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ABSTRACT An outbreak of a novel coronavirus disease (i.e., COVID-19) has been recorded in Wuhan,

China since late December 2019, which subsequently became pandemic around the world. Although

COVID-19 is an acutely treated disease, it can also be fatal with a risk of fatality of 4.03% in China

and the highest of 13.04% in Algeria and 12.67% Italy (as of 8th April 2020). The onset of serious

illness may result in death as a consequence of substantial alveolar damage and progressive respiratory

failure. Although laboratory testing, e.g., using reverse transcription polymerase chain reaction (RT-PCR),

is the golden standard for clinical diagnosis, the tests may produce false negatives. Moreover, under the

pandemic situation, shortage of RT-PCR testing resources may also delay the following clinical decision

and treatment. Under such circumstances, chest CT imaging has become a valuable tool for both diagnosis

and prognosis of COVID-19 patients. In this study, we propose a weakly supervised deep learning strategy

for detecting and classifying COVID-19 infection from CT images. The proposed method can minimise the

requirements of manual labelling of CT images but still be able to obtain accurate infection detection and

distinguish COVID-19 from non-COVID-19 cases. Based on the promising results obtained qualitatively and

quantitatively, we can envisage a wide deployment of our developed technique in large-scale clinical studies.

INDEX TERMS COVID-19, deep learning, weakly supervision, CT images, classification, convolutional

neural network.

I. INTRODUCTION

Coronavirus disease 2019 (COVID-19) has been widespread

worldwide since December 2019 [1], [2]. It is highly conta-

gious, and severe cases can lead to acute respiratory distress

or multiple organ failure [3]. On 11 March 2020, the WHO

has made the assessment that COVID-19 can be characterised

as a pandemic. As of 8th April 2020, in total, 1,391,890 cases

The associate editor coordinating the review of this manuscript and

approving it for publication was Shuihua Wang .

of COVID-19 have been recorded, and the death toll has

reached 81,478 with a rapid increase of cases in Europe and

North America.

The disease can be confirmed by using the reverse-

transcription polymerase chain reaction (RT-PCR) test [4].

While being the gold standard for diagnosis, confirming

COVID-19 patients using RT-PCR is time-consuming, and

both high false-negative rates and low sensitivities may put

hurdles for the presumptive patients to be identified and

treated early [3], [5], [6].
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As a non-invasive imaging technique, computed tomog-

raphy (CT) can detect those characteristics, e.g., bilateral

patchy shadows or ground glass opacity (GGO), manifested

in the COVID-19 infected lung [7], [8]. Hence CT may serve

as an important tool for COVID-19 patients to be screened

and diagnosed early. Despite its advantages, CT may share

some common imagery characteristics between COVID-19

and other types of pneumonia, making the automated distinc-

tion difficult.

Recently, deep learning based artificial intelligence (AI)

technology has demonstrated tremendous success in the field

of medical data analysis due to its capacity of extracting rich

features from multimodal clinical datasets [9]. Previously,

deep learning was developed for diagnosing and distinguish-

ing bacterial and viral pneumonia from thoracic imaging

data [10]. In addition, attempts have been made to detect vari-

ous chest CT imaging features [11]. In the current COVID-19

pandemic, deep learning based methods have been devel-

oped efficiently for the chest CT data analysis and classifi-

cation [2], [3], [12]. Besides, deep learning algorithms have

been proposed for COVID-19monitoring [13], screening [14]

and prediction of the hospital stay [15]. A full list of current

AI applications for COVID-19 related research can be found

elsewhere [16]. In this study, we will focus on the chest CT

image based localisation for the infected areas and disease

classification and diagnosis for the COVID-19 patients.

Although initial studies have demonstrated promising

results by using chest CT for the diagnosis of COVID-19 and

detection of the infected regions, most existing methods are

based on commonly used supervised learning scheme. This

requires a considerable amount of work on manual labelling

of the data; however, at such an outbreak situation clinicians

have very limited time to perform the tedious manual draw-

ing, which may fail the implementation of such supervised

deep learning methods. In this study, we propose a weakly

supervised deep learning framework to detect COVID-19

infected regions fully automatically using chest CT data

acquired from multiple centres and multiple scanners. Based

on the detection results, we can also achieve the diagnosis

for the COVID-19 patients. In addition, we also test the

hypothesis that based on the CT radiological features, we can

classify COVID-19 cases from community acquired pneu-

monia (CAP) and non-pneumonia (NP) scans using the deep

neural networks we developed.

II. MATERIALS AND METHODS

A. PATIENTS AND DATA

This retrospective study was approved by the institutional

review board of the participating hospitals in accordance with

local ethics procedures. Further consent was waived with

approval. This study included 150 3D volumetric chest CT

exams of COVID-19, CAP and NP patients, respectively.

