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Weakly supervised classification of aortic valve
malformations using unlabeled cardiac MRI
sequences
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Christopher Ré1,7,8 & James R. Priest 4,7,8

Biomedical repositories such as the UK Biobank provide increasing access to prospectively

collected cardiac imaging, however these data are unlabeled, which creates barriers to their

use in supervised machine learning. We develop a weakly supervised deep learning model for

classification of aortic valve malformations using up to 4,000 unlabeled cardiac MRI

sequences. Instead of requiring highly curated training data, weak supervision relies on noisy

heuristics defined by domain experts to programmatically generate large-scale, imperfect

training labels. For aortic valve classification, models trained with imperfect labels sub-

stantially outperform a supervised model trained on hand-labeled MRIs. In an orthogonal

validation experiment using health outcomes data, our model identifies individuals with a 1.8-

fold increase in risk of a major adverse cardiac event. This work formalizes a deep learning

baseline for aortic valve classification and outlines a general strategy for using weak

supervision to train machine learning models using unlabeled medical images at scale.
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A
ortic valve disease inclusive of bicuspid aortic valve (BAV)
is the most common congenital malformation of the
heart, occurring in 0.5–2% of the general population1, and

is associated with a variety of poor health outcomes2. In isolation,
valvular dysfunction in BAV often leads to substantial cardio-
vascular pathology requiring surgical replacement of the aortic
valve3. Machine learning models for automatically identifying
aortic valve malformations via medical imaging could enable new
insights into genetic and epidemiological associations with car-
diac morphology. However, our understanding of the etiologies of
BAV and its disease correlates have been limited by the variability
in age of diagnosis and the absence of large, prospectively col-
lected imaging datasets.

Obtaining labeled training data is one of the largest practical
roadblocks to building machine learning models for use in
medicine4. Recent deep learning efforts in medical imaging for
detecting diabetic retinopathy5 and cancerous skin lesions6 each
required more than 100,000 labeled images annotated by multiple
physicians. Standard approaches to generating labeled data at
scale such as crowdsourcing are poorly suited to medical images
due to the domain expertise required and the logistics of working
with protected health information. More fundamentally, labels
are static artifacts with sunk costs: labels themselves do not
transfer to different datasets and changes to annotation guidelines
necessitate re-labeling data.

Recently, the UK Biobank released a dataset of >500,000
individuals with comprehensive medical record data prior to
enrollment along with long-term followup. Importantly, these
data also include prospectively obtained medical imaging and
genome-wide genotyping data on 100,000 participants7, including
the first release of phase-contrast cardiac magnetic resonance
imaging (MRI) sequences for 14,328 subjects. The high-
dimensionality and overall complexity of these images make
them appealing candidates for use with deep learning8. However,
these prospectively collected MRIs are unlabeled, and the low
prevalence of malformations such as aortic valve disease intro-
duces considerable challenges in building labeled datasets at the
scale required to train deep learning models.

In this work, we present a deep learning model for aortic valve
malformation classification that is trained using largely unlabeled
MRI data building on the paradigm of weak-supervision. Instead
of requiring hand-labeled examples from cardiologists, we use
new methods9,10 to encode domain knowledge in the form of
multiple, noisy heuristics or labeling functions which are applied
to unlabeled data to generate imperfect training labels. This
approach uses a factor graph-based model to estimate the
unobserved accuracies of these labeling functions as well as infer
statistical dependencies among labeling functions11,12. The
resulting factor graph model is applied to unlabeled data to
produce “de-noised” probabilistic labels, which are used to train a
state-of-the-art hybrid Convolutional Neural Network/Long
Short Term Memory (CNN-LSTM) model to classify aortic valve
malformations. To assess the real-world relevance of our image
classification model, we apply the CNN-LSTM to a cohort of 9230
new patients with long-term outcome and MRI data from the UK
Biobank. In patients identified by our classifier as having BAV, we
find a 1.8-fold increase in risk of a major adverse cardiac event.
These findings demonstrate how weakly supervised methods help
mitigate the lack of expert-labeled training data in cardiac ima-
ging settings, and how real-world health outcomes can be learned
directly from large-scale, unlabeled medical imaging data.

Results
Experiments. We compare our weakly supervised models against
two traditionally supervised baselines using identical CNN-LSTM

architectures: (1) expert labels alone and (2) expert labels with
data augmentation. Our supervised BASELINE model was trained
using all hand-labeled MRIs from the development set. Due to
class imbalance (6:100), training data was rebalanced by over-
sampling BAV cases with replacement.

