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Abstract—Object category localization is a challenging problem in computer vision. Standard supervised training requires bounding

box annotations of object instances. This time-consuming annotation process is sidestepped in weakly supervised learning. In this

case, the supervised information is restricted to binary labels that indicate the absence/presence of object instances in the image,

without their locations. We follow a multiple-instance learning approach that iteratively trains the detector and infers the object locations

in the positive training images. Our main contribution is a multi-fold multiple instance learning procedure, which prevents training from

prematurely locking onto erroneous object locations. This procedure is particularly important when using high-dimensional

representations, such as Fisher vectors and convolutional neural network features. We also propose a window refinement method,

which improves the localization accuracy by incorporating an objectness prior. We present a detailed experimental evaluation using

the PASCALVOC 2007 dataset, which verifies the effectiveness of our approach.

Index Terms—Weakly supervised learning, object detection

Ç

1 INTRODUCTION

OVER the last decade significant progress has been made
in object category localization, as witnessed by the

PASCAL VOC challenges [20]. Training state-of-the-art
object detectors, however, requires bounding box annota-
tions of object instances, which are costly to acquire.

Weakly supervised learning (WSL) refers to methods that
rely on training data with incomplete ground-truth infor-
mation to learn recognition models. For object detection,
WSL from image-wide labels that indicate the presence of
instances of a category in images has recently been inten-
sively studied as a way to remove the need for bounding
box annotations, see e.g., [4], [8], [12], [15], [17], [35], [37],
[38], [40], [43], [45], [46], [47], [53]. Such methods can poten-
tially leverage the large amount of tagged images on the
internet as a data source to train object detectors. We give
an overview of the most relevant related work in Section 2.

Other examples of WSL include learning face recognition
models from image captions [6], or subtitle and script
information [19]. Yet another example is learning semantic
segmentation models from image-wide category labels [51].
Most WSL approaches are based on latent variable models
to account for the missing ground-truth information. Multi-
ple instance learning (MIL) [18] handles cases where the
weak supervision indicates that at least one positive instance
is present in a set of examples. More advanced inference and
learning methods are used in cases where the latent variable
structure is more complex, see e.g., [17], [40], [51]. Besides

weakly supervised training, mixed fully and weakly super-
vised [9], active [52], and semi-supervised [40] learning and
unsupervised object discovery [11] methods have also been
explored to reduce the amount of labeled training data for
object detector training. In active learning bounding box
annotations are used, but requested only for images where
the annotation is expected to be most effective. Semi-super-
vised learning, on the other hand, leverages unlabeled
images by automatically detecting objects in them, and use
those to better model the object appearance variations.

In this paper we consider WSL to learn object detectors
from image-wide labels. We follow an MIL approach that
interleaves training of the detector with re-localization of
object instances on the positive training images. Following
recent state-of-the-art work in fully supervised detection
[13], [22], [50], we represent (tentative) detection windows
using Fisher vectors (FVs) [39] and convolutional neural net-
work (CNN) features [29]. As we explain in Section 3, when
used in an MIL framework, the high-dimensionality of the
window features makes MIL quickly convergence to poor
local optima after initialization. Our main contribution is a
multi-fold training procedure for MIL, which avoids this
rapid convergence to poor local optima. A second novelty
of our approach is the use of a “contrastive” background
descriptor that is defined as the difference of a descriptor of
the object window and a descriptor of the remaining image
area. The score for this descriptor of a linear classifier can be
interpreted as the difference of scores for the foreground and
background. In this manner we direct the detector to learn
the difference between foreground and background appear-
ances. Finally, inspired from the objectness prior in [17], we
propose a window refinement method that improves the
weakly supervised localization accuracy by incorporating a
category-independent objectness measure.

We present a detailed evaluation using the VOC 2007
dataset in Section 4. The experimental results show that our
multi-fold MIL training improves performance for both FV
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and CNN features. We also show that WSL performance
can be further improved by combining the two descriptor
types and applying our window refinement method. The
evaluation shows that our system obtains state-of-the-art
results on VOC 2007. We also present results for VOC 2010
which was not yet used in previous work.

Part of the material presented here appeared in [14].
Besides a more detailed presentation and discussion of the
most recent related work, the current paper extends it in
several ways. We enhanced our WSL method by introduc-
ing a window refinement method. We also added additional
experiments using CNN features, and their combination
with FV features. Finally, we included experiments when
training in a mixed supervision setting, where part of the
images are weakly supervised and others are labeled with
full bounding-box annotations.

2 RELATED WORK

The majority of related work treats WSL for object detection
as a multiple instance learning [18] problem. Each image is
considered as a “bag” of examples given by tentative object
windows. Positive images are assumed to contain at least one
positive object instance window, while negative images only
contain negative windows. The object detector is then
obtained by alternating detector training, andusing the detec-
tor to select themost likely object instances in positive images.

In many MIL problems, e.g., such as those for weakly
supervised face recognition [6], [19], the number of exam-
ples per bag is limited to a few dozen at most. In contrast,
there is a vast number of examples per bag in the case of
object detector training since the number of possible object
bounding boxes is quadratic in the number of image pixels.
Candidate window generation methods, e.g., [1], [24], [49],
[56], can be used to make MIL approaches to WSL for object
localization manageable, and make it possible to use power-
ful and computationally expensive object models.

Although candidate window generation methods can
significantly reduce the search space per image, the selec-
tion of windows across a large number of images is inher-
ently a challenging problem, where an iterative WSL
method can typically find only a local optimum depending
on the initial windows. Therefore, in this section, we first
overview the initialization methods proposed in the litera-
ture, and then summarize the iterative WSL approaches.

2.1 Initialization Methods

Anumber of different strategies to initialize theMIL detector
training have been proposed in the literature. A simple strat-
egy, e.g., taken in [28], [35], [38], is to initialize by taking large
windows in positive images that (nearly) cover the entire
image. This strategy exploits the inclusion structure of the
MIL problem for object detection. That is: although large
windows may contain a significant amount of background
features, they are likely to include positive object instances.

Another strategy is to utilize a class-independent saliency
measure that aims to predict whether a given image region
belongs to an object or not. For example, Deselaers et al. [17]
generate candidate windows using the objectness method
[2] and assign per-window weights using a saliency model
trained on a small set of non-target classes. Siva et al. [44]

instead estimate an unsupervised patch-level saliency map
for a given image by measuring the average similarity of
each patch to the other patches in a retrieved set of similar
images. In each image, an initial window is found by sam-
pling from the corresponding saliency map.

Alternatively, a class-specific initialization method can
be used. For example, Chum and Zisserman [12] select the
visual words that predominantly appear in the positive
training images and initialize WSL by finding the bounding
box of these visual words in each image. Siva and Xiang [45]
propose to initially select one of the candidate windows
sampled using the objectness method at each image such
that an objective function based on intra-class and inter-
class pairwise similarities is maximized. However, this for-
mulation leads to a difficult combinatorial optimization
problem. Siva et al. [43] propose a simplified approach
where a candidate window is selected for a given image
such that the distance from the selected window to its near-
est neighbor among windows from negative images is maxi-
mal. Relying only on negative windows not only avoids the
difficult combinatorial optimization problem, but also has
the advantage that their labels are certain, and there is a
larger number of negative windows available which makes
the pairwise comparisons more robust.

Shi et al. [40] propose to estimate a per-patch class
distribution by using an extended version of the Latent
Dirichlet Allocation (LDA) [10] topic model. Their approach
assigns object class labels across different object categories
concurrently, which allows to benefit from explaining-away
effects, i.e., an image region cannot be identified as an
instance for multiple categories. The initial windows are
then localized by sampling from the saliency maps.

Song et al. [46] propose a graph-based initialization
method. The main idea is to select a subset of the candidate
windows such that the nearest neighbors of the selected
windows correspond to the candidate windows in the posi-
tive images, rather than the ones in the negative images.
The approach is formulated as a discriminative submodular
cover problem on the similarity graph of the windows. In a
follow-up work, Song et al. [47] extend this approach to find
multiple non-overlapping regions corresponding to object
parts. The initial object windows are then generated by find-
ing frequent part configurations and their bounding boxes.

