generated by

G and p(aN1 ) = 0 otherwise. Thus, in Equation (6), the

argmax only needs to be taken over action sequences gen-

erated by G and the factor p(aN1 ) can be omitted. Instead of

finding the optimal action sequence directly, the inference

can equivalently be performed over all possible frame-to-

subaction alignments s(t) that are consistent with G. Con-

sistent means that the unique action sequence defined by

s(t) is generated by G. Formally, we define an extractor

function A : s(t) 7→ aN1 that maps the frame-to-subaction

alignment s(t) to its action sequence, see Figure 3 for an

illustration. Equation (6) can then be rewritten as

âN1 = argmax
s(t):A(s(t))∈L(G)

{

T
∏

t=1

p
(

xt|s(t)
)

· p
(

s(t)|s(t− 1)
)

}

,

(7)
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where L(G) is the set of all possible action sequences that

can be generated by G. Note that Equation (7) can be

solved efficiently using a Viterbi algorithm if the grammar

is context-free, see e.g. [10].

For training, as well as for the task of aligning videos to

a given ordered action sequence aN1 , the best frame align-

ment to a single sequence needs to be inferred. By defining

a grammar that generates only the given action sequence

aN1 , this alignment task can be solved using Equation (7).

For the task of temporal action segmentation, i.e. when no

action sequence is provided for inference, the context-free

grammar can be derived from the ordered action sequences

given in the training samples.

3.5. Training

Training of the model is an iterative process, altering

between both, the recurrent neural network and the HMM

training, and the alignment of frames to subaction units via

the HMM. The whole process is illustrated in Figure 4.

Initialization. The video is divided into N segments of

equal size, where N is the number of action instances in the

transcript (Figure 4a). Each action segment is further sub-

divided equally across the subactions (Figure 4b). Note that

this defines the mapping s(t) from frames to subactions.

Each subaction should cover m frames of an action on aver-

age. Thus, the initial number of subactions for each action

is

number of frames

number of action instances ·m
, (8)

where we usually choose m = 10 as proposed in [15, 16].

Hence, initially each action is modeled with the same num-

ber of subactions. This can change during the iterative opti-

mization.

Iterative Training. The fine-grained RNN is trained with

the current mapping s(t) as ground truth. Then, the RNN

and HMM are applied to the training videos and a new

alignment of frames to subactions (Figure 4d) is inferred

given the new fine-grained probabilities p(xt|s) from the

RNN. The new alignment is obtained by finding the subac-

tion mapping s(t) that best explains the data:

ŝ(t) = argmax
s(t)

{

p(xT
1 |a

N
1 )

}

(9)

= argmax
s(t)

{

T
∏

t=1

p
(

xt|s(t)
)

· p
(

s(t)|s(t− 1)
)

}

.

(10)

Note that Equation (10) can be efficiently computed using a

Viterbi algorithm. Once the realignment is computed for all

training videos, the average length of each action is reesti-

mated as

len(a) =
number of frames aligned to a

number of a-instances
(11)

and the number of subactions is reestimated based on the

updated average action lengths. Particularly, for action a,

there are now len(a)/m subactions, which are again uni-

formly distributed among the frames assigned to the corre-

sponding action, cf . Figure 4e. These steps are iterated until

convergence.

Stop Criterion. As the system iteratively approximates the

optimal action segmentation on the training data, we de-

fine a stop criterion based on the overall amount of action

boundaries shifted from one iteration to the succeeding one.

In iteration i, let change(i) denote the percentage of frames

that is labeled differently compared to iteration i − 1. We

stop the optimization if the frame change rate between two

iterations is less than a threshold,

|change(i)− change(i− 1)| < ϑ ⇒ stop. (12)

4. Experiments

In this section, we provide a detailed analysis of our

method. Code and models are available online1.

4.1. Setup

Datasets. We evaluate the proposed approach on two het-

erogeneous datasets. The Breakfast dataset is a large scale

dataset with 1, 712 clips and an overall duration of 66.7
hours. The dataset comprises various kitchen tasks such as

making tea but also complex activities such as the prepara-

tion of fried egg or pancake. It features 48 action classes

with a mean of 4.9 instances per video. We follow the eval-

uation protocol as proposed by the authors in [14].