We evaluate the impact of training set size on weak supervision
performance. These models are trained using only weakly labeled
training data, i.e., no hand-labeled MRIs, built using a set of
patients disjoint from our 412 gold annotation cohort. All
probabilistic labels are split into positive and negative bins using a
threshold of 0.5 and sampled uniformly at random with
replacement to create balanced, training sets, e.g., sample 50
BAV and 50 tricuspid aortic valve (TAV) for a training set size of
100. We used balanced samples sizes of {50, 250, 500, 1000, 2000,
4000}. The final class balance for all 4239 weak labels in the
training set was 264/3975 BAV/TAV. Full scale-up metrics for
weak labels are shown in Fig. 1. Mean precision increased 128%
(30.7 to 70.0) using 4239 weakly labeled MRIs; sensitivity (recall)
matched performance of the expert-labeled baseline (53.3 vs.
60.0). At ≥1264 weak training examples, all models exceeded the
performance of a model trained on 106 expert-labeled MRIs.

In Table 1, we report baseline model performance and the best
weak supervision models found across all scale-up experiments.
Models trained with 4239 weak labels and augmentation
performed best overall, matching or exceeding all metrics
compared to the best performing baseline model, expert labels
with augmentation. The best weak supervision model had a 62%
improvement in mean F1 score (37.8 to 61.4) and 128% higher
mean precision (30.7 to 70.0). This model had higher mean area
under the ROC curve (AUROC) (+13%) and normalized
discounted cumulative gain (NDCG) (+57%) scores. See
Supplementary Fig. 1 for ROC plots across all scale-up sizes.

Table 2 shows individual labeling function performance on test
data, where metrics were computed per-frame. Precision, recall,
and F1 scores were calculated by counting abstain votes as TAV
labels, reflecting a strong prior on TAV cases. Individually, each
function was a very weak classifier with poor precision (0–25.0)
and recall (0–85.7), as well as mixed coverage (9.8–90%) and
substantial conflict with other labeling functions (8–41.7%). Note
that labeling functions provide both negative and positive class
supervision, and sometimes performed best with a specific class,
e.g., LF_Intensity targets negative (TAV) cases while LF_Peri-
meter targets positive (BAV) cases.

In total, 570/9230 subjects were classified as having BAV. In a
time-to-event analysis encompassing up to 22 years of follow-up
on the 9230 included participants with cardiac MRI data, the
individuals with model-classified BAV showed a significantly
lower MACE-free survival (hazard ratio 1.8; 95% confidence
interval 1.3–2.4, p= 8.83e−05 log-rank test) (see Fig. 2) con-
sistent with prior knowledge of co-incidence of BAV with
comorbid cardiovascular disease13,14. In a linear model adjusted
for age, sex, smoking, hyperlipidemia, diabetes, and BMI,
individuals with model-classified BAV displayed a 2.5 mmHg
increase in systolic blood pressure (p < 0.001).

Figure 3 shows a t-SNE plot of BAV/TAV clusters using the
CNN-LSTM’s last hidden layer output (i.e., the learned feature
vector). In the post-hoc analysis of 36 predicted MRI labels, TAV
cases had 94% (17/18) PPV (precision) and BAV cases had 61%
(11/18) PPV, with BAV misclassifications occurring most often in
cases with visible regurgitation and turbulent blood flow.

Table 3 shows the post-hoc analysis of 100 positive BAV
predictions. In total, 28% of all positive predictions were true
BAV cases, with 75% of predictions mapping to one or more
valve pathologies of the aortic valve. Distribution across each
sampled bucket (Q1–Q4) was largely uniform, indicating errors
were randomly distributed in positive class predictions.
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Discussion
In this work, we present a deep learning model for classifying
aortic valve malformations from phase-contrast MRI sequences.
These results were obtained using models requiring only a small
amount of labeled data, combined with a large, imperfectly
labeled training set generated via weak supervision. The success of
this weak supervision paradigm, especially for a classification task
with substantial class-imbalance such as BAV, is a step towards
the larger goal of automatically labeling unstructured medical
imaging from large datasets such as the UK Biobank. For medical

applications of machine learning as described here, we propose an
additional standard of validation; that the model not only cap-
tures abnormal valve morphology, but more importantly the
captured information is of real-world medical relevance and
consistent with prior-knowledge of aortic valve pathology.
Despite criteria selecting healthier individuals for study by
MRI15,16, individuals identified by our model showed more than
an 1.8-fold increase in risk for comorbid cardiovascular disease.