2.2 Iterative Learning Methods

Once the initial windows are localized, typically an iterative
learning approach is employed in order to improve the ini-
tial localizations in the training images.

One of the early examples of WSL for object detector
training is proposed by Crandall and Huttenlocher [15].
In their work, object and part locations are treated as
latent variables in a probabilistic model. These variables
are automatically inferred and utilized during training
using an Expectation Maximization (EM) algorithm. The
main focus of their work, however, is on training a part-
based object detector without using manual part annota-
tions, rather than training in terms of image labels. Their
approach is evaluated on datasets containing images with
uncluttered backgrounds and little variance in terms of
object locations, which is an unrealistic testbed for WSL
of object detectors.

190 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 39, NO. 1, JANUARY 2017



Several WSL methods aim to localize objects via selecting
a subset of candidate windows based on pairwise similari-
ties. For example, Kim and Torralba [28] use a link analysis
based clustering approach. Chum and Zisserman [12] itera-
tively select windows and update the similarity measure
that is used to compare windows. The window selection is
done by updating one image at a time such that the average
pairwise similarity across the positive images is maximized.
The similarity measure, which is defined in terms of bag-of-
word (BoW) descriptors [16], is updated by selecting the
visual words that predominantly appear in the selected
windows rather than the negative images.

Deselaers et al. [17] propose a CRF-based model that
jointly infers the object hypotheses across all positive train-
ing images, by exploiting a fully-connected graphical model
that encourages visual similarity across all selected object
hypotheses. Unlike the methods of [28] and [12], the CRF-
based model additionally utilize a unary potential function
that scores candidate windows individually based on their
window descriptors and objectness scores. The parameters
of the pairwise and unary potential functions are updated,
and the positive windows are selected in an iterative fash-
ion. Prest et al. [37] extend these ideas to weakly supervised
detector training from videos by extracting candidate spa-
tio-temporal tubes based on motion cues and by defining
WSL potential functions over tubes instead of windows.

Our window refinement method is inspired from the use
of an objectness model as a class-independent prior in [17].
While Deselaers et al. [17] use the objectness prior in all
training iterations, we update the coordinates of the top-
scoring final localizations, using the local greedy search pro-
cedure from [56]. In addition, instead of using the objectness
model in [2], we use the edge-driven objectness measure
[56], which evalutes the alignment between each window
and the edges around it.

Most recent work is predominantly based on iteratively
selecting the highest scoring detections as the positive train-
ing examples and training the detection models. We refer to
this approach as standard MIL. Using this approach, an off-
the-shelf detector can be trained in a weakly supervised set-
ting. For example, Nguyen et al. [34] and Blaschko et al. [9]
train the branch-and-bound localization [31] based detectors
over BoW descriptors in this manner. Blaschko et al. also
investigate the use of object-center annotations as an alter-
native WSL setting.

The DPMmodel [21] has been utilized with standardMIL
based training approaches by a number of other WSL
approaches, see e.g., [35], [40], [43], [44], [45]. The majority of
the works use the standard DPM training procedure and dif-
fer in terms of their initialization procedures. One exception
is that Siva and Xiang [45] propose a method to detect when
the iterative training procedure drifts to background regions.
In addition, Pandey and Lazebnik [35] carefully study how
to tune DPM training for WSL purposes. They propose to
restrict each re-localization stage such that the bounding
boxes between two iterations must meet a minimum overlap
threshold, which avoids big fluctuations across the itera-
tions. Moreover, they propose a heuristic to automatically
cropwindowswith near-uniform backgrounds.

Russakovsky et al. [38] use a similar approach based on
Locality-constrained Linear Coding descriptors [54] over

the candidate windows generated using the Selective Search
method [49]. They use a background descriptor computed
over features outside the window, which helps to better
localize the objects as compared to only modeling the win-
dows themselves.

Song et al. [46] develop a smoothed version of the stan-
dard MIL approach using Nesterov’s smoothing technique
[33]. The main motivation is to increase robustness against
incorrectly selected windows, particularly in early itera-
tions, by training with multiple windows per positive
image. The candidate windows are generated using selec-
tive search [49] and the window descriptors are extracted
using the CNNmodel of [29].

Bilen et al. [8] propose an alternative smoothed version of
standard MIL. Instead of selecting the top scoring window
in a positive image, they propose to train over all windows
that are weighted by a soft-max function over the classifica-
tion scores. In addition, they utilize additional regulariza-
tion terms that aim to (i) enforce that positive training
windows and their horizontal mirrors score similarly and,
(ii) avoid obtaining high classification scores for multiple
classes for a single window. They also utilize selective
search candidate windows [49] and CNN features [29].

Recently, Wang et al. [53] propose a two-step method,
which first groups selective search candidate windows [49]
from the positive images of a class into visual clusters and
then chooses the most discriminative cluster of windows. In
the first step, the CNN features [29] are clustered using
probabilistic latent semantic analysis (PLSA) [25]. In the sec-
ond step, for each visual cluster, image descriptors are
extracted from the CNN-based window descriptors of the
windows associated with the cluster. Finally, one visual
cluster for each class is selected based on the image classifi-
cation performance of the corresponding image descriptors.

Our approach is most related to that of Russakovsky
et al. [38]. We also rely on the selective search windows [49],
and use a similar initialization strategy. A critical difference
from [38] and other WSL approaches based on iterative
detector training, however, is our multi-fold MIL training
procedure which we describe in the next section. Our multi-
fold MIL approach is also related to the work of Singh et al.
[42] on unsupervised vocabulary learning for image classifi-
cation. Starting from an unsupervised clustering of local
patches, they iteratively train SVM classifiers on a subset of
the data, and evaluate it on another set to update the train-
ing data from the second set.

We note that avoiding poor local optima in training of
models with non-convex objectives is a fundamental prob-
lem in machine learning, and there are many aspects of it.
For example, curriculum learning (CL) [5], which is a con-
ceptual framework, suggests that training can be improved
by initializing a model with easy examples, and then, grad-
ually utilizing more complex ones. Kumar et al. [30] pro-
pose a CL formulation for latent variable models by
considering the loss function as a measure of example dif-
ficulty, which excludes low-scoring examples in early
training iterations. Progressively increasing the latent
search space can also be interpreted as a CL approach to
avoid making unstable inferences in early iterations, see
e.g., [7], [38]. Although our work is related, our focus is
different in the sense that we target the problem of
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degenerate latent variable inference due to use of high-
dimensional descriptors.

3 WEAKLY SUPERVISED OBJECT LOCALIZATION

Below, we present our multi-fold MIL approach in Section
3.2 and window refinement method in Section 3.3, but first
briefly describe our FV and CNN based object appearance
descriptors.

3.1 Features and Detection Window Representation

In our experiments we rely on FV and CNN based represen-
tations. In either case, we use the selective search method of
Uijlings et al. [49]. It generates a limited set of around 1,500
candidate windows per image. This speeds-up detector
training and evaluation, while filtering out the most implau-
sible object locations.

The FV-based representation is based on our previous
work [13] for fully supervised detection. In particular, we
aggregate local SIFT descriptors into an FV representation
to which we apply ‘2 and power normalization [39]. We
concatenate the FV computed over the full detection win-
dow, and 16 FVs computed over the cells in a 4� 4 grid
over the window, inspired by the spatial pyramid represen-
tation of Lazebnik et al. [32]. Using PCA to project the SIFTs
to 64 dimensions, and a mixture of Gaussians (MoG) of 64
components, this yields a descriptor of 140,352 dimensions.
We reduce the memory footprint, and speed up our iterative
training procedure, by using the PQ and Blosc feature com-
pression [3], [26].

Similar to Russakovsky et al. [38], we add contextual
information from the part of the image not covered by the
window. Full-image descriptors, or image classification
scores, are commonly used for fully supervised object detec-
tion, see e.g., [13], [48]. For WSL, however, it is important to
use the complement of the object window rather than the
full image, to ensure that the context descriptor also
depends on the window location. This prevents learning
degenerate detection models, since otherwise the context
descriptor can be used to perfectly separate the training
images regardless of the object localization.

