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Abstract

Object detection is a challenging task in visual under-

standing domain, and even more so if the supervision is to

be weak. Recently, few efforts to handle the task without

expensive human annotations is established by promising

deep neural network. A new architecture of cascaded net-

works is proposed to learn a convolutional neural network

(CNN) under such conditions. We introduce two such ar-

chitectures, with either two cascade stages or three which

are trained in an end-to-end pipeline. The first stage of both

architectures extracts best candidate of class specific region

proposals by training a fully convolutional network. In the

case of the three stage architecture, the middle stage pro-

vides object segmentation, using the output of the activation

maps of first stage. The final stage of both architectures is a

part of a convolutional neural network that performs mul-

tiple instance learning on proposals extracted in the previ-

ous stage(s). Our experiments on the PASCAL VOC 2007,

2010, 2012 and large scale object datasets, ILSVRC 2013,

2014 datasets show improvements in the areas of weakly-

supervised object detection, classification and localization.

1. Introduction

The ability to train a system that detects objects in clut-

tered scenes by only naming the objects in the training im-

ages, without specifying their number or their bounding

boxes, is understood to be of major importance. Then it

becomes possible to annotate very large datasets or to auto-

matically collect them from the web.

Most current methods to train object detection systems

assume strong supervision [12, 26, 19]. Providing both the

bounding boxes and their labels as annotations for each ob-

ject, still renders such methods more powerful than their

weakly supervised counterparts. Although the availability

of larger sets of training data is advantageous for the train-

ing of convolutional neural networks (CNNs), weak super-

⋆This work was carried out while he was at ESAT-PSI, KU Leuven.
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Figure 1. Weakly Supervised Cascaded Deep CNN: Overview

of the proposed cascaded weakly supervised object detection and

classification method. Our cascaded networks take images and ex-

isting object labels to find the best location of objects samples in

each of images. Trained networks based on these location is ca-

pable of detecting and classifying objects in images, under weakly

supervision circumstances.

vision as a means of producing those has only been em-

braced to a limited degree.

The proposed weak supervision methods have come in

some different flavors. One of the most common ap-

proaches [7] consists of the following steps. The first step

generates object proposals. The last stage extracts features

from the proposals. And the final stage applies multiple

instance learning (MIL) to the features and finds the box la-

bels from the weak bag (image) labels. This approach can

thus be improved by enhancing any of its steps. For in-

stance, it would be advantageous if the first stage were to

produce more reliable - and therefore fewer - object pro-

posals.

It is the aforementioned approach that our weak super-

vision algorithm also follows. To improve the detection

performance, object proposal generation, feature extraction,

and MIL are trained in a cascaded manner, in an end-to-end

way. We propose two architectures. The first is a two stage

network. The first stage extracts class specific object pro-

posals using a fully convolutional network followed by a
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global average (max) pooling layer. The last stage extracts

features from the object proposals by a ROI pooling layer

and performs MIL. Given the importance of getting better

object proposals we added a middle stage to the previous

architecture in our three stage network. This middle stage

performs a class specific segmentation using the input im-

ages and the extracted objectness of the first stage. This

results in more reliable object proposals and a better detec-

tion.

The proposed architecture improves both initial object

proposal extraction and final object detection. In the for-

ward sense, less noisy proposals indeed lead to improved

object detection, due to the non-convexity of the cost func-

tion. In the reverse, backward sense, due the weight shar-

ing between the first layers of both stages, training the MIL

on the extracted proposals will improve the performance of

feature extraction in the first convolutional layers and as a

result will produce more reliable proposals.

Next, we review related works in section 2 and discuss

our proposed method in section 3. In section 4 we explain

the details of our experiments, including the dataset and

complete set of experiments and results.

