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Abstract

The explosive growth of the vision data motivates the
recent studies on efficient data indexing methods such as
locality-sensitive hashing (LSH). Most existing approaches
perform hashing in an unsupervised way. In this paper we
move one step forward and propose a supervised hashing
method, i.e., the LAbel-regularized Max-margin Partition
(LAMP) algorithm. The proposed method generates hash
functions in weakly-supervised setting, where a small por-
tion of sample pairs are manually labeled to be “similar”
or “dissimilar”. We formulate the task as a Constrained
Convex-Concave Procedure (CCCP), which can be relaxed
into a series of convex sub-problems solvable with efficient
Quadratic-Program (QP).

The proposed hashing method possesses other charac-
teristics including: 1) most existing LSH approaches rely on
linear feature representation. Unfortunately, kernel tricks
are often more natural to gauge the similarity between vi-
sual objects in vision research, which corresponds to prob-
ably infinite-dimensional Hilbert spaces. The proposed
LAMP has a natural support for kernel-based feature repre-
sentation. 2) traditional hashing methods assume uniform
data distributions. Typically, the collision probabilityof two
samples in hash buckets is only determined by pairwise sim-
ilarity, unrelated to contextual data distribution. In con-
trast, we provide such a collision bound which is beyond
pairwise data interaction based on Markov random fields
theory.

Extensive empirical evaluations are conducted on five
widely-used benchmarks. It takes only several seconds to
generate a new hashing function, and the adopted ran-
dom supporting-vector scheme enables the LAMP algo-
rithm scalable to large-scale problems. Experimental re-
sults well validate the superiorities of the LAMP algorithm
over the state-of-the-art kernel-based hashing methods.

1. Introduction

Recent rapid growth of visual data brought by Internet
has erose great interest in techniques for efficient data or-

Figure 1. Illustration of the motivations formaximum margin par-
tition andside information regularizationin hashing. Figure (a)
shows two hash functions which result in different marginγ on
the same distribution. While figure (b) illustrates how sideinfor-
mation (in this example, three sample pairs are manually labeled
to be “similar”, denoted by triangle, stars, and squared boxes re-
spectively) can guide more reasonable hashing scheme. In both
cases, results on the right figures are more reasonable.

ganization and data access for various vision applications.
The key research problems include similarity metric learn-
ing between pairwise data, and retrieval of nearest neigh-
bors given any query datum. For the former, numerous al-
gorithms have been proposed, especially the kernel-induced
metric [8]. While for the latter problem, linear scan is an
intuitive and common method, yet computationally forbid-
den for large-scale datasets, which spurs the development of
variousapproximate-nearest-neighbor(ANN) algorithms.
A bunch of ANN algorithms were proposed based on the
concept oflocality-sensitive hashing(LSH) [7]. Given a
similarity metricκ(·, ·) in the feature space, the LSH algo-
rithms typically guarantee the probability for any two sam-
plesxi andxj falling into the same bucket to be the quantity
κ(xi, xj), known as the “locality sensitive” property.

Despite of the notable success from LSH related algo-
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rithms [12, 13], several important issues are seldom tackled
in related literature, which are however very common in re-
search topics like object recognition and image annotation:

1. Many vision datasets are constructed accompanied
with rich side information, such as the category la-
bels of Caltech-101 images and the tags attached to the
Flickr or YouTube data. Traditional hashing methods
only guarantee a high collision probability for samples
that are near in the feature space. However, due to the
semantic gap between low-level features and seman-
tics, feature proximity is sometimes inconsistent with
semantic similarity. A straightforward solution is to
utilize this side information as regularization term dur-
ing hash table construction.

2. Kernel tricks are very popular in computer vision re-
search owing to its great potentials in handling nonlin-
early separated data. For example, in bag-of-features
(BOF) model, images are represented as collections of
orderless feature points, and thus the kernel function
(e.g., intersection kernel) is a more natural choice for
data similarity measure. It arises the challenge for data
indexing: how to construct hash table in kernel spaces?

The above two issues motivate our work in this paper.
We propose a label-regularized maximum-margin partition
(LAMP) method (see Figure 1), to enhance hashing quality
by using kernel-based similarity and additional small num-
ber of pairwise constraints as side information.