The Hollywood extended [3] dataset is an extension of

the well known Hollywood dataset, featuring 937 clips from

different Hollywood movies. The clips are annotated with

two or more action labels resulting in 16 different action

classes overall and a mean of 2.5 action instances per clip.

Features. For both datasets we follow the feature computa-

tion as described in [15] using improved dense trajectories

(IDT) and Fisher vectors (FVs). To compute the FV rep-

resentation, we first reduce the dimensionality of the IDT

features from 426 to 64 by PCA and sample 150, 000 ran-

domly selected features to build a GMM with 64 Gaussians.

The Fisher vector representation [25] for each frame is com-

puted over a sliding window of 20 frames. Following [22],

we apply power and l2 normalization to the resulting FV

representation. Additionally, we reduce the final FV rep-

resentation from 8, 192 to 64 dimensions via PCA to keep

the overall video representation manageable and easier to

process.

Stop Criterion. For the stop criterion, we fix ϑ = 0.02,

i.e. if the difference of the frame change between two iter-

ations is less than two percent, we stop iterating. Figure 5

1https://github.com/alexanderrichard/weakly-sup-action-learning
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Action transcript:

action 1 action 2 action 3

(a) linear segmentation (Initialization)

(b)
linear alignment
to the subactions

s
(a1)
1 s

(a1)
2 s

(a1)
3 s

(a2)
1 s

(a2)
2 s

(a2)
3 s

(a3)
1 s

(a3)
2 s

(a3)
3

(c) retrain (Iteration 1)train RNN train HMM

(d) realignment
s
(a1)
1 s

(a1)
2 s

(a1)
3 s

(a2)
1 s

(a2)
2 s

(a2)
3 s

(a3)
1 s

(a3)
2 s

(a3)
3

(e)
linear alignment to
the new subactions

s
(a1)
1 s

(a1)
2 s

(a2)
1 s

(a2)
2 s

(a2)
3 s

(a2)
4 s

(a2)
5 s

(a3)
1 s

(a3)
2

(f) retrain (Iteration 2)train RNN train HMM

(g) realignment
s
(a1)
1 s

(a1)
2 s

(a2)
1 s

(a2)
2 s

(a2)
3 s

(a2)
4 s

(a2)
5 s

(a3)
1 s

(a3)
2

(h)
linear alignment to
the new subactions

s
(a1)
1 s

(a2)
1 s

(a2)
2 s

(a2)
3 s

(a2)
4 s

(a2)
5 s

(a3)
1 s

(a3)
2 s

(a3)
3

(i) retrain (Iteration 3)train RNN train HMM

(iterate until convergence)

Figure 4. Training process of our model. Initially, each action is modeled with the same number of subactions and the video is linearly

aligned to these subactions. Based on this alignment, the RNN is trained and used in combination with the HMMs to realign the video

frames to the subactions. Eventually, the number of subactions per action is reestimated and the process is iterated until convergence.

Breakfast Accuracy (Mof)

GRU no subactions 22.4

GRU w/o reestimation 28.8

GRU + reestimation 33.3

GRU + GT length 51.3

Table 1. Results for temporal segmentation on the Breakfast

dataset comparing accuracy of the proposed system (GRU + rees-

timation) to the accuracy of the same architecture without subac-

tions (GRU no subactions) and to the architecture with subclasses

but without reestimation.

illustrates the criterion for two example experiments. The

blue curve is the frame accuracy, the red curve is the dif-

ference of frame changes between two iterations. It can be

seen that after a few iterations, the frame accuracy does not

increase anymore but begins to oscillate, see also Table 2.

Comparing the frame change rate of the train data is a good

indicator of when to stop iterating. In all experiments, we

compute results based on the alignment of the last iteration

before the threshold ϑ is crossed.

4.2. Analysis of the Coarse Model

For the following evaluation of our system, we report

performance for the task of temporal action segmentation,

i.e. the combined video segmentation and classification.

Given a video without any further information, the task is

to classify all frames according to their related action. This

includes to infer which actions occur in the video, in which

order they occur, and their respective start and end frames.

We evaluate on the test set of the Breakfast dataset and re-

port results as mean accuracy over frames (Mof) (see [14]).

We iterate the system until the stop criterion as described in

Section 3.5 is reached.

