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Abstract Learning a new object class from cluttered train-

ing images is very challenging when the location of ob-

ject instances is unknown, i.e. in a weakly supervised set-

ting. Many previous works require objects covering a large

portion of the images. We present a novel approach that

can cope with extensive clutter as well as large scale and

appearance variations between object instances. To make

this possible we exploit generic knowledge learned before-

hand from images of other classes for which location an-

notation is available. Generic knowledge facilitates learn-

ing any new class from weakly supervised images, because

it reduces the uncertainty in the location of its object in-

stances. We propose a conditional random field that starts

from generic knowledge and then progressively adapts to

the new class. Our approach simultaneously localizes object

instances while learning an appearance model specific for

the class. We demonstrate this on several datasets, including

the very challenging PASCAL VOC 2007. Furthermore, our

method allows training any state-of-the-art object detector

in a weakly supervised fashion, although it would normally

require object location annotations.
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1 Introduction

In weakly supervised learning (WSL) we are given a set of

images, each containing one or more instances of an un-

known object class. In contrast to the fully supervised sce-

nario, the location of objects is not given. The task is to learn

a model for this object class, which can then be used to de-

termine whether a test image contains the class and possibly

even to localize it (typically up to a bounding-box). In this

case, the learned model is asked to do more than what the

training examples teach.

WSL has become a major topic in recent years to reduce

the manual labeling effort to learn object classes (Bagon

et al. 2010; Chum and Zisserman 2007; Crandall and Hut-

tenlocher 2006; Galleguillos et al. 2008; Kim and Torralba

2009; Nguyen et al. 2009). In the traditional paradigm, each

new class is learned from scratch without any knowledge

other than what was engineered into the system. In this pa-

per, we explore a scenario where generic knowledge about

object classes is first learned during a meta-training stage

when images of many different classes are provided along

with the location of objects. This generic knowledge is then

used to support the learning of a new class without location

annotation (Fig. 1). Generic knowledge makes WSL easier

as it rests on a stronger basis.

We propose a conditional random field (CRF) to simul-

taneously localize object instances and learn an appearance

model for the new class. The CRF aims to select one window

per image containing an instance of the new object class.

We alternate between localizing the objects in the training

images and learning class-specific models that are then in-

corporated into the next iteration. Initially the CRF employs

generic knowledge to guide the selection process as it re-

duces the location uncertainty. Over the iterations the CRF

progressively adapts to the new class, learning more and
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Fig. 1 Learning scenario. Starting from weakly supervised images of

a new class, we localize its object instances while learning an appear-

ance model of the class. In order to support learning this new class, we

use Generic Knowledge learned beforehand from other classes. Our

method can be used to produce bounding-boxes for training any fully

supervised object detector

more about its appearance and shape. This strategy enables

our method to learn from very cluttered images contain-

ing objects with large variations in appearance and scale,

such as the PASCAL VOC 2007 (Everingham et al. 2007)

(Figs. 8, 9).

The main contribution of this paper is a novel method to

jointly localize and learn a new class from WS data. There-

fore, in Sect. 6 we directly evaluate the performance of our

method by measuring how well it localizes instances of a

new class in WS training images. We compare to various

baselines and three existing methods (Chum and Zisserman

2007; Kim and Torralba 2009; Russell et al. 2006). More-

over, we also demonstrate an application of our method:

we train the fully supervised model of Felzenszwalb et al.

(2010) from objects localized by our method, evaluate it

on a test set, and compare its performance to the original

model trained from ground-truth bounding-boxes. These ex-

periments show that our method enables training good ob-

ject detectors from weakly supervised datasets, even when

they consist of highly challenging images.

1.1 Related Work

Weakly Supervised Learning of Object Classes We focus

here on WSL methods to learn object classes (i.e. requir-

ing no object locations). Many approaches are based on a

bag-of-word model for the entire image (Dorkó and Schmid

2005; Zhang et al. 2007). Although they have demonstrated

impressive classification performance (Everingham et al.

2007), they are usually unable to localize objects.

There are several WSL methods that achieve localiza-

tion. In Table 1 we summarize the main characteristics of

many popular approaches. Two major families are part-

based models (Crandall and Huttenlocher 2006; Fergus et al.

2003), and segmentation-based models (Alexe et al. 2010a;

Arora et al. 2007; Cao and Li 2007; Galleguillos et al. 2008;

Russell et al. 2006; Todorovic and Ahuja 2006; Winn and

Jojic 2005a), and a wide variety of other techniques have

been proposed (Bagon et al. 2010; Chum and Zisserman

2007; Lee and Grauman 2009a; Nguyen et al. 2009). How-

ever, most methods have been demonstrated on datasets such

as CALTECH4 (Arora et al. 2007; Crandall and Hutten-

locher 2006; Fergus et al. 2003; Galleguillos et al. 2008;

Lee and Grauman 2009a; Nguyen et al. 2009; Winn and

Jojic 2005a), Weizmann horses (Borenstein and Ullman

2004; Cao and Li 2007; Winn and Jojic 2005a), or CMU

Faces (Nguyen et al. 2009). The objects in such datasets are

rather centered and occupy a large portion of the image,

there is little scale/viewpoint variation, and limited back-

ground clutter. This is due to the difficulty of spotting the

recurring object pattern in challenging imaging conditions.

The field has made significant progress in recent years,

as several methods have tried to go beyond and experi-

ment on more challenging datasets, such as ETHZ Shape

Classes (Bagon et al. 2010; Lee and Grauman 2009a), PAS-

CAL VOC 06 (Chum and Zisserman 2007; Kim and Tor-

ralba 2009), and LabelMe (Russell et al. 2006). However,

often the authors reduce the difficulty of the dataset by man-

ually providing information about the scale of the target ob-

jects (Bagon et al. 2010; Lee and Grauman 2009a), their

location (Lee and Grauman 2009a), or select easier sub-

sets of images with dominant objects (Chum and Zisserman

2007). Blaschko et al. (2010) report experiments on the cat

class from PASCAL VOC 07 in a semi-supervised setting,

where their method is given the location of some of the tar-

get objects. Russell et al. (2006) automatically segment out

regions similar across many images from the difficult La-

belMe dataset (Russel and Torralba 2008), but reports that

it is very hard to find small objects such as cars in it. Chum

and Zisserman (2007) is especially related to our approach

as it also finds one window per image. It iteratively refines

windows initialized from the most discriminative local fea-

tures. This fails when the objects occupy only a modest por-

tion of the images and for classes such as horses, for which

local texture features have little discriminative power. Kim

and Torralba (2009) cluster windows of similar appearance

using link analysis techniques. We quantitatively compare to

Chum and Zisserman (2007), Russell et al. (2006) in Sect. 6,

and to Kim and Torralba (2009) in Sect. 6.3.

As summarized in Table 1, methods are evaluated with

a variety of different measures. In this work we are par-

ticularly interested in evaluating the ability of a method
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Table 1 Overview of methods for weakly supervised learning of

object classes. For each paper we give the type of approach, the

datasets used for evaluation, the information given at training time,

what is evaluated on training and test data, whether the approach han-

dles objects at different scales at training time, and mention main lim-

itations

Work Approach Datasets Training

information

Evaluate on Scale

changes
train img. test img.

Fergus et al. (2003) Parts C4 CVP no Classif

Fei-Fei et al. (2003) Parts C4 CVP+MT no Classif

Borenstein and Ullman (2004) Seg WH, C4 CVP Segm no no

Fei-Fei et al. (2004) Parts C101 CVP+MT no Classif

Winn and Jojic (2005a) Seg+Gen C4, W CVP Segm no

Russell et al. (2006) Seg+Topic C4, MSRC, L Unlabeled Segm no yes

Todorovic and Ahuja (2006) Seg C4, UIUC CVP no Det

Fritz and Schiele (2006) Parts TUD, UIUC CVP no Det

Crandall and Huttenlocher (2006) Parts C4, GB CVP+Scale no Classif

Grauman and Darrell (2006) Shape+Clust C4 Unlabeled Purity Classif

Arora et al. (2007) Seg+CRF C4 CVP no Classif+Segm

Chum and Zisserman (2007) Exemplar P6-DO CVP no Det

Cao and Li (2007) Seg+Topic W, C4, C101∗ Unlabeled for C4,

CVP for W

Segm, Classif no

Galleguillos et al. (2008) Seg+MIL C4 CVP no Classif

Lee and Grauman (2009b) Clust C101∗, MSRC CVP FD no

Lee and Grauman (2009a) Shape+Clust C4, ETHZ, L Unlabeled for C4,

BB for ETHZ

Purity+BBHR Det

Nguyen et al. (2009) BoVW+MIL C4, CMU, X CVP+Scale no Classif

Kim and Torralba (2009) Clust+LA P6 C Det no yes

Bagon et al. (2010) SS+TM ETHZ, X CVP+Scale no Det no

Alexe et al. (2010a) Seg+CRF W, C4, C101∗ CVP+MT Segm no

Payet and Todorovic (2010) Shape+Clust ETHZ, W, C101∗ Unlabeled Purity+BBHR no yes

