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Abstract

Detecting acoustic shadows in ultrasound images is important in many clinical and engineering 

applications. Realtime feedback of acoustic shadows can guide sonographers to a standardized 

diagnostic viewing plane with minimal artifacts and can provide additional information for other 
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automatic image analysis algorithms. However, automatically detecting shadow regions using 

learning-based algorithms is challenging because pixel-wise ground truth annotation of acoustic 

shadows is subjective and time consuming. In this paper we propose a weakly supervised method 

for automatic confidence estimation of acoustic shadow regions. Our method is able to generate a 

dense shadow-focused confidence map. In our method, a shadow-seg module is built to learn 

general shadow features for shadow segmentation, based on global image-level annotations as well 

as a small number of coarse pixel-wise shadow annotations. A transfer function is introduced to 

extend the obtained binary shadow segmentation to a reference confidence map. Additionally, a 

confidence estimation network is proposed to learn the mapping between input images and the 

reference confidence maps. This network is able to predict shadow confidence maps directly from 

input images during inference. We use evaluation metrics such as DICE, inter-class correlation and 

etc. to verify the effectiveness of our method. Our method is more consistent than human 

annotation, and outperforms the state-of-the-art quantitatively in shadow segmentation and 

qualitatively in confidence estimation of shadow regions. We further demonstrate the applicability 

of our method by integrating shadow confidence maps into tasks such as ultrasound image 

classification, multi-view image fusion and automated biometric measurements.

Index Terms

Ultrasound imaging; deep learning; weakly supervised; shadow detection; confidence estimation

I Introduction

ULTRASOUND (US) imaging is a medical imaging technique based on reflection and 

scattering of highfrequency sound in tissues. Compared with other imaging techniques (e.g. 

Magnetic Resonance Imaging (MRI) and Computed Tomography (CT)), US imaging has 

various advantages including portability, low cost, high temporal resolution and real-time 

imaging capability. With these advantages, US is an important medical imaging modality 

that is utilized to examine a range of anatomical structures in both adults and fetuses. In 

most countries, US imaging is an essential part of clinical routine for pregnancy health 

screening between 11 and 22 weeks of gestation [1].

Although US imaging is capable of providing real-time images of anatomy, diagnostic 

accuracy is limited by the relatively low image quality. Artifacts such as noise [2], 

distortions [3] and acoustic shadows [4] make interpretation challenging and highly 

dependent on experienced operators. These artifacts are unavoidable in clinical practice due 

to the low energies used and the physical nature of sound wave propagation in human 

tissues. Better hardware and advanced image reconstruction algorithms have been developed 

to reduce speckle noise [5], [6]. Prior anatomical expertise [7] and extensive sonographer 

training are the only way to handle distortions and shadows to date.

Sound-opaque occluders, including bones and calcified tissues, block the propagation of 

sound waves by strongly absorbing or reflecting sound waves during scanning. The regions 

behind these sound-opaque occluders return little to no reflections to the US transducer. 

Thus these areas have low intensity but very high acoustic impedance gradients at their 
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boundaries (e.g. Fig. 1(a) left column). Reducing acoustic shadows and correct interpretation 

of images containing shadows rely heavily on sonographer experience. Experienced 

sonographers avoid shadows by moving the probe to a more preferable viewing direction 

during scanning or, if no shadow-free viewing direction can be found, a mental map is 

compounded with iterative acquisitions from different orientations.

With less anatomical information in shadow regions, especially when shadows cut through 

the anatomy of interest, images containing strong shadows can be problematic for automatic 

real-time image analysis methods such as biometric measurements [8], anatomy 

segmentation [9] and US image classification [10]. Moreover, the shortage of experienced 

sonographers [11] exacerbates the challenges of accurate US image-based screening and 

diagnostics. Therefore, shadow-aware US image analysis is greatly needed and would be 

beneficial, both for engineers who work on medical image analysis, as well as for 

sonographers in clinical practice.

Contribution: We propose a novel method based on convolutional neural networks (CNNs) 

to automatically estimate pixel-wise confidence maps of acoustic shadows in 2D US images. 

Our method learns an initial latent space of shadow regions from images consisting of 

multiple anatomies and with global image-level labels (“has shadow” and “shadow-free”), 

e.g. Fig. 1(a). The basic latent space is then estimated by learning from fewer images of a 

single anatomy (fetal brain) with coarse pixel-wise shadow annotations (approximately 10% 

of the images with global image-level labels), e.g. Fig. 1(b). The resulting latent space is 

then refined by learning shadow intensity distributions using fetal brain images so that the 

latent space is suitable for confidence estimation of shadow regions. By using shadow 

intensity information, our method can detect more shadow regions than the coarse manual 

segmentation, especially relatively weak shadow regions.

The proposed training process is able to build a direct mapping between input images and 

the corresponding shadow confidence maps in any given anatomy, which allows real-time 

application through direct inference.

In contrast to our preliminary work [12], which uses separate, heuristically linked 

components, here we establish a pipeline to make full use of existing data sets and 

annotations. During inference our method can predict both a binary shadow segmentation 

and a dense shadow-focused confidence map. The shadow segmentation is not limited by 

hyperparameters such as thresholds in [12], and the segmentation accuracy as well as 

shadow confidence maps are greatly improved compared to the state-of-the-art.

We have demonstrated in [12] that shadow confidence maps can improve the performance of 

an automatic biometric measurement task. In this study, we further evaluate the usefulness of 

the shadow confidence estimation for other automatic image analysis algorithms such as an 

US image classification task and a multi-view image fusion task.

Related work

Automatic US shadow detection—Acoustic shadows have a significant impact on US 

image quality, and thus a serious effect on robustness and accuracy of image processing 
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methods. In clinical literature, US artifacts including shadows have been well studied and 

reviewed [13], [14], [15]. However, the shadow problem is not well covered in automated 

US image analysis literature. Automatic estimation of acoustic shadows has rarely been the 

focus within the medical image analysis community.

Identifying shadow regions in US images has been utilized as a preprocessing step for 

extracting relevant image content and improving image analysis accuracy in some 

applications. Penney et al. [16] have identified shadow regions by thresholding the 

accumulated intensity along each scanning beam line. Afterwards, these shadow regions 

have been masked out from US images for US to MRI hepatic image registration. Instead of 

excluding shadow regions, Kim et al. [17] focused on accurate attenuation estimation, and 

aimed to use attenuation properties for determination of the anatomical properties which can 

help diagnose diseases. They proposed a hybrid attenuation estimation method that 

combines spectral difference and spectral shift methods to reduce the influence of local 

spectral noise and backscatter variations in Radio Frequency (RF) US data. To detect 

shadow regions in B-Mode scans directly and automatically, Hellier et al. [18] used the 

probe’s geometric properties and statistically modelled the US B-Mode cone. Compared 

with previous statistical shadow detection methods such as [16], their method can 

automatically estimate the probe’s geometry as well as other hyperparameters, and has 

shown improvements in 3D reconstruction, registration and tracking. However, the method 

can only detect a subset of ‘deep’ acoustic shadows because of the probe geometry-

dependent sampling strategy.