In total, 450 patient scans acquired from two participating

hospitals between September 2016 and March 2020 were

included for further analysis.

TABLE 1. Summary of the patient demographic statistics.

All the COVID-19 patients were confirmed as positive by

the RTPCR testing that were scanned from December 2019

to March 2020. According to the diagnosis and treatment

program of COVID-19 (Trial version sixth) issued by the

National Health Commission in China [17], the clinical clas-

sification of COVID-19 patients can be categorised as mild,

moderate, severe, and critical. All our COVID-19 patients

were at severe or critical stage and all the CT scans had been

performed within 3 days of hospitalisation.

CAP and other NP (no lung disease, lung nodules,

chronic inflammation, chronic obstructive pulmonary dis-

ease) patients were randomly chosen from the participating

hospitals between September 2016 and January 2020. The

inclusion criteria of CAP patients are in accordance with the

guidelines on the management of community-acquired pneu-

monia in adults published by the Infectious Diseases Society

of America/American Thoracic Society [18]. CAP diagnosis

is focused on the existence of identified clinical character-

istics (e.g., cough, fever, sputum development, and pleuritic

chest pain) and is accompanied by pulmonary examination,

typically by chest X-ray and in our case using CT. In the reg-

ular examination of patients that are suspected to have CAP,

a chest radiograph is needed to determine the diagnosis and

to better distinguish CAP from other specific causes of cough

and fever, such as acute bronchitis. Although various CT

manifestations might be observed due to different pathogens,

all our CAP patients were laboratory confirmed bacterial cul-

ture positive cases or negative cases, e.g., with mycoplasma

and viral pneumonia. Our assumption is that the proposed

weakly supervised deep learning method can sense subtle

discrepancies in CT images acquired for CAP and COVID-19

patients. NP patients were diagnosed with no lung disease

or lung disease, e.g., lung nodules, chronic inflammation,

chronic obstructive pulmonary disease and others. It is of note

that the criterion for normal CT in the context is that the CT

examinations have shown no obvious lesions in both lungs.

Demographic statistics of the patients are as reported

in Table 1. One-way ANOVA (ANalysis Of VAriance) were

conducted on gender and age distribution over the three

patient groups and the p-values obtained suggest that there

were no significant differences found among three groups in

terms of gender and age distribution (p>0.05).

COVID-19 patients were admitted from two hospi-

tals in China, including 138 patients from Hospital of

Wuhan Red Cross Society (WHRCH) and 12 patients

from Shenzhen Second Hospital (SZSH). Both CAP

and NP patients were recruited from SZSH. COVID-19
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TABLE 2. Imaging parameters of the CT systems used for COVID-19, CAP and NP patients.

patients were obtained from either Siemens SIEMENS

SOMATOM go.Now16 (WHRCH) or GE Revolution 256

(SZSH) CT systems. For the SIEMENS SOMATOM

go.Now16 CT system, the scanning parameters were as

follows: tube voltage = 130 kVp, automatic tube cur-

rent modulation = 50 mAs, pitch = 1.5 mm, matrix =

512×512, slice thickness= 0.7 mm, field of view= 350mm

× 350 mm, and reconstructed slice thickness = 1 mm. For

the GE Revolution 256 CT system, the scanning parameters

were set as tube voltage = 120 kVp, automatic tube cur-

rent modulation = 150 mAs, pitch = 1.375 mm, matrix =

512 × 512, slice thickness = 0.625 mm, field of

view = 400 mm × 400 mm, and reconstructed slice thick-

ness = 2 mm. All the CAP and NP patients were scanned

using SIEMENS SOMATOM Emotion CT system with the

main imaging parameters of tube voltage = 110 kVp, auto-

matic tube current modulation = 70 mAs, pitch = 1.2 mm,

matrix = 512 × 512, slice thickness = 1.2mm, field of

view = 260 mm × 260 mm, and reconstructed slice thick-

ness = 1.5 mm. Details are shown in Table 2.

B. DATASET FOR LUNG SEGMENTATION

In order to achieve a highly accurate lung segmentation that

can facilitate the following infection detection and classi-

fication, we utilised an open dataset (TCIA dataset) [19]

for training a deep neural network for the lung delin-

eation. The data can be accessed from the Cancer Imaging

Archive (TCIA) Public Access.1 In total, 60 3D CT lung

scans were retrieved with manual delineations of the lung

anatomy. These open datasets were made publicly accessible

from the scans obtained by three different institutions: MD

Anderson Cancer Centre, Memorial Sloan-Kettering Cancer

Centre, and the MAASTRO clinic, with 20 cases from each

institution. All the data were scanned with matrix = 512 ×

512, the field of view= 500mm×500mm, and reconstructed

slice thickness varies at either 1 mm, 2.5 mm or 3 mm.