Blaschko et al. (2010) StructSVM INRIA, P7-cat CVP+Semi no Det yes

this paper CRF+GK C4, P6, P7 CVP+MT CorLoc Det yes

Approach: Parts: part-based, Topic: topic models, Gen: other generative model, Exemplar: exemplar model, Clust: clustering, LA: link analysis,

StructSVM: structural SVM, CRF: conditional random field, MIL: multiple instance learning, TM: template matching, Seg: segmentation-based,

Shape: contour descriptors, BoVW: bag of visual words, SS: self-similarity features

Datasets: C4: CALTECH4, C101: CALTECH101, C101∗: a subset of C101 with 4-28 classes. GB: Graz bicycles, W: Weizmann Horses, WH:

Weizmann Horses cropped to heads, MSRC: Microsoft Research Cambridge segmentation database, L: LabelMe subset, CMU: CMU faces,

ETHZ: ETHZ Shape Classes, TUD: TU Darmstadt motorbikes and cows, UIUC: UIUC cars, INRIA: INRIA person detection dataset, X: private

dataset, P6: PASCAL VOC 06, P7: PASCAL VOC 07, P6-DO: A subset of P6 with 6 classes (car, bicycle, bus, motorbike, cow, sheep). About 20

images per class manually selected. Most of them with large dominant objects. P7-cat: only the cat class from P7

Training information: CVP: images contain objects of the target class in roughly the same viewpoint; C: images contain objects of the target

class. Scale: the size of the target objects is given to the algorithm; BB: images cropped around the bounding-box of the target object, to a fixed

region relative to the object size; Unlabeled: unlabeled images with multiple categories (object discovery setting); Semi: object locations given for

some images. MT: external meta-training data from other classes given

Evaluate on (training/test images): Purity: how well the learner clusters training images into object classes (discovery setting only); Segm:

pixelwise accuracy of foreground/background segmentation; CorLoc: percentage of correctly localized objects up to a BB (Sect. 6.2); BBHR:

Bounding-box Hit Rate, measuring the percentage of local features labeled as the object that fall into the ground-truth BB. It does not measure

localization of whole objects; Classif: object present/absent classification on test images; Det: detection accuracy on test images (captures both

whole-image classification and localization up to a BB); FD: weighted ratio of features on objects and background; no: no evaluation reported.

Overall, only methods tagged with Segm, CorLoc, BBHR, Det evaluate localization in some form. Only methods tagged with CorLoc, Det evaluate

localization of whole objects

Scale changes: no: the method is described as not supporting multiple scales. yes: the method is described as supporting multiple scales and the

evaluation gives evidence for it. If neither yes nor no: the evaluation does not show scale changes, but the method could potentially support them
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to localize objects. Several previous works evaluate their

method indirectly, as the performance of the learned model

on a separate set of test images. In several cases, test time

performance is evaluated only as whole image classifica-

tion (Fergus et al. 2003), while other works evaluate local-

ization (Bagon et al. 2010). Conversely, some works eval-

uate how well their method localizes objects in the train-

ing images, but do not try the learned model on novel test

images, e.g. Arora et al. (2007), Winn and Jojic (2005a).

In this paper, we evaluate localization both directly on the

training images, as well as on novel test images (by training

the model of Felzenszwalb et al. (2010) from the output of

our method). Moreover, to the best of our knowledge, we are

the first to demonstrate weakly supervised learning of object

categories on the very challenging PASCAL07 dataset.

Transfer Learning in Computer Vision Our use of generic

knowledge is related to previous work on transfer learn-

ing (Raina et al. 2007; Thrun 1996) in computer vision,

where learning the new class (target) is helped by labeled

examples of other related classes (sources) (Deselaers et al.

2010; Fei-Fei et al. 2004; Lampert et al. 2009a; Lando and

Edelman 1995; Quattoni et al. 2008; Rohrbach et al. 2010;

Stark et al. 2009; Tommasi and Caputo 2009; Tommasi et

al. 2010; Torresani et al. 2010).

Transfer learning for visual recognition is a relatively

new trend, but it is gaining increasing attention. One of the

earliest works, Lando and Edelman (1995) learns a new face

from just one view, supported by images of other faces. Fei-

Fei et al. (2003) learn priors on parameters of a part-based

classifier from a set of mixed classes, and then incorporate

these priors when learning a new class using a Bayesian ap-

proach. These priors are a form of generic knowledge. They

help biasing the parameters of the model of the target class.

Instead our generic knowledge is designed to help localizing

objects of the target class in their training images. Fei-Fei et

al. (2004) extends Fei-Fei et al. (2003) to sequentially up-

date a part-based classifier trained on source classes to fit

the target class. Stark et al. (2009) transfer shape knowledge

from one manually selected source class to the target class.

Tommasi and Caputo (2009) use the parameters of the SVM

for one source class as a prior for the target class. Their

follow-up work (Tommasi et al. 2010) transfers from mul-

tiple source classes automatically selected by minimizing a

leave-one-out error on the training set of the target class.

Lampert et al. (2009a) transfer knowledge from 40 animal

classes through an intermediate attribute layer. The lists of

which attributes belong to which class are manually defined.

Rohrbach et al. (2010) improve by automatically compiling

these lists through text mining on the Internet (e.g. counting

the number of occurrences of an attribute-noun pair such as

‘striped tiger’). They also present a model where the amount

of transfer is guided by the semantic similarity between the

names of the source and target classes.

Most previous work on transfer learning in CV learn

models for classifying an entire image as containing the tar-

get class or not. Our method instead learns models capable

of localizing objects up to a bounding-box. This is a harder

task (Everingham et al. 2010), especially when bounding-

boxes are not available for training. To achieve this, we

transfer a substantially different kind of knowledge, which

reduces the location uncertainty of the target class in its

training images. Automatically localizing instances of the

new class in training images is the central objective of our

work. Moreover, previous works aim at reducing the num-

ber of images necessary to learn the target class, improving

generalization from a few examples. Here instead, we re-

duce the degree of supervision from object bounding-boxes

to image labels. Finally, the above works transfer knowledge

from source classes related to the target class, whereas our

generic knowledge provides a broad basis on top of which it

is easier to learn any new class.

Multiple-Instance Learning Our method is also related to

multiple-instance learning (Andrews et al. 2002; Chen et al.

2006; Viola et al. 2005), if we represent an image as a bag

and the windows therein as instances. We have shown in De-

selaers and Ferrari (2010) how a generalization of the CRF

proposed here can be used for multiple-instance learning in

general problems. Note however, that in this paper we are

not interested in bag classification but in automatically se-

lecting a positive instance in each positive bag (which gives

the localization of the object class).

1.2 Plan of the Paper

Our new CRF model is described in Sect. 2. In Sect. 3 we

explain how it is used to localize instances of a new object

class in WS training images while learning a model of the

new class. Section 4 details the generic knowledge that is

incorporated into the process and how it is obtained. Sec-

tion 5 describes the image cues we use and in Sects. 6–7 we

experimentally evaluate the method.

2 The CRF Model for Localizing a New Class

The goal of this paper is to simultaneously localize objects

of a new target class in a set of training images and learn

an appearance model of the class. As we make no assump-

tion about object locations, scales, or overall shape (aspect-

ratio), any image window can potentially contain an object

of the target class. We select one window per image by op-

timizing the energy of a conditional random field (CRF) de-

fined globally over all training images (Eq. (2)). Ideally the

energy is minimal when all selected windows contain an ob-

ject of the same class.
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Fig. 2 The localization model

is a fully connected CRF where

each training image is a node.

The state space of a node is the

set of windows in the image.

The unary potential measures

how likely a window is to

contain an object of any class.