Large unstructured medical imaging datasets are increasingly
available to biomedical researchers, but the use of data on cardiac
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Fig. 1 Weak supervision scale up performance metrics. Metrics include a positive predictive value (precision); b sensitivity (recall); c area under the ROC

curve (AUROC); and d normalized discounted cumulative gain (NDCG). The y-axis is the score in [0,100] and the x-axis is the number of unlabeled MRIs
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indicate 95% confidence intervals (where n= the number of unlabeled training MRIs)

Table 1 Best weak supervision vs. hand labeled models

Model Size Precision Recall F1 AUROC NDCG

HL 106 10.0 [1.3, 18.7] 20.0 [5.4, 34.6] 12.8 [2.5, 23.1] 85.4 [80.8, 90.0] 40.6 [36.4, 44.9]

HL+Aug. 106 30.7 [20.8, 40.6] 53.3 [38.7, 68.0] 37.8 [27.7, 47.9] 83.4 [79.5, 87.3] 55.7 [51.5, 59.9]

WS 4239 83.3 [64.5, 100.0] 53.3 [38.7, 68.0] 60.8 [50.6, 71.0] 91.4 [87.8, 95.0] 84.5 [81.1, 88.0]

WS+Aug. 4239 70.0 [55.4, 84.6] 60.0 [48.1, 72.0] 61.4 [55.3, 67.5] 94.4 [91.3, 97.6] 87.3 [83.6, 91.0]

WS indicates weak supervision models, HL indicates hand-labeled models, and Aug. indicates augmentation. Scores are computed with 95% confidence intervals (where n= the size column), with bold

text indicating best performance overall

Table 2 Frame-level labeling function performance metrics

Labeling functions Coverage (%) Conflict (%) Pos. Acc. Neg. Acc. Precision Recall F1

LF_Area 22.6 11.5 76.5 62.9 25.0 31.0 27.7

LF_Perimeter 9.8 8.0 100.0 0.0 20.8 26.2 23.2

LF_Eccentricity 87.4 38.9 85.7 42.3 12.7 85.7 22.1

LF_Intensity 28.9 24.1 0.0 69.0 0.0 0.0 0.0

LF_Ratio 90.4 41.7 67.5 49.6 10.7 64.3 18.3
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Fig. 3 Patient clustering visualization. t-SNE visualization of the last hidden layer outputs of the CNN-LSTM model as applied to 9230 patient MRI

sequences and a–d frames capturing peak flow through the aorta for a random sample of patients. Blue and orange dots represent TAV and BAV cases.

The model clusters MRIs based on aortic shape and temporal dynamics captured by the LSTM. The top example box (a) contains clear TAV cases with

very circular flow shapes, with (b) and (c) becoming more irregular in shape until (d) shows highly irregular flow typical of BAV. Misclassifications of BAV

(red boxes) generally occur when the model fails to differentiate regurgitation of the aortic valve and turbulent blood flow through a normal appearing

aortic valve orifice

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-11012-3

4 NATURE COMMUNICATIONS |         (2019) 10:3111 | https://doi.org/10.1038/s41467-019-11012-3 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


morphology derived from medical imaging depends upon their
integration into genetic and epidemiological studies. For most
aspects of cardiac structure and function, the computational tools
used to perform clinical measurements require the input or
supervision of an experienced user, typically a cardiologist,
radiologist, or technician. Large datasets exploring cardiovascular
health such as MESA and GenTAC which both include imaging
data have been limited by the scarcity of expert clinical input in
labeling and extracting relevant information17,18. Our approach
provides a scalable method to accurately and automatically label
such high value datasets.

Automated classification of imaging data represents the future
of imaging research. Weakly supervised deep learning tools may
allow imaging datasets from different institutions which have
been interpreted by different clinicians, to be uniformly ascer-
tained, combined, and analyzed at unprecedented scale, a process
termed harmonization. Independent of any specific research or
clinical application, new machine learning tools for analyzing and
harmonizing imaging data collected for different purposes will be
the critical link that enables large-scale studies to connect ana-
tomical and phenotypic data to genomic information, and health-
related outcomes. For the purposes of research, such as genome-
wide association studies, higher precision (positive predictive
value) is more important for identifying cases. Conversely, in a
clinical application, the flagging of all possible cases of mal-
formations for manual review by a clinician would be facilitated
by a more sensitive threshold. The model presented here can be
tuned to target either application setting.

Our analytical framework and models have limitations. Esti-
mation of the true prevalence of uncommon conditions such as
BAV and ascertainment of outcomes within a given population is
complicated by classical biases in population health science.
Registries of BAV typically enroll patients only with clinically
apparent manifestations or treatment for disease which may not
account for patients who do not come to medical attention.