C. PRE- AND POST-PROCESSING FOR

LUNG SEGMENTATION

Data pre-processing steps were performed to standardise

data acquired from multiple centres and multiple scanners.

1http://doi.org/10.7937/K9/TCIA.2017.3r3fvz08

Instead of normalising input slices into a pre-defined

Hounsfield unit (HU) window, we designed a more flexible

scheme based on previously proposed image enhancement

methods [20], [21]. Rather than clipping based on HU win-

dows, we proposed to use a fixed-sized sliding windowWQ,S

(where Q denotes the size of the window and S denotes

the step length of the sliding procedure) to find the range

where covers most of the pixel values. This can reduce the

bias of data acquired from different centres and different

scanners. Loosely inspired by [22], we proposed a multi-view

U-Net [23] based segmentation network for lung segmen-

tation. Our multi-view U-Net based segmentation network

consisted of a multi-window voting post-processing proce-

dure and a sequential information attention module in order

to utilise the information from each view of the 3D volume

and reinforce the integrity of the 3D lung structure of the

delineation results. Our lung segmentationmodel was trained,

cross-validated and tested on the TCIA dataset with manual

ground truth. The trained lung segmentation model was then

used for inferencing the delineation of the lung anatomy of

the COVID-19, CAP and NP patients included in this study.

D. DETECTION AND CLASSIFICATION NETWORK

Inspired by the VGG architecture [24], we adopted the con-

figuration that increased CNN depth using small convolu-

tion filters stacked with non-linearity injected in between,

as depicted in Figure 1. All convolution layers consisted of 3

× 3 kernels, batch normalisation and Rectified Linear Units.

The proposed CNNwas fully convolutional consisting of five

convolutional blocks, i.e., Conv1, Conv2, Conv3, Conv4 and

Conv5 in the backbone architecture. The full architecture,

using shorthand notation, is 2 × C(32, 3, 1) − MP − 2 ×

C(64, 3, 1)−MP−3×C(128, 3, 1)−MP−3×C(256, 3, 1)−

MP − 3 × C(256, 3, 1) − MP, where C(d, f , s) indicates a

convolution layer with d filters of spatial size f × f , applied

to the input with stride s. MP represents non-overlapping

max-pooling operation with a kernel size of 2 × 2.

E. MULTI-SCALE LEARNING

From the previous findings using CT [25]–[27], it is known

that infections of COVID-19 share the similar and common

radiographic features as CAP, such as GGO and airspace
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FIGURE 1. Network architecture of our proposed weakly supervised multi-scale learning framework for COVID-19/NP/CAP classification and lesions
detection.

consolidation. They frequently distribute bilaterally, periph-

erally in lower zone predominant, and the infectious areas

can vary significantly in size depending on the condition of

the patients. For example, in mild cases the lesions appear

to be small, but in severe cases they appear scattered and

spread around over a large area. Therefore, we proposed a

multi-scale learning scheme to cope with variations of the

size and location of the lesions. To implement this, we fed

the intermediate CNN representations, i.e., feature maps,

at Conv3, Conv4 and Conv5, respectively into the weakly

supervised classification layers, in which 1 × 1 convolution

was applied to mapping the feature maps down to the class

score maps (i.e., class activation maps). We then applied

a spatial aggregation with a Global Max Pooling (GMP)

operation to obtain categorical scores. The scores vectors at

Conv3, Conv4 and Conv5 level were aggregated by sum to

make a final prediction with a Softmax function. We then

trained the proposed model end-to-end by minimising the

following objective function

L = −
1

N

N∑
i=1

wifi(Sc(xi) − log

K∑
k=1

eSk (xi)), (1)

where there are N training images xi and K training classes.

Sk is the kth component in the score vector ∈ ℜK , and c

is the true class of xi. As we encountered an imbalanced

classification, we added a class-balanced weighting factor

wi to the cross-entropy loss, which was set by inverse class

frequency, i.e., wi =
1

freq(c)
. While this emphasised the

importance of a rare class during training, it showed no

difference between easy and hard examples. For instance,

in mild COVID-19 slices, infectious or diseased regions are

often very small and not prominent. Thus, they are prone to be

misclassified as NP examples. To address this, we introduced

another modulating factor, i.e., to down-weight easy exam-

ples and therefore focused the training on hard examples [28]

fi = (1−Pc)
γ , where Pc is the true class posterior probability

of xi. Intuitively, the modulating factor can reduce the loss

contribution from easy examples. This in turn increases the

importance of correcting misclassified examples. When an

example was misclassified and Pc was small, the factor f was

near 1 and the loss was unaffected. As Pc → 1, the factor

went to 0 and the loss for well-classified examples was down-

weighted. The parameter γ is a positive integer which can

smoothly adjust the rate at which easy examples are down-

weighted. As γ is increased themodulating effect of the factor

f is likely to be increased.