To improve the accuracy of US attenuation estimation and shadow detection, Karamalis et 

al. [19] proposed a more general solution using the Random Walks (RW) algorithm to 

predict a per-pixel confidence of US images. In [19], confidence maps represent the 

uncertainty of US images resulting from shadows, and thus, show the acoustic shadow 

regions. The confidence maps obtained by this work can improve the accuracy of US image 

processing tasks, such as intensity-based US image reconstruction and multi-modal 

registration. However, such confidence maps are sensitive to US transducer settings and 

limited by the US formation process. Klein et al. [20] have further extended the RW method 

to generate distribution-based confidence maps and applied it to RF US data. This method is 

more robust since the confidence prediction is no longer intensity-based.

Some studies have utilized acoustic shadow detection as additional information in their 

pipeline for other US image processing tasks. Broersen et al. [21] combined acoustic shadow 

detection for the characterization of dense calcium tissue in intravascular US virtual 

histology, and Berton et al. [9] automatically and simultaneously segment vertebrae, spinous 

process and acoustic shadow in US images for a better assessment of scoliosis progression. 

In these applications, acoustic shadow detection is task-specific, and is mainly based on 

heuristic image intensity features as well as special anatomical constraints.

The aforementioned literature relies heavily on manually selected relevant features, intensity 

information or a probe-specific US formation process. With the advances in deep learning, 

US image analysis algorithms have gained better semantic image interpretation abilities. 

However, current deep learning segmentation methods require a large amount of pixel-wise, 
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manually labelled ground truth images. This is challenging in the US imaging domain 

because of (a) a lack of experienced annotators and (b) weakly defined structural features 

that cause a high inter-observer variability.

Weakly supervised image segmentation—Weakly supervised automatic detection of 

class differences has been explored in other imaging domains (e.g. MRI). For example, 

Baumgartner et al. [22] proposed to use a generative adversarial network (GAN) to highlight 

class differences only from global image-level labels (Alzheimer’s disease or healthy). We 

used a similar idea in [12] and initialized potential shadow areas based on saliency maps 

[23] from a classification task between images containing shadows and those without. 

Inspired by recent weakly supervised deep learning methods that have drastically improved 

semantic image analysis [24], [25], [26] and to overcome the limitations of [12], we develop 

a confidence estimation algorithm that takes advantages of both types of weak labels, 

including global image-level labels and a sparse set of coarse pixel-wise labels. Our method 

is able to predict dense, shadow-focused confidence maps directly from input US images in 

effectively real-time.

II Method

In our proposed method, a shadow-seg module is first trained to produce a semantic 

segmentation of shadow regions. In this module, shadow features are initialized by training a 

shadow/shadow-free classification network and generalized by training a shadow 

segmentation network. After obtaining the shadow segmentation, a transfer function is used 

to extend the predicted binary shadow segmentation to a confidence map based on the 

intensity distribution within suspected shadow regions. This confidence map is regarded as a 

reference confidence map for the next confidence estimation network. Lastly, a confidence 

estimation network is trained to learn the mapping between the input shadow-containing US 

images and the corresponding reference confidence maps. The outline for the training 

process is shown in Fig. 2. During inference, we use the confidence estimation network to 

predict a dense, shadow confidence map directly from the input image. Additionally, we 

integrate attention mechanisms [27] into our method to enhance the shadow features 

extracted by the networks.

Shadow-seg Module

We propose a shadow-seg module to extract generalized shadow features for a large range of 

shadow types in fetal US images under limited weak manual annotations. Since shadow 

regions have different shapes, various intensity distributions and uncertain edges, the pixel-

wise annotation of shadow regions is time consuming and relies heavily on annotator’s 

experience (e.g. various annotations in Fig. 1(b)). This generally results in manual 

annotations of limited quantity and quality. Compared with pixel-wise shadow annotations, 

global image-level labels (“has shadow” and “shadow-free” in our case) are easier to obtain, 

and shadow images with global image-level labels can contain a larger variety of shadow 

types. Therefore, we use a shadow-seg module that combines unreliable pixel-wise 

annotations and global image-level labels as weak annotations.The proposed shadow-seg 

module contains two tasks, (1) shadow/shadow-free classification using image-level labels, 
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and (2) shadow segmentation that uses few coarse pixel-wise manual annotations (10% of 

the global image-level labels). Shadow features can be extracted during simple shadow/

shadow-free classification and subsequently optimized for the more challenging shadow 

segmentation task. In our case, shadow features extracted by the classification network cover 

various shadow types in a range of anatomical structures. These shadow features become 

suitable for the shadow segmentation after being optimized by a shadow segmentation 

network.

Network Architecture

We build two sub-networks from residual-blocks [28] as shown in Fig. 3. Residual-blocks 

can reduce the training error when using deeper networks and support better network 

optimization [28]. They have been widely used for various image processing algorithms 

[29], [30], [31]. The first and initially trained network is a shadow/shadow-free classification 

network that learns to distinguish images containing shadows from shadow-free images, and 

thus learns the defining features of acoustic shadow. This classification network consists of a 

feature encoder followed by a global average pooling layer. The feature encoder uses six 

residual-blocks (Fig. 3) to extract shadow features that define shadow-containing images in 

the classifier. We refer to l = 1 as the label of the shadow-containing class and l = 0 as the 

label of the shadow-free class. Image set XC
= x

1
C

, x
2
C

, …, x
K
C  and their corresponding labels 

L = {l1, l2, …, lK} s.t.li ∈ {0, 1} are used to train the feature encoder as well as the global 

average pooling layer. We use softmax cross-entropy loss as the cost function LC between 

the predicted labels and the true labels.

