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Abstract

The recent development of commodity 360◦ cameras

have enabled a single video to capture an entire scene,

which endows promising potentials in surveillance scenar-

ios. However, research in omnidirectional video analysis

has lagged behind the hardware advances. In this work, we

address the important problem of action recognition in top-

view 360◦ videos. Due to the wide filed-of-view, 360◦ videos

usually capture multiple people performing actions at the

same time. Furthermore, the appearance of people are de-

formed. The proposed framework first transforms top-view

omnidirectional videos into panoramic videos using a cali-

bration free method. Then spatial-temporal features are ex-

tracted using region-based 3D CNNs for action recognition.

We propose a weakly-supervised method based on multi-

instance multi-label learning, which trains the model to rec-

ognize and localize multiple actions in a video using only

video-level action labels as supervision. We perform ex-

periments to quantitatively validate the efficacy of the pro-

posed method over state-of-the-art baselines and variants

of our model, and qualitatively demonstrate action local-

ization results. To enable research in this direction, we in-

troduce the 360Action dataset. It is the first omnidirectional

video dataset for multi-person action recognition with a di-

verse set of scenes, actors and actions. The dataset is avail-

able at https://github.com/ryukenzen/360action.

1. Introduction

Omnidirectional cameras can monitor a vast scene with

a small budget. Recently, commodity omnidirectional cam-

eras such as Samsung Gear 360 and Kodak PixPro SP360

have been developed, which can capture high-quality 4K

videos. A single top-view omnidirectional camera covers

the same area as multiple conventional cameras, making it

a preferable device in surveillance scenarios. Besides being

cost-efficient and easier to install, an omnidirectional cam-

*This work is mainly completed during Junnan Li’s period of internship

at NEC Corporation

era requires only one algorithm to analyze the entire scene,

which avoids the inconvenience of synchronization and co-

ordination among multiple conventional cameras, and re-

duces security risks of privacy attack.

Despite the huge potential of omnidirectional cameras

for video surveillance, 360◦ video analysis has received

limited attention. In this paper, we address the important

problem of action recognition in 360◦ videos. There are

two challenges arising from 360◦ videos that make state-of-

the-art deep network based action recognition algorithms

ineffective. First, the appearance of people are deformed.

Specifically, people would be rotated at varying angles, thus

making a deep network pretrained on standard perspective

videos unable to extract useful features. In this paper, we

propose a method to transform an omnidirectional video

into a panoramic video where people stand upright. Our

method is calibration-free, easy to implement, and does not

require any training.

The wide field-of-view (FoV) of omnidirectional cam-

eras results in the second challenge for action recognition.

In a practical scenario where the camera is installed at a

place with large pedestrian volume, the videos are likely to

capture many people performing actions at the same time.

Since it is computational intensive to analyze each person

individually, an efficient method should be able to simul-

taneously recognize actions for multiple people. Further-

more, from the perspective of curating training data, it is

both expensive and time-consuming to extensively annotate

each person’s position (i.e. bounding box) and action. On

the other hand, it is much easier to acquire annotation only

for the video-level action labels without linking each action

to a specific person.

In this work, we propose a weakly-supervised method

for multi-person action recognition in high-resolution

videos. Our model is weakly-supervised in the sense that

it is trained using only video-level action labels. We for-

mulate the problem as multi-instance multi-label (MIML)

learning, and exploit two intuitions to facilitate the design

of our framework: (1) only a fraction of regions in the video

are informative for a certain action, and (2) one person can
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only perform one action at a time.

Our key contributions can be summarized as follows:

• We propose a novel framework for multi-person action

recognition in top-view omnidirectional videos. The first

step of our framework addresses people’s rotational de-

formation by using a calibration-free method to transform

omnidirectional videos into panaromic videos.

• The second step of our framework achieves multi-person

action recognition with only video-level labels as supervi-

sion. We propose region-based 3D CNN to extract infor-

mative spatial-temporal features, and divide the spatial-

temporal features into multiple instances for multi-label

learning. Our weakly-supervised model can learn to not

only recognize but also localize each action in the video.

• We introduce 360Action, the first omnidirectional video

dataset for action recognition. Our dataset contains high-

resolution videos recorded in diverse scenes. 360Action

paves the way for future research in omnidirectional video

analysis.

• We perform multi-person action recognition experiments

on 360Action dataset. We quantitatively validate the ef-

ficacy of the proposed method, and qualitatively demon-

strate action localization results. Furthermore, we con-

duct ablation study to analyze several model design

choices.