F. WEAKLY SUPERVISED LESIONS LOCALISATION

After determining the class score maps and the image cate-

gory in a forward pass through the network, the discriminative

patterns corresponding to that category can then be localised
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FIGURE 2. Examples of saliency maps for COVID-19 lesions localisation: (a) shows an example input image, (b) shows the saliency map obtained at
Conv3, (c) shows the saliency map obtained at Conv4, (d) shows the saliency map obtained at Conv5, (e) shows the overlay of the joint saliency map
(pixel-wise multiplication of the Conv3, Conv4 and Conv5 saliency maps) with the input image, and (f) shows the resulting bounding boxes.

in the image. A coarse localisation could already be achieved

by directly relating each of the neurons in the class scoremaps

to its receptive field in the original image. However, it is also

possible to obtain pixel-wise maps containing information

about the location of class-specific target structures at the

resolution of the original input images. This can be achieved

by calculating how much each pixel influences the activation

of the neurons in the target score map. Such maps can be used

to obtain amuchmore accurate localisation, like the examples

shown in Figure 2.

In the following, we will show how categorical-specific

saliency maps can be obtained through the integrated gra-

dients. Besides, we will also show how to post-process the

saliency maps from which we can extract bounding boxes

around the detected lesions.

1) CATEGORY-SPECIFIC SALIENCY

Generally, suppose we have a flattened input image denoted

as x = (x1, . . . , xn) ∈ ℜn (number of pixels = n), category-

specific saliency map can be obtained by calculating the

gradient of the predicted class score S(x) at the input x:

g =
∂S(x)
∂x

= (g1, . . . , gn) ∈ ℜn, where gi represents the con-

tribution of individual pixel xi to the prediction. In addition,

the gradient can be estimated by back-propagating the final

prediction score through each layer of the network. There

are many state-of-the-art back-propagation approaches,

including Guided-Backpropagation [29], DeepLift [30] and

Layer-wise Relevance Propagation (LRP) [31]. However,

Guided-Backpropagation method may break gradient sensi-

tivity because it back-propagates through a ReLU node only

if the ReLU is turned on at the input. In particular, the lack

of sensitivity causes gradients to focus on irrelevant features

and results in undesired saliency localisation. DeepLift and

LRP methods tackle the sensitivity issue by computing dis-

crete gradients instead of instantaneous gradients at the input.

However, they fail to satisfy the implementation invariance

because the chain rule does not hold for discrete gradients

in general. In doing so, the back-propagated gradients are

potentially sensitive to unimportant features of the models.

To deal with these limitations, we employ a feature attribution

method named ‘‘Integrated Gradients’’ [32] that assigns an

importance score φi(S(x), x) (similar to pixel-wise gradients)

to the ith pixel representing how much the pixel value adds or

subtracts from the network output. A large positive score indi-

cates that pixel strongly increases the prediction score S(x),

while an importance score closes to zero indicates that pixel

does not influence S(x). To compute the importance score,

it needs to introduce a baseline input representing ‘‘absence’’

of the feature input, denoted as x ′ = (x ′
1, . . . , x

′
n) ∈ ℜn, which

in our study, was a null image (filledwith zeros) with the same

shape as input image x. We considered the straight-line path,

i.e., point-to-point from the baseline x ′ to the input x, and

computed the gradients at all points along the path. Integrated

gradients can be defined as

φi(S(x), x, x
′)= (xi − x ′

i )×

∫ 1

α=0

∂S(x ′ + α(x − x ′))

∂xi
dα, (2)

where α ∈ [0, 1]. Intuitively, integrated gradients can obtain

importance scores by accumulating gradients on images inter-

polated between the baseline value and the current input.

The integral in Eq. 2 can be efficiently approximated via a

summation of the gradients as:

φi(S(x), x, x
′)≈ (xi − x ′

i )×

m∑
n=1

∂S(x ′ +
n
m

× (x − x ′))

∂xi
×

1

m
,

(3)

wherem is the number of steps in the Riemann approximation

of the integral. We compute the approximation in a loop over

the set of inputs, i.e., for n = 1, . . . ,m. The integrated

gradients are computed at different feature levels, in our

experiments, which are Conv3, Conv4 and Conv5 respec-

tively, as shown in Figure 2(b), Figure 2(c) and Figure 2(d).

Then, a joint saliency can be obtained, as depicted

in Figure 2(e), by pixel-wise multiplication between the

multi-scale integrated gradients.