Representative shadow features extracted by the feature encoder of the shadow/shadow-free 

classification network are then optimized by the shadow segmentation network with a 

limited number of densely segmented US images. The feature encoder of the segmentation 

network has the same architecture as the classification network. The weights of the feature 

encoder in the segmentation network are initialized by that of the classification network and 

are further fine-tuned for the segmentation task. Therefore, the extracted shadow features are 

suitable for the segmentation in addition to classification. The decoder of the segmentation 

network is symmetrical to the feature encoder. Feature layers from the feature encoder are 

concatenated to the corresponding layers in the decoder by skip connections. Here, we 

denote the image set used to train the shadow segmentation with XS
= x

1
S
, x

2
S
, …, x

M
S  and the 

corresponding pixel-wise manual segmentation with YS
= y

1
S
, y

2
S
, …, y

M
S

. The shadow 

segmentation provides a pixel-wise binary prediction YS
= y

1
S
, y

2
S
, …, y

M
S  for shadow 

regions and the cost function Lseg is the softmax cross-entropy between YS and YS.

Transfer Function

Binary masks lack information about inherent uncertainties at the boundaries of shadow 

regions. Therefore, we use a transfer function to extend the binary segmentation prediction 

to a confidence map, which is more appropriate to describe shadow regions. The main task 

of the transfer function is to learn the intensity distribution of shadow regions so as to 

estimate confidence of pixels in false positive (FP) regions of the predicted binary shadow 
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segmentation. This transfer function is built and only used during training to provide 

reference confidence maps for the confidence estimation network.

When comparing the manual segmentation yS and the predicted segmentation yS of shadow 

regions in image x, we define the true positive (TP) regions xTP as shadow regions with the 

full confidence, Cxij = 1, xij ∈ xTP. Here, Cxij refers to the confidence of pixel xij being 

shadow.

For each pixel xij in the FP regions (xFP), the confidence of belonging to a shadow region is 

computed by a transfer function T(xij | xij ∈ xFP) based on the intensity of the pixel (Ixij) and 

the mean intensity of xTP (Imean). Imean is defined in Eq. 1. With weak signals in the shadow 

regions, the average intensity of shadow pixels is lower than the maximum intensity (Imax = 

max(x)) but not lower than the minimum intensity (Imin = min(x)), that is Imean ∈ [Imin, 

Imax).

Imean =
mean y

S
∩ y

S
y

S
∩ y

S
≠ ∅ ,

mean y
S

y
S

∩ y
S

= ∅ ,
(1)

The transfer function T(·) computing Cxij for pixels in xFP is defined according to the range 

of Imean. For Imean ∈ (Imin, Imax), T(·) is shown in Eq. 2. For Imean = Imin, T(·) is shown in 

Eq. 3.

T xi j xi j ∈ xFP =

Ix
i j

− Imin

Imean − Imin

, Imin ≤ Ix
i j

< Imean,

Imax − Ix
i j

Imax − Imean

, Imean < Ix
i j

≤ Imax,

1, Ix
i j

= Imean,

(2)

T xi j xi j ∈ xFP =

Ix
i j

− Imean

Imax − Imean

, Imean < Ix
i j

,

1, Ix
i j

= Imean,

(3)

After using the transfer function, the binary map of the predicted segmentation yS is 

extended to a confidence map yC · yC acts as a reference (”ground truth”) for the training of 

the next confidence estimation network.

Confidence Estimation Network

After obtaining reference confidence maps from the predicted binary segmentation, a 

confidence estimation network is trained to map an image with shadows (x) to the 

corresponding reference confidence map (yC). This confidence estimation network can be 
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independently used to directly predict a dense shadow confidence map for an input image 

during inference.

The confidence estimation network consists of a down-sampling encoder, a symmetric up-

sampling decoder, and skip connections between feature layers from the encoder and the 

decoder at different resolution levels. Both the encoder and the decoder are composed of six 

residual-blocks. The cost function of the confidence estimation network is defined as the 

mean squared error between the predicted confidence map YC and the reference confidence 

map YC
(ℒ

con f
= Y

C
− Y

C

2
) .

Attention Gates

Attention gates are believed to generally highlight relevant features according to image 

context and thus improve network performance for medical image analysis [32]. We 

integrate attention gates [27] into our approach to explore if attention mechanisms can 

further improve the confidence estimation of shadow regions in 2D ultrasound. In our case, 

we connect the self-attention gating modules proposed in [32] to the feature maps before the 

last two down-sampling operations in the encoders of all three networks. For the shadow/

shadow-free classification network, the global average pooling layer is modified when 

adding this self-attention gating module. In detail, as shown in Fig. 4, the global average 

pooling layers are operated separately on the two attention-gated feature maps as well as the 

original last feature map to obtain three average feature maps. These three average feature 

maps are then concatenated, followed by a fully connected layer to compute the final 

classification prediction.

III Implementation

All the residual-blocks used in the proposed method are implemented as proposed in [33], 

which provides a convenient interface to realize residual-blocks.

We optimize the different modules separately and consecutively in three steps. First we train 

~ 70 epochs for the parameters of the shadow/shadow-free classification network, and then ~ 

700 epochs for the pixel-wise shadow segmentation network. After obtaining a well-trained 

shadow segmentation network, we train the confidence estimation network for another 700 

epochs.

For all networks, we use Stochastic Gradient Descent (SGD) with momentum optimizer to 

update the parameters since SGD has better generalization capability than adaptive 

optimizer [34]. The parameters of the optimizer are momentum = 0.9, with a learning rate of 

10−3. We apply L2 regularization to all weights during training to help prevent network over-

fitting. The scale of the regularizer is set as 10−5. The training batch size is 25 and our 

networks are trained on a Nvidia Titan X GPU with 12 GB of memory.

IV Evaluation

The proposed method is trained and evaluated using two data sets, (1) a multi-class data set 

consisting of 13 classes of 2D US fetal anatomy with global image-level label (“has 
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shadow” or “shadow-free”) and including 48 non-brain images with manual shadow 

segmentations, and (2) a single-class data set containing 2D US fetal brain with coarse pixel-

wise manual shadow segmentations. To reduce the variance in parameter estimation during 

training, we split relatively bigger training data sets. In the multi-class data set, we use 88% 

of the data for training, 11% for validation and the 48 non-brain images for testing, while in 

the single-class data set we use 78% of the data for training, 8% for validation and 14% for 

testing.

To verify the effectiveness of the proposed method and the importance of the shadow/

shadow-free classification network in the shadow-seg module, we compare the variants of 

our method to a baseline which only contains a shadow segmentation network and a 

confidence estimation network.

We use standard measurements such as Dice coefficient (DICE) [35], recall, precision and 

Mean Squared Error (MSE) for shadow segmentation evaluation, and use the Interclass 

Correlation (ICC) [36] as well as soft DICE [37] for confidence estimation evaluation. In 

order to verify the performance of our method, we also compute quantitative measurements 

between the chosen manual annotation (weak ground truth) and another manual annotation 

from a different annotator to show the human performance for the shadow detection task. 