Estimates derived from population-based surveillance are
usually limited to relatively small numbers of participants due to
the cost and difficulty of prospective imaging, and small cohort
sizes impede accurate estimates for rare conditions such as BAV.
Age and predisposition to research participation may also affect
estimates of disease prevalence, a documented phenomenon
within the UK Biobank19. Morbidity and mortality from BAV are
accrued cumulatively over time, thus studies of older participants
are missing individuals with severe disease who may have died or
been unable to participate. Conversely calcific aortic valve disease,
which increases in incidence with age, may result in an acquired
form of aortic stenosis difficult to distinguish from BAV by
cardiac flow imaging20.

A structured post-hoc analysis of 100 model-classified aortic
valve malformations showed that the model is broadly sensitive to

the detection of aortic valve pathology including BAV, but also
aortic stenosis, aortic insufficiency, and the presence of thickened
or tethered aortic valve leaflets (Table 3). Relative to a normally
functioning aortic valve with a circular or symmetrically trian-
gular appearing pattern of flow, each of these pathologies may
result in turbulent blood flow which appears asymmetric or non-
uniform in phase-contrast imaging of the aortic valve (Fig. 3).
Thus even for the current best-performing model, one displaying
good predictive characteristics for a class-imbalanced problem,
misclassification events do occur. However, many of these failure
modes are challenging even for clinicians to discriminate when
restricted to the single MRI view utilized in this study. Integrating
additional views of the aorta can help clinicians discriminate BAV
from these other valve pathologies, underlining the need to
explore machine learning models that synthesize multiple streams
of MRI data. Incorporating side information from ICD9/10 and
OPCS-4 codes to leverage data on long-term outcomes and
confounding pathologies is another exciting area for future model
improvement.

This work demonstrates how weak supervision can be used to
train a state-of-the-art deep learning model for aortic valve
malformation classification using unlabeled MRI sequences.
Using domain heuristics encoded as functions to program-
matically generate large-scale, imperfect training data provided
substantial improvements in classification performance over
models trained on hand-labeled data alone. Transforming
domain insights into labeling functions instead of static labels
mitigates some of the challenges inherent in the domain of
medical imaging, such as extreme class imbalance, limited
training data, and scarcity of expert input. Most importantly, our
BAV classifier successfully identified individuals at long-term risk
for cardiovascular disease, demonstrating real-world relevance of
imaging models built using weak supervision techniques.

Methods
Dataset. From 2006 to 2010, the UK Biobank recruited 502,638 participants aged
37–73 years in an effort to create a comprehensive, publicly available health-
targeted dataset. The initial release of UK Biobank imaging data includes cardiac
MRI sequences for 14,328 subjects21, including eight cardiac imaging sets. Three
sequences of phase-contrast MRI images of the aortic valve registered in an en face
view at the sinotubular junction were obtained. Figure 4 shows example MRI
videos in all encodings: raw anatomical images (CINE); magnitude (MAG); and
velocity encoded (VENC)22. See Supplementary Movies 1–6 for video examples. In
MAG and VENC series, pixel intensity directly maps to velocity of blood flow. This
is performed by exploiting the difference in phase of the transverse magnetism of
protons within blood when flowing parallel to a gradient magnetic field, where the
phase difference is proportional to velocity. CINE images encode anatomical
information without capturing blood flow. All raw phase contrast MRI sequences
are 30 frames, 12-bit grayscale color, and 192 × 192 pixels.

Studies using the UK Biobank are exempt from approval by the Stanford
University School of Medicine Institutional Review Board as the data is de-
identified and publicly available. Informed consent for use of health information
and imaging was performed by the UK Biobank organization at the time of

Table 3 Prediction set validation

Q1 Q2 Q3 Q4 Overall

Total BAV 24% (6) 28% (7) 36% (9) 24% (6) 28%

Total non-BAV valve pathologies 48% (12) 44% (11) 40% (10) 56% (14) 47%

Total flow/image artifacts 28% (7) 28% (7) 24% (6) 20% (5) 25%

Aortic stenosis 40% (10) 44% (11) 28% (7) 36% (9) 37%

Aortic insufficiency 4% (1) 8% (2) 16% (4) 16% (4) 11%

Tethered/thickened leaflet 16% (4) 4% (1) 20% (5) 24% (6) 16%

Turbulent flow artifact 40% (10) 40% (10) 20% (5) 36% (9) 34%

Image artifact 4% (1) 4% (1) 0% (0) 4% (1) 3%

Total Subjects 25 25 25 25 100

Bold rows are disjoint category counts for true BAV, confounding non-BAV valve pathologies, and imaging artifacts. Italicized rows contain categories where counts may overlap with non-BAV valve

pathologies and image artifacts

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-11012-3 ARTICLE

NATURE COMMUNICATIONS |         (2019) 10:3111 | https://doi.org/10.1038/s41467-019-11012-3 | www.nature.com/naturecommunications 5

www.nature.com/naturecommunications
www.nature.com/naturecommunications


participant enrollment. The UK Biobank ethics committee administered the
consent and regulatory compliance for all research participants23. The collection,
distribution, and use of UK Biobank data for non-commercial research purposes is
compliant with all relevant regulations including European Union General Data
Protection Regulation.