2. Related Works

For similarity search problem, unlike classic KD-
Tree [3], LSH is effective even in high-dimensional fea-
ture spaces. One popular method in LSH is to generate
a random vectorh from a particular probabilistic distribu-
tion, e.g.,p-stable distribution [5] forℓp-metric space, and
bucket data according to the sign of the projected value on
h. See [1] for a brief survey about LSH-related algorithms.
In this work we are particularly interested in kernel-based
hashing, which has wide applications in computer vision.
The state-of-the-art and possibly the only work was pro-
posed by Kulis et al. in [9], where random hyperplane-
based hash functions are generated to build buckets, based
on Central Limit Theorem(CLT) in kernel-induced Hilbert
space. Recall that traditional LSH requires random vectors
generated from a particular Gaussian distribution, e.g., with
zero-mean and identity covariance matrix, which is unfor-
tunately infeasible in kernel space. The work in [9] per-
formed kernel-based hashing based on a fact revealed by
CLT, i.e., for sufficiently manyindependent identical dis-
tribution (i.i.d.) samples, their summatioñzt = 1

t

∑t

i=1
xi

is distributed according to a multi-variate Gaussian, and the
desired hashing function can be obtained by a whitening

transform. Although this assumption only holds under very
mild conditions, the proposed kernelized LSH gains success
in several vision benchmarks.

To our best knowledge, rare prior work was devoted to
hashing with side information. Typically metric learning is
performed from these side information beforehand [8], ei-
ther monolithic, group, or per-category based [2], and tradi-
tional hashing is then called afterwards. However, the per-
formance of metric learning heavily depends on the quality
of side information, and is not scalable for large-scale vision
datasets on the order of millions or billions.

3. The LAMP Algorithm

3.1. Basic Idea

Figure 1 illustrates the main idea of our proposed Label-
regularized max-margin partition (LAMP) algorithm. We
have the following three observations:

1. Side information, such as “similar” or “dissimilar”
constraints, or label (tag) information, provides useful
cues for more reasonable hashing results, as seen from
the example provided in Figure 1.

2. Larger margin between hash-induced partitions usu-
ally indicates better generalization ability to out-of-
sample data. Denote the resulting margin asγ. All
query data falling within1

2
γ-neighborhood can be cor-

rectly judged, thus largerγ potentially implies lower
error rate in similarity search.

3. Although Figure 1 illustrates the case in linear fea-
ture space, however, image kernels are more natural
choices for similarity measure in various vision appli-
cations. A hashing algorithm supporting kernel-based
representation is especially useful.

3.2. Notations

Suppose we are given a collection of data pointsX =
{xi}i=1...n wherexi lies in a linear vector space (maybe
of infinite dimensionality in kernel space). A hash function
can be equivalently regarded as a partition function which
divides the original data space into two parts. Denote the
hash vector asω, the real-valued response of datumxi about
ω asf(xi), and the final partition label asyi. Based on a
margin-oriented criterion, the binary partition task can be
formulated as below:

Jω = Ω(‖ω‖H) +
∑

i

ℓ (−yif(xi)) . (1)

whereΩ andℓ(·) denote the regularization function about
functional norm‖ω‖H in Hilbert spaces (monotonically in-
creasing), and loss function of “margin”yf(x) (typically



convex) respectively. The most popular definitions areℓ2-
norm Ω(‖w‖H) = 1

2
‖w‖2 and hinge lossℓ(xi) = (1 −

yif(xi))+, where the subscript+ indicates a cutoff at zero
to guarantee non-negativity. When handling non-linear data
distributions, the so-called “kernel trick” is utilized. Each
sample is transformed into an implicit Hilbert space (proba-
bly infinite-dimensional) via a mapping functionφ(·). Fol-
lowing the representer theorem [10],ω can be expressed
as a linear combination of the mapped data vectors, i.e.,
ω =

∑n

i=1
αiφ(xi), whereαi represents the unknown pa-

rameter.

Figure 2. Illustration of the hinge-shaped loss functionsℓ(·) in (a)
and regularizer~(·) in (b).

