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Abstract

Purpose To develop a weakly supervised deep learning (WSDL) method that could utilize incomplete/missing survival data to

predict the prognosis of extranodal natural killer/T cell lymphoma, nasal type (ENKTL) based on pretreatment 18F-FDG PET/CT

results.

Methods One hundred and sixty-seven patients with ENKTL who underwent pretreatment 18F-FDG PET/CT were

retrospectively collected. Eighty-four patients were followed up for at least 2 years (training set = 64, test set = 20). A

WSDL method was developed to enable the integration of the remaining 83 patients with incomplete/missing follow-up

information in the training set. To test generalization, these data were derived from three types of scanners. Prediction

similarity index (PSI) was derived from deep learning features of images. Its discriminative ability was calculated and

compared with that of a conventional deep learning (CDL) method. Univariate and multivariate analyses helped explore

the significance of PSI and clinical features.

Results PSI achieved area under the curve scores of 0.9858 and 0.9946 (training set) and 0.8750 and 0.7344 (test set) in

the prediction of progression-free survival (PFS) with the WSDL and CDL methods, respectively. PSI threshold of 1.0

could significantly differentiate the prognosis. In the test set, WSDL and CDL achieved prediction sensitivity, specific-

ity, and accuracy of 87.50% and 62.50%, 83.33% and 83.33%, and 85.00% and 75.00%, respectively. Multivariate

analysis confirmed PSI to be an independent significant predictor of PFS in both the methods.

Conclusion The WSDL-based framework was more effective for extracting 18F-FDG PET/CT features and predicting the

prognosis of ENKTL than the CDL method.
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Introduction

The emergence of artificial intelligence (AI) in the field of

medical imaging has led to several breakthroughs [1, 2]. AI

has already proven to be advantageous for computer-aided

diagnosis in medical imaging, such as for the differential di-

agnosis of coronavirus disease 2019 [3], skin cancer [4], and

diabetic retinopathy [5]. Moreover, it has been developed to

help identify imaging-based biomarkers, leading to an im-

provement in the prognosis of, for example, lung cancer [6,

7], gliomas [8], and nasopharynx cancer [9]. Deep learning is

an indispensable part of AI and has been reported to be ex-

tremely effective in several medical imaging-related tasks,

such as image segmentation, registration, fusion, annotation,

computer-aided diagnosis and prognosis analyses, lesion and

landmark detection, and microscopic imaging analysis. In

such studies, deep learning networks have shown capabilities

to automatically extract characteristic features from images,

including explicit features, such as the location, distribution,

and volume size of lesions, and implicit features at different

levels, which were deduced using nonlinear, independent dis-

criminant, and invariant properties. The end-to-end automatic

feature extraction does not involve human interaction, and the

extracted features are the most implicit. Although the implicit

features may be difficult to interpret, they are determinant for

the performance of convolutional neural networks (CNNs)

and play critical roles in many medical applications [10, 11].

The development of deep learning depends on the avail-

ability of a huge amount of data. It is usually challenging to

gather a large cohort of patients with survival follow-up after

administering the same therapeutic regime. Clinical trials are

often associated with incomplete or missing follow-up due to

factors such as insufficient follow-up time, patient tolerance,

and compliance. This consequently hampers extensive devel-

opment of deep learning methods for predicting therapeutic

prognosis. Maximizing the utility of data gathered by clinical

trials is thus a key area of research.

Data augmentation methods such as deformation or gener-

ative adversarial networks are often applied to support the

development of deep learning methods in the field of image

analysis [12]. However, the relationship among imaging, ther-

apy, and survival is more complex than general image analy-

ses. The increased physiological complexity makes it difficult

to synthesize meaningful data for training. Furthermore, errors

in data preparation may mislead algorithmic development

[13]. Weakly supervised classification methods have been

established using unlabeled data for regularization under par-

ticular distributional assumptions, such as cluster or smooth-

ness assumption; however, the performance relies on the fi-

delity of the assumption [14–16], and it is usually challenging

to find a proper assumption in real application. In contrast,

positive–negative unlabeled (PNU) classification [15] is a

weakly supervised strategy to deal with a tough task with less

knowledge regarding data distribution and, therefore, is less

restricted in complex applications. Despite these advantages,

because PNU classification is generally applied for classifica-

tion problems based on low-dimensional feature vectors [15],

it is not straightforward to apply this classification to imaging

data for survival follow-up in order to improve therapeutic

prognosis.