MRI preprocessing. All MRIs were preprocessed to: (1) localize the aortic valve to
a 32 × 32 crop image size; and (2) align all image frames by peak blood flow in the
cardiac cycle. Since the MAG series directly captures blood flow—and the aorta
typically has the most blood flow—both of these steps are straightforward using
standard threshold-based image processing techniques when the series is localized
to a cross-sectional plane at the sinotubular junction. Selecting the pixel region
with maximum standard deviation across all frames localized the aorta, and
selecting the frame with maximum standard deviation identified peak blood flow.
See Fig. 5 and Supplementary Methods for implementation details. Both heuristics
were very accurate (>95% as evaluated on the development set) and selecting a ±7
frame window around the peak frame fpeak captured 99.5% of all pixel variation for
the aorta. All three MRI sequences were aligned to this peak before classification.

Gold standard annotations. Gold standard labels were created for 412 patients
(12,360 individual MRI frames), with each patient labeled as BAV or TAV, i.e.,
having two vs. the normal three aortic valve leaflets. We focus our analysis on
BAV as it is the easiest malformation to identify from this MRI view. Total
annotations included: a development set (100 TAV and 6 BAV patients) for
writing labeling functions; a validation set (208 TAV and 8 BAV patients) for
model hyperparameter tuning; and a held-out test set (87 TAV and 3 BAV
patients) for final evaluation. The development set was selected via chart review
of administrative codes (ICD9, ICD10, or OPCS-4) consistent with BAV and
followed by manual annotation. The validation and test sets were sampled at
random with uniform probability from all 14,328 MRI sequences to capture the
BAV class distribution expected at test time. Development and validation set
MRIs were annotated by a single cardiologist (J.R.P.). All test set MRIs were
annotated by 3 cardiologists (J.R.P., H.C., S.M.) and final labels were assigned
based on a majority vote across annotators. For inter-annotator agreement on
the test set, Fleiss’s Kappa statistic was 0.354. This reflects a fair level of
agreement amongst annotators given the difficulty of the task24,25. Test data was
withheld during all aspects of model development and used solely for the final
model evaluation.
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Fig. 4 Example MRI sequence data for BAV and TAV subjects. a Uncropped MRI frames for CINE, MAG, and VENC series in an oblique coronal view of the

thorax centered upon an en face view of the aortic valve at sinotubular junction (red boxes). b 15-frame subsequence of a phase-contrast MRI for all series,
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Weak supervision. There is considerable research on using indirect or weak
supervision to train machine learning models for image and natural language tasks
without relying entirely on manually labeled data9,26,27. One longstanding
approach is distant supervision28,29, where indirect sources of labels are used to
generate noisy training instances from unlabeled data. For example, in the ChestX-
ray8 dataset30 disorder labels were extracted from clinical assessments found in
radiology reports. Unfortunately, we often lack access to indirect labeling resources
or, as in the case of BAV, the class of interest itself may be rare and underdiagnosed
in existing medical records. Another strategy is to generate noisy labels via
crowdsourcing31,32, which in some medical imaging tasks can perform as well as
trained experts33,34. In practice, however, crowdsourcing is logistically difficult
when working with protected health information such as MRIs. A significant
challenge in all weakly supervised approaches is correcting for label noise, which
can negatively impact end model performance. Noise is commonly addressed using
rule-based and generative modeling strategies for estimating the accuracy of label
sources35,36.

In this work, we use the recently proposed data programming9 method, a
generalization of distant supervision that uses a factor graph-based model to learn
both the unobserved accuracies of labeling sources and statistical dependencies
between those sources11,12. In this approach, source accuracy and dependencies are
estimated without requiring labeled data, enabling the use of weaker forms of
supervision to generate training data, such as using noisy heuristics from clinical
experts. For example, in BAV patients the phase-contrast imaging of flow through
the aortic valve has a distinct ellipse or asymmetrical triangle appearance compared
to the more circular aorta in TAV patients. This is the reasoning a human might
apply when directly examining an MRI. In data programming these types of broad,
often imperfect domain insights are encoded into functions that vote on the
potential class label of unlabeled data points. This allows us to weakly supervise
tasks where indirect label sources, such as patient notes with assessments of BAV,
are not available.