2. Related works

Weakly supervised detection: In the last decade, sev-

eral weakly supervised object detection methods have been

studied using multiple instance learning algorithms [4, 5,

29, 30]. To do so they define images as the bag of regions,

wherein they assume the image labeled positive contains at

least one object instance of a certain category and an im-

age labeled negative do not contain an object from the cat-

egory of interest. The most common way of weakly super-

vised learning methods often work by selecting the candi-

date positive object instances in the positive bags, and then

learning a model of the object appearance using appearance

model. Due to the training phase of the MIL problem al-

ternating between out of bag object extraction and training

classifiers, the solutions are non-convex and as a result is

sensitive to the initialization. In practice, a bad initializa-

tion is prone to getting the solution stuck in a local optima,

instead of global optima. To alleviate this shortcoming, sev-

eral methods try to improve the initialization [31, 9, 28, 29]

as the solution strongly depends on the initialization, while

some others focus on regularizing the optimization strate-

gies [4, 5, 7]. Kumar et al. [17] employ an iterative self-

learning strategy to employ harder samples to a small set

of initial samples at training stage. Joulin et al. [15] use a

convex relaxation of soft-max loss in order to minimize the

prone to get stuck in the local minima. Deselaers et al. [9]

initialize the object locations via the objectness score. Cin-

bis et al. [7] split the training date in a multi-fold manner

for escaping from getting trapped into the local minima.

In order to have more robustness from poor initialization,

Song et al. [30] apply Nesterov’s smoothing technique to

latent SVM formulation [10]. In [31], the same authors ini-

tialize the object locations based on sub-modular clustering

method. Bilen et al. [4] formulates the MIL to softly label

the object instances by regularizing the latent object loca-

tions based on penalizing unlikely configurations. Further

in [5], the authors extend their work [4] by enforcing simi-

larity between object windows via regularization technique.

Wang et al. [35] employ probabilistic latent semantic anal-

ysis on the windows of positive samples to select the most

discriminative clusters that represents the object category.

As a matter of fact, majority of the previous works [25, 32]

use a large collection of noisy object proposals to train their

object detector. In contrast, our method only focuses on a

very few clean collection of object proposals that are far

more reliable, robust, computationally efficient, and gives

better performance.

Object proposal generation: In [20, 23], Nguyen et al.

and Pandey et al. extract dense regions of candidate pro-

posals from an image using an initial bounding box. To

handle the problem of not being able to generate enough

candidate proposals because of fixed shape and size, ob-

ject saliency [9, 28, 29] based approaches were proposed

to extract region proposals. Following this, generic object-

ness measure [1] was employed to extract region proposals.

Selective search algorithm [33], a segmentation based ob-

ject proposal generation was proposed, which is currently

among the most promising techniques used for proposal

generation. Recently, Ghodrati et al. [11] proposed an in-

verse cascade method using various CNN feature maps to

localize object proposals in a coarse to fine manner.

CNN based weakly supervised object detection: In

view of the promising results of CNNs for visual recogni-

tion, some recent efforts in weakly supervised classification

have been based on CNNs. Oquab et al. [21] improved fea-

ture discrimination based on a pre-trained CNN. In [22], the

same authors improved the performance further by incor-

porating both localization and classification on a new CNN

architecture. Bilen et al. [4] proposed a CNN-based convex

optimization method to solve the problem to escape from

getting stuck in local minima. Their soft similarity between

possible regions and clusters was helpful in improving the

optimization. Li et al. [18] introduced a class-specific object

proposal generation based on the mask out strategy of [2],

in order to have a reliable initialization. They also proposed

their two-stage algorithm, classification adaptation and de-

tection adaptation.

3. Proposed Method

This section introduces our weak cascaded convolutional

networks (WCCN) for object detection and classification

with weak supervision. Our networks are designed to learn

multiple different but related tasks all together jointly. The
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Figure 2. WCCN (2stage): The pipeline of end-to-end 2-stage cascaded CNN for weakly supervised object detection. Inputs to the network

are images, labels and unsupervised object proposals. First stage learns to create a class activation map based on object categories to make

some candidate boxes for each instance of objects. Second stage picks the best bounding box among the candidates to represent the specific

category by multiple instance learning loss.

tasks are classification, localization, and multiple instance

learning. We show that learning these tasks jointly in an

end-to-end fashion results in better object detection and lo-

calization. The goal is to learn good appearance models

from images with multiple objects where the only manual

supervision signal is image-level labels. Our main contribu-

tion is improving multiple object detection with such weak

annotation. To this end, we propose two different cascaded

network architectures. The first one is a 2-stage cascade net-

work that first localizes the objects and then learns to detect

them in a multiple instance learning framework. Our sec-

ond architecture is a 3-stage cascade network where the new

middle stage performs semantic segmentation with pseudo

ground truth in a weakly supervised setting.