2) BOUNDING BOX EXTRACTION

Next, we post-processed the joint saliency map from which

a bounding box can be extracted. Firstly, we took the abso-

lute value of the joint saliency map and blurred it with a

5 × 5 Gaussian kernel. Then, we thresholded the blurred

saliency map using the Isodata thresholding method [33]

that it iteratively decided a threshold segmenting the image
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FIGURE 3. Dice scores of the lung segmentation using different pre-processing and post-processing methods on the TCIA dataset. Left Panel: without any
pre-processing; Middle Panel: normalising using a pre-defined Hounsfield unit (HU) window; Right Panel: normalising using the proposed fixed-sized
sliding window. W/O P: without multi-view learning based post-processing; W P: with multi-view learning based post-processing.

into foreground and background, where the threshold was

midway between the mean intensities of sampled foreground

and background pixels. In doing so, we obtained a binary

mask on which we applied morphological operations (dila-

tion followed by erosion) to close the small holes in the

foreground. Finally, we took the connected components with

areas above a certain threshold and fit the minimum rectan-

gular bounding boxes around them. An example is shown

in Figure 2(f).

G. IMPLEMENTATION DETAILS

1) EXPERIMENTS SETUP

We trained the proposed model for both a three-way classi-

fication (i.e., K = 3 for NP, CAP and COVID-19) and three

binary classification tasks (K = 2), i.e., NP vs. COVID-19,

NP vs. CAP and CAP vs. COVID19, respectively. In the

three-way classification settings, we first trained individual

classifiers at different convolution blocks. In our experiment,

we chose Conv3, Conv4 and Conv5, respectively. Then,

we trained a joint classifier on the aggregated prediction

scores (as described in the ‘‘Multi-Scale Learning’’ Section).

All the classifiers were trained with the loss in Eq. 1. Finally,

we conducted a 5-fold cross-validation on all tasks that in

each category, we split the datasets into training, valida-

tion and test set. This can ensure that no samples (images)

originating from validation and test patients were used for

training. In each fold, we held out 20% of all samples

for validation and test, and the remaining were used for

training.

2) TRAINING CONFIGURATIONS

We implemented the proposed model (as depicted

in Figure 1) using Tensorflow 1.14.0. All models were trained

from scratch on four Nividia GeForce GTX 1080 Ti GPUs

with an Adam optimiser (learning rate: 10−4, β1 = 0.5,

β2 = 0.9 and ǫ = 10−8). We set γ to 1 in the focal

modulator f and the total number of training iterations was set

to 20,000. Early stopping was enabled to terminate training

automatically when validation loss stopped decreasing for

1,000 iterations. We run validation once every 500 iterations

of training, a checkpoint was saved automatically if the cur-

rent validation accuracy exceeded the previous best validation

accuracy. Once the training was terminated, we generated

a frozen graph on the latest checkpoint and saved it in.pb

format. For testing, we simply loaded the frozen graphs

and retrieved the required nodes. Empirically, we found

that 20 to 30 steps were good enough to approximate the

integral when computing the integrated gradients; thus, we fix

m = 25 in Eq. 3.

3) DATA AUGMENTATION

We applied several random on-the-fly data augmentation

strategies during training, including (1) cropping square

patches at the centre of the input frames with a scaling factor

randomly chosen between 0.7 to 1, and resized the crops to

the size of 224 × 224 (input resolution); (2) rotation with an

angle randomly selected within θ = −25o to 25o; (3) Random

horizontal reflection, i.e., flipped the images in the left-right

direction with a probability p = 0.5; and (4) adjust contrast
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FIGURE 4. Results of the multi-scale COVID-19 class activation mapping.

by randomly darkening or brightening with a factor ranging

between 0.5 and 1.5.

H. EVALUATION METRICS

Using positive results of the RTPCR testing as the ground

truth labelling for the COVID-19 group and diagnosis results

of CAP and NP patients, accuracy, precision, sensitivity and

specificity [34], [35] of our classification framework were

calculated. We also carried out the area under the receiver

operating characteristic curve (AUC) analysis for the quan-

tification of our classification performance. For the lung seg-

mentation, we used Dice score [36] to evaluate the accuracy.

III. EXPERIMENTS AND RESULTS

A. LUNG SEGMENTATION

In order to evaluate the lung segmentation network, we ran-

domly split the 60 TCIA data with ground truth into

40 training, 10 validation and 10 independent testing datasets.

Ablation study results of different pre-processing and post-

processing methods using Dice scores are shown in Figure 3.