Lastly, we show the practical benefits of shadow confidence maps for different applications 

such as a standard plane classification task, an image fusion task from multiple views and a 

segmentation task for automatic biometric measurements.

Multi-class Data Set

This data set consists of ~ 8.5k 2D fetal US images sampled from 13 different anatomical 

standard plane locations as defined in the UK FASP handbook [38]. These images have been 

sampled from 2694 2D ultrasound examinations from volunteers with gestational ages 

between 18 – 22 weeks (iFIND Project 1). Eight different ultrasound systems of identical 

make and model (GE Voluson E8) were used for the acquisitions. Various image settings 

based on different sonographers’ personal preference for scanning are included in this data 

set. The images have been classified by expert observers as containing strong shadow, being 

shadow-free, or being corrupted, e.g. poor tissue contact caused by lacking acoustic 

impedance gel. Corrupted images (< 3%) have been excluded as discussed in Section VI 

with Fig. 10.

Single-class Data Set

This data set comprises 643 fetal brain images and has no overlap with the multi-class data 

set. Shadow regions in this data set have been coarsely segmented by two bio-engineering 

students using trapezoid-shaped segmentation masks for individual shadow regions.

Training Data

3448 shadow images and 3842 clear images have been randomly selected from the multi-

class data set to train the shadow/shadow-free classification network. 500 fetal brain images 

1http://www.ifindproject.com/

Meng et al. Page 9

IEEE Trans Med Imaging. Author manuscript; available in PMC 2019 December 04.

 E
u
ro

p
e P

M
C

 F
u
n
d
ers A

u
th

o
r M

an
u
scrip

ts
 E

u
ro

p
e P

M
C

 F
u
n
d
ers A

u
th

o
r M

an
u
scrip

ts

http://www.ifindproject.com/


have been randomly chosen from the single-class data set to train the shadow segmentation 

network, and the confidence estimation network. These 500 fetal images have been flipped 

as data augmentation during training.

Validation and Test Data

The remaining 491 shadow images and 502 clear images in the multi-class data set are used 

for testing and validation. Here, a subset (Mtest) comprising 48 randomly selected images 

from the 491 shadow images is used for testing. These 48 images contain various fetal 

anatomies (except fetal brain), such as abdominal, kidney, cardiac and etc. Shadow regions 

in these images have been manually segmented to provide ground truth. The remaining 443 

shadow images and 502 clear images are used for the validation of the shadow/shadow-free 

classification. Similarly, the remaining 143 fetal brain images of the single-class data set are 

split into two subsets, where Sval contains 50 images for validation of the shadow 

segmentation, binary-to-confidence transformation and the confidence estimation, and Stest 

with 93 images for testing. For all images from the single-class data set, we randomly 

choose one group of annotations from two different existing groups of annotations as ground 

truth for training, validation and testing.

A Baseline—The baseline method is used to demonstrate that the shadow-seg module is 

of importance for capturing generalized shadow features and obtaining accurate confidence 

estimation of shadow regions. It comprises a shadow segmentation network and a confidence 

estimation network, which have the same architectures as shown in Fig. 2 We firstly train the 

shadow segmentation network in the baseline method using the 500 fetal brain images from 

the single-class data set. After applying the transfer function on the binary segmentation 

prediction, we train the confidence estimation network for a direct mapping between shadow 

images and reference confidence maps.

B Evaluation Metrics—In this section, we define the aforementioned statistical metrics 

and the computation of the inter-observer variability between two pixel-wise manual 

annotations of shadow regions.

DICE, Recall, Precision and MSE: We refer to the binary prediction of shadow segmentation 

as P and the binary manual segmentation as G. DICE = 2|P ∩ G|/(|P| + |G|), Recall = |P ∩ 
G|/|G|, Precision = |P ∩ G|/|P| and MSE = |P – G|.

ICC: We use ICC as proposed by [36] (Eq. 4) to measure the agreement between two 

annotations. Each pixel in an image is regarded as a target. RMS, CMS and MMS are 

respectively mean squared value of rows, columns and interaction. N is the number of 

targets.

ICC =
RMS − MMS

RMS + MMS + 2 × (CMS − MMS)/N
. (4)
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Soft DICE: Soft DICE can be used to tackle probability maps. We use real-value in the 

DICE definition to compute soft DICE between the predicted shadow confidence maps YC

and reference confidence maps YC.

Human Performance: We consider another binary segmentation of shadow regions from a 

different annotator as Y
new
S

. The computed metrics between Y
new
S  new and the chosen manual 

segmentation YS reflects the human inter-observer variability.

C Shadow Segmentation Analysis—We compare the segmentation performance of 

the state-of-the-art ([19] and [12]), the proposed methods and the human performance. This 

comparison is used to examine the importance of the shadow-seg module for the shadow 

segmentation, and further, for the confidence estimation of shadow regions.

Table I shows DICE, recall, precision and MSE of different methods on Stest. RW and RW* 

are results of [19] with various parameters. For fair comparison, we run 24 tests on both test 

sets using the RW algorithm with different parameter combinations (α ∈ {1, 2, 6}; β ∈ {90, 

120}; γ ∈ {0.05, 0.1, 0.2, 0.3}). With a negative relationship between the likelihood of 

shadows and the confidence in [19] and to consistently compare all methods, we use 1 – S 

instead S to display the results of RW and RW* in all comparison experiment Here S is a 

confidence map obtained by [19]. To generate shadow segmentation, we threshold the 

obtained confidence maps by T ∈ {0.25, 0.3} so that pixels with confidence higher than T 

are shadows. We chose the parameters and the threshold which achieve the highest average 

DICE on all samples in both test sets. The chosen RW parameters and the threshold are α = 

1; β = 90; γ = 0.3; T = 0.3. We also applied the parameters and the threshold in [19] (α = 2; 

β = 90; γ = 0.05; T = 0.25) in our experiments, which is denoted as RW*. Note that we use 

the public Matlab code 2 of [19] to test RW and RW*.

As shown in Table I, the baseline, the proposed method and the proposed+AG greatly 

outperform the state-of-the-art. Among all methods, the proposed method achieves highest 

DICE. Recall and precision of the proposed method are respectively 3.33% and 1.16% 

higher than that of the baseline while MSE of the proposed method is 1.67 lower than that of 

the baseline. After adding attention gates to the proposed method (the proposed+AG), the 

shadow segmentation performance is nearly the same to the proposed method without 

attention gates, but better than the baseline. Additionally, the relatively low scores of Anno* 

indicate high inter-observer variability and how ambiguous human annotation can be for this 

task. A mean DICE of 0.7167 shows that the proposed method performs better and more 

consistently than human annotation.