To enhance the effectiveness of the context descriptor we
propose a “contrastive” version, defined as the difference
between the background FV xxb and the 1� 1 foreground FV
xxf . Since we use linear classifiers, the contribution to the

window score of this descriptor, given by ww>ðxxb � xxfÞ, can
be decomposed as a sum of a foreground and a background

score: ww>xxb and �ww>xxf respectively. Because the fore-
ground and background descriptor have the same weight
vector, up to a sign flip, we effectively force features to
either score positively on the foreground and negatively on
the background, or vice-versa within the contrastive descrip-
tor. This prevents the detector to score the same features
positively on both the foreground and the background.

To ensure that we have enough SIFT descriptors for the
background FV, we filter the detection windows to respect
a margin of at least 4 percent from the image border, i.e. for
a 100� 100 pixel image, windows closer than four pixels to
the image border are suppressed. This filtering step
removes about half of the windows. We initialize the MIL
training with the window that covers the image, up to a 4

percent margin, so that all instances are captured by the ini-
tial windows.

We extract the CNN features using the CNN architecture
of Krizhevsky et al. [29]. We utilize the first seven layers of
the CNN model, which consists of five convolutional and
two fully-connected layers. The CNN model is pre-trained
on the ImageNet ILSVRC 2012 dataset using the Caffe
framework [27]. Following Girshick et al. [22], we crop and
resize the mean-subtracted regions corresponding to the
candidate windows to images of size 224� 224, as required
by the CNN model. Finally, we apply ‘2 normalization to
the resulting 4,096 dimensional descriptors.

An important advantage of the CNN features is that
some of the feature dimensions correspond to higher level
image structures, such as certain animal faces and bodies
[22], which can simplify the WSL problem. Our experimen-
tal results show that the CNN features perform better than
the FV features, but that they are complementary since best
performance is obtained when combining both features.

3.2 Weakly Supervised Object Detector Training

The dominant method for weakly supervised training
of object detectors is the standard MIL approach, which
is based on iterating between the training and the re-
localization stages, as described in Section 2.2. Note that
in this approach, the detector used for re-localization in
positive images is trained using positive samples that are
extracted from the very same images. Therefore, there is a
bias towards re-localizing on the same windows; in par-
ticular when high capacity classifiers are used which are
likely to separate the detector’s training data. For exam-
ple, when a nearest neighbor classifier is used the re-
localization will be degenerate and not move away from
its initialization, since the same window will be found as
its nearest neighbor.

The same phenomenon occurs when using powerful and
high-dimensional image representations to train linear clas-
sifiers. We illustrate this in Fig. 1, which shows the distribu-
tion of the window scores in a typical standard MIL
iteration. We observe that the windows used in SVM train-
ing score significantly higher than the other ones, including
those with a significant spatial overlap with the most recent

Fig. 1. Distribution of the window scores in the positive training images
after the fifth iteration of standard MIL training on VOC 2007 for FVs
(left) and CNNs (right). For each figure, the right-most curve corresponds
to the windows chosen in the most recent re-localization step and used
for training the detector. The curve in the middle corresponds to the other
windows that overlap more than 50 percent with the training windows.
Similarly, the left-most curve corresponds to the windows that overlap
less than 50 percent. Each curve is obtained by averaging all per-class
score distributions. The surrounding regions show the standard
deviation.
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training windows, especially when the high-dimensional
FV descriptors are used.

As a result, standardMIL typically results in degenerate re-
localization. This problem is related to the dimensionality of
the window descriptors. We illustrate this in Fig. 2, where we
show the distribution of inner products between the descrip-
tors of different windows. In Fig. 2a, we use randomwindow
pairs within and across images. In Fig. 2b, we use onlywithin-
image pairs, which aremore likely to be similar, and therefore
the histograms models are shifted slightly to larger values.
We show the distributions using both our 140,352 dimen-
sional FVs, 516 dimensional FVs obtained using four Gaus-
sians without spatial grid, and 4,096 dimensional CNN-based
descriptors.1 Unlike in the case of low-dimensional FVs or
CNN-based descriptors, almost all window descriptors are
near orthogonal in the high-dimensional FV case even when
we use within-image pairs only. Also, recall that the weight
vector of a standard linear SVM classifier can be written as a
linear combination of training samples, ww ¼

P
i aixxi. There-

fore, the training windows are likely to score significantly
higher than the other windows in positive images in the high-
dimensional case, resulting in degenerate re-localization
behavior. In Section 4, we verify this hypothesis experimen-
tally by comparing the localization behavior using the low-
dimensional versus the high-dimensional descriptors.

Note that increasing regularization weight in SVM train-
ing does not remedy this problem. The ‘2 regularization
term with weight � restricts the linear combination weights
such that jaij � 1=�. Therefore, although we can reduce the
influence of individual training samples via regularization,
the resulting classifier remains biased towards the training
windows since the classifier is a linear combination of the
window descriptors. In Section 4, we verify this hypothesis
by evaluating the regularization weight’s effect on the local-
ization performance.

To address this issue—without sacrificing the descriptor
dimensionality, which would limit its descriptive power—
we propose to train the detector using a multi-fold proce-
dure, reminiscent of cross-validation, within the MIL itera-
tions. We divide the positive training images into K disjoint
folds, and re-localize the images in each fold using a detec-
tor trained using windows from positive images in the other
folds. In this manner the re-localization detectors never
use training windows from the images to which they are
applied. Once re-localization is performed in all positive
training images, we train another detector using all selected
windows. This detector is used for hard-negative mining on
negative training images, and returned as the final detector.

We summarize our multi-fold MIL training procedure in
Algorithm 1. The standard MIL algorithm that does not use
multi-fold training does not execute steps 2(a) and 2(b), and
re-localizes based on the detector learned in step 2(c).

Algorithm 1.Multi-fold Weakly Supervised Training

1) Initialization: positive and negative examples are set to
entire images up to a 4% border

2) For iteration t ¼ 1 to T
a) Divide positive images randomly intoK folds
b) For k ¼ 1 toK

i) Train using positive examples in all folds but k, and all
negative examples

ii) Re-localize positives by selecting the top scoring win-
dow in each image of fold k using this detector

c) Train detector using re-localized positives and all
negatives

d) Add new negative windows by hard-negative mining
3) Return final detector and object windows in train data

The number of folds used in our multi-fold MIL train-
ing procedure should be set to strike a good trade-off
between two competing factors. On the one hand, using
more folds increases the number of training samples per
fold, and is therefore likely to improve re-localization per-
formance. On the other hand, using more folds increases
the computational cost. We experimentally analyze this
trade-off in Section 4.

3.3 Window Refinement

We now explain our window refinement method. It updates
the localizations obtained by the last multi-fold MIL itera-
tion. The final detector is, then, re-trained based on these
refinements.

An inherent difficulty for weakly supervised object local-
ization is that WSL labels only permit to determine the most
repeatable and discriminative patterns for each class. There-
fore, even though the windows found by WSL are likely to

Fig. 2. Distribution of inner products, scaled to the interval [�1 +1], of
pairs of 25,000 windows sampled from 250 images using our high-
dimensional FV (top), a low-dimensional FV (middle), and CNN features
(bottom). (a) uses all window pairs and (b) uses only within-image pairs,
which are more likely to be similar.

1. To make the histograms comparable, we make all descriptors zero
mean, before ‘2 normalization, and computing the inner products.
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overlap with target object instances, it can not be ensured
that they will delineate object boundaries.

To better take into account object boundaries, we use the
edge-driven objectness measure of Zitnick and Dollar [56].
Themain idea in [56] is to score a given window based on the
number of contours that are fully contained inside the win-
dow, with an increased weight on near-boundary edge pix-
els. Thus, windows that tightly enclose long contours are
scored highly, whereas those with predominantly straddling
contours are penalized. Additionally, in order to reduce the
effect of marginal misalignments, the coordinates of a given
window are updated using a greedy local search procedure
that aims to increase the objectness score. In [56], the object-
nessmeasure is used for generating object proposals. For this
purpose, a set of initial windows are first generated using a
sliding window mechanism, and then, updated and scored
using the local search procedure. The final windows are
obtained by applying a non-maxima suppression procedure.