Extranodal natural killer/T cell lymphoma, nasal type

(ENKTL) is a rare type of lymphoma with poor survival out-

come [17–19]. It constitutes <1% of all lymphomas in

Western countries and 3–9% of all malignant lymphomas in

Asia [18, 20, 21]. Several investigations have identified that

almost all ENKTL lesions are fluorodeoxyglucose (FDG) av-

id [22, 23]. In patients with ENKTL, the use of 18F-FDG

positron emission tomography/computed tomography (PET/

CT) for staging is widespread [24–26]. Nevertheless, many

contradictions exist pertaining to the value of 18F-FDG PET/

CT in predicting the prognosis of ENKTL [22, 27–30]. Some

studies [31, 32] have reported that maximum standardized

uptake value (SUVmax) of pretreatment 18F-FDG PET/CT

is not a statistically significant predictor of overall survival

and progression-free survival (PFS). Tumor 18F-FDG uptake

cannot reflect the aggressive biologic behavior of ENKTL;

however, some studies have reported contradictory results

[30, 33]. These studies found that high tumor 18F-FDG uptake

was closely associated with unfavorable treatment and surviv-

al outcomes. Chang et al. [34] reported that baseline whole-

body total lesion glycolysis (TLG) was a good predictor of

PFS and overall survival in patients with ENKTL. However,

treatment plans were not uniform in these studies, potentially

affecting the treatment outcome and predictive value of pre-

treatment 18F-FDG PET/CT. Prospective research methods

have also been used to assess the prognostic value of 18F-

FDG PET/CT in ENKTL [31, 35, 36], but considering some

uncertainty in the reported results, it remains unclear. A novel

solution is accordingly needed. Although deep learning has

been advantageous in assisting molecular imaging to optimize

therapeutic prognosis [9], it is extremely difficult to develop

appropriate deep learning methods for this rare condition with

only a limited number of cases.

We herein propose a weakly supervised deep learning

(WSDL) method based on PNU classification to maxi-

mize the utility of incomplete and missing follow-up

data so as to predict the prognosis of ENKTL. We

investigated the accuracy and robustness of this data

enhancement strategy on a retrospective cohort to test

a therapeutic regime for ENKTL.
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Material and methods

Patients

One hundred and sixteen-seven patients with histopathologi-

cally diagnosed ENKTL from June 2011 to October 2020

recruited at Shanghai Ruijin Hospital were retrospectively col-

lected. Patients who had undergone surgical resection, radio-

therapy, chemotherapy, and/or bone marrow transplantation

as well as those with other malignancies were excluded. All

patients underwent whole-body 18F-FDG PET/CT for initial

staging before therapy andwere then treated with a therapeutic

regime of methotrexate, etoposide, dexamethasone, and

pegaspargase (MESA). Eighty-four patients were followed

up for at least 2 years. Among them, 49 were sandwiched with

radiotherapy for the involved local focus 21 days after two

cycles of MESA. They were treated with a linear accelerator

producing 6 MV photons. The radiotherapy dose was 50 Gy

in 25 fractions, once a day, and 5 fractions every week.

Chemotherapy was restarted 28 days after radiotherapy.

Of the 84 patients, 64 were randomly included in the train-

ing set; the remaining 20 were unobserved and included in the

test set. The ratio of relapse to non-relapse individuals was

kept the same in the test and training sets to avoid an extreme

imbalance problem. PFS was the major endpoint. Recurrence

and lymphoma infiltration were mainly diagnosed based on

imaging methods and pathology. The remaining 83 patients

without follow-up information or followed up for <2 years

were also included in the training set using the proposed

WSDL method. To further test the generalization of the

WSDLmethod, data pertaining to the 83 patients were derived

from three types of scanners: Scanner 1 (Discovery VCT, GE

Healthcare, USA, 39 patients), 2 (Discovery MI, GE

Healthcare, USA, 29 patients), and 3 (Biograph Vision,

SIEMENS, Germany, 15 patients). The training set thus ulti-

mately comprised 147 patients (Fig. 1).