In this paper we adopt the term “side information” to de-
note any user-supplied “similar” or “dissimilar” constraints
between two samples. For example, when the data are par-
tially labeled, it is reasonable to expect samples sharing the
same label to stay in adjacent hash buckets, toggling an ex-
tra penalty when they are projected into different partitions.
Hereafter the constraint set for all the side information isde-
noted asΘs. We can then add another regularization term
to enforce the consistency between hashing partitions and
constraints (for clarity, we assumeΘs only contains “sim-
ilar” constraints, and the extension to “dissimilar” case is
straightforward):

Jω = Ω(‖ω‖H) +
∑

i

ℓ (−yif(xi)) + λ
∑

θ∈Θs

~(θ). (2)

Prior study in [6] adopted Laplacian loss|f(xi)−f(yj)| for
regularization term~(·). Although retaining convexity, this
form, however, triggers unexpected high penalty when two
samples stay in the same partition yet have a large distance.
To avoid this issue, here we propose an alternative definition
of the regularizer~(·) as below:

~(θi,j) =

{
0, yi = yj

(−yiyj)+, yi 6= yj
(3)

It is linear and convex with respect toyiyj , analogous to the
traditional hinge loss inSupporting Vector Machine(SVM).
See Figure 2 for an intuitive comparison.

Following the traditional notations in max-margin for-
mulation [11], we arrive at the following optimization prob-

lem:

min
ω,b,ξ,ζ,y

1

2
‖w‖2 +

λ1

n

∑

i

ξi +
λ2

n

∑

θ∈Θs

ζij (4)

s.t. yi(ω
T xi + b) + ξi ≥ 1, ξi ≥ 0, ∀ i,

yiyj + ζij ≥ 0, ζij ≥ 0, ∀ (i, j) ∈ Θs.

3.3. Random SV and Relaxation

For data sets of large size, the problem in (4) is compu-
tationally prohibitive. In this work we propose the idea of
“random supporting vectors” to reduce the computational
burden. Namely,p data are randomly sampled fromX and
serve as the supporting vectors (SV). In other words,ω is
expressed as below:

ω = ν1φ(x1) + ν2φ(x2) + . . . + νpφ(xp)

= [φ(x1), · · · , φ(xp)] ν

Moreover, since in LSH-related algorithmsyi is always set
to be sign(ωT xi+b), thenyi(ω

T xi+b) is consequently non-
negative and can be equivalently expressed as|ωT xi + b|.
Another crucial relaxation of the formulation is to replace
yiyj with (ωT xi +b)(ωT xj +b), such that variablesyi’s are
eliminated in the optimization. Finally, we get the modified
formulation:

min
ν,b,ξ,ζ

1

2
νT Gν +

λ1

n

∑

i

ξi +
λ2

n

∑

θ∈Θs

ζij (5)

s.t. |νT ki + b| + ξi ≥ 1, (6)

(νT ki + b)(νT kj + b) + ζij ≥ 0, (7)

ξi ≥ 0, ∀ i,

ζij ≥ 0, ∀ (i, j) ∈ Θs,

whereG is ap × p Gram matrix computed from thep ran-
dom supporting vectors, andki denotes the inner products
between thei-th sample and allp supporting vectors.

To optimize Problem (5), however, is difficult since it
is non-convex and nonlinear. In the following subsections,
we first point out its relationship withconstrained-concave-
convex-procedure(CCCP) (Section 3.4), and then present
the relaxed convex sub-problems in each iteration (Sec-
tion 3.5), together with the efficient cutting-plane based QP
solver (Section 3.6). An overview is provided in Algo-
rithm 1.

3.4. Concave-Convex Procedure

Notable acceleration is possible based on the observation
that Problem (5) is actually a special case ofconstrained-
concave-convex-procedure(CCCP) [17, 15], which targets
at optimization problems in the following forms:

min
x

f0(x) − g0(x) (8)

s.t. fi(x) − gi(x) ≤ ci, i = 1, . . . , m,



for t = 1 . . . tmax do
Relax the CCCP problem into convex sub-problem
Jt using Taylor expansion (Section 3.5), and
initialize (ωt,0, bt,0) = (ωt, bt);
for k = 1 . . . kmax do

1. Calculate the cutting planes at location
(ωt,k, bt,k) and add into the constraint set;
2. Use Quadratic-Program to solve the reduced
cutting-plane problem (Section 3.6) and obtain
a new solution(ωt,k+1, bt,k+1);

end
end

Algorithm 1 : The LAMP algorithm

wherefi andgi are both real-valued convex functions. In
other words, both the objective andm constraints are the
difference of two convex functions. Assume the Hessians
of all gi are positive semi-definite, in thet-th iteration an
upper bound of objective value can be achieved by replac-
ing gi with its first-order Taylor expansion around current
solution xt, i.e., T (g(xt)) = g(xt) + ∂xg(xt)(x − xt),
where∂xg(xt) denotes the first-order derivative ofg(x) at
xt. The sub-problem obtained by Taylor expansion is in
a simpler convex form and can be solved by off-the-shelf
convex solvers. The value of parameterx is then updated to
getxt+1. Given an initial valuex0, the solution series{xt}
obtained by CCCP is guaranteed to reach a local optimum.