We instead use the edge-driven objectness measure to
improve our WSL outputs. For this purpose, we combine
the objectness measure with the classification scores given
by multi-fold MIL. More specifically, we first utilize the
local search procedure in order to update and score the can-
didate detection windows based on the objectness measure,
without updating the classification scores. To make the clas-
sification and objectness scores comparable, we scale each
score channel to the range ½0; 1� for all windows in the posi-
tive training images. We, then, combine linearly the classifi-
cation and objectness scores with equal weights, and select
the top detection in each image with respect to this com-
bined score. In order to avoid selecting the windows irrele-
vant for the target class, but with a high objectness score,
we restrict the search space to the top-N windows per
image in terms of the classification score. While we use
N ¼ 10 in all our experiments, we have empirically
observed that the refinement method significantly improves
the localization results for N ranging from 1 to 50. The
improvement is comparable forN � 5.

In Fig. 3, we show two example images for the classes
horse and dog in the left column, together with the corre-
sponding edge maps in the right column. In these images,
the dashed (pink) boxes show the output of multi-fold MIL
training and the solid (yellow) boxes show the outputs of
the window refinement procedure. Even though the initial
windows are located on the object instances, they are evalu-
ated as incorrect due to the low overlap ratios with the
ground-truth ones. The edge maps show that many con-
tours, i.e., most object contours, straddle the initial window
boundaries. In contrast, the corrected windows have higher
percentages of fully contained contours, i.e., the contours
relevant for the objects.

The refined windows are likely to be better aligned with
object instances. Thus, their horizontal mirrors are more
reliable and can be used as additional training examples.
We evaluate the impact of window refinement and flipped
examples in the next section.

4 EXPERIMENTAL EVALUATION

In this section we present a detailed analysis and evaluation
of our weakly supervised localization approach.

4.1 Dataset and Evaluation Criteria

We use the PASCAL VOC 2007 and 2010 datasets [20] in our
experiments. Most of our experiments use the 2007 dataset,
which allows us to compare to previous work. To the best
of our knowledge, we are the first to report WSL perfor-
mance on the VOC 2010 dataset. Following [17], [35], [40],
during training we discard any images that only contain
object instances marked as “difficult” or “truncated”. Dur-
ing testing all images are included. We use linear SVM clas-
sifiers, and set the weight of the regularization term and the
class weighting to fixed values based on preliminary experi-
ments. We perform two hard-negative mining steps [21]
after each re-localization phase. Finally, while we run all
experiments using the same random seed, we have empiri-
cally verified that changing the seed does not affect the final
detection performance significantly.

Following [17], we assess performance using two meas-
ures. First, we evaluate the fraction of positive training
images in which we obtain correct localization (CorLoc). Sec-
ond, we measure the final object detection performance on
the test images using the standard protocol [20], average pre-
cision (AP) per class and mean AP (mAP) across all classes.
For both measures, we consider that a window is correct if
it has an intersection-over-union ratio of at least 50 percent
with a ground-truth object. Since CorLoc is not consistently
measured across studies due to changes in training sets, we
use CorLoc mainly as a diagnostic measure, and use AP to
compare to the state-of-the-art.

4.2 Multi-Fold MIL Training and Features

In our first experiment, we compare (a) standard MIL train-
ing, and (b) our multi-fold MIL algorithm with K ¼ 10

folds. Both are initialized from the full image up to the 4
percent boundary. We also consider the effectiveness of
background features for the FV representation. We test
three variants: (F) foreground only descriptor, (B) an FV
computed over the window background, and (C) our con-
trastive background descriptor. Finally, we compare the FV

Fig. 3. Illustration of our window refinement. Dashed boxes (pink) show
the localization before refinement, and the solid boxes (yellow) show the
result of the window refinement method. The images on the right show
the edge maps that are used to compute the objectness measure.
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representation to the CNN representation and the FV+CNN
combination (by means of concatenating the descriptors).
Together, this yields ten combinations of features and train-
ing algorithms. Table 1 presents results in terms of CorLoc
on the training set, and Table 2 presents results in terms of
AP on the test set.

From the results we see that, averaged over the classes,
multi-fold MIL outperforms standard MIL for all five tested
representations, and for both CorLoc and AP. Furthermore,
we see that the CorLoc differences across different FV
descriptors are rather small when using standard MIL train-
ing. This is due to the degenerate re-localization perfor-
mance with high-dimensional descriptors for standard MIL
training as discussed in Section 3.2; we will come back to
this point below. For multi-fold training, the CNN features
give better results than FV for 12 and 13 classes in terms of
CorLoc and AP, respectively. They also benefit significantly
from our multi-fold training procedure, although to a lesser
extent than the FV. This is due to the lower dimensionality
of the CNN features compared to the FV features.

While the CNN features give better performance overall
than FV, we observe that the FV+CNN feature combination

improves over the individual features in 13 of 20 classes in
terms of both CorLoc and AP scores using multi-fold MIL.
Importantly, we note that standard MIL over the combined
feature space performs poorly at 34.4 percent CorLoc and
22.0 percent mAP compared to 47.3 percent CorLoc and
27.4 percent mAP for multi-fold MIL.

Fig. 4 presents examples of re-localization using standard
and multi-fold MIL training. In all three cases, we observe
that standardMIL gets stuck with the windows found by the
first re-localization step. In contrast, multi-fold MIL is able to
progressively localize down to smaller image regions. In the
bicycle and motorbike examples, multi-fold MIL successfully
localizes the object instances. In the cat example, on the other
hand, while the window localized by standard MIL is cor-
rect, multi-fold MIL localizes the cat face, which has below
50 percent overlap with the object bounding box. The failure
example in Fig. 4 affirms the difficulty for weakly supervised
localization that we have pointed out in Section 3.3: the WSL
labels only indicate to learn a model for the most repeatable
structure in the positive training images. For the cat class,
due to the highly deformable body, the head can be argued
to be the most distinctive and reliably detectable structure.

TABLE 1
Weakly Supervised Learning Using FV and CNN Features, Measured in Terms

of Correct Localization (CorLoc) Measure on VOC 2007 Training Set

aero bicy bird boa bot bus car cat cha cow dtab dog hors mbik pers plnt she sofa trai tv Av.

standard MIL

FV: F 46.2 32.2 32.0 24.1 4.0 45.1 51.5 37.6 6.8 24.3 14.3 43.0 36.2 52.7 19.3 9.3 20.3 24.5 45.1 14.2 29.1
FV: F+B 50.3 32.2 32.4 24.8 4.0 45.1 52.2 41.1 6.8 25.2 14.3 44.1 38.2 53.7 20.5 9.3 20.3 24.5 43.4 14.2 29.8
FV: F+C 48.6 32.8 30.9 25.5 4.0 43.4 52.2 40.6 6.8 27.2 14.3 43.7 38.6 52.7 20.0 8.8 20.3 24.5 45.1 14.7 29.7
CNN 54.3 55.6 49.5 31.7 15.9 61.5 72.2 33.2 16.5 43.7 22.4 34.8 58.5 64.4 25.1 31.9 36.2 34.0 52.2 31.5 41.2
FV+CNN 49.1 36.1 38.9 30.3 5.1 49.2 62.4 47.5 6.8 35.0 18.4 44.8 45.4 54.3 29.3 13.2 26.1 29.2 48.7 18.8 34.4

multi-fold MIL

FV: F 48.0 55.6 25.8 4.1 6.3 53.3 68.3 23.3 8.8 57.3 4.1 27.6 52.7 66.0 33.2 15.4 55.1 14.2 49.6 62.4 36.5
FV: F+B 55.5 56.1 21.8 27.6 4.5 51.6 66.5 19.3 8.4 59.2 2.0 26.2 56.0 64.9 35.5 20.9 58.0 10.4 56.6 59.4 38.0
FV: F+C 56.6 58.3 28.4 20.7 6.8 54.9 69.1 20.8 9.2 50.5 10.2 29.0 58.0 64.9 36.7 18.7 56.5 13.2 54.9 59.4 38.8
CNN 53.2 66.7 51.3 31.7 19.3 70.5 72.0 23.3 24.9 62.1 32.7 28.0 54.6 64.9 22.1 39.0 55.1 33.0 54.9 40.1 45.0
FV+CNN 57.2 62.2 50.9 37.9 23.9 64.8 74.4 24.8 29.7 64.1 40.8 37.3 55.6 68.1 25.5 38.5 65.2 35.8 56.6 33.5 47.3

We compare foreground (F), background (B) and contrastive background (C) FVs. Contrastive background is used in the FV+CNN combination.