2. Related Work

2.1. Action Recognition

Action recognition is a long-standing problem in com-

puter vision and has been extensively studied. Recent ap-

proaches based on deep networks trained using large-scale

video datasets have achieved great progress [20]. One line

of approaches use two-stream Convolutional Neural Net-

works (CNNs) to process RGB and optical flow frames as

appearance and motion information, respectively [27, 31, 8,

10, 9]. Another line of approaches focus on CNNs with 3D

convolutional kernels [15, 30, 4]. 3D CNNs can effectively

extract spatial-temporal features directly from videos. Very

recently, Hara et al. [11, 12] trained deep 3D CNNs using

the large-scale Kinetics dataset [16], and achieve state-of-

the-art action recognition performance on multiple bench-

marks. In this work, we use 3D CNNs as our backbone

architecture for spatial-temporal feature extraction.

2.2. Omnidirectional Video Analysis

Due to the effectiveness of omnidirectional cameras for

video surveillance, researcher have studied omnidirectional

pedestrian detection, where the main challenge is pedes-

trian’s rotational deformation. Some works [25, 17] pro-

pose to first transform omnidirectional images into per-

spective images and then apply standard pedestrian detec-

tors. However, the transformation relies heavily on cali-

brated camera parameters, which requires user-interaction.

Other works [29, 22] train orientation-aware networks using

pedestrian images with synthetic rotation. However, such

training introduces large computational cost and the trained

network is biased towards the data used. In this paper, we

propose a method to transform omnidirectional videos into

panoramic videos where people stand upright. Our method

does not require camera calibration nor training.

Unlike conventional perspective videos, only a limited

amount of work has studied action recognition in omni-

directional videos [5, 28, 1]. Previous methods use con-

strained data and have limited performance. Our work is the

first to exploit the representation power of deep networks for

multi-person action recognition in 360◦ videos. We also in-

troduce a new benchmark dataset to enable future research

in this direction.

Besides the video domain, 360◦ data has also been ex-

ploited to learn visual representations in a self-supervised

manner [18] , which achieves improved performance on

many vision tasks.

2.3. Multiple Instance Learning

Multiple instance learning (MIL) is first introduced by

Dietterich et al. [7] for drug activity prediction. In MIL

framework, each example consists of a bag of instances, and

only the bag-level label is available. Recently, researchers

have incorporated deep networks into the MIL framework

for weakly-supervised image classification [32], object de-

tection [6, 14], co-saliency detection [34], social relation-

ship recognition [19], and image segmentation [23].

Multi-instance multi-label learning is a variant of MIL

where an example with multiple instances is also associated

with multiple labels [36, 37]. In our problem, we have mul-

tiple regions as instances from a video, and only the video-

level action labels are available as weak supervision.

3. Omnidirectional to Panoramic

To address the rotational deformation of people in om-

nidirectional videos, we introduce a method to transform

a top-view omnidirectional video into a panoramic one, so

that CNNs can be used for feature extraction. Our method is

calibration free. It does not require access to camera param-

eters or the configuration of the camera, therefore is more

applicable in practical scenarios. Next we delineate the de-

tails.

First, the dimensions of the panorama have a propor-

tional relationship with the FoVs of the camera:

h

w
=

VFoV

2× HFoV
, (1)

where w and h are the width and height of the panorama, re-

spectively. HFoV is the horizontal field-of-view (i.e., 360◦)
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Figure 1: (a) We locate the center (yellow) as the point closest to all spine lines (lines that are approximately perpendicular to the ground).

(b&c) We establish a mapping from any pixel (xp, yp) in the panoramic frame to a pixel (xf , yf ) in the fisheye frame.

of the fisheye camera and VFoV is the vertical field-of-view

(i.e., 235◦). In this work we set h = 800, which leads to

w = 2451 according to the above equation.

Our method exploits this observation: in an omnidirec-

tional frame captured by a top-view fisheye camera, straight

lines that are perpendicular to the ground would all inter-

sect at a single point, which we refer to as the center c. In

order to locate its pixel coordinate (xc, yc), we detect the

spines of people standing upright and use the spines to ap-

proximately represent lines perpendicular to the ground. As

shown in Figure 1a, we use Mask-RCNN [13] to detect two

keypoints for each person: mid-shoulder and mid-hip. Then

we connect the two keypoints to acquire the spine for a per-

son, represented by the line kix + y + zi = 0. Note that

we rotate the frame by {0◦, 90◦, 180◦, 270◦} and repeat the

spine detection, so that people at different orientations can

be utilized.