The idea of encoding domain insights is formalized as labeling functions—black
box functions which vote on unlabeled data points. Labeling function output is
used to learn a probabilistic label model of the underlying annotation process,
where each labeling function is weighted by its estimated accuracy to generate
probabilistic training labels yi∈ [0, 1]. These probabilistically labeled data are then
used to train an off-the-shelf discriminative model such as a deep neural network.
The only restriction on labeling functions is that they vote correctly with
probability better than random chance. In images, labeling functions are defined
over a set of domain features or primitives, semantic abstractions over raw pixel
data that enable experts to more easily encode domain heuristics. Primitives
encompass a wide range of abstractions, from simple shape features to complex
semantic objects such as anatomical segmentation masks. Critically, the final
discriminative model learns features from the original MRI sequence, rather than
the restricted space of primitives used by labeling functions. This allows the model
to generalize beyond the heuristics encoded in labeling functions.

Patient MRIs are represented as a collection of m frames X= {x1,…, xm}, where
each frame xi is a 32 × 32 image with MAG, CINE, and VENC encodings mapped
to color channels. Each frame is modeled as an unlabeled data point xi and latent
random variable yi∈ [−1, 1], corresponding to the true (unobserved) frame label.
Supervision is provided as a set of n labeling functions λ1, …, λn that define a
mapping λj:xi→Λij where Λi1, …, Λin is the vector of labeling function votes for
sample i. In binary classification, Λij is in the domain {−1, 0, 1}, i.e., {false, abstain,
true}, resulting in a label matrix Λ ∈ {−1, 0, 1}m×n.

The relationship between unobserved labels y and the label matrix Λ is modeled
using a factor graph37. We learn a probabilistic model that best explains Λ, i.e., the
matrix observed by applying labeling functions to unlabeled data. When labeling
function outputs are conditionally independent given the true label, this model
consists of n accuracy factors between λ1, …, λn and y

ϕAccj ðΛi; yiÞ :¼ yiΛij ð1Þ

pθðΛ;YÞ / exp
Xm

i¼1

Xn

j¼1

θAccj ϕAccj ðΛi; yiÞ

 !

ð2Þ

where Y := yi, …, ym, our true labels. The model’s weights θ are estimated by
minimizing the negative log likelihood of pθ(Λ) using contrastive divergence38.
Optimization is done using standard stochastic gradient descent with Gibbs
sampling for gradient estimation.

In many settings, we encounter statistical dependencies among labeling
functions. These dependencies are included in the model by defining additional
factors

pθðΛ;YÞ / exp
Xm

i¼1

X

t2T

X

s2St

θtsϕ
t
sðΛi; yiÞ

 !

ð3Þ

where t∈ T is a dependency type and St are the labeling functions that participate
in t. These dependencies may be specified manually if known or learned from
unlabeled data.

Automatically learning dependencies from unlabeled data is important in
weakly supervised imaging tasks where labeling functions interact with a small set
of primitives and have higher order dependency structure. For example, a labeling

function defined using the ratio of area and perimeter has dependencies with
separate labeling functions for area and perimeter. By expressing supervision using
a small space of primitives, we can rely on the Coral method11 to statically analyze
labeling function source code and automatically infer complex dependencies
among labeling functions based on which primitives they use as input.

The final weak supervision pipeline requires two inputs: (1) primitive feature
matrix; and (2) observed label matrix Λ. For generating Λ, we take each patient’s
frame sequence xi ¼ fx1i; :::x30ig and apply labeling functions to a window of t
frames fxðfpeak�t=2Þi; :::; xðfpeakþt=2Þig centered on fpeak, i.e., the frame mapping to

peak blood flow. Here t= 6 performed best in our label model experiments. The
output of the label model is a set of per frame probabilistic labels {y1, …, y(t×N)}
where N is the number of patients. To compute a single, per patient probabilistic
label, �yi, we assign the mean probability of all t patient frames if mean({y1i, …, yti})
> 0.9 and the minimum probability if min({y1i, …, yti}) < 0.5. Patient MRIs that did
not meet these thresholds (7%; 304/4543) were removed from the final weak label
set. The final weakly labeled training set consists of each 30 frame MRI sequence

and a single probabilistic label per-patient: bX ¼ fxi; ¼ ; xNg and bY ¼ f�yi; :::;�yNg.
Primitives are generated using existing models or methods for extracting

features from image data. In our setting, we restricted primitives to unsupervised
shape statistics and pixel intensity features provided by off-the-shelf image analysis
tools such as scikit-image39. Primitives are generated using a binarized mask of the
aortic valve for each frame in a patient’s MAG series. Since the label model
accounts for noise in labeling functions and primitives, we can use unsupervised
thresholding techniques such as Otsu’s method40 to generate binary masks. All
masks were used to compute primitives for: (1) area; (2) perimeter; (3) eccentricity
(a [0,1) measure comparing the mask shape to an ellipse, where 0 indicates a
perfect circle); (4) pixel intensity (the mean pixel value for the entire mask); and (5)
ratio (the ratio of area over perimeter squared). Since the size of the heart and
anatomical structures correlate strongly with patient sex, we normalized these
features by two population means stratified by sex in the unlabeled set.