TABLE 2
Weakly Supervised Learning Using FV and CNN Features, Measured in Terms

of Average Precision (AP) Measure on VOC 2007 Test Set

aero bicy bird boa bot bus car cat cha cow dtab dog hors mbik pers plnt she sofa trai tv Av.

standard MIL

FV: F 25.4 31.9 5.6 2.3 0.2 27.9 35.4 20.6 0.5 6.8 4.9 14.0 17.0 35.2 7.1 6.2 5.8 5.1 20.7 8.1 14.0
FV: F+B 28.8 30.7 10.5 6.6 0.3 30.1 36.2 22.7 0.9 7.2 3.4 16.3 22.3 35.5 7.7 9.2 7.5 3.9 26.2 6.5 15.6
FV: F+C 26.1 31.6 8.3 5.3 1.3 31.1 36.9 22.7 0.7 7.7 2.1 16.6 24.5 36.7 7.7 4.7 4.2 4.5 30.0 7.5 15.5
CNN 34.2 39.9 26.5 11.7 7.0 38.0 45.6 19.6 6.2 25.5 5.3 18.8 34.2 42.3 15.6 20.0 18.6 23.5 37.0 15.8 24.3
FV+CNN 36.4 31.7 23.9 11.7 1.5 37.8 40.4 29.4 1.1 17.1 5.1 29.0 32.3 40.9 15.2 8.2 14.3 19.7 36.9 8.2 22.0

multi-fold MIL

FV: F 29.4 37.8 7.3 0.5 1.1 33.2 41.0 14.3 1.0 21.9 9.2 9.4 29.1 37.3 15.5 9.8 27.9 4.7 29.4 40.4 20.0
FV: F+B 36.7 39.2 8.2 10.4 1.9 31.4 40.4 15.7 1.6 22.6 5.8 7.4 29.1 40.9 18.9 10.4 27.3 2.9 30.1 38.2 21.0
FV: F+C 35.8 40.6 8.1 7.6 3.1 35.9 41.8 16.8 1.4 23.0 4.9 14.1 31.9 41.9 19.3 11.1 27.6 12.1 31.0 40.6 22.4
CNN 32.1 46.9 28.4 12.0 9.6 39.4 45.5 16.2 14.8 33.1 11.6 14.0 31.2 39.3 13.1 19.7 30.5 23.4 37.0 19.6 25.9
FV+CNN 38.1 47.6 28.2 13.9 13.2 45.2 48.0 19.3 17.1 27.7 17.3 19.0 30.1 45.4 13.5 17.0 28.8 24.8 38.2 15.0 27.4

We compare foreground (F), background (B) and contrastive background (C) FVs. Contrastive background is used in the FV+CNN combination.
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This is whatmulti-foldMIL learns, but it degrades its CorLoc
and AP scores. Parkhi et al. [36] also observed this, and pro-
posed to localize cats and dogs based on a head detector in a
fully supervised detector setting. Our window refinement
method, which we evaluate below, resolves this issue to
some extent.

In our next experiment, we further investigate the locali-
zation performances of the algorithms in terms of CorLoc
across the training iterations. In the left panel of Fig. 5 we
show the results for standard MIL, and our multi-fold MIL
algorithm using 2, 10, and 20 folds. The results clearly show
the degenerate re-localization performance obtained with
standard MIL training, of which CorLoc stays (almost) con-
stant in the iterations following the first re-localization
stage. Our multi-fold MIL approach leads to substantially
better performance, and ten MIL iterations suffice for the

performance to stabilize. Results increase significantly by
using 2-fold and 10-fold training respectively. The gain by
using 20 folds is limited, however, and therefore we use 10
folds in the remaining experiments. We also include experi-
ments with the 516 dimensional FV obtained using a 4-com-
ponent MoG model, to verify the hypothesis of Section 3.2.
The latter conjectured that the degenerate re-localization
observed for standard MIL training is due to the trivial sep-
arability obtained for high-dimensional descriptors. Indeed,
the lowest two curves in the left panel of Fig. 5 show that
for this descriptor we obtain non-degenerate re-localization
using standard MIL similar to multi-fold MIL. The perfor-
mance is poor, however, due to limited representative
power of the low-dimensional FVs.

In the middle panel of Fig. 5, we compare standard MIL
and multi-fold MIL using the CNN features. We observe

Fig. 4. Re-localization using standard andmulti-foldMIL for images of the classes bicycle,motorbike, and cat from initialization (left) to the final localization
(right) and three intermediate iterations based on FV (F+C) descriptors. Correct localizations are shown in yellow, incorrect ones in pink.

Fig. 5. Correct localization (CorLoc) performance (in the training set) over the MIL iterations, averaged across VOC 2007 classes. We show results
for the high and low dimensional FVs (left panel), and the CNN features (middle panel). In the right panel, we compare 10-fold training with standard
MIL training using different values of the SVM cost parameter (C) for the high-dimensional FVs.
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that standard MIL is less affected by degenerate re-localiza-
tion problem, compared to the case for high-dimensional
FVs. This is in accordance with our observations for low-
dimensional FVs, as the CNN features have an intermediate
dimensionality of 4,096. Nevertheless, multi-fold MIL leads
to significant improvements over the iterations, which
results in 43.8 percent CorLoc, compared to 40.3 percent
CorLoc for standard MIL.

The degenerate re-localization of standardMIL using high-
dimensional descriptors can be interpreted as over-fitting to
the training data at an early stage. Therefore, the question is
whether we can improve standard MIL by carefully tuning
the trade-off between the regularization terms and the loss
functions for SVM training. In the right panel of Fig. 5, we
investigate this question by evaluating the standard MIL
approach for different values of the cost parameter (C) using
high-dimensional FVs. The results show that, although choos-
ing a proper C value is important, it is not possible to solve
the degenerate re-localization problem of standard MIL in
this manner. Whereas using a too low C value (C�1) causes
standard MIL to drift off to a poor solution, larger C values
(C�10) result in degenerate re-localization.

4.3 Evaluation of Window Refinement

In Fig. 6 we provide examples of the localization results on
the training images using standard and multi-fold MIL for
FV and CNN features. The first three examples (car, chair,
and potted plant) are only correctly localized using multi-
fold MIL with FVs. These examples demonstrate the ability
of our multi-fold training procedure to handle cases with
multiple instances that appear in near proximity and with
considerable background clutter. The last three examples
(bicycle, boat, and tv/monitor) are only correctly localized
using multi-fold MIL with CNNs. In the bicycle example, we
observe that multi-fold MIL with FVs mistakes a visually
similar motorbike for a bicycle. Likewise, in the tv/monitor
example, multi-fold MIL over FVs localizes a window that
looks similar to a bright monitor. These examples suggest
that (i) FV and CNN features can be complimentary to each
other, which gives an insight for the success of the FV
+CNN representation, and (ii) that some near-miss localiza-
tions might be corrected by a window refinement method.