We further conduct the same experiments on another non-brain test data set Mtest to verify 

the feature generalization ability of the shadow-seg module. Results are shown in Table II. 

Similarly, the proposed weakly supervised methods and the baseline outperform all state-of-

the-art methods.

2http://campar.in.tum.de/Main/AthanasiosKaramalisCode
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To statistically evaluate the difference among various methods, we use the paired sample t-

test on two test data sets Stest and Mtest. Here, we compare the evaluation metrics (Dice, 

Recall, Precision and MSE) of the proposed method and the Pilot [12] because the Pilot [12] 

outperforms other state-of-the-art in Table I and Table II. We also compare the evaluation 

metrics of the proposed method and the baseline. The obtained corresponding p-values are 

shown in Table III, using 0.01 as the threshold for statistical significance, Table III shows 

that the proposed method greatly improves the shadow segmentation performance compared 

with the Pilot [12] and the baseline.

D Shadow Confidence Estimation—In this part, we evaluate the performance of the 

confidence estimation by comparing the shadow confidence maps of different methods.

Fig. 5 (a) shows the soft DICE evaluation on Stest and Mtest. The proposed method and the 

proposed+AG method achieve higher soft DICE on both test sets than the baseline, and are 

more robust than the baseline on Mtest. The baseline fails in this experiment on Mtest because 

it is unable to obtain accurate shadow segmentation in the previous step (shown in Table II). 

With less accurate shadow segmentation, the shadow confidence estimation can hardly 

establish a valid mapping between input images and reference confidence maps. This 

demonstrates that the shadow-seg module is beneficial for shadow segmentation and 

confidence estimation.

We additionally evaluate the reliability of the shadow confidence estimation by measuring 

the agreement between the decision of each method and the manual segmentation. 

Regarding the baseline, the proposed and the proposed+AG as different judges and the 

manual segmentation of shadow regions as a contrasting judge, we use the ICC to measure 

the agreement between each different judge and the contrasting judge. Fig. 5 (b) shows the 

ICC evaluation on two test data sets, which indicate that the proposed method and the 

proposed+AG are more consistent on estimating shadow confidence maps compared with 

the baseline. When considering another manual segmentation of shadow regions as an extra 

judge, we can evaluate the agreement of human annotations. Fig. 5 (b) shows that the ICC of 

two human annotations (shown as Anno) is normally 0.51. The proposed method with an 

ICC of 0.66 is more consistent than annotations from two human annotators.

Fig. 6 compares the shadow confidence maps of the state-of-the-art methods and the 

proposed methods. RW and RW* have the same parameters as used for Table I. The shadow 

confidence maps of the baseline, the proposed method and the proposed+AG method are 

generated directly from input shadow images by confidence estimation networks. Overall, 

the proposed method and the proposed+AG method achieve more visually reasonable 

shadow confidence estimation than the baseline and the state-of-the-art on different 

anatomical structures shown in Fig. 6. The proposed method and the proposed+AG method 

are able to highlight multiple shadow regions while the RW algorithm shows limitations for 

most cases, especially for disjoint shadow regions.

Row I in Fig. 6 shows a fetal brain image from Stest. The confidence estimation of shadow 

regions from the baseline, the proposed method and the proposed+AG method are similarly 

accurate since we use fetal brain images to train the confidence estimation networks in these 
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three methods. These outperform [19] and [12]. Rows (II-IV) in Fig. 6 show shadow 

confidence maps of non-brain anatomy from Mtest, including lips, abdominal and cardiac. 

The baseline failed on unseen data during inference. However, the proposed methods are 

able to generate accurate shadow confidence maps because of the generalized shadow 

features obtained by the shadow-seg module. Furthermore, the “Lips” example shows that 

our method is capable of detecting weaker shadow regions that have not been annotated in 

manual segmentation. This indicates that the confidence estimation network has learned 

general properties of shadow regions.

E Transfer Function Performance—We show two illustrative examples in Fig. 7 to 

demonstrate the performance of the transfer function. Fig. 7 (c) and (d) show that the 

transfer function computes the confidence of each pixel in the false positive areas of the 

predicted segmentation, so that to extend a binary segmentation to a reference confidence 

map.

F Runtime—The RW algorithm [19] is implemented in Matlab (CPU Xeon E5-2643) 

while the previous work [12] and the proposed methods use Tensorflow and run on a Nvidia 

Titan X GPU. For the RW algorithm [19] and the previous work [12], the inference time are 

0.4758s and 11.35s respectively. Since the baseline, the proposed method and the proposed

+AG method have the same confidence estimation networks, they have the same inference 

time, which is 0.0353s. A system-independent evaluation can be performed by estimating 

the required Giga-floating point operations (GFlops, fused multiply-adds) during inference. 

Our method requires ~ 2.5 – 3 GFlops (estimated from conv-layers including ReLU 

activation, Appendix I) while the RW algorithm [19] requires ~ 4 – 4.5 GFlops (according to 

the built-in Matlab profiler) and the previous work [12] requires ~ 19 GFlops (estimated 

from conv-layers including ReLU activation, Appendix I).

V Applications

To verify the practical benefits of our method, we integrate the shadow confidence maps into 

different applications such as 2D US standard plane classification, multi-view image fusion 

and automated biometric measurements.

A Ultrasound Standard Plane Classification

Classifying 2D fetal standard planes is of great importance for early detection of 

abnormalities during mid-pregnancy [1]. However, distinguishing different standard planes 

is a challenging task and requires intense operator training and experience. Baumgartner et 

al. [10] have proposed a deep learning method for the detection of various fetal standard 

planes. We extend [10] and utilize shadow confidence maps to provide extra information for 

standard plane classification.

The data is the same as used in [10], which is a set of 2694 2D ultrasound examinations 

between 18-22 weeks of gestation (iFIND Project 1). We select nine classes of standard 

planes including Three Vessel View (3VV), Four Chamber View (4CH), Abdominal, Brain 

View at the level of the cerebellum (Brain (cb.)), Brain view at posterior horn of the ventricle 

(Brain (tv.)), Femur, Lips, Left Ventricular Outflow Tract (LVOT) and Right Ventricular 
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Outflow Tract (RVOT). The data set is split into training (16089), validation (450), and 

testing (4368) images, similar to [10] (see appendix E for individual class split numbers). 

We use image whitening (subtracting the mean intensity and divide by the variance) on each 

image to preprocess the whole data set.