We designed 5 labeling functions using the primitives described above. For
model simplicity, labeling functions were restricted to using threshold-based,
frame-level information for voting. All labeling function thresholds were selected
manually using distributional statistics computed over all primitives for the expert-
labeled development set. See Supplementary Fig. 2 for the complete development
set used for labeling function design and Supplementary Table 1 for labeling
function implementations. The final weak supervision pipeline is shown in Fig. 6.

The discriminative model classifies BAV/TAV status using t contiguous MRI
frames (5 ≤ t ≤ 30, where t is a hyperparameter) and a single probabilistic label per
patient. This model consists of two components: a frame encoder for learning
frame-level features and a sequence encoder for combining individual frames into a
single feature vector. For the frame encoder, we use a Dense Convolutional
Network (DenseNet)41 with 40 layers and a growth rate of 12, pretrained on 50,000
images from CIFAR-1042. We tested two other common pretrained image neural
networks (VGG1643, ResNet-5044), but found that a DenseNet40-12 model
performed best overall, aligning with the previous reports41. The DenseNet
architecture takes advantage of low-level feature maps at all layers, making it well-
suited for medical imaging applications where low-level features (e.g., edge
detectors) often carry substantial explanatory power.

For the sequence encoder, we used a Bidirectional Long Short-term Memory
(LSTM)45 sequence model with soft attention46 to combine all MRI frame features.
The soft attention layer optimizes the weighted mean of frame features, allowing
the network to automatically give more weight to the most informative frames in
an MRI sequence. We explored simpler feature pooling architectures (e.g., mean/
max pooling), but each of these methods was outperformed by the LSTM in our
experiments. The final hybrid CNN-LSTM architecture aligns with recent methods
for state-of-the-art video classification47,48 and 3D medical imaging49.

The CNN-LSTM model is trained using noise-aware binary cross entropy loss
L:

ŵ ¼ argminw
1

N

XN

i¼1

Ey�Ŷ Lðw; xi; yÞ½ � ð4Þ

This is analogous to standard supervised learning loss, except we are now

minimizing the expected value with respect to Ŷ9. This loss enables the
discriminative model to take advantage of the more informative probabilistic labels
produced by the label model, i.e., training instances with higher probability have
more impact on the learned model. Figure 7 shows the complete discriminative
model pipeline.

Training and hyperparameter tuning. The development set was used to write all
labeling functions and the validation set was used for all model hyperparameter
tuning. All models were evaluated with and without data augmentation. Data
augmentation is used in deep learning models to increase training set sizes and
encode known invariances into the final model by creating transformed copies of
existing samples. For example, BAV/TAV status does not change under translation,
so generating additional shifted MRI training images does not change the class
label, but does improve final classification performance. We used a combination of
crops and affine transformations commonly used by state-of-the-art image clas-
sifiers50. We tested models using all 3 MRI series (CINE, MAG, VENC with a
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single series per channel) and models using only the MAG series. The MAG series
performed best, so we only report those results here.

Hyperparameters were tuned for L2 penalty, dropout, learning rate, and the
feature vector size of our last hidden layer before classification. Augmentation
hyperparameters were tuned to determine final translation, rotation, and scaling
ranges. All models use validation-based early stopping with F1 score as the
stopping criterion. The probability threshold for classification was tuned using the
validation set for each run to address known calibration issues when using deep
learning models51. Architectures were tuned using a random grid search over 10
models for non-augmented data and 24 for augmented data. See Supplementary
Table 2 for full parameter grid settings.

Evaluation metrics. Classification models were evaluated using positive predictive
value (precision), sensitivity (recall), F1 score (i.e., the harmonic mean of precision
and recall), and AUROC. Due to the extreme class imbalance of this task we also
report discounted cumulative gain (DCG) to capture the overall ranking quality of
model predictions52. Each BAV or TAV case was assigned a relevance weight r of 1
or 0, respectively, and test set patients were ranked by their predicted probabilities.