We present the CorLoc and AP results for the window
refinement method in Tables 3 and 4, respectively. All
reported results are based on multi-fold training. The upper

Fig. 6. Example localization results on the training images for standard MIL and multi-fold MIL algorithms with high-dimensional FV and CNN fea-
tures. Correct localizations are shown in yellow, incorrect ones in pink.
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parts of the tables show the results for multi-fold MIL with-
out window refinement, therefore, contain copies of the cor-
responding rows from Tables 1 and 2. The bottom parts
show the results for the window refinement method for the
FV, CNN and the combined features. We observe that the
refinement method significantly improves the average Cor-
Loc and AP scores for all three window descriptor types. In
the case of FV+CNN features, applying the window refine-
ment method improves CorLoc and detection AP in 16 out
of 20 classes, where we measure the largest three improve-
ments in CorLoc for the classes horse, dog and cat. The
instances of these three classes have deformable shapes,
therefore, the weakly supervised localization tends to result
in imprecise localizations or part localizations, some of
which are corrected by the window refinement method. The
four classes for which the window refinement method dete-
riorates CorLoc are bicycle, bottle, chair and potted-plant.
These classes typically have highly textured and/or small
instances, where the edge-driven objectness measure can be

misleading. Finally, we note that the results obtained with
refinement also include the addition of horizontal flips of
the positive training windows. This has only a minor effect
on performance: without these the detection mAP for the
FV+CNN features drops by only 0.4 to 29.8 percent. Overall,
these results show that the FV and CNN features are com-
plimentary, and that window refinement can improve local-
ization performance.

4.4 Comparison to State-of-the-Art WSL Detection

We compare our multi-fold MIL approach to the state-of-
the-art in terms of detection AP in Table 5. We separate the
recent work into two groups in terms of their utilization of
auxiliary training data. To the best our knowledge, only
three previous studies that do not use auxiliary training
data reported detection AP scores on PASCAL VOC 2007.
Other work, such as, e.g., that of Deselaers et al. [17], was
evaluated only under simplified conditions, such as using
viewpoint information and using images from a limited

TABLE 3
Evaluation of Window Refinement on the VOC 2007 Dataset, in Terms of Training Set Localization Accuracy (CorLoc)

aero bicy bird boa bot bus car cat cha cow dtab dog hors mbik pers plnt she sofa trai tv Av.

FV 56.6 58.3 28.4 20.7 6.8 54.9 69.1 20.8 9.2 50.5 10.2 29.0 58.0 64.9 36.7 18.7 56.5 13.2 54.9 59.4 38.8
CNN 53.2 66.7 51.3 31.7 19.3 70.5 72.0 23.3 24.9 62.1 32.7 28.0 54.6 64.9 22.1 39.0 55.1 33.0 54.9 40.1 45.0
FV+CNN 57.2 62.2 50.9 37.9 23.9 64.8 74.4 24.8 29.7 64.1 40.8 37.3 55.6 68.1 25.5 38.5 65.2 35.8 56.6 33.5 47.3

after window refinement

FV 62.4 62.2 40.7 35.2 5.1 67.2 76.9 33.2 12.9 63.1 16.3 39.4 62.8 67.6 37.2 22.5 63.8 22.6 65.5 65.5 46.1
CNN 67.1 66.1 49.8 34.5 23.3 68.9 83.5 44.1 27.7 71.8 49.0 48.0 65.2 79.3 37.4 42.9 65.2 51.9 62.8 46.2 54.2
FV+CNN 65.3 55.0 52.4 48.3 18.2 66.4 77.8 35.6 26.5 67.0 46.9 48.4 70.5 69.1 35.2 35.2 69.6 43.4 64.6 43.7 52.0

TABLE 4
Evaluation of Window Refinement on the VOC 2007 Dataset, in Terms of Test-Set Average Precision (AP)

aero bicy bird boa bot bus car cat cha cow dtab dog hors mbik pers plnt she sofa trai tv Av.

FV 35.8 40.6 8.1 7.6 3.1 35.9 41.8 16.8 1.4 23.0 4.9 14.1 31.9 41.9 19.3 11.1 27.6 12.1 31.0 40.6 22.4
CNN 32.1 46.9 28.4 12.0 9.6 39.4 45.5 16.2 14.8 33.1 11.6 14.0 31.2 39.3 13.1 19.7 30.5 23.4 37.0 19.6 25.9
FV+CNN 38.1 47.6 28.2 13.9 13.2 45.2 48.0 19.3 17.1 27.7 17.3 19.0 30.1 45.4 13.5 17.0 28.8 24.8 38.2 15.0 27.4

after window refinement

FV 36.9 38.3 11.5 11.1 1.0 39.8 45.7 16.5 1.2 26.4 4.3 17.7 31.8 44.0 13.1 11.0 31.4 9.7 38.5 36.9 23.3
CNN 40.4 43.5 29.5 11.4 9.4 42.2 47.3 25.6 7.6 33.8 15.8 27.7 37.4 46.4 20.5 19.9 30.2 23.5 40.6 19.6 28.6
FV+CNN 39.3 43.0 28.8 20.4 8.0 45.5 47.9 22.1 8.4 33.5 23.6 29.2 38.5 47.9 20.3 20.0 35.8 30.8 41.0 20.1 30.2

TABLE 5
Comparison of WSL Detectors on PASCALVOC 2007 in Terms of Test-Set Detection AP

aero bicy bird boa bot bus car cat cha cow dtab dog hors mbik pers plnt she sofa trai tv Av.

Pandey and Lazebnik’11 [35] 11.5 — — 3.0 — — — — — — — — 20.3 9.1 — — — — 13.2 — —

Siva and Xiang’11 [45] 13.4 44.0 3.1 3.1 0.0 31.2 43.9 7.1 0.1 9.3 9.9 1.5 29.4 38.3 4.6 0.1 0.4 3.8 34.2 0.0 13.9

Russakovsky et al.’12 [38] 30.8 25.0 — 3.6 — 26.0 — — — — — — 21.3 29.9 — — — — — — 15.0

Ours (FV-only) 36.9 38.3 11.5 11.1 1.0 39.8 45.7 16.5 1.2 26.4 4.3 17.7 31.8 44.0 13.1 11.0 31.4 9.7 38.5 36.9 23.3

methods using additional training data

Song et al.’14 [46] 27.6 41.9 19.7 9.1 10.4 35.8 39.1 33.6 0.6 20.9 10.0 27.7 29.4 39.2 9.1 19.3 20.5 17.1 35.6 7.1 22.7

Song et al.’14 [47] 36.3 47.6 23.3 12.3 11.1 36.0 46.6 25.4 0.7 23.5 12.5 23.5 27.9 40.9 14.8 19.2 24.2 17.1 37.7 11.6 24.6

Bilen et al.’14 [8] 42.2 43.9 23.1 9.2 12.5 44.9 45.1 24.9 8.3 24.0 13.9 18.6 31.6 43.6 7.6 20.9 26.6 20.6 35.9 29.6 26.4

Wang et al.’14 [53] 48.8 41.0 23.6 12.1 11.1 42.7 40.9 35.5 11.1 36.6 18.4 35.3 34.8 51.3 17.2 17.4 26.8 32.8 35.1 45.6 30.9

Wang et al.’14 [53] +context 48.9 42.3 26.1 11.3 11.9 41.3 40.9 34.7 10.8 34.7 18.8 34.4 35.4 52.7 19.1 17.4 35.9 33.3 34.8 46.5 31.6

Ours 39.3 43.0 28.8 20.4 8.0 45.5 47.9 22.1 8.4 33.5 23.6 29.2 38.5 47.9 20.3 20.0 35.8 30.8 41.0 20.1 30.2

Results for Pandey and Lazebnik [35] are taken from [37].
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number of classes. Russakovsky et al. [38] report mAP over
all 20 classes, but report separate AP values for only six clas-
ses. Multi-fold MIL over the FV-only features with window
refinement, results in a detection mAP of 23.3 percent,
which is significantly better than the 13.9 and 15.0 percent
reported in [45] and [38].

The second half of Table 5 presents the recent work that
uses CNN-based features, which involves representation
learning on the ImageNet dataset. For comparison, we use
our multi-fold MIL approach over the FV+CNN features
with window refinement. Our detection mAP of 30.2 per-
cent is significantly better than the 22.7 and 24.6 percent by
Song et al. [46], [47], and the 26.4 percent by Bilen et al. [8].
Wang et al. [53] report a detection mAP of 30.9 percent, and
additionally an improved mAP of 31.6 percent mAP using
the contextual rescoring method of [21]. Our detection mAP
is comparable to Wang et al. [53] without inter-class context,
and we obtain better AP scores in 11 out of 20 classes.