Four networks based on SonoNet-32 [10] are trained and tested in order to verify the utility 

of shadow confidence maps. The first network is trained with the standard plane images 

from the training data. The next three networks are separately trained with standard plane 

images and their corresponding shadow confidence maps obtained by the baseline, the 

proposed method and the proposed+AG method. Thus, the training data in the first network 

has one channel while the remaining networks have two input channels. We train these 

networks for 75 epochs with a learning rate of 0.001.

Table IV shows the standard plane classification performance of the four networks. 

Networks with shadow confidence maps achieve higher classification accuracy on almost all 

classes (except Abdominal, LVOT and RVOT), as well as on average classification accuracy. 

CMPAG achieves highest classification accuracies for five classes (3VV, 4CH, Brain(Cb.), 

Brain(Tv.) and Femur). Of particular note, the accuracies of the 3VV and 4CH classes 

increase over the baseline by 11.75% and 5.5% respectively. Five other classes (Abdominal, 

Brain(Cb.), Brain(Tv.), Femur and Lips) achieve near 100% accuracy in both the baseline 

and CMPAG, while LVOT and RVOT classes see modest decreases in CMPAG compared with 

the baseline, 2.1% and 1.0% respectively. Therefore, when compared CMPAG with the 

baseline, the increase in average classification accuracy across all classes (97.37% to 

98.74%) is primarily driven by the large improvements in 3VV and 4CH. These results 

indicate that shadow confidence maps are able to provide extra information and improve the 

performance of another automatic medical image analysis algorithm.

We additionally explore the importance of estimating confidence maps over binary 

segmentation of shadow regions. We compare the classification accuracy between using 

shadow confidence maps and directly using binary shadow segmentations generated from 

different methods. Fig.8 shows that for classes with high classification accuracy such as 

Abdominal, Brain(Cb.), Brain(Tv.), Femur and Lips, integrating shadow confidence maps 

into the classification task yields minor improvement. However, for classes with relatively 

low classification accuracy such as 3VV and LVOT, classification with shadow confidence 

maps achieves higher accuracy than classification with only binary shadow segmentations.

B Multi-view Image Fusion

Routine US screening is usually performed using a single 2D probe. However, the position 

of the probe and resulting tomographic view through the anatomy has great impact on 

diagnosis. Zimmer et al. [39] proposed a multi-view image reconstruction method, which 

compounds different images of the same anatomical structure acquired from different view 

directions. They use a Gaussian weighting strategy to blend intensity information from 

different views. Here, we combine predicted shadow confidence maps from these multi-view 

images as additional image fusion weights to investigate if these confidence maps can 

further improve image quality.
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The proposed method generally outperforms the baseline and the proposed+AG method, 

thus we only integrate the shadow confidence maps generated by the proposed method 

(CMP) into the weighting strategy in [39]. In detail, the probability value of each pixel in a 

shadow confidence map is multiplied to the original weight of the same pixel computed in 

[39]. The generated new weights are normalized as described in [39] and then are used for 

image fusion. The data set in this experiment is same as used for [39].

Fig. 9 qualitatively shows that shadow confidence maps are able to improve the performance 

of US image fusion algorithms with different weighting strategies. Fig. 9 also shows the 

difference between adding two different types of confidence maps. These two types of 

confidence maps are generated by the confidence estimation network which are separately 

trained by either MSE or Sigmoid loss. Fig. 9 (a) to (d) illustrate image fusion results for the 

same case using different combinations of weighting strategies and loss functions. The 

difference maps indicate that shadow confidence maps are capable of improving image 

fusion performance. Fig. 9 (e) to (h) show image fusion results on four different cases. We 

randomly select two positively affected cases (Fig. 9 (e) and (f)) to show visual 

improvement. We additionally show two randomly selected examples (Fig. 9 (g) and (h)) 

that don’t show perceptually significant improvements after adding shadow confidence 

maps. Quantitative evaluation for image fusion is not possible because of lacking a ground 

truth for US compounding tasks.

C Automated Biometric Measurements

We integrate our shadow confidence maps into an automatic biometric measurement 

approach [8], and show the biometric measurement performance (measured by DICE) before 

and after adding shadow confidence maps.

Similar to the ultrasound standard plane classification, shadow confidence maps are 

integrated into a biometric estimation model described in [8] as an extral channel. 

Specifically, we train and test four fully convolutional networks with the same hyper-

parameters as detailed in [8], and use the same ellipse fitting algorithm described therein. 

The first network is trained only on the image data used in [8]. The other three networks are 

trained with an additional input channel for shadow confidence maps that are separately 

generated by the baseline, the proposed, and the proposed+AG method.

We show three examples that are affected by shadows, and show their biometric 

measurement results in Table V. From this experiment, we find that biometric measurement 

performance is boosted by up to 7% for problematic failure cases after adding shadow 

confidence maps. The average performance on the entire test data set stays almost the same 

since only a small proportion of the test images are affected by strong shadows, mainly 

because of the image acquisition by highly skilled sonographers.

VI Discussion

In this paper, we propose a weakly supervised method to tackle the ill-defined problem of 

shadow detection in US. A naïve alternative to our method would be to train a fully 

supervised shadow segmentation network using pixel-wise annotation of shadow regions. 
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However, pixel-wise annotation is infeasible because (a) accurately annotating a large 

number of images requires a vast amount of labour and time and has scanner dependencies 

(b) binary annotations of shadow regions would lead to high inter-observer variability as 

shadow features are poorly defined, and (c) real-valued annotations of shadow regions are 

affected by subjectivity of annotators.

The performance of shadow region confidence estimation on different anatomical structures 

can be improved after integrating attention mechanisms. For example, the soft DICE is 

increased on Stest. This also results in improved ultrasound classification (Table IV). 

However, the quantitative results show that attention mechanisms are not essential. Networks 

with attention mechanisms are sometimes outperformed by networks without attention 

mechanisms. This may be caused by the way we integrate the attention mechanism. Since 

we add attention gates to encoders of all networks, the shadow features are emphasized for 

the shadow/shadow-free classification, which increases the difficulty of generalizing shadow 

features from classification to shadow segmentation.

We use MSE as the loss function of the confidence estimation network, but this loss can also 

be measured by other functions. Practically this choice has no effect on our quantitative 

results. However, in the image fusion task, we observe qualitative differences, which we 

show in Fig. 9 for Sigmoid cross-entropy loss.

In the standard plane classification task, we use only a subset of target standard planes 

compared to [10] because (1) we aim at verifying the usefulness of our method rather than 

improving performance of [10], (2) it is desirable to keep inter-class balance to avoid side-

effects from under-represented classes, and (3) we chose standard planes for which [10] did 

not show optimal classification performance.