For Problem (5), the objective is convex and the con-
straint (6) is difference-of-convex (|νT ki + b| is convex).
And constraint (7) proves to be convex after some trans-
forms. For clarity we use the abbreviationfi = νT ki + b

andfj = νT kj + b, and then we have,

fifj + ζij ≥ 0 ⇔ f2
i + f2

j + 2fifj + 2ζij ≥ f2
i + f2

j

⇔
1

2
(fi + fj)

2 + ζij ≥
1

2
f2

i +
1

2
f2

j

After introducing a new notatioñν =

(
ν

b

)
, the above

inequality can be further transformed into the following
difference-of-convex form:

1

2
ν̃T (Mi + Mj)ν̃ −

1

2
ν̃T Mij ν̃ − ζij ≤ 0

Mi � 0, Mj � 0, Mij � 0

where the operator� denotespositive semi-definite. Matri-
cesMi, Mj andMij can be calculated fromki andkj . For
example, it is easy to verify that

Mij =

[
kik

T
j

1

2
(ki + kj)

1

2
(ki + kj)

T 1

]
,

thus Problem (5) is a CCCP problem, and can be solved by
general CCCP solutions.

3.5. Taylor Expansion att-th Iteration

Before proceeding, this subsection elaborates on the
detailed convex sub-problem at thet-th CCCP iteration.
Firstly, note that|ν′ki + b| is non-smooth, whose derivative
possibly doesn’t exist at some locations. In this situationwe
replace gradient with the subgradient [4] alternatively:

∂ν |ν
T ki + b| = ki · sign(νT

t ki + bt),

∂b|ν
T ki + b| = sign(νT

t ki + bt).

The Taylor approximations for constraints (6) and (7) are
then expressed as:

|νT ki + b| ≈ (νT ki + b) · sign(νT
t ki + bt), (9)

1

2
ν̃T Mij ν̃ ≈ ν̃T

t Mijν −
1

2
ν̃T

t Mijνt. (10)

The number of slack variablesξi equals to the data number
while the number ofζij equals to the cardinality of setΘs.
Here we introduce another two variables to reduce the pa-
rameter number, i.e., letξ =

∑
i ξi andζ =

∑
θ∈Θs

ζij .
Putting everything together, finally we obtain the optimiza-
tion problem in thet-th iteration:

Jt = min
ν,b,ξ,ζ

1

2
νT Gν +

λ1

n
ξ +

λ2

n
ζ, (11)

which is subject to the following two convex constraints:

ξ ≥
∑

i

(
1 − (νT ki + b) · sign(νT

t ki + bt)
)

+
, (12)

ζ ≥
∑

θ∈Θ

(1

2
ν̃T (Mi + Mj)ν̃ − ν̃T

t Mijν +
1

2
ν̃T

t Mijνt

)

+
.

3.6. Optimization with Cutting Plane

CCCP-based relaxation produces a sequence of sub-
problemJt, t = 0 . . . tmax as in (11). However, solving
Problem (11) is still difficult and time-consuming since the
variablesξ, ζ and ν̃ are highly coupled. A practical way
is to accelerate using Cutting-Plane (CP) method [14]. In
CP terminology, the original Problem (11) is usually called
master problem. Both variablesξ andζ can be regarded to
be nonlinear functions of̃ν. For example, forξ, we have,

ξ(ν̃) =
∑

i

(
1 − ci

t · (ν
T ki + b)

)

+
, (13)

whereci
t = sign(νT

t ki + bt) is fixed throughout thet-th
CCCP. Assume CP method takes at mostkmax iterations
to converge for optimizingJt, and denote the optimum in
its k-th iteration as̃νt,k. The basic idea of CP method is to
maintain a collection of linear constraints, substitutingorig-
inal nonlinear ones like in (12). This constraint set is initial-
ized empty and expanded immediately after obtaining a new



solutionν̃t,k according to the following rule: sinceξ(ν̃) is
convex and has positive semi-definite Hessian matrix, it can
be approximated around̃νt,k by a linear inequality:

ξ(ν̃) ≥ ξ(ν̃t,k) + ∂t,kξ · (ν̃ − ν̃t,k), ∀ ν̃ ∈ Rp+1, (14)

where∂t,kξ denotes any subgradient ofξ(ν̃) at ν̃t,k. The
case ofζ(ν̃) is similar. These linear constraints are called
cutting planesin CP terminology. The optimization pro-
ceeds using efficient Quadratic-Program (QP) solver and
terminates until no salient gain when adding more cutting-
plane constraints. In other words, denote the sub-problem
in the t-th CCCP and thek-th Cutting-Plane asJt,k. The
optimum sequenceJ ∗

t,k, k = 0 . . . kmax monotonically in-
creases until the convergence to the optimal solution ofJt.

3.7. Practical Issues

A trivially “optimal” solution is to assign all data to the
same partition, and the resultant margin will be infinite pos-
itive. To prevent such a meaningless solution, a partition-
balance constraint is required. A possible solution is to en-
force−l ≤ 1

n

∑n
i=1

(ν′ki + b) ≤ l, wherel is a pre-defined
constant (fixed to be 0.1 in our implementation).

Another important strategy is to reduce the correlation
between randomly-generated hash functions. We capital-
ize on the similar idea in [16]. Stacking the hash bitsyi,
i = 1 . . . n of all data into a hash-value vector, we prefer
lower squared Pearson coefficients between different hash-
value vectors. Moreover, this additional penalty can be
seamlessly incorporated into the quadratic term1

2
νT Gν.

4. Algorithmic Analysis

4.1. Complexity and Convergence

In our formulation, each sub-problemJt,k is a convex
quadratic program withp + 2 variables (p represents the
number of random supporting vectors) and at most2kmax

linear constraints, and can be efficiently solved using off-
the-shelf convex QP solvers. In practice we use the built-in
QP solver in the MOSEK optimization package.

The value ofkmax reflects the convergence speed of the
cutting-plane method. Assume the cutting-plane procedure
halts when satisfying theǫ-optimality condition, i.e., the
difference between objective values of the master problem
and reduced cutting-plane problem is below a thresholdǫ.
An important observation is thatkmax is actually upper-
bounded by a constant only related toǫ, λ1 andλ2. The
conclusion follows from two facts: 1) The objective value
of Problem (11) is upper-bounded since(ν, b) = 0 is a fea-
sible point in the master problem. 2) The amount by which
the solution increases by adding one constraint is lower-
bounded by a constant determined byǫ, λ1 andλ2 (see [14]
for details). Consequently, the algorithm can only perform
a constant number of iterations before termination.

In Figure 3 we show the objective value’s evolutionary
curves of both the reduced cutting-plane problem and the
correspondingmaster problemin (11), which are captured
during the experiment on the massive MNIST-Digit bench-
mark. The curves validate the fact that cutting-plane method
provides a lower bound of original master problem with
convergence guarantee. In practice it typically converges
in fewer than 10 iterations. Refer to [15] for the detailed
discussion about the convergence property of outer CCCP
loop.
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Figure 3. Evolutionary curves of the inner cutting-plane loop.

4.2. Bayesian Collision Bound

In this sub-section we give a bound for two samples’
collision probability in the constructed hash buckets from
a Bayesian point of view. Recall that the object function to
optimize is as follows (shift variableb is ignored for clarity
without loss of generality):

Jω =
1

2
‖ω‖2 +

λ1

n

∑

i

(1 − yiω
T xi)+ +

λ2

n

∑

θ∈Θ

(−yiyj)+.