The clinical features of the 84 patients, including gender,

age, serum lactate dehydrogenase levels, Eastern Cooperative

Oncology Group (ECOG) score, Ki67, β2-microglobulin,

Epstein–Barr virus DNA, and B symptoms, were recorded.

Ann Arbor stage, SUVmax, mean SUV (SUVmean), meta-

bolic tumor volume (MTV), and TLG extracted from 18F-

FDGPET/CTwere alsomeasured. All procedures in the study

were performed in accordancewith the ethical standards of the

committee from Ruijin Hospital, Shanghai Jiao Tong

University, School of Medicine. Written informed consent

was obtained from all patients before treatment. Among the

84 patients enrolled in the clinical trial, 58 were alive (12

presented with persistent or recurrent disease at the last fol-

low-up), and 26 had died due to a tumor-related disease. The

clinical characteristics of patients in the training and test sets

have been summarized in Table 1; data pertaining to the 83

patients diagnosed with ENKTL but with missing or incom-

plete follow-up information are also listed.

18F-FDG PET/CT and preprocessing

Patients were required to fast for at least 6 h before 18F-FDG

PET/CT, and the serum glucose level was maintained under

7.0 mmol/L. Whole-body PET from the head to thigh was

performed 1 h after intravenously administering 5–6 MBq of
18F-FDG per kilogram of body weight. In case of Scanner 1,

PET was performed in the 3D mode with an acquisition time

of 2 min per bed position covering the same field as the CT

scan. CTwas performed using the following parameters: 120–

180 mA, 140 kV, gantry rotation speed of 0.8 s, and thick

axial section of 3.75 mm. After correcting attenuation (based

on CT), scatter, dead time, and random coincidences, PET

images were reconstructed using 3D ordered-subset expecta-

tion maximization (OSEM) with a Gaussian filter (full width

at half maximum of 6 mm), leading to images with voxel size

of 5.47 mm. In case of Scanner 2, PET was performed in the

3D mode with an acquisition time of 1.5 min per bed position

covering the same field as the CT scan. CT was performed

using the following parameters: 120–180 mA, 140 kV, and

gantry rotation speed of 0.8 s. PET images were reconstructed

using the block-sequential regularized expectation maximiza-

tion reconstruction algorithm (Q.clear, GE Healthcare, USA),

which had a β value of 550 with a 256 × 256 matrix (pixel

size = 2.7 × 2.7 mm2, slice thickness = 2.79 mm). Finally, in

case of Scanner 3, CT was performed using the following

parameters: 146 mA, 120 kV, and spiral pitch factor of 1.

Images were reconstructed using the 3D ordinary Poisson

OSEM algorithm, with four iterations and five subsets, appli-

cation of time-of-flight resolution modeling, and no filtering.

The obtained PET images had an image matrix of 440 × 440,

pixel size of 1.6 × 1.6 × 1.5 mm, and slice thickness of 2.0

mm. Lymphoma lesions in the training set were manually

delineated on the fusion map of PET/CT images using ITK-
Fig. 1 A flow chart depicting the study plan. ENKTL: extranodal natural

killer/T cell lymphoma, nasal type
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SNAP (v3.6.0) by a nuclear medicine physician with 15 years

of experience [9].