Having detected K spine lines, we find c as the point

with the smallest total distance w.r.t all lines:

(xc, yc) = argmin
(x,y)

K
∑

i

|kix+ y + zi|
√

k2i + 1
(2)

Note that we can compute (xc, yc) for multiple frames and

average the coordinates for a more accurate center location.

Next, we need to find a mapping from a pixel p =
(xp, yp) in the panorama to its corresponding pixel f =
(xf , yf ) in the fisheye frame. In the fisheye frame (see Fig-

ure 1b), we denote the distance between c and its furthest

frame boundary as r, and the distance between f and c as

rf . A user-defined angle (φ) determines the blue starting

line from which we unwrap the fisheye frame. θ denotes

the angle between the blue line and the green line. We can

establish a mapping from (xp, yp) to (θ, rf ) as

xp

w
=

θ

360
,

h− yp

h
=

rf

r
(3)

Then we can map the polar coordinate (θ, rf ) to the Carte-

sian coordinate (xf , yf ) with

xf − xc

rf
= cos(φ− θ),

yc − yf

rf
= sin(φ− θ) (4)

Thus, we have successfully established the mapping

(xp, yp) → (θ, rf ) → (xf , yf ). Note that if the corre-

sponding f for a p is outside the fisheye frame, we assign

black color to p.

4. Multi-person Action Recognition

Given a high-resolution panoramic video containing

multiple people, we propose a method to recognize all ac-

tions in the video with one forward pass. Our method

is weakly-supervised, where only video-level action labels

are available during training. An overview of the pro-

posed framework is shown in Figure 2. It consists of

two steps: spatial-temporal feature extraction and multi-

instance multi-label learning. Next we explain our method

in details.

4.1. Region­based 3D CNN

Deep 3D CNNs trained on large-scale video datasets can

learn representative spatial-temporal features [12]. There-

fore, we utilize 3D ResNet-34 [11] pretrained on Kinet-

ics [16] to extract features for each 16-frame clip. Previous

methods on action recognition normally resize the videos

to heights of 240 pixels. However, since our videos have a

much wider FoV and higher resolution than conventional

videos, such resizing would make the people extremely

small and the actions unrecognizable. Therefore, we use

the original video with size 800×2451 as input. The result-

ing convolutional feature map from the conv5 x layer has a

spatial size of 25× 77.

A significant portion of the video contains only back-

ground and does not provide useful information for the ac-
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Figure 2: Overview of the proposed action recognition framework. We use 3D ResNet to extract a convolutional feature map for a input

video clip. Uninformative features are set as zeros by applying a binary mask calculated with person detection. The masked convolutional

feature map is used for multi-instance multi-label learning.

512
512

instance

avg. pool

1

1𝑘
25

instance

fc

𝒔𝒊
LSE

𝒔
Sigmoid

Running:            

Eating:

Playing phone:                

…… 

0.9

0.2

0.8

Running:            

Eating:

Playing phone:                

…… 

1

0

1

Ground Truth

ℒ𝐛𝐜𝐞
𝒑𝒊 ℒ𝐫𝐞𝐠Sigmoid

Figure 3: The proposed Multi-instance Multi-label Learning (MIML) method. The masked convolutional feature map is divided into

multiple instances. Each instance outputs a set of scores si for the possible actions. All instance-level scores are then aggregated with the

Log-Sum-Exp (LSE) function. We add a regularization term (Lreg) to the cross entropy loss (Lbce), which penalizes the model if a single

instance outputs high scores for multiple actions.

tions. We would like to discard those uninformative and

potentially misleading features. To this end, we apply a per-

son detector (i.e., Mask-RCNN [13]) to acquire the bound-

ing boxes for all people in each frame (examples are pro-

vided in the supplementary material). Then we max-pool

the bounding boxes across all 16 frames in a clip to get a

binary mask. This mask is robust to false negative detec-

tion in certain frames because the person can be detected

in other frames within the same clip. We resize the mask to

the same width and height as the convolutional feature map,

and multiply the feature map with the mask so that only fea-

tures in the masked region are preserved while others are set

as zero. The masked spatial-temporal features are used for

learning actions.