B. INFECTION DETECTION

1) CLASS ACTIVATION MAPPING

As a result of multi-scale learning, Figure 4 illustrates

some examples of COVID-19 class activation maps (CAMs)

obtained at the different feature levels, i.e., Conv3, Conv4

and Conv5. The CAMs depict the spatial distribution of clas-

sification probability on which the hot areas indicate where

infected areas are. The hotter the areas, the more likely they

are infected. Of note from the multi-scale CAMs, our pro-

posedmodel learns to capture the distributions of lesions with

different scale: for instance, the large patchy-like lesions,

such as crazy paving sign and consolidation; and also small

nodule-like lesions, such as ground-glass opacities (GGO)

and bronchovascular thickening. Although the CAMs can

indicate where the diseased regions are, they are still too

coarse to localise and estimate the extent of lesions precisely.

The saliency maps shown in Figure 5, on the other hand,

can provide pixel-level information that delineates the exact

extent of the lesions, and therefore can deduce a precise

localisation of the lesions. Notably from the saliency maps,
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FIGURE 5. Multi-scale detection of COVID-19 lesions with varied size. Green box: small lesions. Yellow box: mix of small and large patchy or strip like
lesions. Red box: large lesions.

the mid-level layer, i.e., Conv3 can learn to detect small

lesions (GGO most frequently), especially those distributed

peripherally and subpleurally. However, Conv3 is not able to

capture larger patchy-like lesions, and this may be because of

the limited receptive field at the mid-layer. On the contrary,

the higher-level layers, e.g., Conv4 and Conv5, having suffi-

ciently large receptive filed to detect the diffuse and patchy-

like lesions, such as crazy paving sign and consolidation,

which are often distributed centrally and peribronchially.

However, Conv4 and Conv5 tend to overestimate the extent

of small lesions. The multi-scale features complement each

other and result in more precise localisation and estima-

tion of the lesions extent, as shown from the joint saliency

maps.

2) CATEGORICAL-SPECIFIC SALIENCY

Figure 6 shows the examples of categorical-specific joint

saliency computed by integrated gradients. It shows the orig-

inal inputs on the left and the overlaid saliency on the right.

CAMs showed in Figure 4 only depict the spatial distribution

of infection. However, it can not be used for precise locali-

sation of the lesions. The saliency maps, on the other hand,

can provide pixel-level information that delineates the exact

extent of the lesions so providing a precise localisation of the

lesions.

The saliency maps can also be useful for diagnosis that the

percentage of infection to lung areas can be estimated auto-

matically. These saliency maps highlight the pixels that con-

tribute to increasing categorical-specific scores: the brighter

the pixels, the more significant the contribution. Intuitively,

one can also interpret this as the brighter the pixels are,

the more critical features to the network to make the decision

(prediction). It is of note that in Figure 4 and Figure 6, there

is not only an inter-class contrast variation (due to the data

are collected from multi-institutions) but also an intra-class

contrast variation, especially in COVID-19 group. In our

experiments, we found that histogram matching can sup-

press lesions, especially on COVID-19 images; for instance,

GGO disappears or become less apparent. Besides, this

leads to inferior performance of detection. Therefore, instead

of directly applying histogram matching, we applied ran-

dom on-the-fly contrast adjustment for data augmentation at

training time. This turns out to be very effective, as demon-

strated in Figure 6, our proposed model learns to be invariant

to image contrast, and precisely capture the lesions.

In particular, in Figure 8, we randomly selected typical

example images to illustrate the variations of the image con-

trast in COVID-19 cases and compared the saliency maps

obtained from models trained with and without contrast

augmentation (CA vs. NCA). We found that without con-

trast augmentation, the saliency maps tend to be noisy and

poor in localisation, as mis-detection can be observed often

in the cases such as either only partial instances of infec-

tion being captured or the regions without infection being

captured. Whereas, with contrast augmentation, the learned

models generate more discriminative saliency maps and

localisation of infected areas is robust and more accurate

against the contrast variation. As can be seen (enclosed by

green box), our model with contrast augmentation is capable

of capturing all the diseased regions and highlighting their

extent precisely, regardless single or multiple instances of

infection.
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FIGURE 6. Results of the categorical-specific joint saliency.

In addition, from the COVID-19 and CAP saliency,

we found that the CAP lesions are generally smaller and

more constrained locally compare to COVID-19 cases that

often have multiple infected regions and lesions are mas-

sive and scattered. It should also be noted that COVID-19

and CAP lesions do share similar radiographic features,

such as GGO and air space consolidation. Besides, GGOs

appear frequently in subpleural regions as well in CAP cases.

Interestingly, from the saliency map for the NP cases,

we found the network takes the pulmonary arteries as

the salient feature. Finally, Figure 7 shows the bound-

ing boxes extracted from COVID-19 and CAP saliency

maps (corresponding to the examples in Figure 6).

We found the results agree with our primary findings that

CAP cases have less infected areas and often there is

single-instance of infection, in contrast, COVID-19 cases

often have more infected areas (multi-instances of infection),

and the COVID-19 lesions vary a lot in terms of extent.