WSDL for feature extraction

The WSDL method based on Residual Network-18 (ResNet-

18) [37] was proposed to predict disease prognosis using a

well-exploiting unlabeled dataset (83 patients without

follow-up information). The summarized algorithm for the

WSDL method is as follows:

Input: 3D volumetric image I of size width × height ×

depth

Ensure: Image I is a rank 3 tensor

1: Train deep convolutional neural networks (DCNNs) with

labeled data to obtain the baseline model

2: Use baseline DCNNs to extract features from labeled and

unlabeled data

3: Build the PNU classifier to generate implicit labels for

unlabeled data

4: Re-train DCNNs with labeled and unlabeled data to ob-

tain the final prognosis

The ResNet is an artificial neural network that is inspired

by the biological neural networks constituting animal brains.

Table 1 Clinical characteristics of patients

Characteristics Training cohort (n=64), no.

(%)

Test cohort (n=20), no.

(%)

P Patients with missing or incomplete data (n=83), no.

(%)

Scanner 1 (n=

39)

Scanner 2 (n=

29)

Scanner 3 (n=

15)

*Gender 0.690

Male 45 (70.31) 15 (75.00) 28 (71.79) 21 (72.41) 10 (66.67)

Female 19 (29.69) 5 (25.00) 11 (28.21) 8 (27.59) 5 (33.33)

*Age (years) 0.861

< 60 50 (78.13) 16 (80.00) 24 (61.54) 22 (75.86) 10 (66.67)

≥ 60 14 (21.87) 4 (20.00) 15 (38.46) 7 (24.14) 5 (33.33)

*Primary site of tumor 0.078

Upper aerodigestive tract 51 (79.69) 12 (60.00) 30 (76.92) 25 (86.21) 13 (86.67)

Non-upper aerodigestive

tract

13(20.31) 8 (40.00) 9 (23.08) 4 (13.79) 2 (13.33)

*Ann Arbor stage 0.182

I–II 51 (79.69) 13 (65.00) 30 (76.92) 23 (79.31) 11 (73.33)

III–IV 13(20.31) 7 (35.00) 9 (23.08) 6 (20.69) 4 (26.67)

*B symptoms 0.213

Yes 25 (39.06) 9 (45.00) – – –

No 39 (60.94) 11 (55.00) – – –

*ECOG score 0.038

0 36 (56.25) 6 (30.00) – – –

1 19 (29.69) 7 (35.00) – – –

2–5 9 (14.06) 7 (35.00) – – –

*PINK 0.230

Low risk (0) 37 (57.81) 11 (55.00) – – –

Intermediate risk (1) 16 (25.00) 1 (5.00) – – –

High risk (2–4) 11 (17.19) 8 (40.00) – – –

**18F-FDG uptake

(SUVmax)

13.17±6.90 14.48±4.92 0.432 12.01±6.07 16.40±6.78 21.23±9.06

**Follow-up period

(months)

33.70±20.82 38.70±23.96 0.369 – – –

*P values were calculated using the chi-squared test for categorical variables and nonparametric test for continuous variables

**Mean ± SD; independent sample t test was used to compare differences in quantitative parameters between the groups

Abbreviations: LDH, lactate dehydrogenase; ECOG, Eastern Cooperative Oncology Group; PINK, prognostic index of natural killer lymphoma;

SUVmax: maximum standardized uptake value

3154 Eur J Nucl Med Mol Imaging (2021) 48:3151–3161



DCNNs were constructed for deep learning feature extraction.

They are a simplified version of ResNet-18 and were imple-

mented using the Python Keras package with TensorFlow as

the backend. The 83 patients with missing or incomplete

follow-up data were included in the training set along with

64 patients with follow-up data. Labels for the 83 patients

were implicitly derived using the PNU classifier during the

training procedure, leading to maximized prediction probabil-

ity. Further details are provided in Supplementary Materials.

In total, 128 deep learning features were extracted from the

output of the average pooling layer of DCNNs for PET/CT

images in the training set, which were grouped into a 16 × 8

feature map for visualization. We herein propose a new bio-

marker in the form of prediction similarity index (PSI), which

is the ratio of the positive predicted probability value to the

negative predicted probability value. It was derived from these

features to predict the probability of recurrence and non-recur-

rence. PSI of 1 was used to differentiate between positive and

negative predictions. To determine the advantages of the

WSDL method, we compared it with the conventional deep

learning (CDL) method of our proposed DCNNs trained only

on the 64 patients followed up for at least 2 years (Fig. 2).