4.5 Analysis of Performance and Failure Cases

To analyze the causes of difficulty of WSL for object detec-
tion, we consider the performance of our detector when
used in a fully supervised training setting. For the sake of
brevity, we analyze the WSL results without applying win-
dow refinement.

There are several factors that change between the WSL
and fully supervised training. In order to evaluate the
importance of each factor, we progressively move from the
original WSL setting to the fully supervised setting. In
Table 6, we report the resulting mAP values for each step
using the FV-only, CNN-only and FV+CNN features in the
final three columns, respectively.

In WSL we have to determine the object locations in the
positive training images. If in each positive training image
we fix the object hypothesis to the candidate window that
best overlaps with one of the ground-truth objects, we no
longer need to use MIL training. In this case, we increase
the detection mAP by 13.1 points to 40.5 w.r.t. the weakly
supervised setting; see first and second row of Table 6. Even
though this is a significant improvement w.r.t. WSL, there is
still a gap of 5.7 percent in detection mAP compared to the
fully supervised setting.

The remaining difference in performance is due to sev-
eral factors, we list them now and give the performance
improvements when making the WSL training scenario pro-
gressively more similar to the supervised one. (i) In WSL
only one instance per positive training image is used.
Including all instances instead makes a relatively minor

effect on the performance, see the third row in Table 6.
(ii) In WSL hard-negative mining is based on negative
images only, when positive images are used too perfor-
mance rises to 43.7 percent mAP for the FV+CNN features,
as shown in the fourth row. (iii) WSL is based on the candi-
date windows, using the ground-truth windows instead
makes a relatively small impact, see the fifth row. (iv)
Finally, in WSL, we do not use positive training images
marked as difficult or truncated, if these are added perfor-
mance rises to 46.2 percent mAP for FV+CNN features.2

These results show that themost important two factors are
the use of correct training windows and hard-negative min-
ing on positive training images. We also observe that multi-
fold MIL achieves 59 percent of the representational perfor-
mance limit (27.4 percent out of 46.2 percent mAP). With
respect to the 40.5 percent mAP for training from ideal local-
izations, multi-fold MIL approach attains 68 percent of the
WSL performance limit. Standard MIL (22.0 percent mAP, cf
Table 2) attains only 54 percent of this performance limit.

In Fig. 7 we further analyze the results of our weakly
supervised detector, and its relation to the optimally local-
ized version. In the left panel, we visualize the close rela-
tionship between the per-class CorLoc and AP values for
our multi-fold MIL detector. The three classes with lowest
CorLoc are bottle, chair, and dining table using FVs, bottle, chair,
and cat using CNNs, and bottle, cat, and person using the FV
+CNN combination. Most instances of these classes appear
in highly cluttered indoor images, and are often occluded by
objects (dining table, chair), or have extremely variable appear-
ance due to transparency (bottle) and deformation (cat, per-
son). In the right panel, we plot the ratio between our WSL
detection AP and the AP obtained with the same detector
trained with optimal localization (the second row in Table 6).
In this case there is also a clear relation with our CorLoc val-
ues. The relation is quite different, however, below and above
50 percent CorLoc. Below this threshold, due to the amount
of noisy training examples,WSL tends to break down. Above
this threshold, however, the training is able to cope with the
noisy positive training examples, and the weakly supervised
detector performs relatively well: on average above 80 per-
cent relative to optimal localization.

In order to better understand the localization errors,
we categorize each of our object hypotheses in the positive
training images into one of the following five cases:

TABLE 6
Performance in Test-Set Detection mAP on VOC 2007
Using FV, CNN and FV+CNN Features, with Varying

Degrees of Supervision

Supervision Neg on Pos Positive Set FV CNN FV+CNN

Image labels only No Non-diff/trunc 22.4 25.9 27.4
Cand box for one obj No Non-diff/trunc 30.8 36.5 40.5
Cand box for all obj No Non-diff/trunc 30.7 35.7 38.4
Cand box for all obj Yes Non-diff/trunc 32.0 41.2 43.7
Exact box for all obj Yes Non-diff/trunc 32.8 40.5 43.6
Exact box for all obj Yes All 35.4 42.8 46.2

Fig. 7. AP versus CorLoc for multi-fold MIL (left), and ratio of WSL over
supervised AP as a function of CorLoc (right) using the FV (blue circles),
CNN (red squares) and FV+CNN (black triangles) representations. Cor-
Loc and AP are measured on the training and test images, respectively.
The left plot shows the line with least squares error for the data points.

2. Note that our CNN-only fully-supervised mAP of 42.8 percent is
comparable to the 44.7 percent of Girshick et al. [22], which uses similar
CNN features.
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(i) correct localization (overlap � 50 percent), (ii) hypothesis
completely inside ground-truth, (iii) reversed inclusion, (iv)
none of the above, but non-zero overlap, and (v) no overlap.
For the sake of brevity, we analyze only the WSL outputs
for the FV+CNN features. In Fig. 8a we show the frequency
of these five cases for each object category and averaged
over all classes for multi-fold MIL. We observe that hypothe-
sis in ground-truth category is the second largest error mode.
For example, as expected from Fig. 4, most localization
hypotheses for the class cat, and similarly for the class dog,
are fully contained within a ground-truth window.
Although the instances of this mis-localization category
may significantly degrade CorLoc and AP measures, they
could as well be interpreted as correct localizations in cer-
tain applications where it is not necessary to localize with
bounding boxes fully covering target objects. Interestingly,
we observe that, with 5.1 percent on average, the “no over-
lap” case is rare. This means that 94.9 percent of our object
hypotheses overlap to some extent with a ground-truth
object. This explains the fact that detector performance is
relatively resilient to frequent mis-localization in the sense
of the CorLoc measure.

Fig. 8b presents the error distribution corresponding to
the standard MIL training. Whereas hypothesis in ground-
truth is more frequent than ground-truth in hypothesis for
multi-fold MIL training, the situation is reversed for stan-
dard MIL training. This is a result of the fact that whereas
multi-fold MIL is able localize most discriminative sub-
regions of the object categories, standard MIL tends to get
stuck after the first few iterations, resulting in too large
bounding box estimates. The effect of multi-fold training on
the distribution of different localization error types is simi-
lar when using the FV or CNN features alone.

Finally, we note that while multi-fold MIL using k
folds results in training k additional classifiers per itera-
tion, training duration grows sublinearly with k since the
number of re-localizations and hard-negative mining
work does not change. In a single iteration of our imple-
mentation using FV features, (a) all SVM optimizations
take 10.5 minutes for standard MIL and 42 minutes for
10-fold MIL, (b) re-localization on positive images take 5
minutes in both cases and (c) hard-negative mining takes
20 minutes in both cases. In total, standard MIL takes 35.5
minutes per iteration and 10-fold MIL takes 67 minutes
per iteration, for a single class.

4.6 Training with Mixed Supervision

In our experiments so far, we have considered the WSL and
fully supervised scenarios, where each training image is
annotated with either class labels (WSL) or object bounding
boxes (fully supervised). We now consider training using a
mixture of the two paradigms, which we refer to as mixed
supervision.

One way to combine weakly supervised and fully super-
vised training for object localization is to leverage an exist-
ing dataset of fully supervised training images of non-target
classes during WSL of a new object category detector, also
referred to as transfer learning, see, e.g., [17], [41]. Such an
approach, however, does not provide any fully supervised
example for the target class and does not allow hard nega-
tive mining on the positive images, both of which are
important factors as shown in our previous analysis.

We, instead, consider a setupwhere a subset of the positive
training images for each class is fully supervised. For this pur-
pose, we randomly sample a subset of the positive training
images and add ground-truth box annotations for all objects
in them. These images are then excluded from the re-localiza-
tion steps in the multi-fold training procedure and instead
their ground-truth windows are used as positive training
examples. We also use the fully supervised positive images
for hard-negativemining, in addition to the negative images.