3.1. Twostage Cascade

As mentioned earlier, there are only a few end-to-end

frameworks with deep CNNs for weakly supervised object

detection. In particular, there is not much prior art on object

localization without supervising in localization level. Sup-

pose we have dataset I of N training images in C classes.

The set is given as I = {(I1,y1), ..., (IN ,yN )} where I k

is an image and y
k = [y1, ..., yC ] ∈ {0, 1}C is a vector of

labels indicating the presence or absence of each class in

image I k .

In the proposed cascaded network, the initial fully-

convolutional stage learns to infer object location maps

based on the object labels in the given images. This stage

produces some candidate boxes of objects as input to the

next stage. The last stage selects the best boxes through an

end-to-end multiple instance learning.

First stage (Location network): The first stage of our

cascaded model is a fully-convolutional CNN with a global

average pooling (GAP) or global maximum pooling (GMP)

layer, inspired by [36]. The training yields the object lo-

cation or ‘class activation’ maps, that provide candidate

bounding boxes. Since multiple categories can exist in a

single image [22], we use an independent loss function for

each class in this branch of the CNN architecture, so the

loss function is the sum of C binary logistic regression loss

functions.

Last stage (MIL network): The goal of the last stage

is to select the best candidate boxes for each class from

the outputs of the first stage using multiple instance learn-

ing (MIL). To obtain an end-to-end framework, we incor-

porate an MIL loss function into our network. Assume

x = {xj |j = 1, 2, ..., n} is a bag of instances for image

I where xj is a candidate box, and assume fcj ∈ ℜC×n is

the score of box xj belonging to category i. We use ROI-

pooling layer [12] to achieve fcj . We define the probabili-

ties and loss as:

Pc(x, I) =

exp
(

max
j

fcj
)

∑C

k=1
exp

(

max
j

fkj
)

LMIL(y,x, I) = −

C
∑

c=1

yclog(Pc(x, I))

(1)

The weights for conv1 till conv5 are shared between the

two stages. For the last stage, we have additional two fully

connected layers and a score layer for learning the MIL task.

End-to-End Training: The whole cascade with two loss

functions is learned jointly by end-to-end stochastic gradi-

ent descent optimization. The total loss function of the cas-
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Figure 3. WCCN (3stage): The pipeline of end-to-end 3-stage cascaded CNN for weakly supervised object detection. For this cascaded

network, we designed new architecture to have weakly supervised segmentation as last stage, so first and last stages are identical to the

stages of the previous cascade. The new stage will improve the selecting candidate bounding boxes by providing more accurate object

regions.

caded network is:

LTotal = LGAP (y, I) + λLMIL(y,x, I) (2)

where λ is the hyper-parameter balancing two loss func-

tions. In the experiments, we set λ = 1. We suspect cross-

validation on this hyper-parameter can improve the results.

Generating bag of instances: We use Edgeboxs [37] to

generate an initial set of object proposals. Then we thresh-

old the class activation map [36] to come up with a mask.

Finally, we choose the initial boxes with largest overlap

with the mask.

3.2. Threestage Cascade

In this section, we extend our 2-stage cascaded model by

another stage that adds object segmentation as another task.

We believe more information about the objects’ boundary

learned in a segmentation task can lead to acquisition of

a better appearance model and then better object localiza-

tion. For this purpose, our new stage uses another form of

weak supervision to learn a segmentation model, embedded

in the cascaded network and trained along with other stages.

This extra stage will help the multi-loss CNN to have better

initial locations for choosing candidate bounding boxes to

pass to the next stage. So this new cascade has three stages:

first stage, similar to previous cascade is a CNN with global

pooling layer; middle stage, fully convolutional network

with segmentation loss; last stage, multiple instance learn-

ing with corresponding loss.