Statistics

SPSS v23.0 (SPSS Inc., Chicago, IL, USA) and GraphPad

Prism 8.0.1 (GraphPad, San Diego, USA) were used for sta-

tistical analyses. Univariate analysis using the Kaplan–Meier

method was performed for each variable with a potential prog-

nostic value. Time-dependent receiver operating characteristic

(ROC) analysis was performed to evaluate the discriminative

ability of PSI for the prognostic prediction of ENKTL. PSI-

based PFS, prediction sensitivity and specificity, and accuracy

of PSI were calculated. Differences in sensitivity and specific-

ity between the WSDL and CDL methods were compared

using the Fisher’s exact test. The log-rank test was used to

compare differences in PFS between the groups (PSI > 1 and

PSI < 1). Multivariate analysis using the Cox proportional

hazards model was used to assess the independent effects of

PSI and clinical parameters of the disease. P < 0.05 indicated

statistical significance.

Results

Extraction of deep learning features

One hundred and twenty-eight features were extracted from

tumor ROIs outlined on 18F-FDG PET/CT scans of each pa-

tient using the proposed WSDL method. These ROIs were

outlined based on lesion locations and shapes, while non-

meaningful background was cut off. The 128 features were

grouped into feature maps of 16 × 8 strips. The feature maps

of the test set (n = 20) have been illustrated in Fig. 3. In gen-

eral, characteristic differences between relapse and non-

relapse patients could be visualized on these maps. The feature

maps of the training set (n = 64) have been illustrated in

Supplementary Figure S1 (relapse) and S2 (non-relapse),

whereas those of the 83 patients with incomplete or missing

follow-up data and who were imaged using the aforemen-

tioned scanners are illustrated in Figure S3. The feature maps

of the test set (Figure S4) and training set (Figure S5 for

relapse, Figure S6 for non-relapse) with the CDLmethod have

also been illustrated in supplementary figures.

PSI as the prognostic score

Patients with PSI > 1 were considered to show a positive re-

sponse, while those with PSI < 1 were considered to show a

negative response. The ROC curves of the results of the

Fig. 2 An illustration of the concept of the proposed weakly supervised deep learning method
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WSDL and CDL methods were compared (Fig. 4). With the

WSDLmethod, in the training and test sets, PSI achieved area

under the curve (AUC) scores of 0.986 (P = 0.000, 95% CI,

0.957–1.000) and 0.875 (P = 0.005, 95% CI, 0.706–1.000),

respectively, in the prediction of PFS, while with the CDL

method, PSI achieved AUC scores of 0.995 (P = 0.000, 95%

CI, 0.984–1.000) and 0.734 (P = 0.083, 95% CI, 0.479–

0.989), respectively (AUC of the training set was calculated

only based on data pertaining to the 64 patients). Table 2

shows accuracy and prognosis results. In the training set, the

sensitivity of the WSDL method was superior to that of the

CDLmethod (86.7% vs 73.3%, P = 0.048), while the methods

showed the same specificity (100%). Due to the small number

of patients in the test set, a comparison was not feasible.

According to PSI, patients were divided into two groups:

PSI > 1 and PSI < 1. The Kaplan–Meier survival analysis

method was used to compare differences in PFS between the

groups. We observed that patients with low PSI (PSI < 1)

showed good prognosis and long PFS, while those with high

PSI (PSI > 1) showed poor prognosis and short PFS. Figure 5

shows the Kaplan–Meier curves of PFS according to PSI. The

extracted PSI was able to segregate patients in the training set

Fig. 3 Visualization of the feature maps (16 × 8) representing 128

features extracted by the proposed WSDL method in the test set. Each

strip represents the feature map of a patient. Red arrows indicate the

characteristic difference between the (A) relapse and (B) non-relapse

groups in the test cohort. PSI results with incorrect predictions have been

marked by red boxes

Fig. 4 ROC curves comparing

the predictive power of PSI for

PFS in the training (A) and test

(B) sets. ROC, receiver operator

characteristic; AUC, area under

the curve; PSI, prediction simi-

larity index; WSDL, weakly su-

pervised deep learning; CDL,

conventional deep learning
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with different PFS in case of both theWSDL (P < 0.0001) and

CDL (P < 0.0001) methods (Fig. 5A and C). Similarly, in the

test set, the WSDL (P = 0.0017) and CDL (P = 0.0177)

methods could distinguish patients with different PFS (Fig.