4.2. Multi­instance Multi­label Learning

As shown in Figure 3, given a masked convolutional

feature map, we split it into N blocks where each block

has width k (features are zero-padded). We refer to each

block as an instance i, and apply spatial average pooling

on each instance to acquire a feature of size 512 × 1 × 1.

Each instance-level feature is then flattened and processed

by a fully-connected (fc) layer to generate a set of scores

si = {sai }, ∀a ∈ C for the set of action classes C.

For a ground-truth action a, an obvious way to aggre-

gate its instance-level scores is to take the average across

all instances:

sa =
1

N

N
∑

i

sai (5)

However, this would assign the same weights to all in-

stances, even the ones that are not relevant to the action.

In fact, only one or a few instances are responsible for the

occurrence of a. Another aggregation function is the max

function:

sa = max
i

sai (6)

This would consider only one instance to be responsible

for the occurrence of the action, neglecting the case where

multiple people from different instances can perform the

same action a.

To address this limitation, we use a smooth version of
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Stadium Yard Stadium Gate Carpark Night Carpark Day Lobby

Train Station Gate Train Station Platform Yard 1 Convenience StoreYard 2

Figure 4: Sample frames of the 10 diverse scenes in 360Action dataset. Each video captures multiple people performing actions.

the max function, called Log-Sum-Exp (LSE) [3]:

sa =
1

r
log[

1

N

N
∑

i

exp(rsai )] (7)

We can use r to control how smooth the function is.

Larger r would have a similar affect to max and consider

the most important instance, whereas smaller r would con-

sider other less important instances. In our experiment we

set r = 0.8 (see Section 6.2 for ablation study on hyper-

parameters).

The aggregated scores are then scaled to [0, 1] with the

sigmoid function:

pa =
1

1 + e−sa
(8)

During training, the label ya for an action a takes the

value 1 if the action exists in the video and 0 otherwise. We

train our model to minimize the binary cross-entropy loss:

Lbce = −
∑

a

(

ya log(pa) + (1− ya) log(1− pa)
)

(9)

Sparsity Regularization. Since one person can only per-

form one action at a time, we propose a regularization term

which penalizes the model if a single instance outputs high

scores for multiple actions. To this end, we first apply sig-

moid function to scale each instance’s score sai to [0, 1]:

pai =
1

1 + e−sa
i

(10)

Then, the regularization term is defined as:

Lreg =
∑

i

∑

a p
a
i −maxa p

a
i

maxa pai
(11)

Minimizing Lreg would encourage each instance to out-

put a high score only for the action that it is most confident

about.

During training, The total loss to minimize is:

L = Lbce + αLreg, (12)

where α controls the strength of regularization and is set as

0.001 in our experiment (value determined by validation).

4.3. Action Localization

After training the 3D CNN following the proposed

method, we can localize the predicted actions by finding the

areas in the convolutional feature map that are relevant to

certain predictions. We exploit Grad-CAM [26] for weakly-

supervised action localization, which work as follows.

Given a test video clip, the trained model outputs a set

of action scores {pa}, ∀a ∈ C. For each predicted action a

with pa > 0.5, we apply back-propagation to calculate the

gradient of pa with respect to the k-th feature map Ak of

the last convolutional layer (conv5 x), i.e., φpa

φAk . The gradi-

ents are global-average-pooled to obtain a weight αa
k, which

captures the importance of Ak for action a:

αa
k =

1

Z

∑

i

∑

j

φpa

φAk
ij

(13)

The convolutional feature maps are then weighted com-

bined to obtain a heatmap of the same size as Ak (i.e., 25×
77 for 3D ResNet-34):

H = ReLU(
∑

k

αa
kA

k) (14)
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High values at certain positions in the heatmap indicate

positive influence of that area to the action of interest. We

resize H to the same size as the panoramic video frames

(i.e., 800×2451) to visualize the action localization results.

Examples are shown in Figure 7.

5. 360Action Dataset

In this section, we introduce 360Action, the first omni-

directional video dataset for action recognition. Different

from conventional action recognition datasets, 360Action

contains 360◦ videos which capture multiple person per-

forming multiple actions at the same time. The dataset con-

tains 784 diverse videos, recorded using a state-of-the-art

omnidirectional camera, Kodak PixPro SP360 4K, which

has a horizontal FoV of 360◦ and a vertical FoV of 235◦.

All videos have a high resolution of 2880× 2880. Next we

delineate the details of our dataset.