DCG is computed as
Pp

i
ri

log2ðiþ1Þ where p is the total number of instances and i is

the corresponding rank. This score is normalized by the DCG score of a perfect
ranking (i.e., all true BAV cases in the top ranked results) to compute normalized
DCG (NDCG) in the range [0.0, 1.0]. Higher NDCG scores indicate that the model
does a better job of ranking BAV cases higher than TAV cases. All scores were
computed using test set data, using the best performing models found during grid
search, and reported as the mean and 95% confidence intervals of 5 different
random model weight initializations.

For labeling functions, we report two additional metrics: coverage (Eq. (5)) a
measure of how many data points a labeling function votes {−1, 1} on; and conflict
(Eq. (6)) the percentage of data points where a labeling function disagrees with one
or more other labeling functions.

coverageλj ¼
1

N

XN

i¼1

1 λjðxiÞ 2 f�1; 1g
� �

ð5Þ

conflictλj ¼
1

N

XN

i¼1

1
Xλn

k≠j

1 λjðxiÞ 2 f�1; 1g ^ λjðxiÞ≠λkðxiÞ
� �

0

@

1

A>0 ð6Þ

Model evaluation with clinical outcomes data. To construct a real-world vali-
dation strategy dependent upon the accuracy of image classification but completely
independent of the imaging data input, we used model-derived classifications
(TAV vs. BAV) as a predictor of validated cardiovascular outcomes using standard
epidemiological methods. For 9230 patients with prospectively obtained MRI
imaging who were excluded from any aspect of model construction, validation, or
testing we performed an ensemble classification with the best performing CNN-
LSTM model.

For evaluation we assembled a standard composite outcome of major adverse
cardiovascular events (MACE). Phenotypes for MACE were inclusive of the first
occurrence of coronary artery disease (myocardial infarction, percutaneous
coronary intervention, coronary artery bypass grafting), ischemic stroke (inclusive
of transient ischemic attack), heart failure, or atrial fibrillation. These were defined
using ICD-9, ICD-10, and OPCS-4 codes from available hospital encounter, death
registry, and self-reported survey data of all 500,000 participants of the UK
Biobank at enrollment similar to previously reported methods53.

Starting 10 years prior to enrollment in the study, median follow up time for the
participants with MRI data included in the analysis was 19 years with a maximum
of 22 years. For survival analysis, we employed the “survival” and “survminer”
packages in R version 3.4.3, using aortic valve classification as the predictor and
time-to-MACE as the outcome, with model evaluation by a simple log-rank test.

To verify the accuracy of the CNN-LSTM’s predicted labels, we generated
2 subsets of our model’s predictions for manual review: (1) 36 randomly chosen
MRI sequences (18 TAV and 18 BAV patients); and (3) 100 positive BAV
predictions, binned into quartiles by predicted probability. All MRIs were reviewed
and labeled by a single annotator (J.R.P.). The output of the last hidden layer was
visualized using a t-distributed stochastic neighbor embedding (t-SNE)54 plot to
assist error analysis.

Related work. In medical imaging, weak supervision refers to a broad range of
techniques using limited, indirect, or noisy labels. Multiple instance learning (MIL)
is one common weak supervision approach in medical images55. MIL approaches
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assume a label is defined over a bag of unlabeled instances, such as an image-level
label being used to supervise a segmentation task. Xu et al.56 simultaneously per-
formed binary classification and segmentation for histopathology images using a
variant of MIL, where image-level labels are used to supervise both image classi-
fication and a segmentation subtask. ChestX-ray830 was used in Li et al.57 to jointly
perform classification and localization using a small number of weakly labeled
examples. Patient radiology reports and other medical record data are frequently
used to generate noisy labels for imaging tasks30,58–60.

Weak supervision shares similarities with semi-supervised learning61, which
enables training models using a small labeled dataset combined with large,
unlabeled data. The primary difference is how the structure of unlabeled data is
specified in the model. In semi-supervised learning, we make smoothness
assumptions and extract insights on structure directly from unlabeled data using
task-agnostic properties such as distance metrics and entropy constraints62. Weak
supervision, in contrast, relies on directly injecting domain knowledge into the
model to incorporate the underlying structure of unlabeled data. In many cases,
these sources of domain knowledge are readily available in existing knowledge
bases, indirectly-labeled data like patient notes, or weak classification models and
heuristics.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
All primary data that support the findings of this study are publicly available from the

UK Biobank organization by application for academic non-commercial use: https://www.
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will be made available from the corresponding author upon reasonable request.

Code availability
All code used in this study was written in Python v2.7. Deep learning models were

implemented using PyTorch v3.1. Preprocessing code, deep learning implementations,

experimental scripts, and trained BAV classifications models are all open source and

available at: https://github.com/HazyResearch/ukb-cardiac-mri; https://doi.org/10.5281/

zenodo.2654330.
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