5B and D).

Predictive value of other clinical and imaging
parameters and integrated analysis

Major clinical factors, such as gender, serum lactate dehydro-

genase levels, ECOG score, β2-microglobulin levels, and

Epstein–Barr virus DNA, were significantly associated with

PFS in univariate analysis. Conventional imaging parameters,

including PET/CT-based Ann Arbor stage, MTV, and TLG,

were also significantly associated with PFS in univariate anal-

ysis (refer to Table 3 for more details). Furthermore, we com-

bined PSI with these clinical parameters to analyze the prog-

nosis of ENKTL using the multivariate Cox proportional

hazard model. We found that PSI was the only independent

significant predictor of PFS. TheWSDLmethod (HR, 15.183;

95% CI, 5.479–42.077; P = 0.000) achieved better PFS prog-

nosis than the CDL method (HR, 7.857; 95% CI, 3.276–

18.843; P = 0.000) after adjustment for various cofactors, as

listed above.

Discussion

The prognosis of high-risk ENKTL patients is generally poor

[32, 38], and treating such patients is thus challenging.

Although new regimes have been proposed, the response re-

mains suboptimal due to strong disease heterogeneity [38].

Prognostic index of natural killer lymphoma (PINK) is a

well-established index based on age, serum lactate dehydro-

genase level, performance status, and disease stage. The PINK

model [39] is based on clinical information; patients with the

Fig. 5 Kaplan–Meier estimates of

PFS in the training (A) and test

(B) sets of patients with high and

low PSI. PFS, progression-free

survival; PSI, prediction similari-

ty index; WSDL, weakly super-

vised deep learning; CDL, con-

ventional deep learning

Table 2 Deep learning feature-based detection efficiency and prognosis prediction

Training set with WSDL (n=64) Test set with WSDL (n=20) Training set with CDL (n=64) Test set with CDL (n=20)

Sensitivity 86.67% 87.50% 73.33% 62.5%

Specificity 100% 83.33% 100% 83.33%

Accuracy 93.75% 85.00% 87.50% 75.00%

2-year PFS (PSI>1) 34.6%±9.3% 33.3%±15.7% 36.4%±10.3% 28.6%±17.1%

2-year PFS (PSI<1) 92.1%±4.4% 90.9%±8.7% 85.7%±5.4% 84.6%±10.0%

5-year PFS (PSI>1) 3.8%±3.8% 22.2%±13.9% 4.5%±4.4% 28.6%±17.1%

5-year PFS (PSI<1) 92.1%±4.4% 90.9%±8.7% 77.1%±9.5% 74.0%±13.2%

Abbreviations: PFS, progression-free survival; PSI, prediction similarity index; WSDL, weakly supervised deep learning; CDL, conventional deep

learning
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same PINK score could even show different prognosis. As a

clinical molecular imaging method, 18F-FDG PET/CT shows

good potential to help stratify patients and optimize prognosis

for the treatment of many types of cancers [9, 40–42].

However, considering the low incidence of ENKTL, the po-

tential of this method for predicting the prognosis of ENKTL

remains poorly explored. Conventional 18F-FDG PET/CT-

related parameters, such as SUVmax, SUVmean, MTV, and

TGL, have been found to show a correlation with survival, but

the results have been debatable [30, 31, 36, 43]. These param-

eters cannot facilitate a comprehensive image-based analysis

of tumors and cannot be integrated in hematological guide-

lines [44] because prospective studies with larger cohort of

patients and methodological harmonization are needed [45].