The pairwise potential measures

how likely two windows are to

contain objects of the same, but

unknown, class

Initially the CRF is driven by class-generic knowledge

(GK) that is learned beforehand from meta-training data

(Sect. 4). GK guides the initial selection of windows on

the training images of the target class (localization stage,

Sect. 3.1). Next, we use the selected windows to learn ap-

pearance and shape models specific to the target class, and

incorporate them as new terms in the CRF (learning stage,

Sect. 3.2). In the next iteration we optimize the updated CRF

to refine the selection of windows. Alternating the localiza-

tion and learning stages progressively transforms the CRF

from a class-generic object localizer into one specialized to

the target class. The two stages help each other, as better

localization leads to more accurate class-specific models,

which in turn sharpens localization. This combination al-

lows for WSL on highly cluttered images with strong scale

and appearance variations (Sect. 6).

2.1 Configuration of Windows L

The set of training images I = (I1, . . . , IN ) is represented

as a fully connected CRF (Fig. 2). Each image In is a node

which can take on a state from a discrete set corresponding

to all image windows. The posterior probability for a con-

figuration of windows L = (l1, . . . , lN ) can be written as

p(L|I,Θ) ∝ exp
(

−E(L|I,Θ)
)

(1)

with E(L|I,Θ) =
∑

n

ρnΦ(ln|In,Θ) (2)

+
∑

n,m

ρnρmΨ (ln, lm|In, Im,Θ) (3)

where each ln is a window in image In. More precisely, ln

is an index into a list of candidate windows for image In

(Sect. 4.1); Θ are the parameters of the CRF; ρn is the con-

fidence for image In, weighting its impact on the overall en-

ergy (Sect. 3.2.3). Φ(ln|In,Θ) is a unary potential which

describes the cost to select a window ln in an image In

(Sect. 2.2). Ψ (ln, lm|In, Im,Θ) is a pairwise potential which

assigns a cost to selecting window ln in image In and win-

dow lm in image Im (Sect. 2.3).

For reference, we give an overview over the notation used

for the model components in Table 2.

2.2 The Unary Potential Φ

The unary Φ(ln|In,Θ) measures how likely an image win-

dow ln is to contain an object of the target class

Φ(ln; In) = αΩΩ(ln|In, θΩ)

+ αΠΠ(ln|θΠ ) +
∑

f

αΥf
Υf (ln|In, θΥf

) (4)

It is a linear combination of:

– Ω : the likelihood that ln contains an object of any class,

rather than background (Alexe et al. 2010b) (Sect. 4.1);

– Π : a model of the overall shape of the windows, specific

to the target class (Sect. 3.2.2);

– Υf : appearance models, one for each cue f , specific to

the target class (Sect. 3.2.1). In our experiments we con-

sider four appearance cues: GIST, color histograms, bag

of words, and HOG (Sect. 5).

The scalars α weight the terms.

Note how Π,Υ carry knowledge specific to the target

class. They are initially unknown and set to uniform values.

They are learned after the first localization stage and then

used in all subsequent iterations (Sects. 3.2.1, 3.2.2).
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Fig. 3 The pairwise potential. Two images with candidate windows

(yellow). Appearance descriptors are extracted for each window (ar-

rows). The pairwise potential Ψ is computed for every pair of windows

between the two images, as a linear combination of appearance dis-

similarity cues Γf and the aspect-ratio dissimilarity Λ

Table 2 Notation used

throughout the paper Symbol Meaning Description

L configuration of windows (l1, . . . , lN ) 2.1

I set of training images (I1, . . . , IN ) 2.1

In one image 2.1

ln on window/state in image In 2.1

Θ parameters of CRF model 2.1

ρn confidence for image In 3.2.3

Φ(ln|In,Θ) unary potential of CRF 2.2

Ψ (ln, lm|In, Im,Θ) pairwise potential of CRF 2.3

α weights for terms in the model 2.2, 2.3

Ω(ln|In, θΩ ) objectness term 4.1

Π(ln|θΠ ) class-specific shape model 3.2.2

Υf (ln|In, θΥf
) class-specific appearance model 3.2.1

Λ(ln, lm|θΛ) shape dissimilarity between two windows 4.2

Γf (ln, lm|In, Im) appearance dissimilarity 4.3

2.3 The Pairwise Potential Ψ

The pairwise potential Ψ (ln, lm|In, Im,Θ) measures the dis-

similarity between two windows, assessing how likely they

are to contain objects of the same class (Fig. 3)

Ψ (ln, lm|In, Im,Θ) = αΛΛ(ln, lm|θΛ)

+
∑

f

αΓf
Γf (ln, lm|In, Im) (5)

It is a linear combination of

– Λ: a prior on the shape dissimilarity between two win-

dows ln, lm. It depends only on the states ln, lm, not on

the image content (Sect. 4.2);

– Γf : a potential measuring the appearance dissimilarity

between ln and lm according to multiple cues f . It de-

pends on the image content (Sect. 4.3).

The scalars α weight the terms. Figure 3 illustrates the com-

putation of the pairwise potential for every pair of windows

between two images.

2.4 The Parameters θΩ , θΛ

The parameters θΩ , θΛ of the individual terms and the

weights α carry generic knowledge and are learned from the

meta-training data (Sect. 4). The class-specific models Π,Υ

and the image confidences ρn carry class-specific knowl-

edge and are initially unknown. During the first localiza-

tion stage we set them to uniform. They are progressively

adapted to the target class over the following iterations dur-

ing the learning stage (Sect. 3.2).

Note that our model connects nodes (windows) between

images, rather than elements within an image as is typically

done for CRFs in other computer vision domains (e.g. pixels

in segmentation (Rother et al. 2004), body parts in human

pose estimation (Ramanan 2006)).
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Fig. 4 Localization and learning. The localization and learning

stages are alternated. Localization: one window is selected among the

candidates for each image (Sect. 3.1); Learning: the CRF model is

adapted to the target class. (Sect. 3.2). These two steps are alternated

until convergence, i.e. the selected windows remain the same between

two iterations

3 Localization and Learning

When given a set of images I of a target class the goal is to

localize its object instances and learn a model of the class.

Initially our CRF is driven by generic knowledge, which

was learned beforehand in the meta-training stage (Sect. 4).

This drives the first localization stage (Sect. 3.1) that at-

tempts to select windows covering instances of the target

class. Next, these windows are used to learn knowledge spe-

cific to the target class, which is then incorporated into the

CRF (Sect. 3.2). The localization and learning stages are al-

ternated, optimizing one while keeping the other fixed, thus

progressively adapting the CRF to the target class (Fig. 4).

The localization and learning stages help each other,

as better localizations lead to better class-specific models,

which in turn sharpen localization. Similar EM-like opti-

mization schemes (Felzenszwalb et al. 2010) are commonly

used to learn in the presence of latent variables (in our

case L∗).

3.1 Localization

Localizing objects corresponds to finding the configuration

L∗ that minimizes the global energy (2):

L∗ = arg min
L

{

E(L|I,Θ)
}

(6)

The selected windows L∗ are the most likely to contain in-

stances of the same object class (according to the model).

Optimizing this energy exactly is impractically expensive

(complexity O(W |I|), with W the average number of win-

dows in an image). Exact inference is inefficient because the

CRF is fully connected, has arbitrary non-submodular pair-

wise potentials, and the nodes have huge state spaces (po-

tentially all windows in the images).

Therefore we use the objectness measure of Alexe et al.

(2010b) as a location prior. We randomly sample 100 win-

dows per image proportionally to their probability of con-

taining an object and use only these as states (Sect. 4.1). We

now approximate the global optimum of the model in this re-

duced state space using the tree-reweighted message passing

algorithm TRW-S (Kolmogorov 2006a). This has complex-

ity O(kW |I|), with k a small number of iterations (typically

k < 10). TRW-S also returns a lower bound on the energy.

When this coincides with the returned solution, we know

it found the global optimum of the model in the reduced

state space. In our experiments, TRW-S finds it in 93 % of

the cases, and in the others the lower bound is only 0.06 %

smaller on average than the returned energy. Thus we know

that the computed configurations L∗ are very close to the

global optimum.

3.2 Learning

Based on the selected windows L∗, we adapt several com-

ponents of the CRF to the target class:

– the class-specific appearance models Υf (Sect. 3.2.1),

– the class-specific shape model Π (Sect. 3.2.2),

– the image confidences ρn (Sect. 3.2.3), and

– the weights α of the cues (Sects. 3.2.4, 3.2.5).

During this stage the CRF is progressively adapted from

generic to class-specific. This adaptation involves an addi-

tional negative image set N , which does not contain any

object of the target class.

3.2.1 Class-Specific Appearance Models Υf

Any model trainable from annotated object windows could

be used here (e.g. Dalal and Triggs 2005; Felzenszwalb et al.