Middle stage (Segmentation Loss): Inspired by [3, 24],

we propose to use a weakly supervised segmentation net-

work which uses an object point of location and also label

as supervisory signals. Incorporation of initial location of

object from previous stage (location network) in the seg-

mentation stage can obtain more meaningful object location

map. The weak segmentation network uses the results of the

first stage as supervision signal (i.e., pseudo ground truth)

and learns jointly with the MIL stage to further improve the

object localization results.

In the middle stage, we add a fully convolutional CNN

similar to the one in [3] to our network. The final layer

is a pixel-wise softmax that outputs S ∈ ℜC×m where m

is the number of pixels in the image. Assuming Hc for

the heatmap for class c, we define αc = max(Hc) across

the whole image and Ic to be the neighborhood around

argmax(Hc). In the experiments, we use a neighborhood

of 3 × 3 pixels. Note that our formulation is closely fol-

lowing the one in [3] except that our point-wise annotation

is provided by the automatically generated heatmap rather

than manual annotation.

Considering y as the label set for image I , the loss

function for the weakly supervised segmentation network
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is given by:

LSeg(S,H, y) = −

C
∑

c=1

yc

(

log(Stcc) +
∑

i∈Ic

αclog(Sic)
)

(3)

where tc = argmax
i∈I

Sic. The first term is used for image-

level label supervision and the second term is for the set of

pixels that the heatmap confidently predicted to be a point

on the object. Note that αc is the second term is emphasiz-

ing on more confident categories.

Due to more supervision using psuedo-groundtruth pro-

vided by the heatmap, the middle stage provides a bet-

ter segmentation map compared to the original heatmap.

Hence, we pass the resulting segmentation map to the fi-

nal MIL stage to find candidate boxes with overlapping and

then calculate the MIL loss.

Output of this middle stage is a set of candidate bound-

ing boxes of objects for pushing to next stage of the CNN

cascade which uses multiple instance learning to choose the

most accurate box as the representative of object category.

In the experiments, we show that learning this extra task as

another stage of cascade can improve performance of the

whole network as a weakly supervised classifier.

End-to-End Training: Similar to the last cascade, the

total loss in Eq.4 is calculated by simply adding all three

loss terms. We learn all parameters of the network jointly

in an end-to-end fashion.

LTotal = LGAP (y, I) + γLSeg(y, I) + λLMIL(y,x, I)
(4)

In the experiments, we set λ = 1 and γ = 1.

3.3. Object Detection Training

Since we are interested in weakly supervised object de-

tection, we propose to use the output of our network as

pseudo-groundtruth in a standard object detection frame-

work e.g., Fast-RCNN [12]. There are two ways of doing

this: we can either train a standard Fast-RCNN without our

trained model or we can transfer our learned model into the

Fast-RCNN framework and finetune it. For the later case,

we use the shared early convolutional layers along with the

fully connected layers in the last stage of our model. In

both cases, at the testing time, we extract object proposals

with EdgeBoxes [37], use the trained Fast-RCNN to detect

objects among the pool of proposals, and perform non-max-

suppression.

4. Experiments

In the following section, we discuss details of our meth-

ods and experiments which we applied on object detection

and classification in weakly supervised manner. We in-

troduce datasets and also analyze performance of our ap-

proaches on them in different aspects of evaluation.

4.1. Datasets and metrics

The experiments for our proposed methods are ex-

tensively done on the PASCAL VOC 2007, 2010, 2012

datasets and also ILSVRC 2013, 2014 which are large scale

datasets for objects. The PASCAL VOC is more common

dataset to evaluate weakly supervised object detection ap-

proaches. The VOC datasets have 20 categories of objects,

while ILSVRC dataset has 200 categories which we tar-

geted also for weakly supervised object classification and

localization. In all of the mentioned datasets, we incorpo-

rate the standard train, validation and test set.

Experimental metrics: To measure the object detection

performance, average precision (AP) and correct localiza-

tion (CorLoc) is used. Average precision is the standard

metric from PASCAL VOC which takes a bounding box as

a true detection where it has intersection-over-union (IoU)

of more than 50% with ground-truth box. The Corloc is the

fraction of positive images that the method obtained correct

location by most confident detection box for at least one ob-

ject instance per target category in an image. For the object

classification, also we use PASCAL VOC standard average

precision.