Fig. 9 presents detection AP scores as a function of the
percentage of fully supervised positive training images.
Each curve is obtained by evaluating the performance when
the ratio of fully supervised images per class is set to values
in f2:5; 5; 10; 25; 50; 100g percent. We also evaluate the base-
line detection results where only the fully supervised
images are used for training. We repeat each experiment
twice and average the AP scores. In each plot, the resulting
mixed supervision and baseline curves are shown using
solid and dotted lines, respectively. The horizontal axes are
in logarithmic scale.

The leftmost panel in Fig. 9 shows the mixed supervision
evaluation results for the classes bus, horse, train, and sheep,
which we select for their similarity in performance to the
average case for FVs (the latter is shown in the third panel).
For these four classes, and on average, we observe a signifi-
cant performance gain using mixed supervision compared
to conventional full supervision.

The only two classes where mixed supervision is not
more effective than fully supervised training for FVs are

Fig. 8. Per-class frequency of error modes, and averaged across all classes using FV+CNN features with 10-fold MIL and standard MIL training.
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bottle and chair, for which AP curves are presented in the
second panel of Fig. 9. We note that bottle and chair are also
the classes with the lowest CorLoc scores for multi-fold
training, which explains why mixed supervised training
does not work well in these cases.

In the third panel we observe that the fewer images are
fully supervised, the more significant the benefit of addi-
tional weakly labeled images using FVs. Overall, we
observe that the benefit of combining fully supervised
images with weakly supervised ones is particularly signifi-
cant when the ratio of fully supervised images is up to 50
percent for FV features.

The fourth panel in Fig. 9 presents the results for the
CNN descriptors. We observe that training with mixed
supervision improves the detection mAP compared to train-
ing with only the fully supervised examples when up to 5

percent of the positive training images are fully supervised.
At larger fully supervised image percentages, training over
only the fully supervised images outperforms mixed super-
vision based training. Regarding this result, we can inter-
pret the CNN features as the outputs from a pre-trained
classifier, and therefore, having a few training images can
be sufficient for effectively learning a detection model over
the CNN features. As a result, utilizing weakly supervised
examples during training can sometimes deteriorate the
detection performance due to the imperfect localizations
provided by the WSL methods.

Finally, the rightmost panel in Fig. 9 presents the
results for the FV+CNN combination. We observe that
training with mixed supervision is significantly beneficial
when the ratio of fully supervised examples is up to 10
percent. Above this threshold, the performance of train-
ing with fully supervised examples is slightly better, simi-
lar to the CNN-only case.

Overall, the results suggest that fully supervised images
can be successfully integrated into multi-fold WSL training
in order to improve detection rates by annotating objects
only in a small number of images. This holds in particular,
when auxiliary training data, such as the ImageNet images
used for training the CNNmodel, is not available. One possi-
ble direction for future work is to give more weight to fully
supervised examples than to weakly supervised ones during
classifier training, especially in the earlyMIL iterations.

4.7 VOC 2010 Evaluation

We now present an evaluation on the VOC 2010 dataset in
order to verify the effectiveness of multi-fold training and
the window refinement method on a second dataset. We are
the first to present weakly supervised results on this dataset,
and can therefore not compare to other weakly supervised
methods. We show the resulting CorLoc values in Table 7
and detection AP results in Table 8. Overall, our results on
VOC 2010 are similar to those on the 2007 dataset in the
sense that multi-fold MIL significantly improves the WSL
performance compared to standard MIL training, especially
when high-dimensional FV descriptors are included. Using
multi-fold MIL over the combined FV and CNN features
results in 24.7 percent mAP, which is significantly better
than 21.9 percent mAP by standard MIL. The window
refinement method further improves multi-fold MIL perfor-
mance from 24.7 to 27.4 percent mAP.

If we train the object detectors in a fully supervised man-
ner, we obtain 33.6 percent mAP using the FV features, and
37.7 percent mAP using the CNN features. This verifies that
we have an effective object representation outperforming
DPMs [23] (29.6 percent mAP). On this dataset, the highest
fully supervised detection result without using auxiliary
data is 39.7 percent mAP [55]. We note that whereas the

Fig. 9. Object detection results for training with mixed supervision. Each curve shows the test set detection AP as a function of the percentage of fully
supervised positive training images. The horizontal axes are in logarithmic scale. The first two plots show per-class curves for selected classes using
only FVs. The last three plots show the detection AP values averaged over all classes for the FV, CNN and FV+CNN features, respectively. The solid
curves correspond to mixed supervision. The dotted curves correspond to results obtained by using only the fully-supervised examples.

TABLE 7
Comparison of Standard MILTraining versus Our 10-fold MIL on VOC 2010 in Terms of Training Set Localization Accuracy (CorLoc)

aero bicy bird boa bot bus car cat cha cow dtab dog hors mbik pers plnt she sofa trai tv Av.

standard MIL

FV 58.9 45.2 33.7 24.1 6.7 66.1 43.3 50.6 16.2 36.0 25.5 41.8 53.4 57.5 21.5 11.6 32.9 30.5 50.0 21.6 36.4

CNN 54.8 60.1 52.3 40.2 26.6 73.9 64.1 23.4 35.7 58.1 24.5 32.4 71.3 63.8 28.0 36.4 61.6 44.7 48.1 55.3 47.8

FV+CNN 60.2 53.9 48.5 34.2 12.6 71.0 52.6 44.1 23.3 37.2 25.5 45.3 60.2 61.3 36.0 15.3 36.6 34.0 51.0 31.8 41.7

FV+CNN+Refinement 62.7 56.3 52.8 39.6 13.5 71.4 58.7 47.3 23.9 44.8 27.7 54.4 65.9 66.7 38.0 19.0 46.8 34.0 57.8 38.7 46.0

multi-fold MIL

FV 47.3 47.1 36.2 34.8 24.9 68.9 59.8 18.9 21.3 52.9 26.6 32.2 44.1 60.7 33.7 17.3 63.9 32.6 48.1 66.6 41.9

CNN 53.4 59.1 52.6 39.9 27.1 73.1 65.2 18.6 40.6 68.0 33.0 30.1 71.0 63.2 27.1 37.8 61.6 43.3 48.1 58.9 48.6

FV+CNN 60.7 60.1 53.4 38.7 27.8 77.7 67.1 20.3 42.6 64.0 39.4 38.8 70.6 65.2 28.5 36.1 58.8 46.1 55.8 49.7 50.1

FV+CNN+Refinement 61.1 65.0 59.2 44.3 28.3 80.6 69.7 31.2 42.8 73.3 38.3 50.2 74.9 70.9 37.3 37.1 65.3 55.3 61.7 58.2 55.2
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CNNmodel we use is trained on the ImageNet images only,
Girshick et al. [22] utilize a CNN model fine-tuned on the
VOC ground-truth boxes, which leads to a better fully-
supervised detection performance of 53.7 percent mAP. We
plan to explore weakly supervised CNN fine-tuning in
future work.

5 CONCLUSIONS

In this article, we have introduced a multi-fold multiple
instance learning approach for weakly supervised object
detection, which avoids the degenerate localization perfor-
mance observed without it. Second, we have presented a
contrastive background descriptor, which encourages the
detection model to learn the differences between the objects
and their context. Third, we have designed a window
refinement method, which improves the localization accu-
racy by using an edge-driven objectness prior.

We have evaluated our approach and compared it to
state-of-the-art methods using the VOC 2007 dataset. Our
results show that multi-fold MIL effectively handles high-
dimensional descriptors, which allows us to obtain state-of-
the-art results by jointly using FV and CNN features. On
the VOC 2010 dataset we observe similar improvements by
using our multi-fold MIL method.

A detailed analysis of our results shows that, in terms of
test set detection performance, multi-foldMIL attains 68 per-
cent of the MIL performance upper-bound, which we mea-
sure by selecting one correct training example from each
positive image, for the combined FV and CNN features.
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