First, we regard the properties of the coarse action mod-

eling. We therefore compare the proposed system to the

results of the same setting, but without further subdividing

actions into subactions (GRU no subactions, Table 1). Ad-

ditionally, we regard results of the system without reesti-

mation of subactions during optimization (GRU w/o rees-

timation, Table 1). For the system without reestimation,

we follow the initial steps as shown in Figure 4, thus, we

linearly segment the videos according to the number of ac-

tions, generate an initial subaction alignment, train the re-

spective subaction classes, and realign the sequence based

on the RNN output. But, opposed to the setup with reesti-

mation, we omit the step of reestimating the number of sub-

classes and the following alignment. Instead we just use the

output of the realignment to retrain the classifier and iterate

the process of training, alignment, and re-training. Thus,
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GRU no subaction:

GRU w/o reest.:

GRU with reest.:

Ground truth:

sequence: take bowl, pour cereals, pour milk, stir cereals

GRU no subaction:

GRU w/o reest.:

GRU with reest.:

Ground truth:

sequence: pour oil, crack egg, fry egg, add saltnpepper, fry egg, put egg2plate

Figure 6. Example segmentation results for two samples from the Breakfast dataset showing the segmentation result for “preparing cereals”

and “preparing friedegg”. Although the actions are not always correctly detected, there is still reasonable alignment of detected actions and

ground truth boundaries.
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Figure 5. Stop criterion for two experiments, one using the fine-

grained model and no subaction reestimation, one using it with

subaction reestimation. The blue curve shows the frame accuracy

over the iterations, the red curve shows the frame change rate be-

tween the current and the preceding iteration. The dashed line

represents the threshold ϑ = 0.02.

the number of subclasses is constant and the coarse model

is not adapted to the overall estimated length of the action

class. Finally, we compare against a system in which we use

the ground truth boundaries to compute the mean length of

an action class and set the number of subactions based on

the mean ground truth length (GRU + GT length, Table 1).

Here, all action classes are still uniformly initialized, but

longer action classes are divided into more subactions than

shorter ones. We include this artificial scenario as it models

the performance in case that the optimal number of subac-

tion classes would be found.

One can see in Table 1 that recognition performance

without subactions is significantly below all other configu-

rations, supporting the idea that subaction modeling in gen-

eral helps recognition in this scenario. The model with sub-

actions, but without reestimation, improves over the single

Breakfast Iter 1 Iter 2 Iter 3 Iter 4 Iter 5

GMM w/o reest. 15.3 23.3 26.3 27.0 26.5

MLP w/o reest. 22.4 24.0 23.7 23.1 20.3

GRU w/o reest. 25.5 29.1 28.6 29.3 28.8

GRU w/o HMM 21.3 20.1 23.8 21.8 22.4

Table 2. Results for low level recognition with an MLP compared

to GRUs over five iterations. The MLP quickly starts to overfit,

whereas the GRU oscillates at a constant level. Last row: A GRU

without HMM, showing that short term dependencies are well cap-

tured by the fine-grained recurrent network.

class model, but is still below the system with subaction

reestimation. Compared to that, the model with subaction

reestimation performs 5% better. We ascribe the perfor-

mance increase of the reestimated model to the fact that

a good performance is highly related to the correct num-

ber of subactions, thus to a good length representation of

the single actions. By reestimating the overall number of

subactions after each iteration, this ground truth length is

approximated. The impact of the number of subactions be-

comes clear, when considering the results when the ground

truth action lengths are used. Here the performance of the

same system, just with different numbers of subactions, in-

creases by almost 20%. Qualitative results on two example

videos are shown in Figure 6.

4.3. Analysis of the FineGrained Model

In order to analyze the capability of capturing temporal

context with the recurrent network, we compare it to a sys-

tem where a Gaussian mixture model (GMM) and a multi-

layer perceptron (MLP) are used instead. Both only operate

on frame level and do not capture fine-grained information

between the frames. In order to provide a fair comparison

to the recurrent model, we equip the MLP with a single hid-

den layer of rectified units such that it has the same number

of parameters as the recurrent network. We use a simpli-

fied version of the system without subaction reestimation to

achieve comparable results after each iteration.

Results for the first five iterations on the Breakfast

dataset are shown in Table 2. We find that GRUs clearly

outperform both, GMMs and MLPs, starting with 25.5%
for the initial recognition, and reaching up to 29.3% after
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Breakfast Hollywood Ext.