4.2. Experimental and implementation details

We have evaluated both of our proposed cascaded CNN

with two architectures: Alexnet [16] and VGG-16 [27]. In

each case, the network has been pre-trained on ImageNet

dataset [8]. Since the multiple stages of cascades contain

different CNN networks losses, in the following we explain

details of each part separately to have better overview of the

implementation.

CNN architectures:

1. Loc Net: Inspired by [36], we removed fully-

connected layers from each of Alexnet or VGG-16 and re-

placed them by two convolutional layers and one global

pooling layer. So for the Alexnet, the layers after conv5

layer have been removed and for VGG-16 after conv5-3.

For global pooling layer, we have tested average and max

pooling methods and we found that global average pooling

performs better than maximum pooling. For the training

loss criteria of this part of network, we use a simple sum

of C (number of classes) binary logistic regression losses,

similar to [22].

2. Seg Net: This part of network is middle stage in the

3-stage cascaded network and is well-known fully convolu-

tional network for segmentation task [3]. The convolutional

part is shared with the other stages which comes from the

first stage and additional fully-connected layers and a de-

convolutional layer is used to produce segmentation map.
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Method aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mAP

Bilen et al. [4] 42.2 43.9 23.1 9.2 12.5 44.9 45.1 24.9 8.3 24.0 13.9 18.6 31.6 43.6 7.6 20.9 26.6 20.6 35.9 29.6 26.4

Bilen et al. [5] 46.2 46.9 24.1 16.4 12.2 42.2 47.1 35.2 7.8 28.3 12.7 21.5 30.1 42.4 7.8 20.0 26.8 20.8 35.8 29.6 27.7

Cinbis et al. [7] 39.3 43.0 28.8 20.4 8.0 45.5 47.9 22.1 8.4 33.5 23.6 29.2 38.5 47.9 20.3 20.0 35.8 30.8 41.0 20.1 30.2

Wang et al. [35] 48.8 41.0 23.6 12.1 11.1 42.7 40.9 35.5 11.1 36.6 18.4 35.3 34.8 51.3 17.2 17.4 26.8 32.8 35.1 45.6 30.9

Li et al., Alexnet [18] 49.7 33.6 30.8 19.9 13 40.5 54.3 37.4 14.8 39.8 9.4 28.8 38.1 49.8 14.5 24.0 27.1 12.1 42.3 39.7 31.0

Li et al., VGG16 [18] 54.5 47.4 41.3 20.8 17.7 51.9 63.5 46.1 21.8 57.1 22.1 34.4 50.5 61.8 16.2 29.9 40.7 15.9 55.3 40.2 39.5

WSDDN [6] 46.4 58.3 35.5 25.9 14.0 66.7 53.0 39.2 8.9 41.8 26.6 38.6 44.7 59.0 10.8 17.3 40.7 49.6 56.9 50.8 39.3

WCCN 2stage Alexnet 43.5 56.8 34.1 19.2 13.4 63.1 51.5 33.1 5.8 39.3 19.6 32.9 46.2 56.1 11.2 17.5 38.5 45.7 52.6 43.3 36.2

WCCN 2stage VGG16 48.2 58.9 37.3 27.8 15.3 69.8 55.2 41.1 10.1 42.7 28.6 40.4 47.3 62.3 12.9 21.2 44.3 52.2 59.1 53.1 41.4

WCCN 3stage Alexnet 43.9 57.6 34.9 21.3 14.7 64.7 52.8 34.2 6.5 41.2 20.5 33.8 47.6 56.8 12.7 18.8 39.6 46.9 52.9 45.1 37.3

WCCN 3stage VGG16 49.5 60.6 38.6 29.2 16.2 70.8 56.9 42.5 10.9 44.1 29.9 42.2 47.9 64.1 13.8 23.5 45.9 54.1 60.8 54.5 42.8

Table 1. Detection average precision (%) on the PASCAL VOC 2007 dataset test set.