Scenes. 360Action consists of videos from 10 di-

verse scenes including 2 indoors scenes (lobby, convenience

store) and 8 outdoor scenes (stadium yard, stadium gate,

carpark night, carpark day, train station gate, train station

platform, yard 1 and yard 2). Example frames from each

scene are shown in Figure 4. Different scenes have dif-

ferent environments (e.g. train station platform has moving

trains in the background whereas carpark has cars in the

background) and different lighting conditions (e.g. daytime

sunny, daytime cloudy, indoor lighting, etc.). The diversity

of scenes puts high requirement on the algorithm to be ro-

bust to different conditions.

Subjects. We hired 80 different subjects for video

recording. 40 subjects are male and 40 subjects are female.

The ages of the subjects range from 10 to 40 years old. Each

subject is assigned a consistent ID number across all videos.

We split subjects with IDs 1-60 into training set, and sub-

jects with IDs 61-80 into test set.

Actions. The dataset contains 19 classes of daily ac-

tions, including 15 single-person actions (eating, wearing

jacket, walking, waving, etc.) and 4 interactions (pushing,

handshaking, taking something, giving something). During

recording, we assign each subject a scripted set of actions to

perform. Each subject performs each action at least once in

a scene. In each video, multiple subjects perform multiple

actions concurrently. The maximum number of concurrent

actions in a video is 7. On average, each video contains 4

concurrent actions.

6. Experiment

6.1. Implementation Details

Our model is trained using stochastic gradient descent

(SGD) with a momentum of 0.9. We use a batch size of

32 clips and a learning rate of 0.01. The learning rate is

decayed by half every 10 epochs, and the model is trained

Table 1: Comparison with state-of-the-art methods for weakly-

supervised multi-person action recognition on 360Action dataset.

Method mAP (%)

Collective [2] 61.27

3D ResNet [11] 61.95

R-C3D [33] 58.74

MiCT [35] 62.18

Ours 70.12

for 50 epochs in total. All hyper-parameters are determined

via cross-validation.

6.2. Action Recognition

Comparison with state-of-the-art-methods. First, we

compare the proposed model with multiple state-of-the-art

action recognition methods [2, 33, 11, 35]. We modify these

methods for our task of weakly-supervised multi-person ac-

tion recognition. Specifically, we apply multi-label classi-

fication loss for all baselines. We also remove the detec-

tion loss in [2] because we do not assume to have detec-

tion ground-truth. The comparison results are shown in Ta-

ble 1. We report the mean average precision (mAP) across

all classes, which is the standard evaluation metric that takes

both precision and recall into account. Our MIML-based

method significantly outperforms the baselines due to its

unique ability to discover associations between instances

and actions.

Ablation study. Next, we conduct ablation study by com-

paring the proposed model with its multiple variants. For

each baseline, we remove one component from the pro-

posed model while keeping others components unchanged,

so that we can examine the effect of each proposed compo-

nent for weakly-supervised multi-person action recognition.

The variants are delineated as follows.

• Without mask: we do not use the binary region mask (see

Section 4.1) to filter out useless information. In this case

the MIML module receives a noisy input.

• Avg-pool: we do not use the proposed MIML module

(see Section 4.2) to acquire the action scores. Instead, we

apply average pooling on the masked feature map from

conv5 x layer, and use a fully-connected layer to trans-

form the avg-pooled feature into action scores.

• Max-pool: we do not use the proposed MIML module to

acquire the action scores. Instead, we apply max pooling

on the masked feature map from conv5 x layer, and use a

fully-connected layer to transform the max-pooled feature

into action scores.

• MIML-avg: we use the average function (see Eqn. 5)

rather than LSE to aggregate instance-level action scores.
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Table 2: Per-class average precision of the 19 actions.
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Max-pool 87.6 77.2 82.5 55.6 40.6 59.0 53.8 45.3 50.7 49.7 74.2 59.9 48.4 98.1 88.0 62.8 85.4 56.0 69.6

Ours 89.8 93.8 81.2 65.4 51.4 69.4 67.0 44.9 48.0 39.6 77.9 79.6 48.5 97.5 95.4 63.7 86.3 56.7 73.5

Table 3: Comparison with multiple variants of the proposed

method on 360Action dataset. The results validate the efficacy

of each proposed component (i.e., region mask, MIML, sparsity

regularization).