Our univariate analysis indicated that SUVmax and

SUVmean were not related to prognosis, while MTV and

TGL were related to prognosis. However, multivariate analy-

ses indicated that none of them were associated with progno-

sis. Considering the rarity of ENKTL, it is difficult to predict

its prognosis, particularly in small cohort of patients.

Considering the potential of AI in facilitating data analyses

to discover useful information, we aimed to develop and val-

idate AI methods to overcome the restriction of limited data

availability and to explore the prognostic value of 18F-FDG

PET/CT in ENKTL. We herein proposed an AI model that

could utilize incomplete or missing follow-up data to enhance

the prediction potential of deep learning methods. This

improved prediction power of AI led to the extraction of fea-

ture maps from 18F-FDG PET/CT as effective surrogates for

prognosis prediction in patients with ENKTL. Furthermore,

the method could automatically discover characteristic fea-

tures in metabolic imaging. Our results confirmed the benefits

of AI for comprehensive imaging analyses, wherein the pro-

posed PSI was better than conventional clinical parameters

and other PET-related parameters for prognosis prediction.

AI methods tend to be biased toward texture rather than

shape, while human cognitive processes function in the oppo-

site manner [46]. Conventional 18F-FDG PET/CT-related pa-

rameters, such as Ann Arbor stage, SUVmax, SUVmean,

MTV, and TGL, have been already covered within the AI

framework, and they reportedly have inferior predictive per-

formance than deep learning methods [47]. The current devel-

opments occurring within the field of AI can add value to

conventional PET analyses. To avoid redundancy and corre-

lation of tested data and to lower the number of parameters

tested in view of the limited size of our cohort, Ann Arbor

stage, MTV, and TLG were not included in multivariate anal-

ysis, although they were found to be related to prognosis in

univariate analysis. For multivariate analysis, clinical prog-

nostic factors and PSI were included. PSI eventually emerged

to be the only independent predictor of PFS.

Despite their potential, the application of AI-based

methods to clinical trials remains challenging due to limited

sample sizes. Deep learning research is particularly difficult

Table 3 Univariate analysis involving patients with follow-up data

Characteristics Training cohort (n=64) Test cohort (n=20) Total (n=84)

Cutoff value P Cutoff value P Cutoff value P

Gender M/F 0.100 M/F 0.017 M/F 0.010

Age 60 0.184 60 0.041 60 0.742

Serum LDH 169* (0.092) 0.263 223* (0.137) 0.065 231.5 (0.019) 0.000

ECOG score 0/1/2/3/4 0.057 0/1/2/3/4 0.023 0/1/2/3/4 0.005

Ki67 60%* (0.767) 0.548 80%* (0.665) 0.870 70%* (0.970) 0.809

β2-microglobulin 188* (0.076) 0.387 454* (0.248) 0.328 820 (0.040) 0.001

EBV DNA +/− 0.018 +/− 0.012 +/− 0.001

Ann Arbor stage I–II/III–IV 0.000 I–II/III–IV 0.000 I–II/III–IV 0.000

B symptoms +/− 0.300 +/− 0.441 +/− 0.193

PSI with CDL 1 0.000 1 0.018 1 0.000

PSI with WSDL 1 0.000 1 0.002 1 0.000

SUVmax 11.1* (0.382) 0.876 15.05* (0.418) 0.880 12.25* (0.218) 0.871

SUVmean 6.35* (0.453) 0.927 8.6* (0.298) 0.312 6.875* (0.249) 0.677

MTV 18.04 (0.002) 0.000 15.695* (0.165) 0.415 25.325 (0.001) 0.000

TLG 94.738 (0.004) 0.000 124.133* (0.316) 0.415 109.952 (0.006) 0.001

*Median value

Abbreviations: M, male; F, female; +, positive; −, negative; PFS, progression-free survival; PSI, prediction similarity index; WSDL, weakly supervised

deep learning; CDL, conventional deep learning; LDH, lactate dehydrogenase; ECOG, Eastern Cooperative Oncology Group; EB virus, Epstein–Barr