Method aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mAP

WSDDN [6] 95.0 92.6 91.2 90.4 79.0 89.2 92.8 92.4 78.5 90.5 80.4 95.1 91.6 92.5 94.7 82.2 89.9 80.3 93.1 89.1 89.0

Oquab et al. [21] 88.5 81.5 87.9 82.0 47.5 75.5 90.1 87.2 61.6 75.7 67.3 85.5 83.5 80.0 95.6 60.8 76.8 58.0 90.4 77.9 77.7

SPPnet [13] − − − − − − − − − − − − − − − − − − − − 82.4

Alexnet [6] 95.3 90.4 92.5 89.6 54.4 81.9 91.5 91.9 64.1 76.3 74.9 89.7 92.2 86.9 95.2 60.7 82.9 68.0 95.5 74.4 82.4

VGG16-net [27] − − − − − − − − − − − − − − − − − − − − 89.3

WCCN 2stage Alexnet 92.8 90.3 89.3 88.2 80.4 89.4 90 90.4 75.3 88.1 80.1 91.3 89.1 88.3 91.2 80.6 88.5 77.8 92.2 88.7 87.1

WCCN 2stage VGG16 93.4 93.7 92 91 83.1 91.5 92.7 93.5 79.3 90.7 83.1 96.9 92.9 91.2 95.9 82.4 90.3 81.3 95.1 88.3 89.9

WCCN 3stage Alexnet 93.1 91.1 89.6 88.9 81 89.6 90.7 91.2 76.4 89.2 80.8 92.2 90.1 89 92.7 82 89.3 78.1 92.8 89.1 87.8

WCCN 3stage VGG16 94.2 94.8 92.8 91.7 84.1 93 93.5 93.9 80.7 91.9 85.3 97.5 93.4 92.6 96.1 84.2 91.1 83.3 95.5 89.6 90.9

Table 2. Classification average precision (%) on the PASCAL VOC 2007 test set.

Method aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mAP

Bilen et al. [5] 66.4 59.3 42.7 20.4 21.3 63.4 74.3 59.6 21.1 58.2 14.0 38.5 49.5 60.0 19.8 39.2 41.7 30.1 50.2 44.1 43.7

Cinbis et al. [7] 65.3 55.0 52.4 48.3 18.2 66.4 77.8 35.6 26.5 67.0 46.9 48.4 70.5 69.1 35.2 35.2 69.6 43.4 64.6 43.7 52.0

Wang et al. [35] 80.1 63.9 51.5 14.9 21.0 55.7 74.2 43.5 26.2 53.4 16.3 56.7 58.3 69.5 14.1 38.3 58.8 47.2 49.1 60.9 48.5

Li et al., Alexnet [18] 77.3 62.6 53.3 41.4 28.7 58.6 76.2 61.1 24.5 59.6 18.0 49.9 56.8 71.4 20.9 44.5 59.4 22.3 60.9 48.8 49.8

Li et al., VGG16 [18] 78.2 67.1 61.8 38.1 36.1 61.8 78.8 55.2 28.5 68.8 18.5 49.2 64.1 73.5 21.4 47.4 64.6 22.3 60.9 52.3 52.4

WSDDN [6] 65.1 63.4 59.7 45.9 38.5 69.4 77.0 50.7 30.1 68.8 34.0 37.3 61.0 82.9 25.1 42.9 79.2 59.4 68.2 64.1 56.1

WCCN 2stage Alexnet 78.4 66.4 58.2 38.1 34.9 60.1 77.8 53.8 26.6 66.5 18.7 47.3 62.8 73.5 20.4 45.2 64 21.6 59.9 51.6 51.3

WCCN 2stage VGG16 81.2 70 62.5 41.7 38.2 63.4 81.1 57.7 30.4 70.3 21.7 51 65.9 75.7 23.9 47.9 67.5 25.6 62.4 53.9 54.6

WCCN 3stage Alexnet 79.7 68.1 60.4 38.9 36.8 61.1 78.6 56.7 27.8 67.7 20.3 48.1 63.9 75.1 21.5 46.9 64.8 23.4 60.2 52.4 52.6

WCCN 3stage VGG16 83.9 72.8 64.5 44.1 40.1 65.7 82.5 58.9 33.7 72.5 25.6 53.7 67.4 77.4 26.8 49.1 68.1 27.9 64.5 55.7 56.7

Table 3. Correct localization (%) on PASCAL VOC 2007 on positive (CorLoc) trainval set.