T (·), as defined in Eq. 2 or Eq. 3 is one example how prior knowledge can be integrated into 

the training process. If T (·) is chosen to be a continuous non-trainable function, e.g. 

quadratic or Gaussian, further weight relaxation can be introduced for joint refinement of 

both, the shadow-seg module in Fig. 2a and the confidence estimation in Fig. 2c. However, 

since probabilistic ground truth does not exist for our applications, evaluation would become 

purely subjective, thus we decide to use direct but discontinuous integration of shadow-

intensity assumptions for T (·).

Task-specific deep networks, e.g. for classification, may inadvertently learn to ignore weak 

shadows in some cases, but the learning capacity of shadow properties is unknown. By 

estimating confidence of shadow regions independently, our method guarantees that shadow 

property information is separately extracted and can be seamlessly integrated into other 

image analysis algorithms. With additional shadow property information, our method can 

improve steerability and interpretability for deep neural networks, and also enables 

extensions for non-deep learning algorithms. As shown in the experiments, prior knowledge 

provided by shadow confidence maps can improve the performance of various applications.

Binary shadow segmentation generated by the shadow-seg module (Fig.1a) may provide 

shadow information to some extent. The easiest way to utilize shadow information is 

integrating this binary shadow segmentation into other applications. However, a binary 
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segmentation of shadow regions is improper to describe inherent ambiguity of acoustic 

shadows caused by various attenuation of sound waves. Compared with binary shadow 

segmentation, a real-valued shadow confidence map is more reasonable to represent 

shadows, especially uncertain boundaries. With this more accurate representation, shadow 

confidence maps are able to improve the performance of other applications compared to 

using simple binary segmentation.

Corrupted images such as images with shadows caused by insufficient acoustic impedance 

gel are excluded in the training. This type of shadows can be regarded as background since 

signals can hardly reach the tissues, and corrupted images with these shadows contain 

incomplete anatomical information. Additionally, during scanning, regions of missing 

signals caused by insufficient gel can be discovered and avoided in contrast to shadows 

generated by the interaction between signals and tissues. Therefore, our work excluded the 

corrupt images and focus on shadows within valid anatomy. Nevertheless, Fig. 10 further 

shows that our proposed method is capable of indicating regions suffering from signal decay, 

especially on the boundaries.

We use the coarse pixel-wise binary manual segmentation as ground truth for the shadow 

segmentation network and the transfer function since accurate manual annotation for shadow 

regions is unavailable as we discussed before. However, the inaccuracy of the coarse ground 

truth can hardly affect the quantitative assessments and the generation of reference 

confidence maps, because (1) DICE, recall, precision and MSE are still positively related to 

the effectiveness of the methods, (2) soft DICE and ICC are not related to the coarse ground 

truth, and (3) reference confidence maps are generated based on Imean (Eq. 1), which smooth 

the influence of coarse ground truth by using mean intensity of TP regions. Additionally, we 

use human inter-observer variability which is computed by two coarse binary manual 

annotations to further fairly assess the effectiveness of the methods.

Acoustic shadows are caused by absorption, refraction or reflection of sound waves, which 

each leads to a different degree of signal attenuation. Our method is predominately trained 

on fetal US images containing shadow regions with an elongated shape and a relatively 

strong drop of intensity. These are the shadow features that we have observed in a majority 

of images in our data sets. However, our method might be limited to perform effectively for 

shadows caused by different acquisition-related causes which are less well represented in 

our current training data.

VII Conclusion

We propose a CNN-based, weakly supervised method for automatic confidence estimation 

of shadow regions in 2D US images. By learning and transferring shadow features from 

weakly-labelled images, our method can predict dense, continuous shadow confidence maps 

directly from input images.

We evaluate the performance of our method by comparing it to the state-of-the-art and 

human performance. Our experiments show that our method is quantitatively better than the 

state-of-the-art and human annotation for shadow segmentation. For confidence estimation 
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of shadow regions, our method is also qualitatively better than the state-of-the-art and is 

more consistent than human annotation. More importantly, our method is capable of 

detecting disjoint multiple shadow regions without being limited by the correlation between 

adjacent pixels as in [19], and the heuristically selected hyperparameters in [12].

We further demonstrate that our method improves the performance of other automatic image 

analysis algorithms when integrating the obtained shadow confidence maps into other US 

applications such as standard plane classification, image fusion and automated biometric 

measurements.

Our method has significantly short inference time, which enables effective real-time 

feedback of local image properties. This feedback can guiding inexperienced sonographers 

to find diagnostically valuable viewing directions and pave the way for standardized image 

acquisition training.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Examples of data sets. (a) Images with global image-level labels (“has shadow” and 

“shadow-free”), and (b) Images with coarse pixel-wise annotations from two annotators.
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Fig. 2. 
Training framework of the proposed method. (a) The shadow-seg module containing a 

shadow/shadow-free classification network and a shadow segmentation network. (b) The 

transfer function that expands a binary mask to a reference confidence map. (c) The 

confidence estimation network which establishes direct mapping between input images and 

confidence maps.
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Fig. 3. 
The architecture of the residual-block. BN(x) refers to a batch normalization layer and f(x) is 

a convolutional layer.
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Fig. 4. 
The architecture of the shadow/shadow-free classification network with attention 

mechanism. fR(·) refers to residual-blocks. g(·) refers to a global average pooling layer.
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Fig. 5. 
Results of shadow confidence estimation. (a) Soft DICE of the baseline, the proposed 

method and the proposed method with attention gates (proposed+AG) on Stest and Mtest. (b) 

Interclass correlation (ICC) of the baseline, the proposed method and the proposed+AG on 

Stest and Mtest. Additionally, ICC of the human performance is shown as Anno* for Stest.

Meng et al. Page 25

IEEE Trans Med Imaging. Author manuscript; available in PMC 2019 December 04.

 E
u
ro

p
e P

M
C

 F
u
n
d
ers A

u
th

o
r M

an
u
scrip

ts
 E

u
ro

p
e P

M
C

 F
u
n
d
ers A

u
th

o
r M

an
u
scrip

ts



Fig. 6. 
Confidence estimation of shadow regions using the state-of-the-art methods and our 

methods. Rows I-IV show four examples: Brain (top), Lip (second), Abdominal (third) and 

Cardiac (bottom). Column (a) is the original US image. Columns (b-d) are shadow 

confidence maps from the RW algorithm [19] and our previous work [12]. Columns (e-g) 

show the shadow confidence maps of the baseline, the proposed method and the Proposed

+AG method. Column (h) is the binary map of the manual shadow segmentation. The color 

bar on the top of this figure shows that the more yellow/brighter (closer to 1), the higher the 

confidence of being shadow regions.