virus; SUV, standardized uptake value; MTV, metabolic tumor volume; TLG, total lesion glycolysis
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for rare diseases such as ENKTL. Moreover, not all recruited

patients can be finally enrolled due to missing or incomplete

follow-up. Therefore, we developed a WSDL method in an

attempt to solve this problem. During the training of WSDL,

implicit labels are generated by exploring similarities among

patients, and this diversity can be captured by a deep neural

network. Most supervised data augmentation methods have

been developed by using unlabeled data for regularization

under particular distributional assumptions, such as cluster

or smoothness assumption [48]. However, the performance

of such a model can be considerably deteriorated if the real

data distribution violates the assumed distribution [14]. In this

study, the proposedWSDLmethod with integrated PNU strat-

egy did not make additional assumptions about data distribu-

tion; therefore, the performance of prognosis prediction was

efficiently and robustly improved. We conducted a pilot study

to reutilize the data without follow-up information to boost the

prediction accuracy of patient survival; consequently, the ad-

vantages of the proposed WSDL method were confirmed in

our test set. By employingWSDL, prognoses of patients in the

test set could be significantly differentiated, and the results

were better than on using CDL. Therefore, the proposed

WSDL method may act as a practical tool for developing

individualized treatment strategies using clinical trial data.

Tumor heterogeneity in baseline PET/CT images may

allow better signature characterization and improve pre-

diction of therapy response and survival in malignant tu-

mors [49, 50]. Ko et al. [49] investigated whether the

textural features of pretreatment 18F-FDG PET images

could predict the prognosis for ENKTL; they reported that

dissimilarity and low-intensity short-zone emphasis were

significant predictors of disease progression in patients

with ENKTL and were able to improve their prognostic

stratification. However, there were only 17 patients in this

retrospective study and details pertaining to the regimen

were not mentioned. In our study, PSI was validated as a

potential index for risk stratification and future manage-

ment of patients with ENKTL. Compared with texture

analyses, the results of deep learning are more difficult

to interpret. Deep learning–based radiomics studies [9]

evidently draw several image-based texture parameters

and the significance of many of them cannot be explained

in a clinical perspective; this hinders the application in

clinical routine. In addition to the proposed PSI, we also

visualized the extracted features as strips of feature maps.

Although these maps did not give us an in-depth insight

into physiological interpretation, they did give us an ad-

ditional view of recommendations derived from the black

box, and the different activation patterns may facilitate

quality control in practice. The feature maps were com-

posed of multiple features, and, therefore, they contained

more information than a single scalar value of PSI. An

increase in the dimension of the features may improve

prediction but may lead to overfitting. On the other hand,

a single scalar value is convenient for clinical interpreta-

tion. Therefore, it may be practical to consider both PSI

values and feature maps to gather better, more robust

information.

This study had several limitations. First, although we

employed WSDL to enhance data utilization, the sample

size was still small, which may reduce the test power and

predictive ability of deep learning methods. Similar to

other studies based on rare diseases, the difference be-

tween overall survival and PFS was not great, and we

did not perform overall survival-related survival analysis.

We only performed survival analysis based on PFS.

Second, tumors were outlined by a specialist in medical

radiology and nuclear medicine. As with previous stud-

ies, interobserver variations may exist in the manual de-

lineation and may influence the reported results [9].

Nevertheless, deep learning methods can automatically

learn features included in the hidden layers of neural

networks from imaging data, and they are less sensitive

to segmentation variations [51, 52]. Third, study data

were collected from a single center, and external valida-

tion is thus necessary to validate our findings. Finally,

potential patient selection biases may exist because of

the retrospective nature of this study.

To summarize, our proposed WDSL method was able to

utilize incomplete or missing follow-up data to improve sur-

vival prediction. Deep learning involving 18F-FDG PET/CT

provides an effective approach for prognosis prediction in

patients with ENKTL. The identified feature maps and PSI

may potentially assist the stratification of patients in therapy.

Future prospective studies with external validation are never-

theless warranted to validate our findings.
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