Overall, CAP infection areas are smaller compare to those of

COVID-19.

C. CLASSIFICATION PERFORMANCE

Performance of our proposed model for each specific task

was evaluated with 5-fold cross-validation, and the results on

the test set are reported and summarised in Table 3. We use

five evaluation metrics, which are accuracy (ACC), precision

(PRC), sensitivity (SEN), specificity (SPE) and the area under

the ROC curve (AUC). We report the mean of 5-fold cross-

validation results in each metric with the 95% confidence

interval. We also compared our proposed method with a
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FIGURE 7. Bounding boxes extracted from saliency for COVID-19 and CAP examples. (Corresponding to the examples in Figure 6).

FIGURE 8. Effect of applying random contrast augmentation (in data augmentation). Contrast adjustment leads to better saliency quality (less noisy) and
more precise and contrast-invariant detection of infected areas. Cyan arrows: false positives of the saliency maps; Pink arrows: false negatives of the
saliency maps; NCA: No Contrast Adjustment; CA: with Contrast Adjustment.

reimplementation of the Navigator-Teacher-Scrutinizer

Network (NTS-NET) [37].

As described earlier in the experimental settings, basically

we have two groups of tasks: three-way classification tasks

(indicated by ∗) and binary classification tasks (indicated

by ≀), and two learning configurations: single-scale learn-

ing (indicated by †) that assigns an auxiliary classifier to

a specific feature level, and multi-scale learning (indicated

by ‡) that aggregates the multi-level prediction scores then

trained with a joint classifier. All the binary tasks listed were

trained with the multi-scale learning. In terms of three-way

classification, we found the multi-scale learning with joint

classifier achieves superior overall performance than any of

the single-scale learning tasks. It is of note that among the

single-scale learning tasks, classification with Conv4 and

Conv5 features achieve very similar performance in every

metric, which is significantly better than classification with

mid-level, i.e., Conv3 features. One possible explanation is

the mid-level features are not sufficiently semantic compare

to higher-level features, i.e., Conv4 and Conv5. As we know,
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TABLE 3. The overall classification performance comparison between different tasks on the test set. Values in brackets are 95% confidence intervals.
AUC: area under the receiver operating characteristic curve, COVID-19: coronovirus disease 2019, CAP: Community Acquired Pneumonia, NP:
Non-Pneumonia. ∗: three-way classification tasks (i.e., NP/CAP/COVID-19). ≀: binary classification tasks. †: single-scale learning. ‡: multi-scale learning.
NCA: No Contrast Adjustment (data augmentation).

TABLE 4. The performance (breakdown into each individual class) of three-way classification on the test set. Values in brackets are 95% confidence
intervals. AUC: area under the receiver operating characteristic curve, COVID-19: coronovirus disease 2019, CAP: Community Acquired Pneumonia, NP:
non-pneumonia. ∗: no random contrast adjustment. †: with random contrast adjustment.

high-level CNN representations are semantically strong but

poorly at preserving spatial details, whereas mid-lower level

CNN representations preserve well the local features but lack

of semantic information.

Furthermore, it is of note that, overall, binary classification

tasks achieve significantly better performance than three-way

classification, especially in the tasks, such as NP/COVID-19

and NP/CAP. It can be seen our proposed model is reasonably

good at distinguishing COVID-19 cases from NP cases as

suggested by the results, showing that it achieves ameanACC

of 96.2%, PRC of 97.3%, SEN of 94.5%, SPE of 95.3% and

AUC of 0.970, respectively. One can explain this is because

binary classification is less complicated, and there is also

less uncertainty than three-way classification. This may also

because COVID-19 and CAP image features are intrinsically

discriminative compare to the NP cases. For instance, as the

COVID-19 cases demonstrated earlier, there is often a combi-

nation of various diseased patterns and large areas of infection

on the scans.

Last but not least, we found that the performance of

COVID-19/CAP classification is the least superior among

all the binary classification tasks. One possible reason is

COVID-19 shares the similar radiographic features with

CAP, such as GGO and airspace consolidation and the net-

work capacity may not be enough to learn disease-specific

representations. Nevertheless, the results obtained using

our proposed method outperformed the ones obtained by

the NTS-NET.