2010; Lampert et al. 2009b). We train a separate SVM θΥf

for each appearance cue f . Since usually not all selected

windows L∗ contain an object of the target class, these

SVMs are iteratively trained (Gaidon et al. 2009). First, the

SVM θΥf
is trained to separate all windows L∗ from win-

dows randomly sampled from N . Then, this SVM is used to

score every selected window l∗n ∈ L∗. The top scored κ %

windows are then used to retrain θΥf
. In our experiments we

use κ = 50 and repeat this procedure 10 times. As explained

in Gaidon et al. (2009) this iterative procedure brings the

benefit of cleaning up the training set, by ranking low win-

dows not belonging to the target class.

After training the SVMs, we set the energy Υf (ln|In, θΥf
)

of a candidate window ln in Eq. (4) to the signed distance
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between the SVM hyperplane and the appearance descriptor

l
f
n (In) of ln:

Υf (ln|In, θΥf
) = βΥf

+ θΥf
l
f
n (In) (7)

where βΥf
is the bias term of the SVM. The SVM is trained

such that the selected windows are class “−1”, and the neg-

ative windows are class “+1” aiming for the SVM to give a

low energy to windows that are classified as “selected”.

3.2.2 Class-Specific Shape Model Π

The class-specific shape model Π(ln|θΠ ) models the aspect-

ratio of the target class as an univariate Gaussian with pa-

rameters θΠ = {μΠ , σΠ }

p(ln|ΘΠ ) =
1

√

2Πσ 2
Π

exp

(

|μΠ − lΠn |2

σ 2
Π

)

(8)

where lΠn is the aspect-ratio of window ln (i.e. width divided

by height). We learn μΠ , σΠ to fit the distribution of the

aspect-ratios of the selected windows L∗, according to the

maximum-likelihood criterion.

After learning this Gaussian, we set the energy Π(ln|ΘΠ )

of a candidate window ln in Eq. (4) to

Π(ln|ΘΠ ) = − log(p(ln|ΘΠ ) (9)

3.2.3 Image Confidences ρn

The image confidences ρn emphasize images where the

model is confident of having localized an object of the target

class (Eq. (2)). We set ρn proportional to the negative energy

of a selected window l∗n according to the class-specific ap-

pearance model

ρn ∝ −
∑

f

(

αΥf
Υf

(

l∗n|In, θΥ

))

(10)

The class-specific appearance model has a high confidence

on images where the object is localized accurately and can

be easily recognized (i.e. it has a large negative distance

from the SVM hyperplane, Eq. (7)). Such images receive a

high confidence. Conversely, it gives a low confidence (i.e.

high energy) to images where the object is either not well

localized or is difficult to recognize (e.g. poor illumination

conditions), such images receive a low confidence. This re-

duces the impact of particularly difficult images and makes

the model more robust to incorrect selections in L∗. The im-

age confidences ρn are linearly scaled so that the image with

the highest confidence has ρ = 2.0, and the image with the

lowest confidence has ρ = 0.5. Note how the confidences

implicitly adapt every term in the CRF toward the target

class.

3.2.4 Unary Appearance Cue Weights αΥf

Not all classes can be discriminated equally well using

the same cues (e.g. motorbikes can be recognized well us-

ing texture patches, sheep using color, mugs using shape-

gradient features). Here we adapt to the target class the

weights αΥf
of the class-specific appearance models Υf .

To determine the discriminative power of the individual

appearance models Υf , we train a linear SVM w on the

space of vectors of appearance scores [Υf (ln|In, θΥf
)]. As

in our experiments we use 4 appearance cues, these vectors

are of length 4 (Sect. 5). As positive training data we use

the κ % of the selected windows L∗ which have the highest

score according to the unary models Υf (i.e. the highest con-

fidence of covering an object the target class). As negative

training data we randomly sample windows from N . The

trained SVM hyperplane w gives higher weights to cues that

are particularly suited to discriminate windows of the target

class from other windows.

After learning the hyperplane w, we update the weights

αΥf
to αΥf

← 1
2
(αΥf

+w(f )), where w(f ) is the weight of

cue f .

3.2.5 Pairwise Appearance Cue Weights αΓf

We proceed analogously to Sect. 3.2.4. To determine the

importance of the pairwise appearance cues, we train a

linear SVM on vectors of pairwise appearance similarities

[Γf (ln, lm|In, Im)]. As positive training data we use the ap-

pearance similarities between all pairs of the top κ % se-

lected windows. As negative training data we use (a) ap-

pearance similarities between pairs of one positive window

and one negative window (sampled from N ), (b) appearance

similarities between all pairs of negative windows.

After training the SVM, the weights αΓf
are updated in

the same manner as in Sect. 3.2.4.

3.2.6 Other Terms

The objectness Ω , the shape dissimilarity Λ, and the ap-

pearance dissimilarity Γf terms are not explicitly adapted

to the target class. However, their impact on the overall en-

ergy (Eq. (2)) is adapted through the weights αΥf
, αΓf

, and

the image confidences ρn.

3.3 Discussion

3.3.1 Convergence

Our overall algorithm is defined by two decoupled optimiza-

tion problems: localization and learning. The algorithm ter-

minates when two consecutive localization steps return the

same selection of windows. In our experiments this always

happened within 10 iterations.
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Fig. 5 Ideal behavior of the objectness measure. The objectness score for a window should be highest when fitting an object tightly (green),

lower when covering objects partially (blue), and lowest when containing only background (red)

3.3.2 Optimality of the Localization Phase

The localization optimization problem is not solved globally

optimally because minimizing the energy of our fully con-

nected CRF is impractical (Kolmogorov 2006b). However,

as described in Sect. 3.1, the approximation we obtain with

TRW-S is very close to the global optimum.

3.3.3 Optimality of the Learning Phase

The class-specific parameters are trained optimally accord-

ing to their respective training criteria:

parameters of the class-specific appearance models:

the class-specific appearance models are SVMs and thus

their training problem is convex.

class-specific shape model:

the class-specific shape model is a single Gaussian, which

is easily trained according the maximum likelihood crite-

rion.

3.3.4 Runtime

Running the entire method on a set of 100 images takes

about 10 hours using our unoptimized, single-threaded Mat-

lab implementation. Most of the time is spent in feature ex-

traction (total: 7.5 h; per image: 4 sec for objectness; 10 sec

for GIST, 80 sec for CHIST, 180 sec for SURF, 5 sec for

HOG). After feature extraction, computing the pairwise po-

tentials takes a total of 2 h. Finally, one iteration of localiza-

tion and learning takes about 1 min (<2 seconds for local-

ization; about one minute for the learning step).

4 Generic Knowledge: Initializing Θ

Initially the model parameters Θ carry only generic knowl-

edge. They are learned in a meta-training stage to maximize

the localization performance on a set of meta-training im-

ages M. These contain objects of known classes annotated

with bounding-boxes.

4.1 Objectness Ω

We use the objectness measure Ω(l|I, θΩ) of Alexe et al.

(2010b), which quantifies how likely it is for a window

l to contain an object of any class. Objectness is trained

to distinguish windows containing an object with a well-

defined boundary and center, such as cows and telephones,

from amorphous background windows, such as grass and

road. Objectness combines several image cues measuring

distinctive characteristics of objects, such as appearing dif-

ferent from their surroundings, having a closed boundary,

and sometimes being unique within the image. The ideal be-

havior of the objectness measure is shown in Fig. 5.

We use objectness as a location prior in our CRF, by

evaluating it for all windows in an image I and then sam-

pling 100 windows according to their objectness probabil-

ity. These form the set of states for node I (i.e. the candidate

windows the CRF can choose from). The objectness proba-

bility forms the unary term Ω(l|I, θΩ).

This procedure brings two advantages. First, it greatly

reduces the computational complexity of minimizing (2),

which is quadratic in the number of states (there are ≃ 108

windows in an image (Lampert et al. 2009b)). Second, the

sampled windows and their scores Ω attract the CRF to-

ward selecting objects rather than background windows.

This is crucial in a WSL setup, as typically the background

contains frequently recurring appearance patterns with low

variability between images. Importantly, this variability is

ofter smaller than that among the actual object instances,

antagonizing the learner. Therefore, our use of objectness

steers the CRF away from trivial solutions, e.g. where all se-

lected windows cover a piece of sky in airplane training im-

ages (Nguyen et al. 2009), or a piece of road in motorbikes

images. In Sect. 6 we evaluate objectness quantitatively.

We note that as an alternative to the objectness measure

of Alexe et al. (2010b), we could also have used the re-

lated methods of Endres and Hoiem (2010) or Carreira et

al. (2010).