The loss function is explained in section 3. Since this loss

is provided by weak supervision, part of the supervision is

obtained from the last stage in form of best initial regions

of object instances.

3. MIL Net: This last stage uses the shared convo-

lutional feature maps as initial layers to train two fully-

connected layers with size of 4096 and a label prediction

layer. Using the the selected candidate bounding boxes

from previous stage, it trains the multiple instance learn-

ing loss to select the best sample for each object presented

in an image.

Implementation details: We use MatConvNet [34] as

CNN toolkit and all the networks are trained on one Titan X

GPU. During the training time, images have been re-sized

to multiple scale of images ({480, 576, 688, 84, 1200}) with

respect to the original aspect ratio. The learning rate for the

CNN networks is 0.0001 for 20 epochs and batch size of

100. For each image, we use 2000 object proposals gen-

erated by EdgeBox or SelectiveSearch algorithms. At the

last stage, we select 10 boxes for each object instance in

each iteration for training multiple instance learning. To

use Fast-RCNN detection with the ground-truths that are

obtained by our methods, we set the number of iterations to

40K. For selecting the candidate boxes in our pipelines, we

use a thresholding method like [36] for weakly localization.

4.3. Detection performance

Comparison with the state-of-the-art: We evaluate the

detection performance of our method in this section. To

compare our approach, methods which use deep learning

pipelines [6, 18] or multiple instance learning algorithms

[7] or clustering based approaches [5] are studied.

Tables 1, 4, 5 present results on PASCAL VOC 2007,

2010, 2012 for object detection on test sets with average

precision measurement. It can be observed that by using

the weakly supervision setup, we achieved the best perfor-

mance among of all other recent methods. Our approaches

do not incorporate any sophisticated clustering or optimized

initialization step, and all the steps are trained together via

an end-to-end learning of deep neural networks. There is
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Figure 4. Examples of our object detection results. Green bounding boxes are ground-truth annotations and red boxes are positive detection.

Images are sampled from PASCAL VOC 2007 test set.

a semantic relationship between improvement gains using

different CNN architectures in our networks in comparison

with using the same CNNs in other methods. We have al-

most the same improvement with two different architectures

over other methods.

The localization performance with CorLoc metric is also

shown in Table 3 on PASCAL VOC 2007. Our best per-

formance is 56.7% which is achieved by 3stage cascade

network using VGG-16 architecture. However, our net-

work with the Alexnet outperformed the other methods us-

ing similar network architectures with same number of lay-

ers and other non deep learning methods. Most of the other

works use CNNs as some part of their pipeline, not in an

end-to-end scheme or use it simply as a feature extractor.

Differently, our cascaded deep networks bring multiple con-

cepts together in a single training method, learn better ap-

pearance model and feature representation for objects under

weakly supervision circumstances.

We also compared our object detector results on

ILSVRC’13 only with [18, 35], since no other weakly su-

pervised object detector methods have been tried on this

dataset. Results are shown in Table 4 and similar to our

other tests, we have achieved better number in performance.

Since, some part of our work is inspired by GAP networks

from [36], we compared our weakly supervised localization

on the ILSVRC’14 dataset following their experimental se-

tups and the results are in Table 5.