We also break down the overall performance, i.e., the

joint classifier into classes, and the classification metrics are

reported for each class, as shown in Table 4 and Figure. 9. We

found that the models learned without contrast augmentation

are biased that the classification performance for COVID-19

is significantly better than the other two classes. This may

because models learn to discriminate the classes based on

image style (contrast) rather than the content (normal or

disease patterns) and the COVID-19 class in our data has

the most discriminative contrast style (high variability in

brightness) among all three classes. In comparison, learning

with contrast augmentation results in superior overall classi-

fication performance (Table 3) and no class bias (Table 4). In

addition, the ‘‘COVID-19’’ and the ‘‘NP’’ classes achieve the

comparable performance in each metric and the ‘‘NP’’ class

has higher sensitivity (91.3%) than the COVID-19 (87.6%)

and CAP (83.0%). Besides, we found, overall, the ‘‘COVID’’

remains the best performed and the most discriminative class

with a mean AUC of 0.923, compared to the ‘‘CAP’’ (0.864)

and the ‘‘NP’’ (0.901). It can also be noted that the overall

results for the class ‘‘CAP’’ are moderately lower than those

of the ‘‘NP’’ and ‘‘COVID-19’’. This could be correlated
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FIGURE 9. Receiver operating characteristic (ROC) of individual categories for three-way classification (5-fold cross-validated). (a) NP with AUC
of 0.90±0.03 (mean±standard deviation); (b) CAP with AUC of 0.86±0.03 (c) COVID-19 with AUC of 0.92±0.02. The green region indicates the
95%CI. COVID-19: coronavirus disease 2019, CAP: Community Acquired Pneumonia, NP: Non-Pneumonia, CI: Confidence Interval.

with our finding in the COVID-19/CAP classification that

because of similar appearance, the ‘‘CAP’’ class is likely to be

misclassified as the ‘‘COVID-19’’ sometimes. Also, another

possible reason is that the network could have learned and

be distracted by the few ‘‘NP noises’’, and there might be a

fractional number of non-infected slices in between the CAP

training samples. This is because we sampled all the available

slices from each subject, and there might be a few slices

having no infections.

IV. DISCUSSIONS

In this work, we have presented a novel weakly supervised

deep learning framework that is capable of learning to detect

and localise lesions on COVID-19 and CAP CT scans from

image-level label only. Different from other works, we lever-

age the representation learning on multiple feature levels and

have explained what features can be learned at each level.

For instance, the high-level representation, i.e., Conv5 cap-

tures the patch-like lesions that generally have a large extent.

However, it tends to discard small local lesions. This is well

complemented by the mid-level representations (Figure 4),

i.e., Conv4 and Conv5, from which the lesions detected also

correspond to our clinical findings that the infections usually

located in the peripheral lung (95%), mainly in the inferior

lobe of the lungs (65%), especially in the posterior segment

(51%). We speculate that it is mainly because there are more

well-developed bronchioles, alveoli, rich blood flows and

immune cells such as lymphatic cells in the periphery. These

immune cells played a vital role in the inflammation caused

by the virus. We have also demonstrated that combing multi-

scale saliency maps, generated by integrated gradients, is the

key to achieve a precise localisation of multi-instance lesions.

Furthermore, from a clinical perspective, the joint saliency

is useful that it provides a reasonable estimation of the
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percentage of infected lung areas, which is a crucial factor

that clinicians take account for evaluating the severity of a

COVID-19 patient. Besides, the classification performance

of the proposed network has been studied extensively that

we have not only conducted three-way classification but also

binary classification by combining any two of the classes.

We found one limitation of the proposed network is that

it is not discriminative enough when it comes to separate the

CAP from COVID-19. We suspect this is due to the limited

capacity of the backbone CNN that a straightforward way of

boosting CNN capacity is to increase the number of feature

channels at each level. Another attempt in the future would

be employing more advanced backbone architecture, such as

Resnet and Inception. Another limitation in this work is that

we have trained the networks on individual slices (images)

that we use all available samples for each subject. However,

for the CAP or COVID-19 subjects, there might be fractional

non-infection slices in between which could introduce noises

in training, which have been confirmed by scrutinisation by

our clinicians. In the future, we can address the limitation

by attention-based multiple instances learning that instead

of training on individual slices, we put the patient-specific

slices into a bag and train on bags. The network will learn

to assign weights to individual slices in a COVDI-19 or CAP

positive bag and automatically sample those high weighted

slices for infection detection. Further supervision via labelled

non-infection slices may also boost the performance of our

proposed model, but at a cost of time-consuming manual

labelling procedure.

V. CONCLUSION

In this study, we designed a weakly supervised deep learn-

ing framework for fast and fully-automated detection and

classification of COVID-19 infection using retrospectively

extracted CT images from multi-scanners and multi-centres.

Our framework can distinguish COVID-19 cases accurately

fromCAP andNP patients. It can also pinpoint the exact posi-

tion of the lesions or inflammations caused by the COVID-

19, and therefore can also potentially provide advice on

patient severity in order to guide the following triage and

treatment. Experimental findings have indicated that the pro-

posed model achieves high accuracy, precision and AUC

for the classification, as well as promising qualitative visu-

alisation for the lesion detections. Based on these findings

we can envisage a large-scale deployment of the developed

framework.
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