4.2 Pairwise Shape Dissimilarity Λ

θΛ is learned as the Bayesian posterior Λ(ln, lm|θΛ) =

− logp(ln
c
= lm|AD(ln, lm)) from many window pairs con-
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Fig. 6 Pairwise shape dissimilarity model Λ: p(ln
c
= lm|AD(ln, lm))

(vertical axis) as a function of AD(ln, lm) (horizontal axis). At the left-

most point AD(ln, lm) = 0, i.e. ln and lm have the same aspect-ratio

taining the same (ln
c
= lm) and different classes. The function

AD(ln, lm) measures the aspect-ratio dissimilarity between

windows ln and lm as

AD(ln, lm) =

∣

∣

∣

∣

log

(

wn/hn

wm/hm

)
∣

∣

∣

∣

(11)

where wn,wm are the widths and hn, hm the heights of win-

dows ln, lm. We use a 60-bin histogram θΛ to represent this

distribution. In practice this learns that instances of the same

class have similar aspect-ratios (Fig. 6).

4.3 Pairwise Appearance Dissimilarity Γf

The pairwise appearance dissimilarity Γf (ln, lm|In, Im) as-

sesses whether two windows ln and lm contain an object

of the same class, regardless of the class. This is differ-

ent from a distance measure assessing whether two images

contain an object of the same known class, which is of-

ten addressed using distance learning methods (Babenko et

al. 2009; Frome et al. 2007; Malisiewicz and Efros 2008;

Weinberger et al. 2005). Another related, but also different

task, is to decide whether two images show the same object

instance (Nowak and Jurie 2007).

We evaluated several distance learning methods (Nowak

and Jurie 2007; Weinberger et al. 2005) on the meta-training

data and found that none of them outperformed a simple sum

of squared distances (SSD) between appearance descriptors.

Our pairwise appearance dissimilarity Γf between two

windows ln, lm in images In, Im is computed as the SSD be-

tween their appearance descriptors l
f
n (In), l

f
m(Im):

Γf (ln, lm|In, Im) =
∥

∥l
f
n (In) − l

f
m(Im)

∥

∥

2
(12)

4.4 Weights α

The overall goal of the methods in this section is to find

weights α between the various terms of our CRF so as to

maximize the number of meta-training images in which an

object of the target class is localized correctly by our tech-

nique (Sect. 3). Following the spirit of the other GK compo-

nents (Sects. 4.1–4.3), these weights are chosen jointly over

all meta-training classes. Hence, these weights are in a good

ballpark that tends to perform well in general, i.e. also on

novel target classes. We determine the weights in a two-step

scheme.

Step 1: weights for localization terms (Sect. 4.4.1). We

determine the weights αΩ , αΛ, αΓf
so that the win-

dows L∗ returned by the localization stage (Sect. 3.1)

best cover the meta-training bounding-boxes M (accord-

ing to the criterion of Sect. 6.2). We achieve this using a

constraint-generation algorithm inspired by structured out-

put SVMs (Tsochantaridis et al. 2005). These weights are

determined using only the localization stage, as they con-

tain no class-specific knowledge.

Step 2: weights for class-specific terms (Sect. 4.4.2). The

remaining weights αΠ , αΥf
cannot be directly learned

in the constraint generation framework because the class-

specific terms Π,Υf are adapted in every iteration (poten-

tially depending on the weights). Instead, we first fix αΩ ,

αΛ, αΓf
in step 1, and then determine αΠ , αΥf

using grid-

search to maximize localization performance on M after

the localization and learning iterations (Sect. 3).

Note how it would be possible to determine all weights

using a grid-search procedure (Deselaers et al. 2010), but

the constraint generation algorithm in step 1 is more elegant

and computationally much more efficient. However, it typi-

cally does not lead to better results than a grid-search with a

sufficiently fine grid.

4.4.1 Constraint Generation

The goal is to find weights α = (αΩ , αΛ, αΓf
) so that the

configuration of windows with the lowest energy (2) cor-

rectly localizes one object in each meta-training image. Note

how the total number of possible configurations L grows ex-

ponentially with the number of images, and how there may

be many configurations localizing one object correctly in ev-

ery image (though most will not).

Formally, we search for α so that

– there exists one configuration L̂ that correctly localizes an

object in every image

– the energy of L̂ is lower than the energy of any configu-

ration that does not

When these two criteria are met, the lowest energy configu-

ration of the global energy function (2) maximizes localiza-

tion performance. This will result in the optimal behavior of

the localization stage (Sect. 3.1).

We learn α according to a max-margin criterion follow-

ing the constraint-generation approach used to train struc-

tured output SVMs (Tsochantaridis et al. 2005), analogously
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to other work on learning the parameters of a CRF (Dese-

laers and Ferrari 2010; Finley and Joachims 2008; Szummer

et al. 2008). More precisely, we learn α by solving a gener-

alized support vector training problem:

min
α,ξ

1

2
‖α‖2 + C

K
∑

k=1

ξk

s.t. E
(

L|Ik,Θ
α
)

− E
(

L̂k|Ik,Θ
α
)

≥ �(L̂k,L) − ξk,

∀k,∀L 
= L̂k

ξk ≥ 0, α ≥ 0

(13)

Ik is the set of meta-training images for class k and L̂k is

the configuration composed of ground-truth windows, each

guaranteed to cover an instance of the class. This configu-

ration achieves optimal localization performance and there-

fore it should have the lowest energy. C > 0 is a constant

controlling the trade-off between training error minimiza-

tion and margin maximization. In our experiments we set

C = 0.1. Each ξk is a slack variable for class k. Θα are the

parameters of the CRF according to the weight vector α.

The loss function �(L̂,L) =
∑

n(1 − ∩(l̂n,ln)

∪(l̂n,ln)
) penalizes

deviations from L̂ ( ∩(l̂n,ln)

∪(l̂n,ln)
∈ [0,1] denotes the intersection-

over-union overlap between two windows). This loss func-

tion continuously gives smaller penalties to windows ln

which overlap more with the ground-truth l̂n. It better re-

flects the quality of localization and yields a smoother learn-

ing problem than a hard 0/1 loss giving 1 to all ln 
= l̂n.

Note how solving (13) leads to a single weight vector α

optimized over all meta-training classes combined. There-

fore, α is a form of generic knowledge.

In this formulation, every possible configuration L yields

a constraint, so the number of constraints is exponential in

the number of images. Therefore, it is infeasible to consider

all constraints explicitly while solving (13). The constraint

generation technique (Tsochantaridis et al. 2005) only con-

siders a small subset of constraints explicitly. Starting with

an empty set of constraints, it iteratively adds the constraint

which is most violated by the current setting of α.

First, note how each constraint correspond to exactly one

configuration of windows. The configuration L∗, which vi-

olates the constraints the most is that one which has a lower

energy than the desired configuration L̂ and a high loss

�(L̂,L).

It can be found by solving a subproblem of the same form

as (6), but incorporating the loss �(L̂,L) as an additional

term into E (Eq. (2)). Note how �(L̂,L) is a sum over the

images in each meta-training class, and how each term in

� depends only on the state of a single node in the CRF.

Therefore, � can be incorporated into E as an additional

unary term, leading to the following subproblem

L∗ = arg min
L

{

E(L|I,Θ) − �(L̂,L)
}

(14)

Note that finding the most violating constraint L∗ poten-

tially has to be performed very often and therefore it must be

found efficiently. As (14) has the same form as (6), it can be

efficiently solved to a very good approximation using TRW-

S (Sect. 3.1). Then, the most-violating configuration L∗ is

added to the set of active constraints, and then an updated

weight vector α is found by minimizing (13) over the active

constraints.

This procedure is iterated until L̂ (the best possible con-

figuration) is the minimum energy configuration. When this

is achieved, all constraints are fulfilled and the procedure

terminates.

In general, constraint generation is guaranteed to con-

verge when the subproblem of finding L∗ can be solved

optimally (Tsochantaridis et al. 2005). Although we solve

it approximately here, in all our experiments the constraint

generation algorithm terminated in 20 to 50 iterations.

4.4.2 Grid Search

While keeping the weights αΩ , αΛ, αΓf
fixed, we now

determine the best possible αΠ , αΥf
. As in Sect. 4.4.1,

we aim at finding a generic set of weights maximizing

the average localization performance jointly over all meta-

training classes. To this end, we evaluate all combinations

of weights αΠ , αΥf
on a 5D grid (1 dimension for αΠ , 4 di-

mensions for αΥf
). We retain the combination of weights

(αΠ , αΥ1
, αΥ2

, αΥ3
, αΥ4

) that, on average over all meta-

training classes, leads to the best localization result after

running our full method (Sect. 3).