Associating each sample with a random variable, and mod-
eling the data interaction with Markov Random Fields
(MRF), the above optimization problem is then equivalent
to maximize the following joint probability:

Pω,y ∝ exp
(
−

1

2
‖ω‖2

) ∏

i

exp
{
−

λ1

n
(1 − yiω

T xi)+

}

∏

θ∈Θ

exp
{
−

λ2

n
(−yiyj)+

}
, (15)

whereexp(− 1

2
‖ω‖2) can be regarded as a priori knowledge

aboutω, while the other two are uniary and binary poten-
tials respectively. The binary potential reflects the impact
of side information. Note that under our proposedran-
dom supporting vectorsscheme,ω is subject to specific
parametric-form distribution. Specifically, with in totaln

training data andp random SVs, denoteΠ to be a distri-
bution which can generaten-length zero vectorsπi except
for p entries being one (the opportunity to get a value one



is identical for every entry). For anyπi ∈ Π, under a mild
assumption that globally optimal solution conditioned onπi

is unique and feasible for some polynomial-time optimiza-
tion method (cutting-plane method in our implementation,
which we suppose can achieve good enough solution that
is approximately globally optimal), uniqueω∗ andy∗ are
determined under above assumptions by solving the opti-
mization problem:

ω∗, y∗ = argmax
ω,y

Pω,y, ω ∼ πi, (16)

The estimations ofω andy consequently determine an-
other binary-valued random variableδij which values 1
wheny∗

i = y∗
j , otherwise 0. Finally we can expressed the

collision probabilityPr(yi = yj) of datai, j as an integral
of δij over distributionΠ:

Pr(yi = yj) =

∫
δij dπi. (17)

Note thatPr(yi = yj) not only depends on the two data,
but also are affected by the contextual data distribution, fun-
damentally differing from traditional collision bounds like
in [5].

5. Experiments

Our evaluations consist of two parts, on benchmarks ei-
ther with groundtruth labels or not. For each data set,90%
samples are used for hash table construction, and the rest are
used for testing. Most databases are of large size (9K∼ 1.7
million), thus we randomly samplen (n = 2000 by default
in practice) data from the whole benchmark as working set,
which proves to enhance efficacy without much loss of ac-
curacy. On most benchmarks (except for Caltech-101), we

adopt the Gaussian kernelK(xi, xj) = exp
(
−

‖xi−xj‖
2

γ2

)
,

where the scaling factorγ takes three values (0.5σ, σ and
5σ respectively,σ is the standard variation of‖xi − xj‖).
The resultant three kernels are finally combined with uni-
form weights. For the parameters in our formulation, by
default we setλ1 = 80 andλ2 = 10. For the number of
random supporting vectors, we setp = 40 for the first three
experiments, andp = 100 for others. It takes roughly4 ∼ 15
seconds to generate a hash function on our common desk-
top PC, depending on the maximum iteration before con-
vergence. All experiments repeat 10 times, and the reported
averaged results are compared with the state-of-the-art Ker-
nelized Locality-Sensitive Hashing (KLSH) in [9].

5.1. Data Sets with Labels

We adopt three benchmarks with labels as below:
Caltech-1011 is one of the most popular benchmarks for
object recognition, containing 101 distinct categories and

1http://www.vision.caltech.edu/ImageDatasets/Caltech101/

Figure 4. Example images used in the experiments.

one background class. Each class contains tens of exam-
ples, forming a median-scale data set (≈ 9K images). We
adopt Caltech-101 since many existing algorithms on im-
age kernels [9] use it as a test bed. Specifically, we first ex-
tract three kinds of local features, including geometric blur,
PCA-SIFT, pyramid histogram of visual words (PHOW).
After that, intersection kernels on histograms are calculated.
MNIST-Digit 2 is built for handwritten digits recognition.
Among the total 70K examples, there are 7K images for
each digit in0 ∼ 9. In practice, each28× 28 digit image is
transformed by matrix-to-vector concatenation and normal-
ized to be unit-length feature.
CIFAR-103 is a labeled subset of the 80 million tiny images
dataset, containing 60K32 × 32 color images in 10 classes
(6K images for each class). The dataset is constructed to
learn meaningful recognition-related image filters whose re-
sponses resemble the behavior of human visual cortex. In
the experiment we use the 387-d GIST image feature and
Gaussian kernels.