Object detection training: We compared two different

approaches of training object detection using Fast-RCNN,

Method VOC2010 VOC2012 ILSVRC 2013

Cinbis et al. [7] 27.4 − −
Wang et al. [35] − − 6.0

Li et al., Alexnet [18] 21.4 22.4 7.7

Li et al., VGG16 [18] 30.7 29.1 10.8

WSDDN [6] 36.2 − −
WCCN 2stage Alexnet 27.6 27.3 9.1

WCCN 2stage VGG16 37.8 36.4 14.6

WCCN 3stage Alexnet 28.8 28.4 9.8

WCCN 3stage VGG16 39.5 37.9 16.3

Table 4. Detection performance (%) comparison on VOC 2010,

2012 test set and ILSVRC 2013 validation set.

implemented in Caffe [14] which both cases use our gen-

erated pseudo ground-truth. Since the Fast-RCNN [12] is

a supervised method, we use the pseudo ground-truth (GT)

bounding boxes which are generated by our cascaded net-

works. Proved by our experiments, in the Fig.5, it is shown

that the Fast-RCNN can also perform with good results us-

ing our input bounding boxes. Fast-RCNN trained by our

generated GT performs slightly better than our transfered

model the average precision of PASCAL VOC 2007 test set

(0.3%). The main goal of this work is to find the most rep-

resentative and discriminative samples that signify the ex-

isting categories in each image.

Object proposals: In our work, we evaluated the effect

of different unsupervised object proposals generator. Edge-

Box [37] and SelectiveSearch [33] are compared based on

the detector trained by our networks. According to the re-
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Figure 5. Comparison between our detection full pipeline and training Fast-RCNN using pseudo ground-truth bounding boxes extracted by

our method.

Method Detection top-1 Classification top-1

Alexnet 65.17 42.6

VGG16 61.12 31.2

Alexnet-GAP [36] 63.75 44.9

VGG16-GAP [36] 57.20 33.4

WCCN 2stage Alexnet 62.2 41.2

WCCN 2stage VGG16 55.6 30.4

Table 5. Detection and classification top-1 error (%) on

ILSVRC’14 validation set

sults on the VOC 2007 detection test set, by training 2stage

cascade using Alexnet with Edgebox, approximately 1.5%

improvement can be obtained over SelectiveSearch. Simi-

lar to the other works like [6, 13], EdgeBox performs better

with CNN based object detectors.

4.4. Classification performance

Our proposed network designs has dual purposes: object

detection and classification in a weakly supervision man-

ner. Obviously the structure of our cascade is helpful for

training classification pipeline on images with multiple ob-

jects and minimum supervision of labels. We evaluated our

method on PASCAL VOC 2007 and ILSVRC 2014. The

performance is compared with other approaches which use

novel methods in deep learning for classification on these

datasets.

Table 2 presents the comparison on VOC 2007 with dif-

ferent CNN architectures for all of the methods. Since first

stage of our cascade is similar to [36], we show the result

of classification on ILSVRC’14, the large scale dataset for

classification, in Table 5.

4.5. Cascade Architecture Study

To do ablation study over the performance of different

stages of proposed cascades, it can be noticed that all of the

results show how each of the proposed cascades can affect

the performance in detection or classification. Each stage in

our multi-stage cascaded CNN can be analyzed by compari-

son with the CNN-based methods in same context. Training

the stage with multiple instance loss can improve learning

the best sample of each category over other works [36, 6].

It can be observed that adding the stage of segmentation to

exploit better regions can outperform the two-stage cascade.

Adding segmentation stage has impact on finding more ac-

curate initial guess of object locations. For an instance of

using the segmentation stage by Alexnet architecture, cas-

caded network improves almost 2.5% on detection and 2%

on classification in PASCAL VOC 2007.

5. Conclusion

Our idea of weak cascaded convolutional networks

(WCCN) is about the approaches of cascaded CNNs for

weakly supervised visual learning tasks like object detec-

tion, localization and classification. In this work, we pro-

posed two multi-stage cascaded networks with different loss

functions in each stage to conclude a better pipeline of

deep convolutional neural network learning with weak su-

pervision of object labels on images. Our insight was a

paradigm of multi-task learning effectiveness using deep

neural networks. We proved that our multi-task learning

approaches that incorporate localization, multiple instance

learning and weakly supervised segmentation of object re-

gions achieve the state-of-the-art performance in weakly su-

pervised object detection and classification. The extensive

experiments for object detection and classification tasks on

various datasets like PASCAL VOC 2007, 2010, 2012 and

also large scale datasets, ILSVRC 2013, 2014 present the

full capability of the proposed method.
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