4.5 Other Parameters

We briefly mention here how we set the remaining compo-

nents of Θ from the meta-training data M.

Kernel of the SVMs Υf We evaluated linear and intersec-

tion kernels for the class-specific appearance models Υf and

found the latter to perform better. We set the regularization

parameter C = 1.0 in our experiments.

Percentage κ of Images With the weights α and the SVM

kernels fixed, we determine the percentage κ of selected

windows to use for the iterative training in Sect. 3.2.1. We

set κ to maximize localization performance on M after our

full method.
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Class-Specific Parameters The remaining parameters of

the CRF are specific to the target class and are not learned

from meta-training data, i.e. the class-specific appearance

models Υf , the class-specific shape model Π , and the im-

age confidences ρn. They are initially unknown and set uni-

formly.

5 Appearance Cues

We extract four appearance descriptors f from each candi-

date window and use them to calculate the appearance sim-

ilarities Γf and the class-specific appearance scores Υf .

GIST (Oliva and Torralba 2001) is based on local his-

tograms of gradient orientations. It captures the rough spa-

tial arrangement of image gradients, and has been shown to

work well for describing the overall appearance of a scene.

Here instead, we extract GIST from each candidate win-

dow. In our experiments we use GIST with the default pa-

rameters.

Color Histograms (CH) provide complementary informa-

tion to gradients. We describe a window with a single

10x20x20 histogram in the LAB color space.

Bag of Visual Words (BOW) are de-facto standard for many

object recognition tasks (Chum and Zisserman 2007;

Dorkó and Schmid 2005; Lampert et al. 2009b; Zhang

et al. 2007). We use SURF descriptors (Bay et al. 2008;

Lampert et al. 2009b) and quantize them into 2000 words

using k-means. A window is described by a BOW of SURF

descriptors extracted at three different scales on a 32 × 32

grid.

Histograms of Oriented Gradients (HOG) also are an es-

tablished descriptor for object class recognition (Dalal and

Triggs 2005; Felzenszwalb et al. 2010). We extract HOGs

on a 32 × 32 grid.

6 Experiments: WS Localization and Learning

We evaluate the central ability of our method: localizing ob-

jects in weakly supervised training images. We experiment

on datasets of varying difficulty. Table 3 gives an overview

of the datasets used for the experiments.

6.1 Datasets

CALTECH4 (Fergus et al. 2003) We use 100 random im-

ages for each of the four classes in this popular dataset (air-

planes, cars, faces, motorbikes). The images contain large,

centered objects, and there is limited scale variation and

background clutter. As negative images, for each class we

use the images from the three other classes.

Table 3 Overview of the datasets. The left half of the table gives

the total number of images in the training sets of the target classes

used to evaluate localization in weakly supervised images, the number

of target classes, and of class/viewpoint combinations (remember that

each class/viewpoint combination is input to our method separately).

The right half of the table gives the same information about the meta-

training sets used to learn the generic knowledge (i.e. the initial param-

eters of the CRF, Sect. 4)

Dataset training sets meta-training sets

images cls sets images cls sets

CALTECH4 400 4 4 1040 6 34

PASCAL06-6x2 779 6 12 1249 5 17

PASCAL06-all 2184 10 33 1249 5 17

PASCAL07-6x2 463 6 12 1255 6 24

PASCAL07-all 2047 14 45 1255 6 24

As meta-training data M we use 1040 train+val images

from 6 PASCAL07 classes (bicycle, boat, bus, cow, sheep,

train) with bounding-box annotations. M is used to learn

the parameters for initializing our CRF (Sect. 4). This is

done only once. The same parameters are then reused in all

experiments on CALTECH4.

PASCAL06-6x2 (Everingham et al. 2006) We evaluate our

method on a subset of the PASCAL06 dataset containing all

images1 from 6 classes (bicycle, car, cow, horse, motorbike,

sheep) of the PASCAL06 train+val dataset from the left and

right viewpoint. For each class we use all images containing

at least one object not marked as difficult or truncated in the

ground-truth. This holds also for all other PASCAL datasets

below.

Each of the 12 class/viewpoint combinations contains be-

tween 31 and 132 images. As negative set N we use 2000

random images taken from train+val not containing any in-

stance of the target class.

As meta-training data M we use 1249 train+val images

from 5 PASCAL07 classes (bird, boat, bottle, chair, train)

with between 1 and 4 viewpoints each.

PASCAL06-all (Everingham et al. 2006) For complete-

ness, we evaluate our method on the entire PASCAL06

train+val dataset consisting of 10 classes (bicycle, bus,

car, cat, cow, dog, horse, motorbike, person, sheep) with

all viewpoints that have more than 20 images (leading

to a total of 2184 images). The negative set N is cho-

sen analogously to the negative set for the PASCAL06-

6x2 datasets. Further, we re-use the meta-trained parameters

from the experiments on PASCAL06-6x2. Note that there is

1This differs from the setting in the previous version of this work (De-

selaers et al. 2010), where we used a smaller subset of images selected

by Chum and Zisserman (2007), which are considerably easier as most

of them contain a large dominant object.
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Table 4 Results. The first

block reports results for the

baselines and the second for the

competitors (Chum and

Zisserman 2007;

Russell et al. 2006). Rows

(a)–(d): results for our method

using only the localization

stage. Rows (e)–(g): results for

our full method using the

localization and learning stages.

All results are given in CorLoc.

Column (Color) shows the

colors used for visualization in

Figs. 8, 9. Class-wise results for

setup (g) are given in Table 5

Method CALTECH4 PASCAL06 PASCAL07 Color

6 × 2 all 6 × 2 all

image center 66 44 36 25 16

ESS 43 24 21 27 14

Russell et al. (2006) (30 topics) 41 28 27 22 14

Chum and Zisserman (2007) 55 45 34 33 19

this paper—localization only

(a) random windows 0 0 0 0 0

(b) objectness windows with uniform score 73 50 35 30 17

(c) objectness windows and score 75 55 41 37 23

(d) all pairwise cues 63 58 45 37 23

this paper—localization and learning

(e) single cue (GIST), full adaptation 83 64 46 40 24

(f) all cues, learning only Υf ,Π 78 62 48 45 26

(g) all cues, full adaption 81 64 49 50 28

Fig. 7 Evaluation measure CorLoc. The red window overlaps <

0.5 with the yellow ground-truth window. The green windows overlap

≥ 0.5 with the corresponding ground-truth windows. Therefore, over

these three images, CorLoc is 66 %. Note how selecting any of the two

motorbikes in the right image leads to the same CorLoc

no overlap between the meta-training classes and the train-

ing classes.

PASCAL07-6x2 (Everingham et al. 2007) For the detailed

evaluation of the components of our method below, we use

all images from 6 classes (aeroplane, bicycle, boat, bus,

horse, and motorbike) of the PASCAL VOC 2007 train+val

dataset from the left and right viewpoint each. Each of

the 12 class/viewpoint combinations contains between 21

and 50 images for a total of 463 images. As negative set

N we use 2000 random images taken from PASCAL07

train+val not containing any instance of the target class.

This dataset is very challenging, as objects vary greatly in

location, scale, and appearance. Moreover, there is signif-

icant variation within a viewpoint (Figs. 8, 9). We report

in detail on these classes because they represent compact

objects on which fully supervised methods perform reason-

ably well (Everingham et al. 2007) (as opposed to classes

such as ‘potted plant’ where even fully supervised methods

fail). As meta-training data M we use 1255 train+val im-

ages from 6 other PASCAL07 classes (bird, car, cat, cow,

dog, sheep).

PASCAL07-all (Everingham et al. 2007) Further, we also

report results for all class/viewpoint combinations in PAS-

CAL07 with more than 20 images (our method, as well as

the competitors and baselines to which we compare, fails

when given fewer images) leading to a total of 2047 images.

We use the same meta-training data as for PASCAL07-6x2.

In total, the PASCAL07-all set contains 45 class/viewpoint

combinations, covering all 14 classes not used for meta-

training.

Further, we re-use the meta-trained parameters from

the experiments on PASCAL07-6x2. Note that there is no

overlap between the meta-training classes and the training

classes.