In Figure 5 we plot the retrieval performance on Caltech-
101, MNIST and CIFAR-10 using KLSH and the proposed
LAMP. Following the evaluation scheme developed in [16],
we collect all samples falling into hash buckets below a
fixed un-normalized Hamming distance (2 in our experi-
ments), and calculate the percentage of “good neighbors”
(those having same labels with query sample). In case of
fewer than 100 searched data, the threshold of Hamming
distance will be increased until collecting enough nearest
neighbors. By default two “similar” constraints are ran-
domly generated for each data, resulting in 4K random con-
straints in all. It can be observed that the performance of
our proposed LAMP outperforms pervious KLSH on all
three databases. Performance superiority of LAMP is es-

2http://yann.lecun.com/exdb/mnist/
3http://www.cs.toronto.edu/k̃riz/cifar.html
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Figure 5. Hashing evaluation on Caltech-101, MNIST-Digit,and CIFAR-10. The first row shows the percentage of “good neighbor”, while
the second row illustrates the averaged retrieved sample numbers using 1K randomly-generated queries.

pecially obvious when the number of hash bits is small, in
terms of both count of searched samples and percentage of
good neighbors. When the number of hash bits continu-
ously grows, KLSH tends to produce increasingly smaller
pieces by cutting strongly-correlated data cliques. In con-
trast, LAMP tends to keep the integrity of those cliques,
resulting in a more slowly and stably decreasing number of
searched samples, as seen in the second row of Figure 5.

We also investigate the impact of different parameter
choices in Figure 6. First, by raising the parameter of ran-
dom constraint number per datum, a significant increase
of retrieval accuracy can be observed, which is in accor-
dance with the intention of “similar” constraints. In the
second experiment, to validate the influence of side infor-
mation, accuracies on CIFAR-10 under varying parameter
λ2 are presented. Whenλ2 = 0, it is equivalent to not use
side information and only rely on the max-margin criterion.
It is observed that more side information (i.e., largerλ2)
brings better performance. Finally, we plot the performance
curve under differentp values. The performances are stable
and slightly increase under largerp values, which proves
LAMP’s robustness top.

5.2. Data Sets without Labels

Although learning with labels or tags becomes popu-
lar, such information is still missing in many vision bench-
marks, or too noisy to use. Although the LAMP algorithm
is not designed for such scenarios. However, it can still

enhance hashing quality using the following trick: we can
randomly generate a bunch of sample pairs that are among
k-nearest-neighbors during linear scan, and impose them as
“similar” constraints. In this way we conduct the evalua-
tions on the following two data sets:
Local-Patch4 is comprised of roughly 300K32 × 32 sub-
images extracted from photos of Trevi Fountain (Rome),
Notre Dame (Paris) and Half Dome (Yosemite). The goal
is to evaluate fast algorithms which retrieve the correspond-
ing patches given a query patch. We compute 128-d SIFT
vector for each subimage, and utilize a uniform combina-
tion of three Gaussian kernels.
Tiny Image5 consists of over 80 Million images crawled
using Google’s image search engine. Here we focus on a
subset of Tiny Image, which contains roughly 1.7 Million
images scaled to the resolution of32 × 32 pixels. Follow-
ing [9], 384-d GIST feature vectors are extracted and the
similarity is measured through multiple Gaussian kernels.

Figure 7 shows the results. In each experiment, 2K sam-
ples are randomly selected, each of which contributes four
similar constraints generated from its 4-nearest-neighbors.
Each single hash function is working withp = 100 sup-
porting vectors. Compared with unsupervised KLSH, the
performance enhancement brought by the weak supervi-
sion and max-margin criterion is significantly observable on
both data sets.

4http://phototour.cs.washington.edu/patches/default.htm
5http://people.csail.mit.edu/torralba/tinyimages/
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Figure 6.Left : the effect of different choices of constraint number per datum on Caltech-101.Middle : retrieval accuracy under different
choices of parameterλ2 on CIFAR-10.Right: performance given varyingp values on MNIST-Digit.
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Figure 7. Experimental results on Local-Patch (left) and subset of Tiny-Image data sets (right).

6. Conclusions

We presented a novel hashing algorithm named LAMP,
which generates high-quality hash functions with kernel
tricks and weak supervision. The problem is formulated
within a regularized maximum margin framework. More-
over, we provide a bound for the collision probability in the
hash buckets based on Markov Random Fields theory. The
proposed method makes no assumptions about the distri-
bution of the input data, thus can be immediately applied
to any image databases. The LAMP algorithm adopts a ran-
dom sampling strategy in constructing both working set and
supporting vectors, which enables it scalable for large-scale
datasets. Empirical evaluations show its superiority overthe
state-of-the-art kernelized hashing algorithms.
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