Method mAP (%)

Without mask 67.52

Avg-pool 64.73

Max-pool 65.50

MIML-avg 68.59

MIML-max 69.07

MIML-attention 69.46

Without Lreg 69.25

Ours (MIML-LSE) 70.12

• MIML-max: we use the max function (see Eqn. 6) rather

than LSE to aggregate instance-level action scores.

• MIML-attention: we use the attention pooling

method [21] to aggregate instance-level action scores.

For each instance, a scalar attention weight is generated

by feeding its feature to a fully-connected layer. The

attention weights across all instances are than normalized

using a Softmax function.

• Without Lreg: we remove the regularization term that

forces sparsity in instance-level scores (see Eqn. 12) .

Table 3 shows the comparison results. The proposed

MIML framework achieves a significant improvement of

+4.52% over the standard feature max-pooling method.

Comparing the four instance-level score aggregation meth-

ods, LSE performs better than attention pooling, max and

average. Using region mask improves the performance by

+2.5%. The proposed sparsity regularization can further

improve the performance by +0.87%.

In Table 2, we show the per-class average precision

(AP) for our model and the max-pool baseline. Generally

speaking, actions that involves subtle movements (e.g., play

phone, eat snack) have lower APs, whereas actions with

larger motions (e.g., run, wave hand) are more easily rec-

ognized by the model.
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68.6

68.8
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69.6

69.8
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Figure 5: The effect of k (i.e., the width of each instance in the

conv5 x feature map) on action recognition performance.
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Figure 6: The effect of r (which controls how smooth the LSE

function is) on action recognition performance.

Hyper-parameters. Here we examine the effects of two

important hyper-parameters in our MIML framework: k,

the width of each instance in the conv5 x feature map; and

r, the parameter that controls how smooth the LSE aggre-

gation function is (see Eqn. 7).

Figure 5 shows the result of our method using different

values of k. Larger k would result in fewer instances and

more actions per instance, whereas smaller k leads to more

instances with many instances containing no action. k = 8
achieves the best performance in our experiment.

Figure 6 shows the result of our method using different

values of r. Larger r would make the LSE function more

similar to max whereas smaller r would make it more simi-

lar to average. In our experiment r = 0.8 achieves the best
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Figure 7: Qualitative results for weakly-supervised action localization. We employ GradCAM [26] to generate heatmaps that highlight

the important areas for predicting certain actions. Our model trained with only video-level labels learns to not only predict the multiple

actions but also coarsely localize each of its predicted actions.

Table 4: Inference speed analysis using different models for

spatial-temporal feature extraction and person detection.

Feature Extractor Person Detector FPS mAP (%)

3D ResNet-18 YOLO 6.28 66.17

3D ResNet-34 Mask-RCNN 1.14 70.12

performance.

Speed Analysis. During training, we do not finetune the 3D

CNN and only perform feature extraction once for the entire

training set. Therefore, the training process can be com-

pleted within 2 hours using a single NVIDIA V100 GPU.

However, the inference speed is limited by the high reso-

lution of the input videos. We perform an inference speed

analysis in Table 4. By using a shallower feature extrac-

tor (i.e. 3D ResNet-18) and a single-stage person detector

(i.e. YOLO [24]), we can achieve a much faster inference

speed of 6.28 FPS at the cost of lower recognition perfor-

mance.

6.3. Action Localization

We follow the method in Section 4.3 to calculated

heatmaps for our model’s predicted actions. In Figure 7, we

show qualitative results of the heatmaps overlaid on cropped

video frames. Despite being trained using only action labels

without any location information about where each action

takes place, the proposed model can learn to associate its

predicted actions to specific people in the input videos, thus

achieving weakly-supervised action localization.

7. Conclusion

To conclude, this paper aims to fill the gap between the

rapid hardware development of 360◦ cameras and the lim-

ited progress in omnidirectional video analysis. We rec-

ognize the significant potential of 360◦ cameras in surveil-

lance scenarios, and address the important task of action

recognition in top-view omnidirectional videos. In face

of the new challenges brought by the deformed and high-

resolution videos, we propose a framework that achieves

multi-person action recognition in one forward pass. To

mitigate the difficulty of acquiring dense annotations, our

method learns to recognize and localize actions in a weakly

supervised manner where only video-level labels are re-

quired in training. In addition, to facilitate research in this

direction, we curated 360Action, the first 360◦ video dataset

with a diverse set of scenes and actors. We hope to see fu-

ture research in omnidirectional videos to achieve the same

level of success as in conventional videos.
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