6.2 Evaluation

We directly evaluate the ability of our method to localize ob-

jects in a set of training images I only known to contain a
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Fig. 8 Qualitative comparison to baselines and competitors. Ex-

ample objects localized by different methods in their weakly super-

vised training images (i.e. only object presence is given for training, no

locations). Top row: the ESS baseline (Lampert et al. 2009b) and the

method of Russell et al. (2006) . Bottom row: the method of Chum

and Zisserman (2007) and our method in setup (g) . Our method

localizes object visibly better than both baselines and competitors, es-

pecially in cluttered images with small objects

Fig. 9 Example results comparing our method in setup (d) to setup (g) . If only is visible, both setups return the same window. The learning

stage in setup (g) leads to more correctly localized objects

target class (Sect. 6). This direct evaluation reveals how well

a method solves the auto-localization problem intrinsic to

WSL, and it measures the quality of the input to training off-

the-shelf fully supervised object detectors from the output

of WSL (Sect. 7). Moreover, there are applications where

the localization performance on an input set of weakly su-

pervised images directly matters (e.g. co-segmentation or

when annotating images downloaded from image search en-

gines on the web). Finally, we note how our direct evalua-

tion is analog to the standard evaluation protocol in the re-

lated fields of co-segmentation, unsupervised segmentation

and object discovery, where no later test stage on new im-

ages is performed (see Table 1, rows with a “no” in column

“evaluate on test data”).

Table 4 shows results for two baselines, two competing

methods (Chum and Zisserman 2007; Russell et al. 2006)

and for several variants of our method.

We report as CorLoc the percentage of images in which

a method correctly localizes an object of the target class ac-

cording to the PASCAL-criterion (window intersection-over-
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union > 0.5, Fig. 7). No location of any object in I is given

to any method beforehand. The detailed analysis in the next

four paragraphs focuses on the CALTECH4, PASCAL06-6x2,

and PASCAL07-6x2 datasets. Then we discuss results on the

PASCAL06-all and PASCAL07-all dataset, and finally the

last paragraph evaluates the quality of the candidate win-

dows proposed by the objectness measure.

Baselines The ‘image center’ baseline simply picks a

window in the image center by chopping 10 % off the

width/height from the image borders. This is useful to as-

sess the difficulty of a dataset. The ‘ESS’ baseline is based

on bag-of-visual-words. We extract SURF features (Bay et

al. 2008) from all images of a dataset, cluster them into 2000

words using k-means, and weight each word by the log of

the relative frequency of occurrence in positive vs. negative

images of a class (as done by Chum and Zisserman 2007;

Dorkó and Schmid 2005; Lampert et al. 2009b). Hence,

these feature weights are class-specific. For localization,

we use Efficient Subwindow Search (ESS) (Lampert et al.

2009b) to find the window with the highest sum of weights

in an image.2

The image center baseline confirms our impressions

about the difficulty of the datasets. It reaches about 66 %

CorLoc on CALTECH4, 44 % on PASCAL06-6x2, but fails

on PASCAL07-6x2. The trend is confirmed by ESS.

Competitors We compare to the method of Russell et

al. (2006) using their implementation.3 This method does

not directly return one window per image. It determines a

number of topics roughly corresponding to object classes.

A topic consists of a group of superpixels in each train-

ing image. For each topic, we put a bounding-box around

its superpixels in every image, and then evaluate its Cor-

Loc performance. We report the performance of the topic

with the highest CorLoc. We evaluated different numbers of

topics and found 30 to perform best on the average. This

method achieves a rather low CorLoc on the challenging

PASCAL07-6x2, but does better on the easier PASCAL06-

6x2 and CALTECH4 datasets (41 % CorLoc).

As a second competitor we reimplemented the method

of Chum and Zisserman (2007), which directly returns one

window per image. It works well on CALTECH4 and on

PASCAL06-6x2, where it finds about half the objects. On

the much harder PASCAL07-6x2 it performs considerably

worse since its initialization stage often does not lock onto

objects.4 Overall, this method performs better than Russell

et al. (2006) on all datasets.

2Baseline suggested by C. Lampert in personal communication.

3http://www.di.ens.fr/~russell/projects/mult_seg_discovery/index.html

4Unfortunately, we could not obtain the source code from Chum and

Zisserman (2007). We asked them to process our PASCAL07-6x2 train-

ing sets and they confirmed that their method performs poorly on them.

Localization Only (a)–(d) Here we evaluate our method

after the localization stage (Sect. 3.1), without running the

learning stage (Sect. 3.2). In order to investigate the impact

of generic knowledge, we perform experiments with several

stripped-down versions of our CRF model. Setup (a)–(c) use

only GIST descriptors in the pairwise dissimilarity score Γf .

Setup (a) uses 100 random candidate windows with uniform

scores in Ω . Setup (b) uses 100 candidate windows sam-

pled from the objectness measure, but with uniform scores

in Ω . Setup (c) uses 100 candidate windows sampled from

the objectness measure, with their objectness score in Ω

(Sect. 4.1). While setup (a) is not able to localize any ob-

ject, (b) already performs quite well, and adding the object-

ness score (c) gives an additional improvement. This shows

that objectness is a powerful source of generic knowledge,

which greatly helps localizing objects in weakly supervised

images.

By adding the remaining appearance cues Γf in setup

(d), the results improve further (Sect. 5). At this point, using

only the localization stage, our method already outperforms

all baselines and competitors. It localizes about two thirds

of the objects in CALTECH4, more than half in PASCAL06-

6x2, and 37 % in PASCAL07-6x2.

Localization and Learning (e)–(g) Here we run our full

method, iteratively alternating localization and learning. In

setup (e), we build on setup (c) using only GIST descrip-

tors and adapt all parameters of our model to the tar-

get class (Sect. 3.2). This setup obtains a significant im-

provement over (c) on all datasets and even outperforms

the localization-only multiple-cue setup (d) on the easier

datasets.

In setups (f) and (g), we build on setup (d) using all ap-

pearances cues both for the pairwise dissimilarity Γf and

for the class-specific appearance models Υf . In setup (f)

we learn only appearance models Υf and shape models

Πf specific to the target class (Sects. 3.2.1, 3.2.2). This al-

ready leads to a clear improvement on all datasets demon-

strating that our procedure properly acquires new knowl-

edge specific to the target class. In setup (g) all parame-

ters of the CRF are adapted to the target class (Sect. 3.2)

which brings an additional improvement. Interestingly, on

the PASCAL07 datasets the learning stage helps localization

by a larger amount when using all appearance cues. This

is because multiple descriptors are particularly beneficial in

harder imaging conditions, and because our learning stage

automatically re-weights the appearance cues, specializing

their combination to each target class (Sect. 4.4).

The full method (g) substantially outperforms all com-

petitors/baselines on all datasets. It reaches about 150 % the

CorLoc of the second best method of Chum and Zisserman

(2007) on PASCAL07-6x2. Overall, it finds most objects in

CALTECH4, about two thirds in PASCAL06-6x2, and half in

PASCAL07-6x2 (Figs. 8, 9).

http://www.di.ens.fr/~russell/projects/mult_seg_discovery/index.html
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Table 5 Class-wise CorLoc for setup (g) in Table 4

PASCAL06-6x2

class left right

bicycle 85 68

car 77 67

cow 73 70

horse 44 46

motorbike 42 67

sheep 67 57

PASCAL07-6x2

class left right

aeroplane 58 59

bicycle 46 40

boat 9 16

bus 38 74

horse 58 52

motorbike 67 76

As Table 4 shows, each variant improves over the pre-

vious one, showing that (i) the generic knowledge elements

we incorporate are important for a successful initial localiza-

tion (setups (a)–(c)); and (ii) the learning stage successfully

adapts the model to the target class (setups (e), (g)).

Table 5 shows the CorLoc for setup (g) per class/view-

point combination for both PASCAL06-6x2 and PASCAL07-

6x2. The occasional performance differences between the

left and right viewpoints of the same class are due to the

different number of available images and the average size

of the objects. For example, in PASCAL06-6x2 motorbike-

left has 31 images with motorbikes of 179 × 205 pixels on

average, whereas motorbike-right has 52 images with 435 ×

370 pixels on average.

To further demonstrate the genericness of our GK, we

perform an additional experiment on PASCAL06-6x2 ana-

log to setup (g), but this time using the GK learned from

the meta-training set originally used for PASCAL07-6x2

(see Sect. 6.1). Remarkably, the CorLoc on PASCAL06-6x2

varies by less than 1 % when changing between the two

meta-training sets, which demonstrates the GK we propose

is truly generic across classes. As additional evidence in this

direction, we refer to the experiment in page 10 of Alexe

et al. (2012), which shows that the performance of object-

ness does not change even when trained from very different

image sets.