Model Accuracy (Mof) Jacc. (IoU)

OCDC [3]* 8.9 -

HTK [16] 25.9 8.6

ECTC [9] 27.7 -

GRU w/o reestimation 28.8 11.2

GRU + reestimation 33.3 11.9

Table 3. Comparison of temporal action segmentation perfor-

mance for GRU based weak learning with other approaches. For

the Breakfast dataset, we report performance as mean over frames

(Mof), for Hollywood extended, we measure the Jaccard index as

intersection over union for this task (*from [9]).

the fourth iteration. Particularly, the MLP baseline stays

continuously below this performance. Thus, it can be as-

sumed that the the additional information gained by recur-

rent connections in this context supports classification. One

can further see that the MLP reaches its best performance

after the second iteration and then continuously decreases,

whereas the GRU begins to oscillate around 29%, hinting

that the MLP also starts to overfit at an earlier stage com-

pared to the GRU. In the last row of Table 2, the coarse

model, i.e. the HMM, is removed from the system. Thus,

there is no modeling of subactions anymore and the GRU

directly learns the original action classes. The performance

is clearly worse than with the coarse model, but still the

system is remarkably good, being on par with the MLP that

uses the coarse model (second row of Table 2).

4.4. Comparison to StateoftheArt

Temporal Action Segmentation. We compare our sys-

tem to three different approaches published for the task:

The first is the Ordered Constrained Discriminative Cluster-

ing (OCDC) proposed by Bojanowski et al. [3], which has

been introduced on the Hollywood extended dataset. Sec-

ond, we compare against the HTK system used by Kuehne

et al. [16], and third against the Extended Connectionist

Temporal Classification (ECTC) by Huang et al. [9]. For

the Breakfast dataset, we follow the evaluation script of

[14, 9] and report results as mean accuracy over frames over

four splits. For the Hollywood Extended dataset, we follow

the evaluation script of [16] and report the Jaccard index

(Jacc.) as intersection over union (IoU) over 10 splits. Re-

sults are shown in Table 3.

One can see that the proposed subaction based GRU sys-

tems show a good performance, and that both subaction

based systems outperform current approaches on the two

evaluated datasets. It also shows that the GRU based sys-

tem without reestimation shows comparable performance

to other RNN based systems, such as ECTC by [9], which

uses an LSTM model with comparable size. The signifi-

cant increase in accuracy of our method can be attributed

to the reestimation. We also observe that the performance

Breakfast Hollywood Ext.

Model Jacc. (IoD) Jacc. (IoD)

OCDC [3] 23.4 43.9

HTK [16]** 40.6 42.4

ECTC [9]** - 41.0

GRU w/o reestimation 41.5 50.1

GRU + reestimation 47.3 51.1

Table 4. Results for action alignment on the test set of the Break-

fast and the Hollywood extended dataset reported as Jaccard index

of intersection over detection (IoD) (**results obtained from the

authors).

boost of the system with reestimation is more prominent

on the Breakfast than on the Hollywood extended dataset.

We attribute this to the fact that in case of Hollywood ex-

tended, all action classes usually have a consistent mean

frame length, whereas in case of Breakfast, the mean length

of action classes significantly varies. Thus, the benefit of

adapting to action class lengths increases with the hetero-

geneity of the target action classes.

Action Alignment. We also address the task of action

alignment. Here, we assume that given a video and a se-

quence of temporally ordered actions, the task is to infer the

respective boundaries for the given action order. We report

results for the test set of Breakfast as well as for the Hol-

lywood extended dataset based on the Jaccard index (Jacc.)

computed as intersection over detection (IoD) as proposed

by [3]. The results are shown in Table 4. Here, the GRU

system without reestimation performs on par with other sys-

tems for the alignment task on the Breakfast dataset, but

the GRU system with reestimation again shows a clear im-

provement over current systems.

5. Conclusion

We presented an approach for weakly supervised learn-

ing of human actions based on a combination of a discrim-

inative representation of subactions, modeled by a recur-

rent neural network, and a coarse probabilistic model to al-

low for a temporal alignment and inference over long se-

quences. Although the system itself already shows good re-

sults, the performance is significantly improved by approx-

imating the number of subactions for the different action

classes. Accordingly, we propose to adapt the number of

subaction classes by iterating realignment and reestimation

during training. The resulting models outperform state-of-

the-art on various weak learning tasks such as temporal ac-

tion segmentation and action alignment.
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