Meng et al. Page 26

IEEE Trans Med Imaging. Author manuscript; available in PMC 2019 December 04.

 E
u
ro

p
e P

M
C

 F
u
n
d
ers A

u
th

o
r M

an
u
scrip

ts
 E

u
ro

p
e P

M
C

 F
u
n
d
ers A

u
th

o
r M

an
u
scrip

ts



Fig. 7. 
Two examples showing the performance of the transfer function. (a) is the input image and 

(b) is the binary manual segmentation. (c) is the predicted segmentation before applying the 

transfer function while (d) is the corresponding reference confidence map after the transfer 

function.
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Fig. 8. 
Comparison of classification accuracy between using shadow confidence maps and using 

shadow segmentation. BIB, BIP and BIPAG are networks with binary shadow segmentation 

from the baseline, the proposed method and the proposed+AG method. CMB, CMP and 

CMPAG are the same networks as in Tabel IV.
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Fig. 9. 
Results of image fusion based on different weighting strategies and loss functions (Gaussian 

weighting vs. Intensity-and-Gaussian weighting (Int. & Gaussian), MSE loss vs. Sigmoid 

loss). Note that the MSE loss and the Sigmoid loss are used for training of the confidence 

estimation network, which generates the shadow confidence maps. (a-d) are the image 

fusion results of the same case. (a,c) are the image fusion of Gaussian weighting with MSE 

loss and Sigmoid loss respectively and (b,d) are the results of Intensity-and-Gaussian 

weighting with MSE loss and Sigmoid loss respectively. (e-h) show the image fusion results 

on four different cases. (e,f) are examples for visually improved cases (+) showing notable 

positive differences of image fusion before and after adding CMP confirmed by our 

sonographers while (g,h) are cases with less change (–). For each sub-figure (e.g. (a)), in the 

first column, the top row is the result without integrating a shadow confidence map CMP and 

the bottom row is the result with integrated CMP. The second column shows the 

corresponding enlarged framed areas of the images. The third column is the difference map 

of corresponding framed areas. The color bar on the top shows that the more yellow/brighter, 

the higher the difference between the two framed areas.
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Fig. 10. 
Qualitative performance of our methods for detecting signal lacking regions caused by 

insufficient gel.
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Table I

Shadow segmentation performance (µ±σ) of different methods on test data Stest. RW and RW* are Random 

Walk algorithm [19] with different set of parameters. Pilot [12] is our previous work. Baseline, the proposed 

method (abbreviated as “Proposed”) and the proposed method with attention gates (abbreviated as “Proposed

+AG” in the rest of the paper) are our proposed methods. Anno* refers to the human interobserver variability, 

thus expected human performance on the shadow segmentation task. Best results are shown in bold.

Methods DICE Recall Precision MSE

RW [19]
µ 0.2096 0.6535 0.1288 194.8618

(σ) (0.099) (0.2047) (0.0675) (7.6734)

RW* [19]
µ 0.231 0.6921 0.1432 189.0828

(σ) (0.1123) (0.2196) (0.0771) (8.3484)

Pilot [12]
µ 0.3227 0.4275 0.2863 110.2959

(σ) (0.1398) (0.201) (0.1352) (14.837)

Baseline
µ 0.6933 0.6884 0.7246 60.3680

(σ) (0.212) (0.2255) (0.2326) (12.2885)

Proposed
µ 0.7167 0.7217 0.7382 58.6974

(σ) (0.1988) (0.2131) (0.2255) (11.867)

Proposed+AG
µ 0.7027 0.7199 0.7132 61.241

(σ) (0.2014) (0.2169) (0.2247) (12.6317)

Anno*
µ 0.5443 0.6126 0.567 65.7286

(σ) (0.2635) (0.3196) (0.3124) (23.0339)
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Table II

Comparison of shadow segmentation performance (µ ± σ) of different methods on test data Mtest. Best results 

are shown in bold.

Methods DICE Recall Precision MSE

RW [19]
µ 0.1795 0.8456 0.1038 193.2229

(σ) (0.0855) (0.1241) (0.0592) (7.866)

RW* [19]
µ 0.1766 0.8038 0.1025 190.5627

(σ) (0.0871) (0.1528) (0.0602) (7.5643)

Pilot [12]
µ 0.467 0.728 0.371 86.9005

(σ) (0.1079) (0.137) (0.1308) (17.0491)

Baseline
µ 0.4765 0.5026 0.5108 68.5054

(σ) (0.1798) (0.2233) (0.1712) (18.3773)

Proposed
µ 0.5463 0.5968 0.565 64.6912

(σ) (0.155) (0.2335) (0.1357) (17.2147)

Proposed+AG
µ 0.5302 0.5741 0.5454 66.4474

(σ) (0.1544) (0.2035) (0.1562) (17.6628)

The symbols of the methods are the same to Table I.
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Table III

The p-value of the Proposed method vs. Pilot [12] and of the Proposed method vs. Baseline. Statistically 

significant results (p < 0.01) are shown in bold.

Stest

DICE Recall Precision MSE

Pilot [12] 0.0001 0.0001 0.0001 0.0001

Baseline 0.0015 0.001 0.0694 0.012

Mtest

DICE Recall Precision MSE

Pilot [12] 0.0032 0.0013† 0.0001 0.0001

Baseline 0.0001 0.0001 0.0037 0.0014

†
refers to the proposed method performs worse and otherwise the proposed method is better.
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Table IV

Classification accuracy (%) with vs. without shadow confidence maps. w/o CM is the network without shadow 

confidence maps while CMB, CMP, CMPAG are networks with shadow confidence maps from the baseline, the 

proposed method and the proposed+AG method. Best results are shown in bold.

Class w/o CM CMB CMP CMPAG

3VV 80.87 89.93 88.93 92.62

4CH 94.50 100.00 98.38 100.00

Abdominal 100.00 99.82 99.28 99.82

Brain(Cb.) 100.00 99.84 100.00 100.00

Brain(Tv.) 99.11 99.78 99.78 99.89

Femur 99.04 99.81 99.81 99.81

Lips 98.29 99.81 100.00 99.81

LVOT 97.90 93.69 94.29 95.80

RVOT 95.95 93.24 92.57 94.93

Avg. 97.37 98.24 98.03 98.74
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Table V

Biometric measurement performance (DICE) with vs. without shadow confidence maps.

w/o CM CMB CMP CMPAG

#1 0.947 0.940 0.988 0.969

#2 0.956 0.958 0.974 0.968

#3 0.880 0.915 0.923 0.955

Avg. 0.966 0.964 0.965 0.964

The symbols of the methods are the same to Table IV.
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