PASCAL-All Datasets For completeness, Table 4 also

reports results on the PASCAL06-all and PASCAL07-all

datasets, which contain 33 and 45 class/viewpoint combina-

tions respectively, including many for which even fully su-

pervised methods fail (e.g. ‘potted plant’). Comparing PAS-

CAL06-6x2 and PASCAL06-all, CorLoc drops by about a

third. On PASCAL07-6x2 and PASCAL07-all, CorLoc drops

by about half for all methods, suggesting that WS learn-

ing on all PASCAL07 classes is beyond what is currently

possible. However, it is interesting to notice how the rel-

ative performance of our method (setup (g)) compared to

the competitors (Russell et al. 2006; Chum and Zisserman

2007) remains close to what is observed on PASCAL07-6x2.

Table 6 Evaluation of the objectness measure. The precision and

hit-rate of the windows sampled from the objectness measure for the

target classes

Dataset precision [%] hit-rate [%]

Caltech 4 32 100

Pascal 06 6x2 26 89

Pascal 06 all 21 80

Pascal 07 6x2 19 85

Pascal 07 all 13 71

Objectness We also evaluate the 100 windows per image

sampled from Ω (Table 6). The hit-rate is the percentage of

objects of the target class covered by one of sampled win-

dow (up to intersection-over-union ≥ 0.5). It gives an upper-

bound on the CorLoc that can be achieved by our method.

As the table shows, most target objects are covered. The pre-

cision is the percentage of sampled windows covering an

object of the target class. It gives the ratio between correct

and incorrect windows that enter the CRF model. This ratio

is much higher than when considering all image windows.

The hit-rates and precisions over the different datasets

also confirm their perceived difficulty. On CALTECH4 all

objects are covered and about 1 in 3 windows is on an object.

On PASCAL07-6x2 only about 1 in 5 windows covers an ob-

ject. However, the hit-rate is still high showing that object-

ness is a suitable focus of attention measure for weakly su-

pervised learning, even in highly challenging imaging con-

ditions.

6.3 Comparison to Kim and Torralba (2009)

We evaluate our method on PASCAL06 also in the experi-

mental setup of Kim and Torralba (2009, Fig. 5): for every

class we run our method (g) on all images showing an object

of this class and then evaluate object detection accuracy on

the test images. Performance is measured by mean Average

Precision over all 10 classes (for details of this setup we re-

fer to Kim and Torralba (2009)). Note how no PASCAL06

class appears in our meta-training set (which are 5 other

classes from PASCAL07). In this setup our method brings

a mAP of 0.24, which compares favorably to the 0.21 of

Kim and Torralba (2009).5

7 Experiments: Object Detection in New Test Images

Our method enables training a fully-supervised object detec-

tor from weakly supervised data, although this would nor-

mally require object location annotations. To demonstrate

5Derived from the PR plots in their paper (Fig. 5).
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Fig. 10 Models of

Felzenszwalb et al. (2010)

trained on PASCAL07-6x2 from

the output of our method (left)

and from ground-truth

bounding-boxes (right). Note

how similar the models are

Table 7 Detection results on test images. mAP values for training

the object detector by Felzenszwalb et al. (2010) on the output of setup

(g) (WSL) and on the ground-truth bounding boxes (GT). The third

column reports the ratio of the two values, which shows how well the

weakly supervised setup performs relative to the fully supervised one

Dataset WSL GT WSL
GT

[%]

Caltech 4 0.32 0.36 87 %

PASCAL06-6x2 0.28 0.36 78 %

PASCAL07-6x2 0.21 0.33 65 %

this point, we train the fully supervised object detector of

Felzenszwalb et al. (2010)6 from objects localized using

our setup (g), and compare its performance to the original

model trained from ground-truth bounding-boxes. In all ex-

periments we use one component and six parts per class. As

negative training images for a class we use the training im-

ages of the other classes.

We perform this experiment for CALTECH4, PASCAL06-

6x2, and PASCAL07-6x2. The detection performance for

each class/viewpoint is measured by the average precision

(AP). For the PASCAL06-6x2 and PASCAL07-6x2 tasks the

performance is measured on their full tests sets (2686 and

4952 images respectively). These test sets are entirely dis-

joint from their respective train+val sets used for training

and meta-training. For CALTECH4, we form a test set by

choosing 100 random images from each class (excluding im-

ages used for training). We then evaluate each model on the

whole 400-image test set. As usual in a test stage, no infor-

mation is given about the test images, also not whether they

contain an object of the class being evaluated.

Table 7 reports the mean AP values (mAP) over all

class/viewpoint combinations in each dataset. On the easy

CALTECH4, the performance of the weakly-supervised

method is close to that of the fully supervised model. Even

on the more challenging PASCAL06-6x2 the WSL model

still obtains almost 80 % of the mAP of the fully super-

vised model, while on the very hard PASCAL07-6x2 it yields

about two thirds of its performance.

6The source code is available at http://people.cs.uchicago.edu/~pff/

latent/.

Table 8 Class-wise AP for the experiments in Table 7 in percent AP.

The difference between the fully and the weakly supervised system is

given in parentheses

PASCAL06-6x2

class left right

bicycle 51 (−6) 63 (0)

car 29 (−1) 29 (0)

cow 18 (2) 13 (−3)

horse 10 (−32) 0 (−42)

motorbike 31 (−24) 39 (−1)

sheep 22 (7) 29 (8)

PASCAL07-6x2

class left right

aeroplane 5 (−18) 18 (−14)

bicycle 49 (−10) 62 (−2)

boat 0 (−0) 0 (−1)

bus 0 (−21) 16 (4)

horse 29 (−16) 14 (−25)

motorbike 48 (−7) 16 (−26)

These results demonstrate that it is possible to train a

functional fully supervised object detector from weakly su-

pervised images from the output of our method. We consider

this a very encouraging result, given that we are not aware

of previous methods demonstrated capable of localizing ob-

jects on the PASCAL07 test set when trained in a weakly

supervised setting. Fig. 10 visually compares two models

trained from the output of our method to the corresponding

models trained from ground-truth bounding-boxes.

Table 8 reports AP for each class/viewpoint combina-

tion separately. Interestingly, larger differences between the

fully and weakly supervised setups occur when the weakly

supervised method performs worse in localizing objects in

their training images. For example, on PASCAL06 horses-

left, horses-right, and motorbike-left, which are the three

class-viewpoint combinations with the lowest CorLoc on

the training data (Table 5). This correlation emphasizes the

value of directly evaluating localization accuracy on the

weakly supervised training images (Sect. 6.2).

To further demonstrate that performance at test time

strongly depends on the quality of object localization at

training time (CorLoc), we repeated this experiment when

using the approach of Chum and Zisserman (2007) instead

of ours to select windows in the WS training images. On

PASCAL06-6x2 this achieves an AP of 0.12 and on PAS-

CAL07-6x2 0.11, compared to our 0.28 and 0.21 respec-

tively.

http://people.cs.uchicago.edu/~pff/latent/
http://people.cs.uchicago.edu/~pff/latent/
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8 Conclusion

We presented a technique for localizing objects of an un-

known class and learning an appearance model of the class

from weakly supervised training images. The proposed

model starts from generic knowledge and progressively

adapts more and more to the new class. This allows it to

learn from highly cluttered images with strong scale and

appearance variations between object instances. We also

demonstrated how to use our method to train a fully su-

pervised object detector from weakly supervised data.

Throughout the paper we used the wording ‘generic

knowledge’ to convey the meaning of applying to most ob-

ject classes, as opposed to being specific to one class (Ever-

ingham et al. 2010; Felzenszwalb et al. 2010; Fergus et al.

2003). However, GK is not an accurate nor complete repre-

sentation of any particular class. For example, it could not

be used on its own to reliably detect objects of a particular

class. Instead, GK provides a broad basis about objects in

general, which we have demonstrated in this paper to help

learning new object classes.

In future work we plan to extend our method in various

directions. First, we plan to learn separate models for differ-

ent viewpoints of an object class from a single mixed train-

ing set. This could be achieved by extending the state-space

of each node of the CRF to the cartesian product of the set of

candidate windows and the set of viewpoints. Second, com-

putational efficiency could be improved by decimating the

fully connected CRF to a N -order Markov chain, or by re-

moving edges between images of very different appearance.

Third, we plan to exploit hierarchical dependencies between

classes from large-scale datasets such as ImageNet. In this

fashion a new class will not only benefit from generic knowl-

edge, but also from more specific knowledge from seman-

tically related classes. Ultimately, we hope to formulate a

unified transfer learning framework where multiple sources

of knowledge at many levels of generality are automatically

selected and combined to help learning a new class in the

most effective manner.
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